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A B S T R A C T   

Consistent physical activity is key for health and well-being, but it is vulnerable to stressors. The process of 
recovering from such stressors and bouncing back to the previous state of physical activity can be referred to as 
resilience. Quantifying resilience is fundamental to assess and manage the impact of stressors on consistent 
physical activity. In this tutorial, we present a method to quantify the resilience process from physical activity 
data. We leverage the prior operationalization of resilience, as used in various psychological domains, as area 
under the curve and expand it to suit the characteristics of physical activity time series. As use case to illustrate 
the methodology, we quantified resilience in step count time series (length = 366 observations) for eight par-
ticipants following the first COVID-19 lockdown as a stressor. Steps were assessed daily using wrist-worn devices. 
The methodology is implemented in R and all coding details are included. For each person’s time series, we fitted 
multiple growth models and identified the best one using the Root Mean Squared Error (RMSE). Then, we used 
the predicted values from the selected model to identify the point in time when the participant recovered from 
the stressor and quantified the resulting area under the curve as a measure of resilience for step count. Further 
resilience features were extracted to capture the different aspects of the process. By developing a methodological 
guide with a step-by-step implementation, we aimed at fostering increased awareness about the concept of 
resilience for physical activity and facilitate the implementation of related research.   

1. Introduction 

Physical inactivity is responsible for the development and progres-
sion of non-communicable diseases and for premature mortality; 
consequently, promoting physical activity is a top-ranked public health 
priority (Lee et al., 2012). There is consistent evidence suggesting that 
physical activity (e.g., expressed as daily step counts or minutes of 
moderate to vigorous physical activity) is sensitive to a multitude of 
adverse events including, but not limited to, pandemic outbreaks 
(Costello et al., 2021; Larson, Bader-Larsen, & Magkos, 2021), acute 
diseases (McKee et al., 2019), and extreme weather events (Bernard 
et al., 2021; Wagner, Keusch, Yan, & Clarke, 2019). Additionally, other 

events which are not adverse per se (e.g., pregnancy, relocation, medical 
treatments) have also been shown to have a negative impact on physical 
activity (Corder et al., 2020; Devoogdt et al., 2010; Engberg et al., 
2012). All these events can act as “stressors” for physical activity, and 
thus may be followed by a decrease in physical activity levels. The 
process of recovering from such stressors and bouncing back to the 
previous state of physical activity can be referred to as resilience (Den 
Hartigh & Hill, 2022; Scheffer et al., 2018). Describing and quantifying 
this process in the physical activity domain is therefore crucial to 
improve our understanding of the impacts of various stressors on in-
dividuals, to identify factors that are associated with better or worse 
resilience, and to foster adaptive capacities in individuals. However, so 
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far, no methods have been reported in the literature that clearly char-
acterize and quantify resilience from physical activity behavior data. 

Resilience is an interdisciplinary construct that has been receiving 
increasing attention in the last decades (Estrada, Severt, & 
Jiménez-Rodríguez, 2016). Although resilience broadly relates to the 
ability of a system, e.g., here a human, to maintain specific functions in 
the presence of a stressor (Baggio, Brown, & Hellebrandt, 2015), the 
concept has been used in many different ways across various scientific 
disciplines (e.g., ecology, engineering, environmental sciences, social 
sciences, psychology; Scheffer et al., 2018). The multidisciplinary in-
terest in resilience has led to the proliferation of different conceptuali-
zations and definitions which has hampered advances in its theoretical 
understanding and investigative methods (Den Hartigh & Hill, 2022; 
Fletcher & Sarkar, 2013; Windle, 2011). This issue is evident in research 
on resilience in psychology, where a major argument of debate concerns 
the conceptualization of resilience as either a trait or a process (Fletcher 
& Sarkar, 2013; Luthar, Cicchetti, & Becker, 2000; Windle, 2011). 
Resilience as a trait has been referred to as a set of personal qualities that 
enable a person to adapt and thrive in the face of the circumstances and 
adversities they encounter (Block & Block, 1982; Connor & Davidson, 
2003). Traits like general resourcefulness, strength of character, and 
flexibility of functioning in response to various environmental demands 
are considered descriptors of resilience as a trait (Fletcher & Sarkar, 
2013). This notion has been criticized because it suggests that resilience 
is a quality (i.e., trait) that one either has or does not have and does not 
represent the dynamics of a process that changes over time and across 
contexts (Den Hartigh & Hill, 2022; Fletcher & Sarkar, 2013; Luthar 
et al., 2000). Resilience as a process can be reconducted to various 
conceptualizations that we can sort into three broad categories (Bryan, 
O’Shea, & MacIntyre, 2019; Den Hartigh & Hill, 2022; Smith et al., 
2008). The first category refers to resilience as an ability to resist 
stressors and maintain a healthy state in spite of stressors (Bonanno, 
2004; Bryan et al., 2019; Luthar et al., 2000). In the second category, 
resilience is conceptualized as the ability to adapt to and grow from 
stressors, and, ultimately, improve the level of functioning (Richardson, 
2002). A third conceptualization, supported by various researchers 
across different scientific fields (Carver, 1998; Den Hartigh & Hill, 2022; 
Scheffer et al., 2018), refers to resilience as the process of returning to 
the previous state following a stressor (“bouncing-back”; Den Hartigh & 
Hill, 2022, p. 4), whereby stressor is understood as any event that has a 
disruptive negative impact on a specific system (e.g., physical activity). 
This definition provides good conceptual clarity as it (i) ensures con-
sistency with the etymological meaning of resilience (i.e., “re” – back, 
“salire” – to leap/jump), (ii) is in line with the conceptualization adopted 
in physical sciences, ecology, biology, engineering and the field of 
complex systems where this definition and measure of resilience are 
consolidated, and (iii) distinguishes the concept of resilience from other 
terms that have been assimilated to it in previous research, such as 
thriving and adaptation (Carver, 1998; Den Hartigh & Hill, 2022). The 
conceptualization of resilience as a process – and specifically as a 
bouncing back process – is commonly used in the sport psychology 
context, whereby resilience acts as a dynamic state subject to both 
change over time and context (Bryan et al., 2019; Hill, Den Hartigh, 
Meijer, De Jonge, & Van Yperen, 2018). In the remainder of the tutorial, 
we will refer to resilience adopting this latter conceptualization. 

Measuring the resilience process requires the assessment of the dy-
namic recovery following the exposure to one or several stressors (Hill 
et al., 2018; Scheffer et al., 2018). Therefore, multiple measurement 
points (i.e., time series) need to be collected in order to capture how a 
person’s state responds to, and bounces back from, stressors. Methodo-
logical approaches to quantify resilience from time series have been 
proposed and implemented in the last years (Den Hartigh & Hill, 2022; 
Helmich et al., 2021; Kuranova et al., 2020; Scheffer et al., 2018). 
Recent advances in mobile sensing have greatly facilitated the quanti-
fication of resilience by making the collection of high-resolution time 
series possible for various outcomes (Scheffer et al., 2018). For instance, 

in the physical activity domain, activity monitors or smartphones are 
becoming ubiquitous, facilitating the assessment of high-resolution 
fluctuations in physical activity in real life over prolonged periods of 
time (Chevance, Perski, & Hekler, 2021). These dynamic time series 
measures allow to capture the person’s state along the stressor-recovery 
process and can be leveraged to develop methods that characterize and 
quantify resilience (Den Hartigh & Hill, 2022; Scheffer et al., 2018). 

Using time series, researchers in different psychological domains (e. 
g., psycho-endocrinology, psycho-pathology) have adopted the area 
under the curve (AUC) approach to quantify resilience from time series 
(Kuranova et al., 2020; Pruessner, Kirschbaum, Meinlschmid, & Hell-
hammer, 2003; see Figure 1a). The AUC combines two independent 
features of the resilience process: the magnitude of the perturbation (i.e., 
the degree by which a specific system is impacted by a stressor) and the 
recovery rate (i.e., the time duration for the system to bounce back to a 
pre-stressor level). 

The trapezoid formula is commonly used to quantify the AUC from 
time-series and ultimately resilience (Hill, Van Yperen, & Den Hartigh, 
2021; Pruessner et al., 2003): 

AUC =
∑n− 1

i

(
(xi+1 + xi) ∗ ti

2

)

Where xi represents the value of the variable of interest at a given time i 
(e.g., daily step count), n represents the total number of observations, 
and ti represents the time difference between the measurement points. 
Based on this operationalization of resilience, the larger the AUC the less 
resilient is the person to recover from the stressor. Figure 1b shows the 
AUC determined using a traditional trapezoid formula. AUC as a mea-
sure for resilience has been successfully used for outcomes such as re-
action times, experimental motor tasks, or physiological signals for 
which resilience has previously been estimated using the trapezoid 
formula (e.g., Gerber et al., 2017; Hill et al., 2021). We argue here that 
the trapezoid formula is not suited to quantify the AUC, and ultimately 
the resilience process, from physical activity time series. Previous 
research has shown that physical activity signals (e.g., step count, mi-
nutes spent in light physical activity or moderate-to-vigorous physical 
activity) have the particularity of being highly variable compared to the 
aforementioned outcomes (Chevance, Baretta, Heino, et al., 2021; 
Costello et al., 2021; Hooker, Oswald, Reid, & Baron, 2020). Therefore, 
identifying the recovery point and hence determining the end of the 
resilience process (i.e., timepoint when the system reaches relatively 
stable levels following its return to pre-stressor levels) based on physical 
activity signals is not straightforward and prone to errors. Figure 2 il-
lustrates this “fluctuation issue” by showing two step count time series 
following a stressor (the time series are taken from the sample later used 
in the methods and results sections of this tutorial). The green horizontal 
line represents the pre-stressor level of daily steps while the dark grey 
rectangle zooms in on the part of the time series where the system has 
probably bounced back to the pre-stressor level; however, it is not 
possible to precisely identify the moment in time when this happened 
because of the natural fluctuations characteristic of physical activity 
behavior, here step count. This represents a major issue because without 
the identification of the recovery point it is impossible to determine the 
boundaries of the AUC, and thus the end of the resilience process. 

1.1. Aim of the tutorial 

The objective of this tutorial is to introduce a new methodological 
approach to quantify resilience from physical activity data while ac-
counting for the high variability and natural fluctuations of physical 
activity signals. Specifically, we propose to use fitted values – as opposed 
to observed values – to precisely identify the recovery point and there-
fore quantify the AUC as a measure of resilience. To this aim, we fit 
different growth models to each participant’s time series and select the 
model that best describes the data. The fitted values from the selected 
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model are then used to compute a resilience score and other indicators of 
the resilience process for each individual. Modeling time series for each 
individual separately allow us to quantify the process of resilience for 
each study participant, as if we were using a traditional questionnaire to 
measure any other psychological construct at the individual level. This 
approach ensures that every type of research can then be conducted 
using idiographic or group-based designs and statistics. 

As a use case to illustrate the application of the method, we inves-
tigate the resilience process in daily step count following the first 
COVID-19 lockdown (i.e., here our stressor) in Catalunya, Spain. To 
facilitate the application of this new method in the future, the following 
section details a step-by-step tutorial describing how to replicate and 
implement the analyses with the open-source statistical software R (R 
Core Team, 2021). Data and code are available in an Open Science 
Framework directory (see: https://osf.io/3h7em/). 

2. Methods 

2.1. Background of the time series used in the tutorial 

To illustrate the concrete application of the proposed methodological 

approach, we use step count time series collected in Catalunya (Spain), 
as part of the COVICAT study (Kogevinas et al., 2021), in the period 
between October 1, 2019 and September 30, 2020. These data were 
retrospectively collected using crowdsourcing from participants of the 
GCAT cohort (Obón-Santacana et al., 2018), i.e., participants consented 
to share their data collected via wearable devices with the research team 
in September 2021 with a data extraction API supported by Thryve (htt 
ps://thryve.health/). 

The resulting time series can be conceptually split into two phases by 
the stressor event. In this example, the stressor is represented by the start 
of the first COVID-19 lockdown (March 15, 2020), including a 7-week 
long law-enforced home confinement, which has been previously 
shown to have negatively impacted daily step count and other physical 
activity outcomes (e.g., moderate to vigorous physical activity; Costello 
et al., 2021; Larson et al., 2021). We refer to the pre-stressor phase as 
“baseline” and use it to compute the baseline level of daily step count. In 
the current example, the baseline phase corresponds to the period be-
tween October 1, 2019 and March 15, 2020. We limited the baseline 
phase to this period because it represents a good compromise between 
length of the time series and its proximity to the onset of the stressor. For 
the post-stressor phase, we limited the period to September 30, 2020, 

Figure 1. Figure 1a. Conceptual visualization of the 
resilience process as described in and adapted from 
Den Hartigh & Hill, 2022. Figure 1b. Visualization of 
a theoretical AUC calculated using the trapezoid for-
mula. 
Note. Time course of time-series with several mea-
surements; each trapezoid (in orange) is calculated 
using the trapezoid formula and the sum of all the 
trapezoids composes the area under the curve (AUC). 
x(i) denotes the single measurement, and t(i) denotes 
the time interval between the measurements. The 
figure is not based on real data.   
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shortly before the second COVID-19 state of emergency was issued in 
Catalunya on October 15, 2020. We removed the first 2 weeks of 
October 2020 from the analysis because the daily step count in the time 
series started decreasing again with the increase in the pandemic tra-
jectory in Catalunya. To simplify the description of the use case, we 
analyzed the time series for eight participants. The sample size was kept 
small to ensure an agile tutorial while the participants were purposely 
selected to showcase relevant individual differences in the resilience 
process. 

The time series used in this tutorial might contain missing values in 
daily step count as we did not apply any missing value imputation. This 
approach is consistent with a previous viewpoint on handling missing 
values in longitudinal studies (Oud & Voelkle, 2014) suggesting that a 
time series can be seen as a way to measure an underlying process (here 
resilience) that develops continuously over time, even if the process is 
only observed at some available measurement points. For this approach, 
it is crucial to have enough measurement points in each time series. As a 
rule of thumb, we only included time series with <10% missing values in 
the post-stressor phase. 

Note that there are other use cases where the date of the stressor is 
unknown or varies idiosyncratically; therefore, defining the date of the 
system perturbation can be more problematic. In such situations, we 
suggest to adopt data-driven methods that have been shown to effec-
tively detect abrupt or structural changes in physical activity time series 
such as recursive portioning or break point detection methods 

(Chevance, Baretta, Heino, et al., 2021; Costello et al., 2021). 

2.2. Software packages 

R is a free software environment for statistical computing which 
provides powerful resources (i.e., packages) for data wrangling, data 
visualization, and a wide range of statistical modelling approaches (R 
Core Team, 2021). Most of the packages used in the tutorial (e.g., dplyr, 
tidyr, purrr, ggplot) are from the tidyverse ecosystem (Wickham et al., 
2019). Additionally, we used functions from the mgcv package (Wood, 
2011) for fitting non-linear models. Throughout the tutorial, we refer to 
a function by specifying the source package as part of the code (i.e., 
package::function()). In case the package is not mentioned, it means that 
the function is directly available in R without the import of any specific 
package. Eventually, further ad-hoc functions have been developed for 
the purpose of this tutorial. 

The reading of the article is supported by chunks of R code embedded 
in the body text. Additionally, the extended R code, the time series data, 
and a comprehensive R Markdown file are included in the supplemental 
materials (https://osf.io/3h7em/). 

3. Results 

This results section is organized into two sequential parts. The data 
import and pre-processing part describes how to: import the data in R 

Figure 2. Example of step count time series from two participants included in this tutorial. 
Note. P = participant, vertical red dashed line = stressor event, horizontal green line = baseline level, black line = time series for step count, vertical black dashed 
line = first day after the stressor when the fluctuation in daily step count is above baseline level, grey rectangle = area highlighting intense and repeated fluctuations 
around baseline level: it covers 60 days following the first fluctuation above the baseline level. 
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(step 1), define dates relevant for quantifying the resilience process (step 
2), and calculate the pre-stressor level, henceforth referred to as baseline 
level (step 3). The subsequent data modelling and resilience score 
calculation part provides guidance on how to fit growth models to the 
step count time series (step 4) and select the model that provides the best 
fit (step 5), and finally, on the use of the fitted values from the best model 
to calculate resilience scores and a series of other resilience features (step 
6 and step 7). 

3.1. Data import and pre-processing 

3.1.1. Step 1: import the data 
The participants’ data are saved in a csv file named ts_tutorial.csv 

(see supplemental material). The file contains three columns named 
“id”, “date” and “steps”. The variable “id” is a string that identifies each 
participant, the variable “date” refers to the specific date of the mea-
surement, and the variable “steps” corresponds to the daily number of 
steps done on a specific date by a given participant. The file contains 8 
time series (one time series corresponds to one participant) with 366 
data points each. In order to import the csv file in R, we use the readr:: 
read_csv() function and assign it to an object: 

Now, the data are a data frame “df.1” with named columns and ready 
for data processing and modeling. 

3.1.2. Step 2: Define dates and phases in the time series 
In the current example, we define the dates of start and end of the 

time series, and the date of the stressor (i.e., beginning of the lockdown). 
To this aim, the function lubridate:date() converts a string into a date 
format object. 

Because we are interested in comparing the period before and after 
the stressor occurred, we create a new categorical variable called 
“phase” which specifies whether the observation is pre-lockdown (value 
= “baseline”) or post lock-down (value = “post-stressor”). We combine 
the dplyr:mutate() function, which allows to add variables to a data 
frame, with the dplyr:case_when() function, which is used to recode 
values from a variable x into different values in a variable y. The pipe 
symbol %>% is part of the magrittr package and allows to concatenate 
multiple functions in a sequential order. 

3.1.3. Step 3: Define the baseline level of daily steps and filter out the pre- 
stressor observations 

As mentioned, the concept of resilience refers to the dynamic process 
of returning to a previous state. Therefore, the concept of previous state 
needs to be operationalized. We operationalized it as the lower bound of 
the two-sided confidence interval (95%) of the median number of daily 
steps during the baseline phase, which is here represented by the five 
months and a half preceding the lockdown. We opted for the lower 
bound of the confidence interval instead of the median itself because we 

wanted to identify a baseline range for step count rather than a strict 
threshold. We used the median instead of the mean because it is less 
impacted by extreme observations (i.e., outliers) or potential skewed 
distributions. To implement this step, we first use the dplyr:filter() 
function to include only the observations in the time series referring to 
the baseline phase; the dplyr:group_by(), tidyr:nest() and purrr:map() 
functions are then used to apply the DescTools:MedianCI() function to 
each participant separately. This last function calculates the median 
value as well as its lower and upper bounds for each time series. The 
argument na.rm = TRUE inside the DescTools:MedianCI() function 
removes the missing observations before calculating the median value 
while the purrr:pluck() function extracts the lower bound of the confi-
dence interval from the output of MedianCI(). 

Once the baseline step count value for each participant has been 
defined, this information needs to be appended to a data frame which 
contains the part of the time series concerning the post-stressor phase 
only. To do so, we take the source data frame df.2 and use dplyr:filter() 
to filter only the observations corresponding to the post-stressor phase. 
Then, the baseline_steps variable is appended to df.2 by joining the 
baseline_level data frame using the dplyr:left_join() function with the id 
variable as identifier. The newly created data frame df.3 contains daily 
step count data for the post-stressor phase only which is the phase we 
analyze to measure the resilience process for each participant. Eventu-
ally, we create a new variable “prog_day” which defines for each 
participant the progressive day of the time series during the post-stressor 
phase. This variable will then be used as predictor of daily step count in 
modeling the resilience process (see step 4). 

3.2. Data modelling and resilience score calculation 

3.2.1. Step 4: Applying concurrent growth models to the step count time 
series 

Growth modeling is an analytic approach for modeling systematic 
within-person ce drops in the step count time series. This is crucial if we 
think about a case where a participant has successfully recovered from 
the COVID-19 lock down stressor, but then a further drop in step count 
occurs due to another stressor (e.g., birth of a child). Two different 
GAMs are fitted using the mgcv:gam(): gam_tp and gam_cc. The s() 
function is used within the model formulae to specify the smooth term 
through the bs argument (which indicates the smoothing basis to use) 
and the basis dimension through the k argument (which sets the upper 
limit on the degrees of freedom associated with the smooth term). In our 
implementation, the bs term specification differentiates gam_tp and 
gam_cc. Specifically, for the gam_tp model, we opted for bs = “tp” (i.e., 
thin plate regression splines) which is the default option because thin 
plate regression splines generally yield the best performance in terms of 
mean squared error (Winter & Wieling, 2016). However, we also 
included a GAM with bs = "cc" (i.e., cyclic cubic regression splines) 
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based on previous research which used GAMs to model step count time 
series (Chevance, Baretta, Golaszewski, et al., 2021) and better describes 
cyclic trends which are common in step count data (e.g., Chevance, 
Baretta, Heino, et al., 2021). The k argument was set to k = 7 in line with 
previous work on step count (Chevance, Baretta, Romain, Godino, & 
Bernard, 2022). The preferred smoothness selection criterion we opted 
for is the restricted maximum likelihood (method = ’REML’) because it 
is less prone to local minima than the other criteria. The present 
description of the GAMs specification is based on Wood (2017) which 
provides a detailed description of the GAM approach and its imple-
mentation in R via the mgcv package. 

We adopted the tidyr:nest() function and evoke the purrr:map() 
function to fit the different models to each person’s time series sepa-
rately in an idiographic fashion. 

3.2.2. Step 5: Selecting the best growth model for each participant 
After having fitted different functions, the next step is to select the 

model that best describes the data for each participant individually. This 
step is done individually rather than at group level, because the aim is to 
obtain individual resilience measures (i.e., a score for each potential 
participant). We based the model selection on the Root Mean Squared 
Error (RMSE) which tells how close the model’s fitted values are to the 
observed data points (Hyndman & Koehler, 2006). The RMSE is an ab-
solute and direct measure of model fit (i.e., it is expressed in the same 
units as the dependent variable) where the best fitting model has an 
ideal value of zero. When used comparatively, lower RMSE values are 
associated with a better model fit.1 Therefore, by comparing RMSEs 
between different models we can select the one that minimizes the 
average mean squared errors (i.e., residuals), which are here repre-
sented by daily fluctuations in the time series. For instance, looking at 
the RMSE values for participant P1 (Table 1), we can see that the esti-
mates from “GAM thin plate” are more accurate than the ones from 
“GAM cubic cycle” by 155 steps per day. Differently, other participants 
present smaller differences in RMSE values between models, making the 
comparison and the relevant choice between the two models more 
challenging (e.g., less than 10 steps per day; see P4, P5, P6). In such 
cases, we recommend to combine the RMSE with a further model fit 

index which is less sensitive to outliers: the mean absolute error (MAE; 
Chai & Draxler, 2014). This index can be interpreted in the same way as 
the RMSE (i.e., an absolute index with smaller values indicating a better 
fit) with the difference that it penalizes the outliers less (see Chai & 
Draxler, 2014 for a comparison between RMSE and MAE). If both RMSE 
and MAE values provide support for the same model, we can consider it 
as the one that better describes the data. Otherwise, in case of discrep-
ancies (e.g., P5 and P6 in Table 1), we encourage visual inspection of 
each model as this contributes to selecting the best model beyond fit 
indices. Eventually, if there are still concerns regarding the model se-
lection, it is possible to run some sensitivity analyses to check if the two 
models lead to substantial differences in the resilience process. This 
approach is presented in the supplemental materials. Now, for sake of 
conciseness, we continue the tutorial focusing on the model selection 
based on the RMSE index. 

From an implementation point of view, it is necessary to compute the 
RMSE for all models under consideration for every participant and then 

Table 1 
Root mean squared error (RMSE) and mean absolute error (MAE) for each model 
fitted to the individual time series.   

RMSE MAE 

Participant GAM TP GAM CC diff GAM TP GAM CC diff 

P1 3139 3294 − 155 2476 2683 − 207 
P2 2278 2231 46 1568 1524 44 
P3 2554 2573 − 19 2030 2045 − 15 
P4 3281 3277 4 2586 2563 22 
P5* 3122 3131 − 9 2298 2293 5 
P6* 2823 2832 − 9 2121 2106 15 
P7 3894 3951 − 57 2976 3104 − 128 
P8 3552 3963 − 411 2637 3080 − 443 

Note. In bold the RMSE for the selected model; RMSE and MAE values as well as 
differences in RMSE and MAE are expressed as number of steps; negative values 
in RMSE and MAE difference corresponds to a better performance for GAM thin 
plate; * = RMSE and MAE values are not consistently pointing to the same 
model. 
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select the model with the lowest value. In R, we apply the function 
modelr:rmse() to extract the RMSE value from the models we computed 
in the previous step. The modelr:rmse() function is used inside the purrr: 
map_dbl() function because the aim is to get the values for all the time 
series (i.e., participants). The best model (final_mod) for each partici-
pant is selected by comparing the RMSE values of each model (see 
Table 1 and figure 3). In case the reader wants to extract the MAE values 
as a further model’s fit index, the function to be used is modelr:mae(). 

3.2.3. Step 6: Adding the predicted values for step count to the time series 
The next step is to create a new column in the time series data frame 

which contains the fitted values for step count from the selected model 
(i.e., the blue line in figure 3). We then take the first fitted value and 
subtract it from baseline level in order to estimate the initial drop after 
the onset of the stressor. It is worth remarking the fact that we are using 
the first fitted value to identify the initial drop, therefore the result is not 
impacted by typical fluctuations of the observed values in step count time 
series. Conversely, estimating the initial drop on the basis of the first 
observed value would probably lead to under- or over-estimating the 
size of the drop and not be representative of the time series trajectory 

(see figure 2). Within this tutorial, researchers have the option to set 
logical conditions to exclude participants from the analysis based on 
their initial drop value. For instance, participants can be excluded if they 
don’t experience any drop after the onset of the stressor (initial drop >0) 
or if the drop is not substantial. For the purpose of this tutorial, we set 
the logical condition of removing those participants who didn’t expe-
rienced any substantial drop, defined as 20% reduction in steps relative 
to the baseline level (see Chevance, Baretta, Heino, et al., 2021 for 
comparison of different drop thresholds in step count data). We opted 
for this solution because from a methodological standpoint we want to 
show how the proposed approach applies to the quantification of resil-
ience for those participants who experienced a meaningful drop after the 
onset of the stressor. Note that the operationalization of substantial drop 
can be tuned by researchers to meet different research questions (e.g., 
relative or absolute change in step count) and fit to the study charac-
teristics (e.g., population under scope, type of physical activity signal, 
type of stressor). 

On the implementation side, we use the dplyr:mutate() function to 
add the fitted values (modelr:add_predictions) from the selected model 
(final_mod) to each time series (data). Then we apply the init_drop() 

Figure 3. Comparison of growth model curves for each time series (participant). 
Note. P = participant; blue line = selected model, black dashed lines = non-selected model, green horizonal green line = baseline level, grey line = observed 
step counts. 
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function which we developed for this tutorial. The function extracts the 
first fitted value for each time series according to the selected model and 
subtracts it from the baseline level. As next step, we define the sub-
stantial drop (sub_drop) as 20% of baseline level. Eventually, if the 
init_drop value is smaller than sub_drop, we remove the participant from 
the subsequent analysis because it means that there was no substantial 
drop after the onset of the stressor. 

3.2.4. Step 7: Quantifying and characterizing the resilience process 
As a final step, we quantify resilience, operationalized as the AUC 

(see Figure 1), and we also provide indicators of additional resilience 
features (see table 2 and figure 4). A detailed descriptions of these pa-
rameters and their implementation in R is now presented while a visu-
alization of these parameters is provided in figure 4. 

1. Initial drop. The indicator corresponds to the difference between 
baseline level and the fitted value at the first day after the stressor. It 
quantifies the system perturbation informing whether and how much 
step count decreased after the onset of the stressor (expressed in steps 
compared to the baseline level). The function used to compute the 
initial drop is init_drop(). 
2. Recovery Rate. This resilience feature informs about the duration 
for the system to bounce back to the baseline level and thus is 
expressed in number of days. In order to compute it, we need to 
identify the recovery point (here the day) when the fitted value from 
the selected model is equal or greater than the baseline level. In order 
to do so, we apply the rec_rate() function which is an ad-hoc built 
function. If the rec_rate()returns a missing value (NA), it means that 
the individual has not recovered from the stressor during the time 
period considered in the time series (200 days in the current 
example). In this case, one option is to extend the length of the time 
series (post-stressor phase) and check if a longer period of time al-
lows to identify the time point when the system recover from the 
stressor. Similar to what done in step 6 with the initial drop 
parameter, the recovery rate can be used as a further criterion to 
define whether a perturbation has to be considered significant or not. 
Participants can be then excluded from subsequent analyses if the 
perturbation they experienced lasted less than a specific amount of 
time. Also in this case, the threshold for the exclusion can be been 
defined by researchers according to their different research questions 
and study characteristics. In this tutorial, we didn’t specify any 
exclusion criteria based on the length of the recovery rate.  

3. Main resilience score 1: Area Under the Curve (AUC). The AUC 
represents the total number of steps reduced between the onset of the 
stressor until the recovery point compared to baseline. In order to 
calculate it and hence quantify the resilience process, we use a for-
mula that calculates the cumulative difference between the predicted 

values and the baseline values in the time period before the recovery 
happens: 

AUC =
∑n

i
(|baseline − f (xi)|)

Where n corresponds to the recovery rate value, baseline represents 
the baseline value, and f(xi) is the fitted value of steps at measure-
ment point i. The AUC value represents the cumulative decrease in 
steps after the onset of the stressor and is expressed in terms of 
number of steps. The resilience process should be then interpreted as 
follows: the lower the AUC value the higher the resilience and the 
higher the AUC value the lower the resilience. In case the recovery 
rate function returns a missing value (i.e., no recovery happened), 
the AUC is calculated from the length of the time series instead of 
from the recovery rate (n argument in the AUC function). This means 
that the AUC for participants who do not recover from the stressor is 
artificially limited and tends to be underestimated. The corre-
sponding R function auc() was developed for this tutorial.  

4. Main resilience score 2: Relative Area Under the Curve (rAUC). 
The AUC provides a measure of the resilience process in absolute 
terms. Though this information is of crucial importance to answer 
various research questions (e.g., what is the impact of a stressor x on 
step count for the individual y), it does not allow to make adequate 
comparisons between individuals unless the baseline level is taken 
into account. As an example, let us consider two individuals (y, z) 
with the same recovery rate (100 days) and same AUC (100′000 total 
steps), but with different baseline levels (e.g., 5′000 for individual y, 
8′000 for individual z). It follows that in relative terms, the stressor x 
has impacted the individual y more than the individual z. To account 
for it, we propose a function rel_auc() to calculate a further param-
eter that weights the resilience score based on the baseline level and 
is calculated as the AUC divided by the baseline level. This value 
represents the relative impact produced by the stressor as a ratio of 
the baseline level for each individual. 

rAUC=

(
AUC

baseline ∗ n

)

Where AUC represents the area under the curve, n corresponds to the 
recovery rate value or the length of the time series in case the indi-
vidual hasn’t recovered from the stressor, and baseline represents the 
baseline value. Here again, the lower the relative AUC value the 
higher the resilience and the higher the relative AUC value the lower 
the resilience. Relative AUC values are bounded between 0 and 1 and 
can be interpreted as a percentage “lost” during the resilience process 
and compared to the baseline value. 
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5. Maximum perturbation. The maximum perturbation corresponds 
to the difference between baseline and the smallest fitted value 
during the resilience process and it is expressed in steps. The function 
used to compute the initial drop is max_drop(). Note that depending 
to the selected model (e.g., linear, GAM), the maximum perturbation 
may overlap to the initial drop in most of the cases. 

6. Day of maximum perturbation. It corresponds to the day of the 
time series when the maximum drop occurred. The function used to 
compute the initial drop is max_drop(). 
7. Average perturbation. This resilience descriptor refers to the daily 
average impact of the stressor on step count data (steps per day). We 
develop the ad-hoc function avg_prtb() to extract this parameter. 

Table 2 
Comparison of resilience scores and resilience features across participants.  

id Baseline level1 Initial drop2 Recovery rate3 AUC1 rAUC4 Max pert1 Max pert day5 Avg pert1 

P1 14589 7245 NA 640886 0.22 7245 1 3220 
P2 7528 4432 NA 768962 0.51 4912 23 3864 
P3 9370 5060 127 215773 0.18 5060 1 1699 
P4 12143 3088 147 433880 0.24 6288 31 2951 
P5 7569 3300 131 216012 0.22 3300 1 1648 
P6 8956 7111 NA 893954 0.50 7125 12 4492 
P7 14061 8231 114 517333 0.32 8231 1 4538 
P8 6236 4651 59 133942 0.36 4651 1 2270 
Mean 10057 5390 116 477593 0.32 5852 9 3085 

Note. Units for resilience scores and features are 1: = steps, 2 = delta steps, 3 = number of days, 4 = percentage, 5 = progressive day since stressor; pert = perturbation; 
NA = baseline level not recovered during the study. Mean values for recovery rate have been calculated after removing NAs. 

Figure 4. Visualization of resilience scores and features for participant P4. 
Note. Green horizontal line = baseline level of steps, AUC = area under the curve, rAUC = relative area under the curve, avg = average. 
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Average Perturbation=
(

AUC
n

)

Where AUC represents the area under the curve and n corresponds to 
the recovery rate value or the length of the time series in case the 
individual hasn’t recovered from the stressor. This is relevant for 
understanding the average daily decrease in steps following the onset 
of the stressor. 

Finally, the function res_plot() returns a ggplot object that shows the 
resilience process (see figure 5).  

4. Discussion 

We conclude this tutorial with an illustrative overview of the inter-
pretation of results coming from the implementation of the proposed 
methodological approach and a discussion on the advantages, its limi-
tations, and some research implications. 

4.1. Results interpretation 

The provided resilience scores and features allow to explore whether 
participants managed to return to their pre-lockdown level of step count, 
when it happened, and how much their daily step count decreased after 
the onset of the stressor (see table 2). For instance, five out of eight 
participants recovered after the onset of the stressor (average recovery 
time of 116 days) while three participants did not recover during the 
post-stressor phase (200 days following the stressor). Five out of eight 
experienced the maximum perturbation right after the lockdown (day of 
maximum perturbation = 1) with an initial average drop of 5,697 daily 

Figure 5. Visualization of resilience process for each time series (participant). 
Note. P = participant; orange area = resilience; green horizontal line = baseline steps; plain black line = fitted step count values; grey line = observed values for 
step count. 

1 In line with the aim of this tutorial, the RMSE was preferred over the 
Akaike’s information criterion (AIC) and the Bayesian information criterion 
(BIC) because we are not interested in explaining or predicting the step count 
time series using a parsimonious model. Instead, the focus of this methodo-
logical approach is to extract the trend from the time series and remove the 
fluctuation issue typical of physical activity signals. 

D. Baretta et al.                                                                                                                                                                                                                                 



Psychology of Sport & Exercise 65 (2023) 102361

11

steps after which their trajectory improved. Three participants (P2, P4, 
P6) experienced the maximum drop between 12 and 31 days after the 
onset of the stressor. On average, the resilience score of the eight par-
ticipants is of 477,593 steps, while the average perturbation is of 3,085 
steps per day during the recovery process. This last number is in line 
with previous research (Costello et al., 2021) showing an average 
decrease of 2,872 steps per day following the COVID-19 pandemic 
mitigation strategies in San Diego, California. Furthermore, thanks to 
the main resilience scores (AUC), we are able to estimate the overall 
decrease of step count following the onset of the COVID-19 lockdown. 
From an idiographic standpoint, we can see that participants who never 
bounced back to the pre-lockdown level of step count (P1, P2, P6) share 
the worst resilience scores (640,886, 768,962 and 893,954 steps 
respectively) and, on average, they ‘lost’ 3,220, 3,864, and 4,492 steps 
per day during the 200 days following the lockdown. Overall, results 
suggested that the resilience process might differ extensively across 
individuals. 

4.2. Strengths and limitations 

The innovative aspect of the approach presented in this tutorial is 
that it leverages the fitted values from the selected growth model to 
quantify the AUC and ultimately resilience. By using the fitted values, 
the method allows to control for the natural daily fluctuations in step 
count data and, hence, identify the point in time when the individual 
recovers from the stressor. Additionally, by fitting growth models, the 
proposed approach is consistent with the conceptualization of resilience 
as a process (Den Hartigh & Hill, 2022; Scheffer et al., 2018). In the 
tutorial, we used this method to quantify resilience from step count data 
as a use case, but its application is not limited to this physical activity 
outcome. It can be used also to explore the resilience process for other 
physical activity outcomes which are characterized by high variability 
(e.g., minutes spent in light or moderate to vigorous physical activity; 
Costello et al., 2021; Hooker et al., 2020). Additionally, further 
health-related signals characterized by high variability, e.g., psycho-
therapy outcomes (Olthof et al., 2020) or heart rate variability (Namazi, 
2021), might benefit from this methodology. Another strength of this 
tutorial includes the utilization of the open-source statistical software R 
together with an open access dataset, which should facilitate the repli-
cation and application of the proposed method. This aspect is particu-
larly relevant as R is becoming increasingly popular among researchers 
from the social sciences working with time series (e.g., Stadnitski & 
Wild, 2019). 

The current tutorial is not without limitations. First, we proposed a 
methodological approach that suites relatively long time series and it 
might not be appropriate to assess resilience in case where the number of 
measurement points doesn’t allow to model the data properly (i.e., 
measurement points <50; Stadnitski & Wild, 2019). Additionally, since 
the proposed method aims to control for natural fluctuations in physical 
activity behavior, it would not allow to assess resilience in case the re-
covery rate is so fast that it can be confused with the typical time series 
fluctuations (e.g., a 3 days recovery rate for step count after the for-
mation of a blister on a foot). A further limitation is that this tutorial 
included just one type of stressor: future applications of this approach to 
assess the impact of other stressors on step count and other physical 
activity signals will help to consolidate the methodology. Lastly, for the 
sake of conciseness, we did not expand on growth model tuning and 
instead proposed to fit functions that have been shown to be appropriate 
to model step count data in the past (Chevance, Baretta, Golaszewski, 
et al., 2021; Chevance et al., 2022). However, it would be possible to 
define further functions (e.g., GAMs with different types and number of 
dimensions) for inclusion in the growth model comparison (as part of 
step 4 and 5). 

4.3. Research implications 

This tutorial provides a methodological toolbox that can foster and 
facilitate further scientific investigation in different ways. First, it allows 
to explore the determinants of the resilience process (e.g., psychological 
factors, individual differences, environmental barriers and facilitators) 
for physical activity. Understanding how individual differences, such as 
physiological, psychological or contextual factors, may lead to different 
resilience outcome is crucial to identify intervention strategies that 
improve individuals’ adaptive capacities and ultimately promote faster 
and smoother resilience. Additionally, by leveraging the intensive lon-
gitudinal nature of the time series, psychological and contextual factors 
assessed at daily level (e.g., self-regulatory and planning skills, weather 
conditions, air pollution) can be used as predictors of the resilience 
trajectory. For this specific purpose, the resilience outcome has to be 
broken down at daily level, where each observation is represented by the 
difference between baseline and the fitted value on a given day (i.e., 
baseline − f(xi)). Eventually, the provided resilience scores can be used 
to assess and compare the efficacy of specific interventions to promote 
efficient recovery in physical activity following a stressor. For instance, 
the AUC and the other resilience indicators (e.g., recovery rate, average 
perturbation) can be used as outcomes to test the effectiveness of 

D. Baretta et al.                                                                                                                                                                                                                                 



Psychology of Sport & Exercise 65 (2023) 102361

12

interventions aiming at reducing the impact of stressors on physical 
activity. 

5. Conclusions 

In this tutorial article, we presented a new methodological approach 
to quantify and characterize resilience for physical activity data and 
provided support for its implementation with the open-source software 
R. We sought to generate a methodological guide with a step-by-step 
implementation that would contribute to create a ready-to-go toolbox 
that can be easily applied by interested readers. Ultimately, we hope this 
tutorial article fosters increased awareness about the concept of resil-
ience for physical activity time series, and stimulates interest in further 
studying this process. 
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