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U-Sleep’s resilience to AASM guidelines
Luigi Fiorillo 1,2,4✉, Giuliana Monachino 1,2,4, Julia van der Meer 3, Marco Pesce3, Jan D. Warncke 3, Markus H. Schmidt3,
Claudio L. A. Bassetti3, Athina Tzovara1,3, Paolo Favaro1 and Francesca D. Faraci 2

AASM guidelines are the result of decades of efforts aiming at standardizing sleep scoring procedure, with the final goal of sharing
a worldwide common methodology. The guidelines cover several aspects from the technical/digital specifications, e.g.,
recommended EEG derivations, to detailed sleep scoring rules accordingly to age. Automated sleep scoring systems have always
largely exploited the standards as fundamental guidelines. In this context, deep learning has demonstrated better performance
compared to classical machine learning. Our present work shows that a deep learning-based sleep scoring algorithm may not need
to fully exploit the clinical knowledge or to strictly adhere to the AASM guidelines. Specifically, we demonstrate that U-Sleep, a
state-of-the-art sleep scoring algorithm, can be strong enough to solve the scoring task even using clinically non-recommended or
non-conventional derivations, and with no need to exploit information about the chronological age of the subjects. We finally
strengthen a well-known finding that using data from multiple data centers always results in a better performing model compared
with training on a single cohort. Indeed, we show that this latter statement is still valid even by increasing the size and the
heterogeneity of the single data cohort. In all our experiments we used 28528 polysomnography studies from 13 different clinical
studies.
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INTRODUCTION
Since its origin in the late 1950s, polysomnography (PSG) has been
at the center of sleep medicine testing with the main aim of
standardizing and of simplifying the scoring procedure. A
common methodology has fostered clinical research and
improved sleep disorder classification and comprehension. A
PSG typically involves a whole night recording of bio-signals. Brain
activity, eye movements, muscle activity, body position, heart
rhythm, breathing functions and other vital parameters are
monitored overnight. PSG scoring is the procedure of extracting
information from the recorded signals. Sleep stages, arousals,
respiratory events, movements and cardiac events have to be
correctly identified. Wakefulness and sleep stages, i.e., stages 1, 2,
3 and rapid eye movement (REM), can be mainly described by
three bio-signals: electroencephalography (EEG), electrooculogra-
phy (EOG) and electromyography (EMG). Clinical sleep scoring
involves a visual analysis of overnight PSG by a human expert and
may require up to two hours of tedious repetitive work. The
scoring is done worldwide accordingly to official standards, e.g.,
the American Academy of Sleep Medicine (AASM) scoring manual1.
Artificial intelligence (AI) is a powerful technique that has the

potential to simplify and accelerate the sleep scoring procedure. In
literature over the last two decades, a wide variety of machine
learning (ML) and deep learning (DL) based algorithms have been
proposed to solve sleep scoring task2–7. DL based scoring
algorithms have shown higher performances compared to the
traditional ML approaches. Autoencoders8, deep neural networks
(DNNs)9, U-Net inspired architectures10,11, convolutional neural
networks (CNNs) and fully-CNNs12–21, recurrent neural networks
(RNNs)22,23 and several combinations of them24–32 have been
recently proposed in sleep scoring. The possibility to extract
complex information from a large amount of data is one of the
main reasons to apply DL techniques in PSG classification. Another

significant advantage is the ability to learn features directly from
raw data, by also taking into account the temporal dependency
among the sleep stages.
In literature we can find many examples about how clinical

guidelines have been exploited when trying to support ML and DL
based algorithms. The oldest Rechtschaffen and Kales (R&K)33 or the
updated AASM1 scoring manuals have been designed to cover all
the aspects of the PSG: from the technical/digital specifications (e.g.,
assessment protocols, data filtering, recommended EEG derivations)
to the scoring rules (e.g., sleep scoring rules for adults, children and
infants, movement rules, respiratory rules) and the final interpreta-
tion of the results. All the sleep scoring algorithms, both ML or DL
based, are trained on sleep recordings annotated by sleep
physicians according to these manuals. In some of these studies
the sleep recordings are pre-filtered, as indicated in the AASM
guidelines, before feeding them to their scoring system. Almost all
of the algorithms mentioned above are trained using recommended
channel derivations and fixed length (i.e., 30-second) sleep epochs.
However, it still remains unknown whether a DL based sleep scoring
algorithm actually needs to be trained by following these guidelines.
More than a decade ago, it was already highlighted that sleep is not
just a global phenomenon affecting the whole brain at the same
time, but that sleep patterns such as slow waves and spindle
oscillations often occur out-of-phase in different brain regions34.
Hence, it may be that DL-based scoring algorithms could retrieve
the needed information from brain regions that are not necessarily
the ones indicated in the AASM guidelines, reaching equally high
performance. Indeed, in the growing field of mobile sleep
monitoring with wearable devices, many studies are attempting to
tackle the automated sleep scoring task by using unconventional
channels, even not necessarily placed on the scalp, e.g.,
in-ear EEG35–37. Furthermore, in the AASM manual and in previous
studies38,39, age has been addressed as one of the demographic
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factors that mainly change sleep characteristics (e.g., sleep latency,
sleep cycle structure, EEG amplitude etc.). To the best of our
knowledge, it has never been attempted before to incorporate this
information within a sleep scoring system: it could reasonably
improve its performance.
To date, all the efforts have focused on optimizing a sleep

scoring algorithm in order to be ready to score any kind of subject.
Data heterogeneity is one of the biggest challenges to address. A
common objective among researchers is to increase the model
generalizability, i.e., the ability of the model to make accurate
predictions over different or never seen data domains. The
performance of a sleep scoring algorithm on a PSG from an
unseen data distribution (e.g., different data domains/centers)
usually drastically decreases11,30,40–42. This drop in performance
can be due to a variety of well-known reasons: high inter-scorer
variability; hardware variability, e.g., channels/derivations; high
data variability from different sleep centers, e.g., subject distribu-
tions with different sleep disorders. In recent studies, Phan et al.
and Guillot et al.30,40 propose to adapt a sleep scoring architecture
on a new data domain via transfer learning techniques. They
demonstrate the efficiency of their approaches in addressing the
variability between the source and target data domains. Perslev at
al., Olesen et al. and Vallat et al.11,41,42 propose to train their sleep
scoring architectures on tens of thousands of PSGs from different
large-scale-heterogeneous cohorts. They demonstrate that using
data from many different sleep centers improves the performance
of their model, even on never seen data domains. In particular,
Olesen et al.41 show that models trained on a single data domain
fail to generalize on a new data domain or data center.
In our study we do several experiments to evaluate the

resilience of an existing DL based algorithm against the AASM
guidelines. In particular we focus on the following questions:

(i) can a sleep scoring algorithm successfully encode sleep
patterns, from clinically non-recommended or non-
conventional electrode derivations?

(ii) can a single sleep center large dataset contain enough
heterogeneity (i.e., different demographic groups, different
sleep disorders) to allow the algorithm to generalize on
multiple data centers?

(iii) whenever we train an algorithm on a dataset with subjects
with a large age range, should we exploit the information
about their age, conditioning the training of the
model on it?

We run all of our experiments on U-Sleep, a state-of-the-art
sleep scoring architecture recently proposed by Perslev et al.11.
U-Sleep has been chosen mainly for the following reasons: it has
been evaluated on recordings from 15660 participants of 16
different clinical studies (four of them never seen by the
architecture); it processes inputs of arbitrary length, from any
arbitrary EEG and EOG electrode positions, from any hardware and
software filtering; it predicts the sleep stages for an entire PSG
recording in a single forward pass; it outputs sleep stage labels at
any temporal frequency, up to the signal sampling rate, i.e., it can
label sleep stages at shorter intervals than the standard 30-s, up to
one sleep stage per each sampled time point.
In the original implementation of U-Sleep we found an

extremely interesting bug: the data sampling procedure was not
extracting the channel derivations recommended in the AASM
guidelines, as stated by the authors in11. Instead, atypical or non-
conventional channel derivations were randomly extracted. This
insight triggered the above mentioned question (i).
Our contributions can be summarized as follows: (1) we find

that a DL sleep scoring algorithm is still able to solve the scoring
task, with high performance, even when trained with clinically
non-conventional channel derivations; (2) we show that a DL sleep
scoring model, even if trained on a single large and

heterogeneous sleep center, fails to generalize on new recordings
from different data centers; (3) we show that the conditional
training based on the chronological age of the subjects does not
improve the performance of a DL sleep scoring architecture.

RESULTS
Datasets and model experiments
We train and evaluate U-Sleep on 19578 recordings from
15,322 subjects of 12 publicly available clinical studies, as done
previously11.
In this study we also exploit the Bern Sleep Data Base (BSDB)

registry, the sleep disorder patient cohort of the Inselspital,
University hospital Bern. The recordings have been collected from
2000 to 2021 at the Department of Neurology, at the University
hospital Bern. Secondary usage was approved by the cantonal
ethics committee (KEK-Nr. 2020-01094). The dataset consists of
8950 recordings from patients and healthy subjects aged 0–91
years. In our experiments we consider 8884 recordings, given the
low signal quality of the remaining recordings. The strength of this
dataset is that, unlike the ones available online, it contains
patients covering the full spectrum of sleep disorders, many of
whom were diagnosed with multiple sleep disorders and non-
sleep related comorbidities43; thus providing an exceptionally
heterogeneous PSG data set.
An overview of the BSDB and the open access (OA) datasets

along with demographic statistics is reported in Table 1. In
Supplementary notes: Datasets, we also report a detailed
description of all the datasets used in this study.
The data pre-processing and the data selection/sampling across

all the datasets is implemented as described in11 (see subsection
U-Sleep architecture). In contrast with the recommendation of the
AASM manual, no filtering was applied to the EEG and the EOG
signals during the pre-processing procedure. Most importantly, we
found that in the original implementation of U-Sleep11 atypical or
non-conventional channel derivations were erroneously extracted.
In fact, the data extraction and the resulting sampling procedure
were creating totally random derivations, see Supplementary
Table 6, obviously different to those recommended in the AASM

Table 1. Datasets overview with demographic statistics.

Datasets Recordings Age (years) Sex % (F/M)

60,61ABC (✓) 132 48.8 ± 9.8 43/57
60,62CCSHS (✓) 515 17.7 ± 0.4 50/50
60,63CFS (✓) 730 41.7 ± 20.0 55/45
60,64,65CHAT (✓) 1638 6.6 ± 1.4 52/48
11DCSM ✓ 255 - -
60,66HPAP (✓) 238 46.5 ± 11.9 43/57
60,67MESA (✓) 2056 69.4 ± 9.1 54/46
60,68,69MROS (✓) 3926 76.4 ± 5.5 0/100
70,71PHYS ✓ 994 55.2 ± 14.3 33/67
70,72SEDF-SC ✓ 153 58.8 ± 22.0 53/47
70,72SEDF-ST ✓ 44 40.2 ± 17.7 68/32
60,73SHHS (✓) 8444 63.1 ± 11.2 52/48
60,74,75SOF (✓) 453 82.8 ± 3.1 100/0

BSDB 8884 47.9 ± 18.4 66/34

Missing values are due to study design or anonymized data. On the BSDB
dataset, we compute the age and the sex values on 99.1% and on 98.6% of
the whole dataset, respectively, because of missing age/sex information.
Datasets directly available online are identified by ✓, while datasets that
require approval from a Data Access Committee are marked by (✓). BSDB is
a private dataset.
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guidelines. In this study, we examine the resilience of U-Sleep with
respect to the official AASM guidelines. To this aim, we extract the
channel derivations following the guidelines (as was originally
meant to be done in11), to better understand the impact of
channel selection on the overall performance. Below we
summarize all the experiments performed in our work on U-Sleep:

(i) We pre-train U-Sleep on all the OA datasets using both the
original implementation selecting the atypical channel
derivations (U-Sleep-v0), and our adaptation following
AASM guidelines (U-Sleep-v1). We split each dataset in
training (75%), validation (up to 10%, at most 50 subjects)
and test set (up to 15%, at most 100 subjects). The split of
the PSG recordings is done per-subject or per-family, i.e.,
recordings from the same subject or members of the same
family appear in the same data split. In Supplementary Table
7 we summarize the data split on each OA dataset. We
evaluate both U-Sleep-v0 and U-Sleep-v1 on the test set of
the BSDB dataset. We also evaluate the models on the
whole BSDB(100%) dataset, to test on a higher number of
subjects, with a higher heterogeneity of sleep disorders and
a wider age range. A model pre-trained on the OA datasets
and evaluated directly on the BSDB dataset is what we will
refer to as direct transfer (DT) on BSDB.

(ii) We exploit the BSDB dataset to evaluate whether a DL-based
scoring architecture, trained with a large and a highly
heterogeneous database, is able to generalize on the OA
datasets from different data centers. We split the BSDB
recordings in training (75%), validation (10%) and test set
(15%). We run two different experiments on U-Sleep-v1: we
train the model from scratch (S) on the BSDB dataset; we fine-
tune (FT) the model pre-trained in (i) on the BSDB dataset, by
using the transfer learning approach (see subsection Transfer
learning). Then, we evaluate both (S) and (FT) on the test set of
all the OA datasets and the test set of the BSDB dataset.

(iii) We exploit the BSDB dataset to investigate whether U-Sleep
needs to be trained by also having access to chronological
age-related information. We split the BSDB dataset in seven
groups, according to the age categories of the subjects38,
resulting in G= 7 sub-datasets, see Supplementary notes: Age
analysis. We further split the recordings of each subdataset in
training (75%), validation (10% at most 50 subjects) and test
set (15% at most 100 subjects). We run three different
experiments on U-Sleep-v1: we fine-tune the model by using
all the training sets of the seven groups (FT); we fine-tune
seven independent models by using the training set of each
group independently (FT-I); we fine-tune a single sandwich
batch normalization model (exploiting the batch normalization
layers, see subsection Conditional learning), to add the
condition on the age-group-index G for each recording (FT-
SaBN). These last two experiments are replicated considering
only two age groups, i.e., babies/children and adults, as
recommended in1, resulting in two additional fine-tuned
model (FT-I and FT-SaBN for G= 2). We then evaluate all of
the fine-tuned models on the independent test set of each
age group.

In Supplementary Table 8 we summarize the two different data
split sets, in experiment (ii) and experiment (iii), on the BSDB dataset.

Performance overview

(i) Clinically non-recommended channel derivations. In Table 2
we compare the performance of U-Sleep pre-trained on all
the OA datasets, with (U-Sleep-v0) and without (U-Sleep-v1)
using randomly ordered channel derivations. There is no

statistically significant difference between the two differ-
ently trained architectures evaluated on the test set of the
BSDB dataset (two-sided paired t-test p− value > 0.05). Most
importantly, we find no difference in performance with the
direct transfer also on the whole BSDB(100%) dataset (two-
sided paired t-test p− value > 0.05). These results clearly
show how the architecture is able to generalize regardless of
the channel derivations used during the training procedure,
also on a never seen highly heterogeneous dataset. In
Supplementary Table 9 we also compare the performance of
U-Sleep-v0 and U-Sleep-v1 per sleep stage. The results
suggest that there are statistically significant differences
between the two differently trained architectures for each of
the classes (two-sided paired t-test p− value < 0.001). U-
Sleep-v0 better recognizes N1 and N3 sleep stages, at the
expense of awake, N2, and REM sleep stages.

(ii) Generalizability on different data centers with a heterogeneous
dataset. In Table 3 we report the results obtained on U-
Sleep-v1 pre-trained (i) on the OA datasets, and evaluated
on all the test sets of the OA datasets and on the test set of
the BSDB dataset. We also show the results obtained on U-
Sleep-v1 trained from scratch (S) on the BSDB dataset, and
the results obtained on the model pre-trained in (i) on OA
and then fine-tuned (FT) on the BSDB dataset. Unlike what
we expected, both the models (S) and (FT), trained with a
large and a highly heterogeneous database, are not able to
generalize on the OA datasets from the different data
centers. The average performance achieved on the OA with
(S) and (FT) models is significantly lower compared to the
performance of the model pre-trained on OA (two-sided
paired t-tests p− value < 0.001). Whilst, with both (S) and
(FT) we show a significant increase in performance
compared to the direct transfer (DT), on the test set of the
BSDB dataset (two-sided paired t-tests p− value < 0.001).
We also find that the training from scratch results in
significantly higher performance (two-sided paired t-test
p− value < 0.001) on the BSDB dataset, compared to the
performance of the fine-tuned model. No significant
difference (two-sided paired t-test p− value > 0.05) occurs
between (S) and (FT) evaluated on the average performance
on OA datasets. The pre-training on the OA dataset is not
beneficial for the model fine-tuned on the BSDB dataset.
With a large number of highly heterogeneous subjects, we
can directly train the model from scratch on the dataset.
However, we have to mention that the main advantage of
using the fine-tuned model is that it reaches same
performance in less computational time, i.e., a fewer number
of iterations (number of iterations: FT= 382 < S= 533).

(iii) Training conditioned by age. In Table 4 we first show the
performance of U-Sleep-v1 fine-tuned on all the training
sets of the seven BSDB groups, i.e., single model (FT-G1). We
also report the performance achieved using the training set
of each group independently (FT-I) with G= 7 and G= 2

Table 2. (i) Clinically non-recommended channel derivations.

Datasets U-Sleep-v0 U-Sleep-v1

BSDB 72.5 ± 12.2 72.5 ± 12.0

BSDB(100%) 72.9 ± 12.4 72.9 ± 12.4

Performance of U-Sleep-v0 and U-Sleep-v1, pre-trained on the OA datasets,
and evaluated on the test set of the BSDB dataset (data split in
Supplementary Table 8), and on the whole BSDB(100%) dataset, i.e., both
direct transfer (DT) on BSDB. We report the F1-score (%F1), specifically the
mean value and the standard deviation (μ ± σ) computed across the
recordings.
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respectively (i.e., seven and two models), and the perfor-
mance achieved using the training set of the seven/two
BSDB groups conditioned (FT-SaBN) by G= 7 and by G= 2
groups respectively (i.e., single model). The mean and the
standard deviation of the F1-score (%F1), are computed
across the recordings of the test set of each of the seven
BSDB age groups. Comparing both the experiments (FT-I
and FT-SaBN) and types of grouping (G= 2 and G= 7) with
the baseline (FT), we do not find a statistically significant
increase of the performance in any of the subgroups (one-
sided paired t-test p− value > 0.05). Despite the lack of
significant performance differences in our age-conditioned
models, REM sleep seems to be less accurately predicted for

small children, if the training data set only consists of data
from adults (see Supplementary Fig. 13, confusion matrix for
test {CH} against Model 1b). This is an interesting finding
since small children exhibit more REM sleep (see Supple-
mentary Fig. 11). Visual scoring guidelines for small children
differ from the guidelines for adults, with REM sleep scoring
strongly relying on irregular respiration44. However, overall
these results show that, despite the age-related differences,
the DL algorithm is able to deal with different age
subgroups at the same time, without needing to have
access to chronological age-related information during the
training procedure.

DISCUSSIONS
In this paper, we demonstrate the resilience of a DL network, when
trained on a large and heterogeneous dataset. We focus on the three
more significant influencing factors: channel derivation selection,
multi-center heterogeneity needs, and age-conditioned fine-tuning.
Channel derivations do have complementary information, and a DL-
based model resulted resilient enough to be able to extract sleep
patterns also from atypical and clinically non-recommended deriva-
tions. We show that the variability among different sleep data centers
(e.g., hardware, subjective interpretation of the scoring rules, etc.)
needs to be taken into account more than the variability inside one
single sleep center. A large database such as the BSDB (sleep
disorder patient cohort of the Inselspital, with patients covering the
full spectrum of sleep disorders) does not have enough hetero-
geneity to strengthen the performance of the DL-based model on
unseen data centers. Lastly, we show that a state-of-the-art DL
network is able to deal with different age groups simultaneously,
mitigating the need of adding chronological age-related information
during training. In summary, what seems to be essential for the visual
scoring (e.g., specific channel derivations, or specific scoring rules that
consider also the age of the individuals) is not necessary for the DL
based automatic procedure, which follows other analysis principles.
The resilience of the DL-based model to the atypical or non-

conventional channel derivations is fascinating. The model still
learns relevant sleep patterns while solving the scoring tasks with
high state-of-the-art performance on multiple large-scale-
heterogeneous data cohorts. This result proves and strengthens
the feasibility to exploit alternative channels to the AASM standard
ones(e.g., wearable applications). Although this is a remarkable
finding, it would be useful to further investigate the reasons why
the DL model is still able to encode clinically valid information. DL

Table 4. (iii) Training conditioned by age.

Age groups FT-G1 FT-I-G7 FT-I-G2 FT-SaBN-G7 FT-SaBN-G2

B 74.9 ± 6.8 74.1 ± 6.6 G1 74.8 ± 6.2 G1 72.2 ± 7.7 72.6 ± 7.7

C 75.0 ± 9.8 74.9 ± 9.2 G2 75.9 ± 9.1 G1 74.8 ± 8.9 75.6 ± 10.1

A 82.7 ± 13.7 80.0 ± 14.6 G3 82.8 ± 13.6 G2 82.3 ± 13.7 82.0 ± 14.0

YA 80.8 ± 11.5 80.6 ± 11.6 G4 80.6 ± 11.6 G2 80.3 ± 11.9 79.9 ± 11.9

MA 80.4 ± 7.8 79.90 ± 8.0 G5 79.8 ± 8.2 G2 79.6 ± 8.0 79.4 ± 8.3

E 75.7 ± 10.1 74.2 ± 10.7 G6 74.9 ± 10.2 G2 74.5 ± 10.6 73.9 ± 10.9

OE 75.2 ± 11.7 73.9 ± 11.0 G7 74.9 ± 11.3 G2 73.8 ± 11.7 74.0 ± 11.3

avg 77.9 ± 10.7 77.0 ± 10.8 77.6 ± 10.7 76.9 ± 11.0 76.8 ± 11.1

Performance of U-Sleep-v1 on a single model fine-tuned on all the training set of the seven BSDB groups (FT-G1); on seven/two models fine-tuned on the
independent training set of each group with G= 7 (FT-I-G7) and G= 2 (FT-I-G2) respectively; and on a single model fine-tuned on all the training set of the
seven/two BSDB groups conditioned by G= 7 (FT-SaBN-G7) and by G= 2 (FT-SaBN-G2) groups respectively. All the fine-tuned models are evaluated on the
associated test set of each group (data split in Supplementary Table 8). We report the F1-score (%F1), specifically the mean value and the standard deviation
(μ ± σ) computed across the recordings. B Babies (0–3 years), C Children (4–12 years), A Adolescents (13–18 years), YA Young Adults (19–39 years), MA Middle-
aged adults (40–59 years), E Elderly (60–69 years), OE Old Elderly (≥ 70 years). When G= 2 we have the following two groups G1= {B ∪ C},
G2= {A ∪ YA ∪MA ∪ E ∪OE}, further details in Supplementary notes: Age analysis.

Table 3. (ii) Generalizability on different data centers with a
heterogeneous dataset.

Datasets U-Sleep-v1 U-Sleep-v1 (S) U-Sleep-v1 (FT)

ABC 73.6 ± 11.4 71.4 ± 13.9 69.0 ± 12.5

CCSHS 84.9 ± 5.1 77.3 ± 7.2 77.3 ± 6.7

CFS 76.6 ± 11.6 70.2 ± 10.8 70.9 ± 10.2

CHAT 82.1 ± 6.5 72.9 ± 8.0 68.8 ± 8.7

DCSM 79.3 ± 9.3 71.5 ± 11.2 69.3 ± 10.5

HPAP 73.8 ± 10.8 68.9 ± 11.1 67.9 ± 12.5

MESA 72.7 ± 10.8 68.5 ± 14.3 68.7 ± 11.9

MROS 71.4 ± 12.1 61.7 ± 13.7 63.9 ± 13.2

PHYS 74.2 ± 10.7 72.9 ± 11.2 73.2 ± 11.4

SEDF-SC 77.8 ± 7.9 75.8 ± 8.0 77.9 ± 7.7

SEDF-ST 77.2 ± 10.1 64.3 ± 15.4 67.5 ± 12.4

SHHS 76.9 ± 9.7 70.9 ± 9.3 73.0 ± 8.9

SOF 74.8 ± 9.8 64.6 ± 12.6 67.5 ± 11.2

avg OA 76.5 ± 10.6 69.9 ± 11.9 70.2 ± 11.1

BSDB 72.5 ± 12.0 (DT) 77.6 ± 11.3 77.3 ± 11.4

Performance of U-Sleep-v1, pre-trained on the OA datasets, and evaluated
on all the test sets of the OA datasets and on the test set of the BSDB
dataset (data split in Supplementary Table 7 and Supplementary Table 8).
We also report the performance of U-Sleep-v1 trained from scratch (S) or
fine-tuned (FT) on the BSDB dataset, and evaluated on all the test sets of all
the available datasets. We report the F1-score (%F1), specifically the mean
value and the standard deviation (μ ± σ) computed across the recordings.
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has been criticized for its non-interpretability and its black-box
behavior, factors that may actually limit its implementation in
sleep centers. Future works, strongly linked to the hot topic of the
explainable AI, should focus on solving the following open
questions: which sleep patterns/features our DL algorithms are
encoding/highlighting from the typical/atypical channel deriva-
tions? How each individual channel affects the performance of the
DL algorithms?
AASM scoring rules have been widely criticized over the years,

for various reasons. The scoring manual has been designed to
consider the sleep stages almost as discrete entities. However, it is
well-known that sleep should be viewed as a continuum/gradual
transition from one stage to another. A growing consensus
suggests that we should reconsider the AASM scoring rules and
the entire scoring procedure. Given the high variability among the
individual scorers and different sleep centers, more efforts should
be made by the scientific community to improve the standardiza-
tion of the scoring procedure. Perhaps the introduction, even
partially, of automated procedure could help.
The inter-scorer variability inevitably affects the performance of

any kind of algorithm, since all algorithms are learned from the
noisy variability of labels. A very relevant finding of this paper is
that the heterogeneity given by data coming from different sleep
data centers (e.g., different sleep scorers) is much more relevant
than the variability coming from patients affected by different
sleep disorders. These latter insights raise a research question yet
to be answered: i.e., how could we define and quantify the
heterogeneity of a sleep database? To what extent could we
consider a database heterogeneous enough, to allow the
algorithm to generalize across different data domains/centers?
The age-related findings drive another important observation:

the DL algorithm is intrinsically encoding age-related features,
which may not be categorized into discrete age-subgroups. As
sleep should be considered as a continuous physiological process,
the hyperspace of features associated with the respective age-
subgroups should be considered continuum as well. We are
forcing the algorithm to learn sleep patterns based on the
chronological age of the subjects, but there are many other factors
that the DL model is taking into account. Certainly, biological age
has an effect on sleep characteristics. Although the DL algorithm
does not need to be guided with the chronological age
information during its learning procedure, it may be that with a
less optimal DL-based approach (e.g., architecture, number of
channel derivation in input) age would still be useful information
to give in input.
To our knowledge, our study on the automatic sleep scoring

task is the largest in terms of a number of polysomnography
recordings and diversity with respect to both patient clinical
pathology and age spectrum.

Considering the previous study findings and our present results,
the strong resilience and the generalization capability of a DL-
based architecture is undeniable. DL algorithms are now reaching
better performance than the feature-based approach. DL is
definitely able to extract feature representations that are
extremely useful to generalize across datasets from different
sleep data centers. These hidden feature representations seem to
better decode the unconscious analytical evaluation process of
the human scorer. To conclude, being the AASM so widely
criticized, the sleep labels so noisy (e.g., high inter- and intra-
scorer variability), and sleep so complex: could an unsupervised
DL-based sleep scoring algorithm, that does not need to learn
from the labels, be the solution?

METHODS
U-Sleep architecture
U-Sleep11, optimized version of its predecessor U-Time10, is
inspired by the popular U-Net architecture for image-
segmentation45–47. Below we briefly describe U-Sleep architecture,
for further details we refer the reader to11.
U-Sleep is a fully convolutional deep neural network. It takes as

input a sequence of length L of 30-second epochs and outputs the
predicted sleep stage for each epoch. The peculiarity of this
architecture is that it defines the general function
f ðX; θÞ : RL�i ´C ! RL ´ K , where L > 0 is any positive integer, θ
are the learning parameters, L is a number of fixed-length
windows with i sampled points each, C the number of PSG
channels and K the number of sleep stages. Hence, U-Sleep takes
in input any temporal section of a PSG (even the whole PSG) and
output a sequence of labels for each fixed-length i > 0 window.
Ideally L ⋅ i > 4096, because U-Sleep contains 12 pooling opera-
tions, downsampling the signal by a factor of 2. The architecture
requires at least C= 2, one EEG and one EOG channel, sampled/
resampled at 128Hz, with K= 5, i.e., awake, N1, N2, N3, R.
U-Sleep architecture consists of three learning modules as

shown in Fig. 1.

● The encoder module is designed to extract feature maps from
the input signals, each resulting in a lower temporal resolution
compared to its input. It includes 12 encoder blocks. Each
block consists of a 1D convolutional layer, one layer of
activation function - i.e., exponential linear unit (ELU), a batch
normalization (BN) layer and one max-pooling layer.

● The decoder module is designed to up-scale the feature maps
to match the temporal resolution of the signals in input. We
can interpret the output of the decoder as a high-frequency
representation of the sleep stages at the same fs of the input
signal (e.g., with fs= 128Hz, output one sleep stage each 1/
128Hz). The module includes 12 decoder blocks. Each block

Encoder Block Decoder Block Segment Classifier

Dense
segmentation

Sleep
stages

OutputSkip connectionInputInput Output

1D convolution
Sandwich Batch

Normalization (SaBN)

NN up-sampling
Average pool Max pool

Concatenate

12x 12x

Fig. 1 U-Sleep overall architecture. U-Sleep is a fully convolutional deep neural network. It takes as input a sequence of length L of 30-
second sleep epochs and it outputs the predicted sleep stage for each epoch. We slightly modified the original figure (see Figure 2: Model
architecture in11) reporting the additional SaBN layers exploited in the conditional learning procedure (see subsection Conditional learning).
Please refer to11 for details on the U-Sleep model architecture and training parameters.
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consists of a nearest neighbor up-sampling layer (e.g., with a
kernel_size=2, the length of the feature map in input is
doubled), a 1D convolutional layer, one layer of ELU activation
function and a BN layer. Then, a skip connection layer
combines the up-scaled input with the output of the BN layer
of the corresponding encoder block. Finally, a 1D convolution,
a ELU non-linearity and a BN are applied to the stacked feature
maps. The output has the same temporal resolution of the
signal in input.

● The segment classifier module is designed to segment the
high-frequency representation output of the decoder into the
desired sleep stage prediction frequency. The module consist
of a dense segmentation layer (i.e., 1d convolution layer with a
hyperbolic tangent activation function), an average-pooling
layer (e.g., with kernel_size= stride_size= 30sec*fs considering
the same prediction frequency of a sleep scorer) and two 1D
convolutional layers (the first using an ELU activation function,
and the latter using a softmax activation function). The output
of the segment classifier is a L × K, where L is the number of
segments and K= 5 is the number of sleep stages.

The sequence length L, the number of filters, the kernel and the
stride sizes are specified in Fig. 1. The softmax function, together
with the cross-entropy loss function, is used to train the model to
output the probabilities for the five mutually exclusive classes K
that correspond to the five sleep stages. The architecture is trained
end-to-end via backpropagation, using the sequence-to-sequence
learning approach. The model is trained using mini-batch Adam
gradient-based optimizer48 with a learning rate lr. The training
procedure runs up to a maximum number of iterations, as long as
the break early stopping condition is satisfied.
Unlike11, we consider early stopping and data augmentation as

regularization techniques. As stated in49 “regularization is any
modification we make to a learning algorithm that is intended to
reduce its generalization error but not its training error”. Early
stopping and data augmentation do so in different ways, they
both decrease the regularization error. By using the early stopping
the training procedure is stopped as soon as the performance (i.e.,
F1-score) on the validation set is lower than it was in the previous
iteration steps, by fixing the so called patience parameter. By using
the data augmentation technique, the signals in input are
randomly modified during training procedure to improve model
generalization. Variable length of the sequences in input are
replaced with Gaussian noise. For each sample in a batch, with 0.1
probability, a fraction of the sequence is replaced with
Nðμ ¼ μ̂; σ2 ¼ 0:01Þ, where μ̂ is the mean of the sample’s signals.
The fraction is sampled with a log-uniform distribution {min=
0.001;max= 0.33}. With a 0.1 probability at most one channel is
entirely replaced by noise.
The training parameters (e.g., Adam-optimizer parameters beta1

and beta2, mini-batch size etc.) are all set as stated in11. The
learning rate, the early stopping patience parameter and the
maximum number of iterations have been changed to 10−5, 100,
and 1000 respectively, to let U-Sleep converge faster. The
architecture has several hyperparameters (e.g., number of layers,
number/sizes of filters, regularization parameters, training para-
meters, etc.) which could be optimized to tune its performance on
any dataset. We decide to not systematically tune all these
parameters, as this is out of our scope, but to fix them for all the
experiments, as done in the original network.

Data pre-processing. The signals are resampled to 128 Hz and
rescaled (per channel and per-subject), so that, for each channel,
the EEG signal has median 0 and inter quartile range (IRQ) 1. The
values with an absolute deviation from the median above 20*IQR
are clipped. The signals outside the range of the scored
hypnogram are trimmed. The recordings scored according to
Rechtschaffen and Kales rules results in six scoring classes, i.e.,

awake, N1, N2, N3, N4, and REM. In order to use the AASM
standard, we merge the N3 and N4 stages into a single stage N3.
The loss function for stages as MOVEMENT and UNKNOWN is
masked during the training procedure.

Data sampling. U-Sleep is trained using mini-batch Adam
gradient-based optimizer. Each element in the batch is a
sequence/segment of L= 35 EEG and EOG 30-second signals/
epochs from a single subject. Each sequence/element is sampled
from the training data as follows. (1) dataset sampling: one dataset
is selected randomly. The probability that a dataset D is selected is
given by P(D)= αP1(D)+ (1− α)P2(D), where P1(D) is the prob-
ability that a dataset is sampled with a uniform distribution 1/ND,
where ND is the number of available datasets, and P2(D) is the
probability of sampling a dataset according to its size. The
parameter α is set to 0.5 to equally weight P1(D) and P2(D); (2)
subject sampling: a recording SD is uniformly sampled from D; (3)
channel sampling: one EEG and one EOG are uniformly sampled
from the available combinations of channels in SD (e.g., if 2 EEG
and 2 EOG channels are available, four combinations are possible);
(4) segment sampling: a segment of EEG signal and a segment of
EOG signal, both of length L= 35, are selected as follows: first a
class from W, N1, N2, N3, R is uniformly sampled, then a 30-second
epoch scored with the sampled class is selected randomly from
the whole night recording, the chosen epoch is shifted into a
random position of the segment of length L and finally the
sequence is extracted.

Transfer learning
We define transfer learning as in the following clear and simple
statements:
"Transfer learning and domain adaptation refer to the situation

where what has been learned in one setting (e.g., distribution P1) is
exploited to improve generalization in another setting (say,
distribution P2)”49;
"Given a source domain DS and learning task TS, a target domain

DT and learning task TT, transfer learning aims to help improve the
learning of the target predictive function fT( ⋅ ) in DT using the
knowledge in DS and TS, where DS ≠ DT and TS ≠ TT”50.
In our study the source and the target tasks are the same, i.e.

TS≡ TT. The task is always to perform sleep staging with the same
set of sleep classes/stages. We want to transfer the knowledge
about the previously learned sleep recordings (e.g., different
hardware, different subject distributions with different sleep
disorders) and the knowledge about the sleep scoring-rules (i.e.,
inter-scorer variability in the different data centers). The process
generally involves overwriting a knowledge from a small-sized
database to a previous big-sized knowledge (result of a long
training process). One big concern is to avoid ending up in what
the data scientists call catastrophic forgetting: “Also known as
catastrophic interference, it is the tendency of an artificial neural
network to completely and abruptly forget previously learned
information upon learning new information” as defined in51. Even
if it is conceptually easy to understand, avoiding its occurrence is
not trivial. To partially bypass this phenomena we fine-tune the
architecture on the target domain using a smaller learning rate.
In our experiments we first pre-train the architecture on the

data-source domain S (e.g., a set of different domains/databases
fSDB1 ; SDB2 ; :::; SDBng), then we fine-tune the model on the data-
target domain T. Formally, we first minimize the loss function LS,
resulting in the learned parameters θ:

argminθ ¼
X

ðx;yÞ2DS

LSðx; PðykxÞ; Pθðy; xÞÞ (1)

The parameters θ of the pre-trained model are used as the
starting point on the data-target domain T. To transfer the
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learning on the new domain T, we fine-tune all the pre-trained
parameters θ0 ¼ θ (i.e., the entire network is further trained on the
new data domain T):

argminθ0¼θ ¼
X

ðx;yÞ2DT

LTðx; PðykxÞ; Pθðy; xÞÞ (2)

Conditional learning
Basically all the sleep scoring architectures learn in a conditional way.
The aim is to maximize the conditional probability distributions
P(Y∣X), where X are the sequences of the biosignals in input and Y
are the corresponding ground-truth labels. For each epoch xt in input
the models aim to maximize the conditional probability distribution
P(yt∣xt), where yt is the t− th one-hot encoded vector of the ground-
truth label. Hence, the model is trained to minimize the prediction
error conditioned only by the knowledge of X. We know that the
sleep data X often come from different sources or data domains.
Even in the same cohort, subjects with different demographics and
sleep disorders may occur, resulting in significant shifts in their sleep
data X distributions. Imagine to have in the same data cohort G
different groups of subjects g1; g2; :::; gGf g, with g1 ¼ healthyf g,
g2= {sleep_apnea} and so on. This additional information about the
group (i.e., the sleep disorder group gi) to which the subject belongs
can be given in input to the model. So, we can either train G fully
separated models, each maximizing G different P(Y∣X) functions, or
either train a single model maximizing the conditional probability
distributions P(Y∣X, gi). The latter - i.e., train the joint model with the
additional condition gi - is the smartest approach; the tasks are
similar enough to benefit from sharing the parameters and the
extracted features.
We decide to exploit the BN layers to insert the additional

knowledge in the training of our model. In literature different
normalization variants have been proposed by modulating the
parameters of the vanilla BN layer52–56. We decide to exploit the
sandwich batch normalization (SaBN) approach recently proposed
in57.
The vanilla BN58 normalizes the samples in a mini-batch in input

by using the mean μ and the standard deviation σ, and then re-
scales them with the γ and β parameters. So, given the feature in
input f 2 RB ´C ´H ´W , where B is the batch size, C is the number of
channels and H and W are the height and width respectively, the
vanilla BN computes:

h ¼ γðf � μðf Þ
σðf Þ Þ þ β (3)

where μ(f) and σ(f) are the mean and variance running estimates
(batch statistics, i.e., moving mean and moving variance)
computed on f along (N, H,W) dimensions; γ and β are the re-
scaling learnable parameters of the BN affine layer with shape C.
Clearly, the vanilla BN has only a single re-scaling transform,
indirectly assuming all features coming from a single data
distribution. In55, to tackle the data heterogeneity issue (i.e.,
images from different data domains/distributions), they propose
the Categorical Conditional BN (CCBN), so boosting the quality of
the generated images. The CCBN layer computes the following
operation:

h ¼ γgð
f � μðf Þ
σðf Þ Þ þ βg g ¼ 1; :::;G (4)

where γg and βg are the re-scaling learnable parameters of each
g− th affine layer, where g corresponds to the domain index
associated to the input. The parameters of each affine layer are
learned to capture the domain/distribution-specific information.
In57, instead, they propose the SaBN layer, an improved variant of
the CCBN. They claim that different individual affine layers might
cause an imbalanced learning for the different domains/

distributions. They factorize the BN affine layer into one shared
“sandwich” BN layer cascaded by a set of independent BN affine
layers, computed as follows:

h ¼ γgðγsað
f � μðf Þ
σðf Þ Þ þ βsaÞ þ βg i ¼ 1; :::;G (5)

where γsa and βsa are the re-scaling learnable parameters of the
“sandwich” shared affine BN layer, while, as above, γg and βg are
the re-scaling learnable parameters of each g− th affine layer,
conditioned on the categorical input g. The SaBN enable the
conditional fine-tuning of a pre-trained U-Sleep architecture,
conditioned by the categorical index in input g.

Evaluation
In all our experiments we evaluate U-Sleep as stated in11. The
model scores the full PSG, without considering the predicted class
on a segment with a label different from the five sleep stages (e.g.,
segment labeled as ’UNKNOWN’ or as ’MOVEMENT’). The final
prediction is the results of all the possible combinations of the
available EEG and EOG channels for each PSG. Hence, we use the
majority vote, i.e., the ensemble of predictions given by the
multiple combination of channels in input.
The unweighted F1-score metric59 is computed on all the

testing sets to evaluate the performance of the model on all the
experiments. We compute the F1-score for all the five classes, we
then combine them by calculating the unweighted mean. Note
that the unweighted F1-scores reduce the absolute scores due to
lower performance on less abundant classes such as sleep stage
N1. For this reason, we also report in Supplementary Table 10,
Supplementary Table 11, and Supplementary Table 12 the results
achieved in terms of weighted F1-score - i.e., the metric is
weighted by the number of true instances for each label, so as to
consider the high imbalance between the sleep stages. In that
case, the absolute scores significantly increases on all the
experiments. In Supplementary Table 10, Supplementary Table
11, and Supplementary Table 12 we also report the Cohen’s kappa
metric, given its valuable property of correcting the chance of
agreement between the automatic sleep scoring algorithm, i.e.,
overall predicted sleep stages, and the ground truth, i.e., the sleep
labels given by the physicians.
* The Bern Sleep Data Base BSDB registry usage was ethically

approved in the framework of the E12034 - SPAS (Sleep Physician
Assistant System) Eurostar-Horizon 2020 program (Kantonale
Ethikkommission Bern, 2020-01094).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The Bern Sleep Data Base BSDB registry, the sleep disorder patient cohort of the
Inselspital, University Hospital Bern, is not publicly available. The BSDB data are
available on request from the corresponding author L.F. (legal conditions ensuring
data privacy will be defined in a “data transfer agreement document”, together with a
description of the analysis project). All other datasets are in principle publicly
available, most datasets require the user to complete a data request form. The
researchers and the use-case scenario need to be eligible for a given dataset. In Table
1 we specify which datasets require approval from a Data Access Committee and
which are directly available online.

CODE AVAILABILITY
The code we used in our study is based on what was previously developed in11,
publicly available on GitHub at https://github.com/perslev/U-Time. All our experi-
ments were carried out using the following branch https://github.com/perslev/U-
Time/tree/usleep-paper-version. As a result of important feedback received from the
whole community, but especially thanks to our important feedback related to the use
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of atypical and clinically non-recommended derivations, the authors provide the
bugfixed code in https://github.com/perslev/U-Time/tree/usleep-paper-version-
branch-bugfixes.
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