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A B S T R A C T   

Deforestation is prohibited in Switzerland, as in most European countries. Nevertheless, exemptions from the ban 
on forest clearing may be granted, mostly for infrastructure purposes. However, surprisingly little is known about 
the drivers of deforestation outside of the tropics and developing countries. In this paper, we present results from 
a spatial econometric analysis of the drivers of forest clearances in Switzerland between 2001 and 2017. The 
analysis is based on a complete data set on forest clearances, which are defined as land-use and not just land- 
cover changes. We observe that landscape metrics are pertinent predictors of forest clearances in Switzerland. 
Unlike common findings on drivers of deforestation in the tropics, in Switzerland, (1) variables related to 
agriculture exhibited no explanatory power, (2) we found a positive effect of altitude on forest clearances in the 
Alps, and (3) a negative effect of the population density. We close by critically reviewing our results with regard 
to the use of spatial and non-spatial regression methods used in the analysis.   

1. Introduction 

Urbanization is a global megatrend (Ritchie and Roser, 2018; UN- 
Habitat, 2020; van Vliet et al., 2017). Overall, Europe has the highest 
share of urban area (van Vliet et al., 2017). The constantly increasing 
urban land take, sprawl and need for infrastructure leads to land-use 
conflicts, pressure on protected areas (EEA and FOEN, 2016; Hennig 
et al., 2015; Triantakonstantis and Stathakis, 2015; van Vliet et al., 
2017), and to an increased competition for land (Haberl, 2015; Smith 
et al., 2010). Among the increasing pressures on forests, urban expan
sion and infrastructure development are the main reasons for defores
tation in Europe (EEA, 2016). However, European forest areas are still 
net growing (EEA, 2016). 

Drivers of deforestation and their evolution over time have been 
extensively studied (Austin et al., 2017; Leblois et al., 2017; Rudel et al., 
2009). This is especially true for tropical countries, where the forest area 
is continuously decreasing (Keenan et al., 2015). In general, agriculture 
in its various forms is regarded as the most important driver of defor
estation (DeFries et al., 2010; Geist and Lambin, 2002; Hosonuma et al., 
2012; Kissinger et al., 2012; Pendrill et al., 2022). Regionally, however, 
the drivers of deforestation related to agriculture are known to vary 
(Curtis et al., 2018; Hosonuma et al., 2012). In Latin America and in 
Asia, commercial agriculture is the dominant driver of deforestation 
(Curtis et al., 2018; Hosonuma et al., 2012; Rudel et al., 2009), whereas 

in Africa, it is subsistence or small-scale agriculture (Curtis et al., 2018; 
Hosonuma et al., 2012; Tyukavina et al., 2018). Further, there is a trend 
to bigger clearings (Austin et al., 2017) and some evidence that defor
estation nowadays is less state- and more market-driven than it was in 
the past (Rudel, 2007). However, surprisingly little is known about the 
drivers of deforestation outside of the tropics and developing countries 
(Busch and Ferretti-Gallon, 2017; Wang and Qiu, 2017; Zambrano- 
Monserrate et al., 2018). 

Current quantitative forest research mostly builds on the analysis of 
land-cover change using remote sensing and machine learning (Austin 
et al., 2017; Curtis et al., 2018; Leblois et al., 2017). In Europe, espe
cially in Switzerland as a case in point, quantitative forest research, at 
least until now, has focused more on forest transition, land abandon
ment and reforestation (Hirschi et al., 2012; Loran et al., 2016, 2017; 
Mather and Fairbairn, 2000). Across Europe, remote sensing-based 
analysis of forest disturbances has made substantial progress. Howev
er, inferring land-use from land-cover to distinguish forest clearances 
from e.g. ordinary clear-cuts, wind-throws, wildfires etc., is still difficult, 
especially for smaller plots (Pendrill et al., 2022; Senf and Seidl, 2020). 
The environmental and socio-economic setting is substantially different 
in European countries, which calls for a different narrative to explain 
forest clearances. 

Within the broad field of land system science, there is an inconsistent 
usage of related conceptual terms like drivers, driving forces, causes, 
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factors or (spatial) determinants (Bürgi et al., 2004; Lambin et al., 2003; 
Meyfroidt, 2016). Drivers and driving forces are often considered syno
nyms, whereas the term causes emphasizes a causal mechanism (Mey
froidt, 2016), and land-use or land-cover change is considered as the 
result of a combination of different drivers or causes (Hersperger et al., 
2010). These are often separated in underlying or indirect drivers that 
affect the proximate or direct drivers causing land-use/cover change, e. 
g. deforestation (Kissinger et al., 2012). Within the newer remote 
sensing literature, especially on deforestation, the terms driver or direct 
driver are often used more in the sense of biophysical processes or 
human activities that affect or change land-cover, hence cannot neces
sarily be considered as land-use changing (Curtis et al., 2018; Tyukavina 
et al., 2018). The many frameworks explaining land-use and land-cover 
change can be roughly divided into two approaches based on the 
availability of information about agents (Hersperger et al., 2010): the 
widely-used framework by Kaimowitz and Angelsen (1998) uses infor
mation about agents, whereas the prominent proximate causes and 
underlying driving forces framework by Geist and Lambin (2002) does 
not (Meyfroidt et al., 2018; van Khuc et al., 2018). The latter, simpler 
framework linking drivers directly to land-change is more useful for 
exploratory correlation analyses than to identify causal relationships 
(Hersperger et al., 2010). 

For disentangling the effects of the drivers of deforestation, spatially 
explicit econometric analyses are argued to be particularly suitable 
(Busch and Ferretti-Gallon, 2017). Although spatial econometric 
methods can account for spatial autocorrelation and provide more ac
curate estimates (Elhorst, 2014; Ward and Gleditsch, 2019; Wheeler 
et al., 2013), they are rarely used in the literature on drivers of defor
estation (Busch and Ferretti-Gallon, 2017; Ferrer Velasco et al., 2020). 
The number of methods available to account for spatial dependence or 
autocorrelation in the residuals (error terms), specifically of logit 
models, is limited. Often, the computational demands grow exponen
tially with increasing numbers of observations. Therefore, spatial 
segregation and the choice of spatial resolution must be made with 
appropriate care. While autologistic regression and geographically 
weighted logistic regression are imprecise and of limited use (Dormann, 
2007; Dormann et al., 2007), GMM (Generalized Method of Moments) is 
not suited for large data sets (Smirnov, 2010). Wavelet Revised Models 
(WRM) (Carl and Kühn, 2010) and especially linearized GMM spatial 
logit models (Klier and McMillen, 2008) have been shown to be suitable 
for huge numbers of observations. 

In this paper, we investigate drivers of forest clearances in 
Switzerland, a country situated in a temperate climatic zone in the 
middle of Europe, where agriculture is largely prevented as a reason for 
forest clearances. In particular, we analyze whether there are similar
ities or differences in drivers across spatial entities (i.e. forest regions) 
using non-spatial logit and robust logit models, and with linearized 
GMM spatial logit models (Klier and McMillen, 2008). We build on a 
unique national forest clearances database, that contains information on 
all clearance permissions between 2001 and 2017 for Switzerland. 
Troxler and Zabel (2021) find that from 2001 to 2017, on average 185 
ha of forest were cleared annually, mainly for infrastructure purposes, 
but the reasons for forest clearances are highly heterogeneous across the 
country. Forest clearances are defined as land-use and not just land- 
cover changes. Our study marks a step toward the development of a 
new narrative to explain (infrastructure-related) deforestation that can 
apply to other European countries. Further, our analysis is land-use 
oriented and does not rely on land-cover information as a proxy. 
Moreover, the paper contributes to the existing body of literature on 
urban and related landscape change by closely investigating relation
ships between landscape metrics with forest clearances. Finally, the 
paper makes a methodological contribution by comparing the differ
ences between traditional regression methods and one that can account 
for spatial autocorrelation. 

2. Materials & methods 

2.1. Case study description 

Switzerland's population has increased during the past decades from 
4.7 million in 1950 to 8.6 million in 2019 (FSO, 2020). The trends in 
population growth are spatially heterogeneous and particularly signifi
cant in the Plateau area (FSO, 2015). As in many other European 
countries, Switzerland has witnessed strong urbanization trends; 85% of 
its population now lives in urban areas (FSO, 2020). While forest and 
agricultural area each make up for about 1/3 of the area, and unpro
ductive area makes up for 1/4, the settlement area covers only 7.5% of 
the total area (FSO, 2015). In a comparatively small country like 
Switzerland, the changes in population densities have however sub
stantially increased competition for land, including forest. Mann (2009) 
argues that apart from urban sprawl, the Swiss landscape is exposed to 
what he termed rural sprawl, i.e. ‘building activities in rural landscapes 
that [change or even] degrade the scenic and/or environmental quality 
of the area’. Mann (2009) states that forests are largely exempted from 
rural sprawl due to Switzerland's stringent forest protection. However, 
just because forest clearances should not exist does not mean that they 
do not exist. 

In Switzerland, the forest area is generally increasing, especially in 
the Alps. In the Plateau, where the greatest pressure is exerted on the 
forest (Troxler and Zabel, 2021), the area has remained constant or even 
slightly decreased (FSO, 2018b). The Swiss Federal Forest Act (ForA; SR 
921.0) prohibits deforestation since 1902 (Mather and Fairbairn, 2000). 
Thus, the Swiss forest is conserved in its area and spatial distribution. 
However, exemptions from the ban on forest clearing may be granted 
under well-defined conditions, i.e. when important interests outweigh 
the ones of forest conservation (ForA; SR 921.0). Most of the projects 
that received a clearance permission are infrastructure projects. The 
final decisions on clearance permissions are taken at the federal level, 
which means that analysis of clearances should be conducted at the 
national rather than sub-jurisdictional level. Usually, cleared forest land 
must be compensated through afforestation in the same region (ForA). 

The Federal Office for the Environment (FOEN) maintains a database 
for all authorized forest clearance permissions. Since it also contains 
their coordinates, spatially explicit analyses of clearances become 
feasible. For this study, we were provided with data from 2001 to 2017. 
In the forest act of Switzerland, forest clearances are defined as either 
temporary or permanent changes in use of forest land for non-forestry 
purposes. This definition emphasizes the repurposing of land in strong 
contrast to land-cover changes like clear-cuts or any other form of 
forestry practices that accordingly are not considered deforestation. 
Since this gives us a less common definition for deforestation, we use the 
term forest clearances instead to emphasize that they are legally 
authorized and based on a change in land-use rather than land-cover. 
Temporary clearances are often more important in terms of area than 
definitive clearances (Troxler and Zabel, 2021). Most clearance projects 
demand both types of area because construction work often needs more 
space than the facilities itself. It is a unique situation to have a complete 
data set consisting of all authorized forest clearances on a country level. 
This opens up the opportunity to address much more targeted or specific 
research questions than using land-cover information only. 

2.2. Groups of drivers 

The variable selection was only partially guided by the literature on 
drivers of deforestation, which mainly covers tropical regions. However, 
there is closely related research that helped in variable assessment, i.e. 
on forest regrowth, land abandonment, land take, and urban sprawl 
(Colsaet et al., 2018; Loran et al., 2017; van Vliet et al., 2015; Wei
lenmann et al., 2017). Furthermore, the EEA (2016) identified urban 
expansion and infrastructure development as the main reasons for 
deforestation in Europe, and the Swiss forest legislation largely prevents 
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agriculture as a reason for forest clearances. Troxler and Zabel (2021) 
grouped Switzerland's forest clearances in nine distinct categories of 
clearance reasons (‘transportation’, ‘water construction’, ‘water supply’, 
‘quarry sites’, ‘waste disposal and recycling’, ‘energy and lines’, ‘con
structions’, ‘sport and tourism’, and ‘miscellaneous’.). These gave hints 
about the type, frequency, spatial distribution and extent of reasons. 

Combining different strands of literature, we propose three groups of 
drivers to explain the location of forest clearances in Switzerland: (i) 
predisposing environmental factors, (ii) socio-economic factors, and (iii) 
land-use related factors (i.e. landscape metrics). Predisposing environ
mental factors are land characteristics (Geist and Lambin, 2002) that are 
considered to be relatively unimportant in causing a phenomenon, but 
can be important to determine exact locations (Meyfroidt, 2016). Vari
ables in this category, that have previously been found to be correlated 
with forest clearances, include altitude, roughness, slope, and proximity 
to water (Busch and Ferretti-Gallon, 2017; Colsaet et al., 2018; Geist and 
Lambin, 2002; Wheeler et al., 2013). The socio-economic factors cate
gory harbors mostly variables related to population and settlement 
structure. Important socio-economic variables often used to explain 
deforestation are population size as well as population increase and 
accessibility (Busch and Ferretti-Gallon, 2017; Colsaet et al., 2018; 
DeFries et al., 2010; Kissinger et al., 2012; Leblois et al., 2017). While 
the previous two groups of explanatory factors are well-established in 
the deforestation literature, we add land-use related factors (i.e. land
scape metrics) as a third group. Landscape metrics are ‘simple measures 
of landscape structure’ (Kupfer, 2012) that condense complex spatial 
patterns to simple numbers, which are then easily comparable in 
contrast to the patterns. While they are very common in landscape 
ecology (Hesselbarth et al., 2019; Kupfer, 2012; Lausch et al., 2015), 
there are hardly any studies that use them to analyze drivers of 
deforestation. 

2.3. Data and its processing 

In a first step, we allocated the coordinates of the authorized forest 
clearances from 2001 to 2017 to the 100 m resolution raster grid of 
Switzerland's land-use statistic 2004/09 (FSO, 2015). The binary 
(dummy) response variable clear takes the values 1 or 0 to indicate 
whether or not coordinates of past forest clearances lie within the cells of 
the raster grid. Of the 9494 clearance sites, 4.6% of the coordinates were 
missing or >100 m away from the border of the municipality in which 
they were supposed to be located, and were therefore excluded from the 
analysis. The land-use statistic was used to determine between five types 
of land-use: (1) settlement area, (2) agricultural area, (3) forest area, (4) 
unproductive area, as well as (5) waters (lakes and streams). The land- 
use, however, was estimated only at the center of each raster cell. Of 
the grid cells with forest clearances, 45.6% were on forest area, 25.2% 
on settlement area, and 20.6% on agricultural area. 

The hectare-sized raster grid was aggregated to a raster with 500 m 
resolution (¼ km2) to obtain a larger cell size and thus also a reduced cell 
number due to three reasons. Firstly, even with a subdivision into 
smaller spatial entities (forest regions), the spatial regression methods 
showed exponential RAM demands with increasing units of observation 
(raster cells). Hence, this is the smallest grid size for which we could 
apply the spatial methods for all forest regions. Secondly, spot checks 
revealed that the clearance coordinates are not always completely ac
curate and therefore the use of a larger raster grid absorbs some of this 
uncertainty. Thirdly, having more than one land-use information per 
raster cell opens up the opportunity to estimate many different land
scape metrics (Kupfer, 2012). In fact, there are now 25 land-use infor
mation cells within one cell of the raster used for the analysis (500 m * 
500 m). Of the >100 different landscape metrics (Hesselbarth et al., 
2019), many are strongly correlated with each other (Bosch et al., 2020). 
We thus first selected the simplest one, the total class area (ca) for the 5 
different land-use categories. It measures the total area of a land-use 
class, e.g. pixels of forest or agriculture within a defined spatial area. 

Especially ca1 (settlement) and ca3 (forest) had a strong correlational 
influence on the response variable clear. Since the fundamental infor
mation about a landscape's configuration is provided by compositional 
(number and abundance) and configurational (spatial arrangement) 
information together (Nowosad and Stepinski, 2019), combining both 
traits, we applied some novel and thus not yet well-established infor
mation theory-based complexity metrics, e.g. Shannon entropy, and 
Joint entropy (Nowosad and Stepinski, 2019), provided in the land
scapemetrics package (Hesselbarth et al., 2019). Raster cells partially 
extending beyond the national borders were omitted from the analysis 
when the percentage of land-use rasters inside was <90%. 

Based on a shapefile from the Swiss Federal Statistical Office (FSO), 
derived from biogeographical regions (Gonseth et al., 2001) adjusted by 
municipality borders (2016), the data set was assigned to the 5 forest 
regions of Switzerland (Jura, Plateau, Prealps, Alps and Southern Alps). 
Due to the major differences across these regions, it makes sense to 
separately investigate how the explanatory variables affect the response 
variable clear. 

To compare the grid cells with and without authorized forest clear
ances between 2001 and 2017 across the five forest regions (response 
variable clear), Table 1 provides information on the exact numbers (of 
observations), while the map in Fig. 1 gives an overview of the spatial 
distribution. The map also visualizes the forest regions as spatial entities 
and units of analysis. Raster cells exhibiting >80% settlement area are 
marked in grey to emphasize urban areas (i.e. cities). 

In a second step, we compiled a set of variables used in the regression 
analyses (see section 2.4). A digital elevation model (DHM) with 25 m 
resolution (SWISSTOPO DHM25) was used to derive a set of explanatory 
variables based on altitude. The slope, aspect, TPI (Topographic Position 
Index), TRI (Terrain Ruggedness Index) and roughness were calculated 
using the eight surrounding neighbor cells. 

After rasterizing the polygon data of lakes and streams in 2013 
(without streams with an outflow [m3/s] categorized as small or mid
dle), it was possible to calculate the distance to waters for every raster 
cell. Another distance-related variable was built based on polygon data 
representing travel time and accessibility in 2017 (NPVM: ‘Accessibility 
by road depending on travel time and potential at destination’) (ARE, 
2020). 

The Swiss Federal Statistical Office's (FSO) ‘Population and House
holds Statistics’ (STATPOP) provide spatially explicit population data in 
a 100 m raster. The total permanent resident population of the years 
2010 and 2017 were used (FSO, 2013, 2018a). Unfortunately, there are 
no comparable data sets for earlier years. Also, due to data protection 
reasons, raster cells with <4 inhabitants are missing in the data set. 

One disadvantage of socioeconomic variables is that many are not 
(or cannot be) spatially explicit. Hence, some variables were only known 
at the community level (Loran et al., 2017). One approach to deal with 
this would be to aggregate all the data to the community level (Wang 
and Qiu, 2017). Since we were interested in a much more fine-grained 
analysis, we instead merged the community level socioeconomic vari
ables to the raster cells via the Community Identification Number 
(swissBOUNDARIES3D 2018). However, probably because of the 
limited variability, since all raster cells in a community have the same 
values, these variables had to be dropped in favor of others with more 

Table 1 
Numbers of raster cells (500 m * 500 m) per forest region (response variable 
clear).  

Forest 
region 

# cells without forest 
clearances (0) 

# cells with forest 
clearances (1) 

% 

Jura 18'280 486 2.6 
Plateau 37'438 1'439 3.7 
Prealps 25'670 892 3.4 
Alps 63'624 1'982 3 
Southern 

Alps 
13'521 416 3  
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explanatory power. 
A comprehensive list of the used variables is to be found in Table 2. 

In the model selection process, in order to avoid collinearity, the vari
able composition was chosen on the basis of correlation and systemat
ically controlled using the variance inflation factor (VIF). Further, we 
applied a stepwise algorithm based on the Akaike information criterion 
(AIC) to choose a meaningful model that fits all forest regions. 

2.4. Regression methods 

Due to the nature of the dichotomous (binary) response variable 
clear (0/1), which provides information whether or not coordinates of 
past forest clearances lie within the cells of the raster grid, it is possible 
to use presence/absence (logit) models. These regression models were 
estimated using two non-spatial methods, (1) logit and (2) robust logit, 
and a spatial method, (3) linearized GMM spatial logit. The latter is a 
binary spatial autoregressive model, that accounts for spatial autocor
relation in the response variable clear, e.g. when there are clearance 
clusters. The term ‘robust’ (method 2) refers to estimations and standard 
errors that are robust to violations of model assumptions, i.e. is less 
sensitive to outliers compared to OLS (Wilcox, 2022). 

The linearized GMM spatial logit is an approximation of the GMM 
(Generalized Method of Moments) spatial lag model that is computa
tionally much more efficient as it does not rely on repeated inversion of 
large matrices. The estimation procedure starts with a non-spatial logit 
followed by a two-stage least squares estimation of the linearized model 
using spatially weighted averages of nearby values as instruments (Klier 
and McMillen, 2008). It is a spatial lag model, hence a model with a 
spatially lagged (weighted) dependent variable. It assumes the form Y =
ρWY + βX + ε. Here, Y is the binary dependent variable (clear), W is the 
contiguity, weight, or neighborhood matrix, X represents the explana
tory variable(s), ε is the error term, and β and ρ are the parameters to be 
estimated. The only difference to a traditional non-spatial logit model is 

the spatial autoregressive term with its parameter ρ. It measures the 
strength and direction of spatial dependence, while the prespecified 
neighborhood matrix W determines how the dependent variable Y can 
be affected by neighboring observations. A positive value for the spatial 
autoregressive parameter (ρ) implies spatially clustered forest clear
ances, whereas a negative value implies spatially dispersed forest 
clearances (Klier and McMillen, 2008). 

As the linearized GMM spatial logit models rely on an arbitrary 
neighborhood matrix (W), we used two different neighborhood dis
tances to construct the matrices, namely a radius of 2 km and a radius of 
10 km. Using a sensitivity analysis of the effects of different neighbor
hood distances on estimates and their standard errors, we found that 
these two radii form roughly the bandwidth of possible results. Hence, 
the true estimates must be somewhere in between the estimates of these 
two neighborhood distances. 

Eq. 1 shows how the inverse distance weighting (IDW) of the 
neighborhood matrices was conducted, and run using the weighting 
factors α = 1 and the more common α = 2. The weight coming from 
neighboring observations used to adjust for spatial autocorrelation di
minishes with distance. With α = 2 the weight diminishes more strongly 
than with α = 1. Far away observations thus receive less weight. 

W(IDW) =
D− α

ij
∑n

i=1
D− α

ij

(1) 

The data work was carried out with R, version 3.6.3, using the 
following packages: McSpatial 2.0, robustbase 0.93-6, spdep 1.1-5, 
raster 3.3-13, landscapemetrics 1.5.0. In an earlier version of this article, 
as an alternative to GMM models, we also applied Wavelet Revised 
Models (WRM) (Carl and Kühn, 2010), whose coefficients, however, 
correspond to those of the logit models, only the standard errors are 
different because they account for spatial autocorrelation. 

Fig. 1. Spatial distribution of the raster cells with authorized forest clearances between 2001 and 2017 (binary response variable clear), represented in black.  
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2.5. Presentation of regression results 

In order to enhance comparability between model results, we used 
‘small multiple’ plots (Kastellec and Leoni, 2007) to present the 
regression coefficients and their corresponding Wald confidence in
tervals (Estimate ±1.96 * Standard Error). Estimates, whose confidence 
intervals do not include 0, can be considered statistically significant. The 
direction of the effect can be read from the sign of the estimate. How
ever, the confidence interval of the estimate alone does not allow any 
statement about the size of the effect. 

To get a fully comparable measure also of the magnitude and thus the 
(relative) importance of effects of different explanatory variables, not 
only of the statistical significance, also standardized coefficients were 
computed. Hence, the estimates and their confidence intervals were 
multiplied with the standard deviation of the respective variables. This 
procedure allows for a direct comparison of which effects are more 
relevant than others (Menard, 2011; Stahel, 2021). For the sake of an 
enhanced comparability, all effects were plotted on the same scale (x- 
axis) and were pseudo-log transformed. 

3. Results 

Fig. 2 shows the regression coefficients and their corresponding 
confidence intervals. The linearized GMM spatial logit models were 
estimated using radii of 2 km (brown tones) and 10 km (green tones) and 
weighting values (α) of 1 (lighter colors) and 2 (darker colors). The 
variables exhibiting the greatest explanatory power are: altitude, slope, 
topographic position index (TPI), distance to waters (dist2waters), set
tlement area (ca1), forest area (ca3), unproductive area (ca4), joint 
entropy (joinent), total population in 2017 (B17TOT), population 
change between 2010 and 2017 (dpop1710), and accessibility by road 
(NPVM). 

The variable altitude shows an almost consistent pattern across the 
forest regions. While the logit and robust logit estimates find statistically 
significant negative effects, the estimates of the linearized GMM spatial 
logit models are non-significant, except in the Alps, where we see a 
statistically significant positive effect. Comparing just the estimates of 
the linearized GMM spatial logit, the models with α = 1 and r = 10 km 
considerably deviate to the left. Hence, the weighting factor shows an 
unexpectedly large influence on the estimates. 

For slope, we find negative effects on the probability for forest 
clearances in the Alps and in the Southern Alps, whereas in the rest of 
Switzerland, the effect seems to be between not significant to positive. 
Because we estimated an interaction between slope and the joint entropy 
(joinent), slope measures only the effect when joinent is zero, i.e. in 
uniform landscapes. 

Topographic Position Index (TPI) has no effect on the probability for 
forest clearances in the Jura, the Plateau, and in the Southern Alps. For 
the Prealps and the Alps, however, we find statistically significant 
negative effects. Since it measures the difference between the value of a 
raster cell and the mean value of its neighbors, depressions, craters or 
valleys (negative TPI) seem to have a higher probability for forest 
clearances there. 

Distance to waters (dist2waters) has no effect on clearances in the 
Jura and the Plateau. In the rest of Switzerland, however, there seems to 
be a statistically significant negative effect. Hence, raster cells that are 
closer to waters have a higher probability for forest clearances. 

The total population in 2017 (B17TOT) has an overall negative effect 
on the probability for forest clearances. This means that clearances tend 
to be located in less populated areas. However, the effect is only 
consistently statistically significant in the Jura. In the Alps and in the 
Southern Alps, only the linearized GMM spatial logit models are statis
tically significant, whereas the logit and robust logit models are not. 

The population change between 2010 and 2017 (dpop1710) has 
clearly no effect in the Prealps, the Alps and in the Southern Alps. In the 
Jura, however, it has a statistically significant positive effect. Hence, 

Table 2 
A comprehensive list of the used variables.  

Variable Data Source 

Predisposing environmental factors: 
Altitude [m] 

Swisstopo DHM25 

derived based on 8 surrounding 
cells:  
Slope [◦] 
Terrain Ruggedness Index (TRI) [m] 
Topographic Position Index (TPI) [m] 
Roughness [m] 
Aspect [◦] 
Flow direction (of water)  

Rivers (2013) 
0/1, 
area 

River typology (FOEN), FSO 

Lakes (2008) 
0/1, 
area 

Waters (Lakes + Rivers) 
0/1, 
area 

Distance to waters [m]  

Socio-economic factors: 
Total population in 2017 and 2010  

FSO Population change (2017–2010)  

Building zones (2017) 
0/1, 
area 

ARE, National passenger 
transport model (ARE) 

Distance to building zones [m] 
Accessibility by road (NPVM) 

(2017)  
On community level:  

FSO (Regional portraits 2019: 
communes) 

Total area [km2] 
Settlement area [%] 
Change in settlement area (79/ 
85-04/09) [ha] 
Agricultural area [%] 
Change in agricultural area (79/ 
85-04/09) [ha] 
Forest and woodland [%] 
Unproductive area [%] 
Population (2017)  
Population change (2010-2017) [%] 
Population density [km-2] 
Foreigners [%] 
Age distribution (0-19, 20-64, 
65+) [%] 
Birth and death rate  
Number of private households  
Average household size  
Total employees  
Employees in the 1st sector  
Employees in the 2nd sector  
Employees in the 3rd sector  
Total workplaces  
Workplaces in the 1st sector  
Workplaces in the 2nd sector  
Workplaces in the 3rd sector  
Vacant apartment rate  
Newly built dwellings (per 1000 
inhabitants)  
Social quota   

Land-use related factors: 
Total (class) areas:  

Swiss land-use statistics (2004/ 
09) 

Settlement area (ca1)  
Agricultural area (ca2)  
Forest area (ca3)  
Unproductive area (ca4)  
Waters (lakes and streams) (ca5)  

Complexity metrics:  
Conditional entropy  
Shannon entropy  
Joint entropy  
Mutual information   
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Fig. 2. Regression coefficients and corresponding confidence intervals. Every explanatory variable has its own scale on the x-axis and is horizontally stratified in 
forest regions (y-axis) and color-coded for the different regression methods. The linearized GMM spatial logit models were estimated using radii of 2 km (brown 
tones) and 10 km (green tones) and weighting values (α) of 1 (lighter colors) and 2 (darker colors). 
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Fig. 3. Standardized coefficients as a mean of the effect sizes and thus of the relative importance of the variables. For an enhanced comparability, the estimates are 
pseudo log transformed and on the same scale (x-axis). 
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raster cells exhibiting a growing population have a higher probability for 
forest clearances there. The same applies for the Swiss Plateau, although 
there the effect is not entirely clear (borderline significance). 

The accessibility by road (NPVM) is positively statistically significant 
only in the Southern Alps. There, a higher accessibility comes with a 
higher probability for forest clearances. In the Jura and in the Plateau 
region, only the logit models show a statistically significant positive 
effect. 

For the settlement area (ca1) and the forest area (ca3) per raster cell, 
also quadratic effects were estimated. Thus, the effects of these variables 
cannot be interpreted without also considering the effects of ca12 and 
ca32. Without quadratic terms, ca1 and ca3 would have a positive linear 
effect on clear, but including the quadratic terms in the models reveal in 
most cases a U-shaped effect on the response variable. For these two 
terms, however, also interaction effects were estimated (ca1*ca3) which 
changes the interpretation of the involved terms. Because of the inter
action, the settlement area estimates (ca1 + ca12) measure the effect on 
the probability for forest clearances only when there is no forest area in 
the respective raster cells (ca3 = 0), whereas the forest area estimates 
(ca3 + ca32) measure the effect when there is no settlement area (ca1 =
0). The interaction between settlement area (ca1) and forest area (ca3) is 
positive and highly statistically significant across all forest regions and 
for every regression method. This reveals that raster cells with a high 
coverage of settlement and forest area are especially prone to harbor 
forest clearances or that for raster cells with a lot of settlement area, 
there is an increased probability for forest clearances with increasing 
forest area and vice versa. In raster cells without forest area (according 
to the land-use statistic), in the Jura and the Plateau, there is a clear 
tendency for a U-shaped effect of the settlement area (ca1 + ca12) on the 
probability for forest clearances. This does not apply for the Prealps, 
where the settlement area has no statistically significant effect at all. The 
Alps and the Southern Alps, however, show a noteworthy pattern. There, 
only the linearized GMM spatial logit estimates support the U-shape, 
whereas the logit and robust logit models rather indicate an inverted U- 
shape. In raster cells without settlement area, in the Jura, the forest area 
(ca3 + ca32) seems to have about no effect on the probability for forest 
clearances, whereas in the Plateau and in the Prealps, the estimates 
clearly indicate statistically significant U-shaped effects across the 
regression methods. In the Alps and Southern Alps, for the forest area, 
we find a similar pattern as with the settlement area. The linearized 
GMM spatial logit models support the U-shaped effect, while the logit 
and robust logit models do not. 

The unproductive area (ca4), as it is especially common on high el
evations in the Alps, not surprisingly tends to have a negative effect on 
the probability for forest clearances. In the Jura, unproductive area 
clearly has no effect. In the Plateau, it has a statistically significant 
negative effect, and the same is true for the Alps. In the Prealps, only the 
logit and robust logit models find a statistically significant negative ef
fect of this land-use type on forest clearances. In the Southern Alps, it is 
the other way around, only the linearized GMM spatial logit models 
support the negative effect. 

The joint entropy (joinent) has an overall statistically significant 
positive effect on the probability for forest clearances, except the esti
mates of the logit and robust logit models in the Southern Alps. Because 
of the interaction between slope and the joint entropy (slope*joinent), 
the estimates for the joint entropy (joinent) only measure the effect on 
the probability for forest clearances for flat raster cells (slope = 0). The 
joint entropy is an information theory-based complexity or uncertainty 
metric. It is inversely proportional to contagion or clumpiness. Higher 
values correspond to a higher landscape (or rather land-use) complexity 
(Nowosad and Stepinski, 2019). Hence, in flat terrain, an increasing 
land-use complexity leads to a higher probability for forest clearances. 

The interaction between slope and the joint entropy (slope*joinent) 
reveals an interesting pattern across the different regions. In the Jura 
and in the Plateau, we find a statistically significant negative effect. 
Thus, the probability for forest clearances diminishes with steeper slopes 

and higher land-use complexity. In the Prealps, the pattern starts to shift, 
the estimates are smaller and some are not statistically significant 
anymore. In the Alps, only the linearized GMM spatial logit models with 
a neighborhood radius of 10 km are statistically significant. The sign, 
however, changed to a positive effect. In the Southern Alps, the esti
mates are higher, but only for the linearized GMM spatial logit models 
clearly statistically significant. It looks like the interaction effect be
tween slope and the joint entropy changes its sign from North to South. 
Especially in the Southern Alps, steeper slopes with high land-use 
complexity exhibit a higher probability for forest clearances. 

To compare effect sizes, Fig. 3 provides an overview of the stan
dardized coefficients across variables, regions and regression methods. It 
shows that the land-use related factors prove to be important contrib
utors to forest clearances. In the Southern Alps, due to a greater un
certainty corresponding to wider confidence intervals, the effects of 
some variables seem to be larger than in the remainder of the country. 
The socio-economic factors seem not to have relevant effect sizes. Only 
in the Jura, the negative effect of the total population size in 2017 
(B17TOT) is noticeable. When it comes to the predisposing environ
mental factors, TPI and the distance to waters show smaller effect sizes 
compared to altitude and slope. The greatest effect sizes but also the 
greatest uncertainty is to be found in the land-use related factors. 
Despite exhibiting the most statistically significant estimates, the 
interaction between settlement and forest area (ca1*ca3) shows the 
smallest effect sizes within the land-use related variables. The effects of 
the forest area (ca3 + ca32) are a bit more pronounced in magnitude 
than the effects of the settlement area (ca1 + ca12). Whereas the effect of 
the unproductive area (ca4) is most of all relevant in the Alps and 
Southern Alps. The joint entropy (joinent), finally, has a greater effect 
size than the interaction between slope and the joint entropy (slope*
joinent). Thus, the effect of land-use complexity is more pronounced in 
flat regions. 

In the linearized GMM spatial logit models, an additional parameter 
is estimated, namely the spatial lag parameter (ρ). Fig. 4 gives an 
overview of the ρ coefficients and their corresponding confidence in
tervals, across the four different spatial regression models and the five 
forest regions. With the exception of the Southern Alps, we find strong 
evidence for the clustering of forest clearances in space. The patterns of 
spatial autocorrelation were statistically significant, positive and close 
to 1. Hence, forest clearance locations tend to be close to other forest 
clearances. Also here, for the Plateau, Prealps, and Alps, the models with 
α = 1 and r = 10 km considerably deviate to the left. For the Prealps, the 
deviation is even indicating spatially dispersed (and not clustered) forest 
clearances (ρ < 0). Although there is some visual indication of clearance 
clusters in the Southern Alps (Fig. 1), surprisingly, no statistically sig
nificant spatial autocorrelation was found. This unexpected finding 
might be due to the observed greater uncertainty (wider confidence 
intervals) in respect to some variables in the Southern Alps. 

4. Discussion & conclusion 

This paper extends the analysis of drivers of forest clearances by a 
new perspective, namely that of Switzerland as a non-tropical and non- 
developing country, while at the same time also accounting for the 
frequently ignored spatial autocorrelation. The comparison of statistical 
significance and importance of the variables as well as different spatial 
and non-spatial regression methods across regions helped not only to 
uncover patterns but also to judge the sensitivity, reliability and rele
vance of our findings. In the following, we discuss our results in the light 
of the variable importance, and with an emphasis on differences across 
regression methods, then we discuss limitations of the study and offer 
conclusions. 

We observe that land-use related factors are valuable predictors for 
forest clearances, followed by the effects of the predisposing environ
mental factors, while the effects of the socio-economic factors turned out 
to be very small. Unfortunately, there are hardly any other studies on 
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drivers of deforestation that contrast the statistical significance with a 
comparable measure of variable importance. In related machine 
learning based literature, however, variable importance is often re
ported, but the functional forms how variables affect the outcome 
remain unclear. Also, landscape metrics are very rarely used in the 
literature on drivers of deforestation. Hence, it is difficult to compare 
our results with others. Analogously, Loran et al. (2017) found low 
correlation between socio-economic factors and forest loss in 
Switzerland, as well as a stronger impact of predisposing environmental 
factors than socio-economic factors, however, on forest expansion 
(Loran et al., 2017). In general, predisposing environmental factors 
show more consistent associations with deforestation, while socio- 
economic factors are more uncertain and show differing ones (Busch 
and Ferretti-Gallon, 2017). 

We found a U-shaped effect on the probability for forest clearances 
(1) for forest area in raster cells without settlement area, and (2) for 
settlement area in raster cells without forest area (according to land-use 
statistic). Hence, with an increasing settlement or forest area, the 
probability for forest clearances first decreases, then increases again. 
These effects are especially clear in the Swiss Plateau. The probability 
for forest clearances increases with an increasing settlement as well as 
forest area. This interaction effect, although highly significant, turned 
out to be moderate in effect size. In the Alps and in the Southern Alps, 
unproductive area exhibits a negative effect on the probability for forest 
clearances. 

In flat areas, a higher land-use complexity (joint entropy) generally 
comes with an increased probability for forest clearances, while in 
uniform landscapes, i.e., when the joint entropy is zero, increasing 
slopes decrease the probability for forest clearances in the Alps and 
Southern Alps but increase it in the Prealps. Increasing slopes together 
with land-use complexity rather decreases the clearance probability, 
except in the Southern Alps and Alps, where an increased probability 
can be observed. 

Within the group of land-use related factors, surprisingly, variables 
related to agricultural area and waters (lakes and streams) had no 
explanatory power and thus were dropped from the analysis model. 
Agricultural variables in Switzerland seem only to influence the 
expansion of forest area (land abandonment, etc.) (Baur et al., 2006; 
Hirschi et al., 2012), but not forest clearances. This is not a surprise 
insofar as it only confirms that due to the legal framework conditions in 
Switzerland, agriculture is completely excluded as a reason for forest 
clearances. In the future, however, agriculture-related variables may 
gain some explanatory power because of the increased policy measures 
to protect agricultural land, especially crop rotation areas (GPK-N, 
2021). 

A meta-analysis on deforestation drivers (Busch and Ferretti-Gallon, 
2017), based on 101 studies, found a consistent negative effect for 

altitude and slope. In strong contrast to those studies, we found that (1) 
altitude in the Alps, and (2) slope in the Prealps had a positive effect on 
forest clearances. However, because of the interaction with the joint 
entropy, slope is not directly comparable. Clearances for infrastructure 
for winter tourism, reservoirs and energy in the Alps could explain that 
finding. Further, Busch and Ferretti-Gallon (2017) also identified a 
consistent positive effect of population on deforestation, where we 
indeed found a rather negative effect of population, although with a 
small effect size. Hence, in Switzerland, clearances tend to be located in 
areas with lower population densities. 

Our results show that estimates as well as their confidence intervals 
often differ between logit and robust logit models. For example, statis
tically significant effects found with the logit model turned out to be not 
statistically significant using the robust logit model. By virtue of their 
design, estimates of robust logit models are more reliable (Wilcox, 
2022). Unfortunately, robust methods are not yet widely used in the 
literature on drivers of deforestation, nor can they account for spatial 
autocorrelation. Disregarding this may lead to false conclusions and 
false recommendations (Ward and Gleditsch, 2019). 

Literature is suggesting that the traditional assumption of indepen
dence between observations is often violated in statistical modelling 
with spatially distributed units (e.g. forest clearances). Spatial auto
correlation leads to underestimated standard errors. Weakly significant 
parameters may therefore actually be not statistically significant at all. 
Hence, estimates of regression methods that can account for spatial 
autocorrelation can be considered superior (Elhorst, 2014; Ferrer 
Velasco et al., 2020; Ward and Gleditsch, 2019). Indeed, we found such 
cases for example for the variable altitude. It happened that, in strong 
contrast to the other methods, the linearized GMM spatial logit estimates 
found no statistically significant effects. Using only non-spatial methods, 
such effects would have not only been overestimated, but even errone
ously identified. Even worse, especially in the Alps, there were statisti
cally significant estimates that even changed their sign and thus the 
entire direction of the effect across different regression methods. 

For the linearized GMM spatial logit models, the choice of the radii of 
the neighborhood matrices plays a role most of all in the Alps. There are 
even some cases where the choice of the radius determines the statistical 
significance. It can be assumed that the larger radius of the neighbor
hood matrices provides more accurate estimates. This is because it in
cludes more neighboring values and can thus correct for more extensive 
spatial autocorrelation. 

The choice of the weighting factor α plays a crucial role for the 
regression estimates, especially in the Alps, and for some variables, e.g. 
altitude. The linearized GMM spatial logit models with a weighting 
factor α = 1 (especially those with a neighborhood radius r = 10 km) 
yield estimates which almost can be considered outliers. Furthermore, 
what particularly sows doubt about the reliability of estimates derived 

Fig. 4. Spatial lag parameters (ρ) estimated using linearized GMM spatial logit models.  
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using a weighting matrix with α = 1 is that our sensitivity analysis 
revealed that by increasing the radius of the neighborhood matrices 
beyond 10 km, it was possible to considerably inflate the effect sizes for 
a few variables. Hence, the assumption that the weighting decreases 
faster with increasing distance (α = 2), seems more reasonable and 
yields more reliable results, and thus the estimates for α = 2 deserve far 
more confidence. 

The true estimates lie probably somewhere between the robust logit 
model estimates and the linearized GMM spatial logit models with 
weighting factor α = 2 and a radius of the neighborhood matrix of r = 10 
km. It is certainly valuable to have the range of estimates of the various 
methods demonstrated. Furthermore, since spatial autocorrelation may 
be expected in the vast majority of spatial data sets, it certainly makes 
sense to use spatial regression models, even though they may be some
what more complicated and slower. 

With the exception of the Southern Alps, we find statistically sig
nificant positive spatial lag parameters (ρ). Hence, there is evidence of a 
pronounced clustering of forest clearances. Because of the estimated 
strong spatial autocorrelaton, this also acts as an objective additional 
justification for using spatial regression methods. In linearized GMM 
spatial logit models, and in contrast to the inefficient non-linearized 
GMM models, spatial lag parameters (ρ) over 0.5 can be expected to 
be slightly biased upward (Klier and McMillen, 2008). This, however, 
does not really affect the interpretation of the models. Unfortunately, it 
cannot be directly determined whether forest clearances are more easily 
authorized if other clearances have already been carried out in the im
mediate vicinity, or whether clusters are simply the result of their spatial 
suitability. 

Finally, considering that some raster cells accommodate more than 
one coordinate of forest clearances, instead of presence/absence (logit) 
models, count data models (Willibald et al., 2019) could have yielded 
revealing findings. This, however, could also have led to incorrect re
sults, as for more complex clearance projects sometimes only centroid 
coordinates were registered and not always all individual sites. 

Forests provide a multitude of ecosystem services to society (Stritih 
et al., 2021; Sutherland et al., 2016) and safeguarding these services is a 
main rational for Switzerland's strict forest protection. Since land search 
for infrastructure development is continuously becoming more difficult 
in Switzerland, also due to improved protection of agricultural land, it 
can be assumed that the opportunity cost of using forest land may be the 
lowest. However, our analysis found no evidence that there are sys
tematic patterns pointing in this direction. We interpret the lack of fully 
clear and cross-regional effects as an indication that forest clearance 
permits in Switzerland in fact are only granted in exceptional cases. 

As the pressure from infrastructure on forests will undoubtedly in
crease in future (EEA, 2016), it is important to provide knowledge about 
the drivers of forest clearances as a basis for future policy making and to 
provide data driven findings in the debate on competing land-use op
tions and potential reforms of the Swiss forest clearance ban. Our find
ings show that there is a high heterogeneity in the factors across regions 
which calls for spatially differentiated policy development. 
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