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By far the biggest contribution to hadronic vacuum polarization (HVP) arises from the two-pion
channel. Its quark-mass dependence can be evaluated by combining dispersion relations with
chiral perturbation theory, providing guidance on the functional form of chiral extrapolations, or
even interpolations around the physical point. In addition, the approach allows one to estimate in a
controlled way the isospin-breaking (IB) corrections that arise from the pion mass difference. As an
application, we present an updated estimate of phenomenological expectations for electromagnetic
and strong IB corrections to the HVP contribution to the anomalous magnetic moment of the muon.
In particular, we include IB effects in the �̄�𝐾 channel, which are enhanced due to the proximity
of the �̄�𝐾 threshold and the 𝜙 resonance. The resulting estimates make it unlikely that the current
tension between lattice-QCD and data-driven evaluations of the HVP contribution is caused by IB
corrections.
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1. Introduction

Understanding the tension between data-driven [1–8] and lattice-QCD determinations [9–11]
of the hadronic-vacuum-polarization (HVP) contribution to the anomalous magnetic moment of
the muon is of critical importance for the interpretation of the current 4.2𝜎 discrepancy between
experiment [12–16] and the prediction in the Standard Model [1–7, 17–34], using 𝑒+𝑒− → hadrons
cross-section data for the latter. The comparison is well-defined for the total HVP contribution as
well as for windows in Euclidean time [35], but, to some extent, even partial quantities evaluated
in lattice QCD can be subject to further independent cross checks. In these proceedings, we focus
on the role of isospin-breaking (IB) corrections. These have been estimated from phenomenology
before [36, 37], but with recent work on the dominant exclusive channels using dispersion relations
and chiral perturbation theory (ChPT) [4, 21, 38–40] several estimates can be improved, most
notably the impact of the pion-mass difference on the 2𝜋 channel. In addition, we include the �̄�𝐾
channel [41], in which case IB effects in the kaon mass are enhanced due to the proximity of the
�̄�𝐾 threshold and the 𝜙 resonance. All numbers will be given in units of 10−10.

2. Pion-mass dependence of the two-pion channel

Throughout, we use a decomposition of the pion form factor

𝐹𝑉𝜋 (𝑠) = Ω1
1(𝑠) × 𝐺𝜔 (𝑠) × 𝐺 in(𝑠), (1)

where the three factors incorporate two-pion, three-pion, and higher intermediate states, respectively.
The Omnès factor Ω1

1(𝑠) [42] does so in terms of the 𝑃-wave 𝜋𝜋 scattering phase shift, 𝐺𝜔 (𝑠)
parameterizes 𝜌–𝜔 mixing in terms of the residue 𝜖𝜔 at the 𝜔 pole, and 𝐺 in(𝑠) is expanded in a
(conformal) polynomial, whose parameters can be matched onto the pion charge radius ⟨𝑟2

𝜋⟩ and
higher orders in the low-energy expansion of 𝐹𝑉𝜋 (𝑠). Given that𝐺𝜔 already represents an IB effect,
it suffices to study the pion-mass dependence of the pure 𝐼 = 1 correlator, denoted in Fig. 1 by
�̄�HVP
` [𝜋𝜋] to indicate that 𝜖𝜔 = 0. To obtain the pion-mass dependence of the 𝜋𝜋 phase shift

and thus Ω1
1(𝑠) [43], we employ the inverse amplitude method (IAM) at one- (NLO) and two-loop

(NNLO) order [44], with parameters determined from a combined fit to lattice QCD [45] and
phenomenology [4]. For 𝐺 in(𝑠), we use the known two-loop expansion of ⟨𝑟2

𝜋⟩ [46]. Here, the
main uncertainty arises from a new low-energy constant 𝑟𝑟

𝑉1 = 2.0× 10−5, which we estimate from
resonance saturation and validate with lattice-QCD calculations of ⟨𝑟2

𝜋⟩ at larger-than-physical pion
masses [47, 48]. The resulting prediction for the pion-mass dependence in Fig. 1 reproduces the
value at the physical point within uncertainties. Possible applications to lattice QCD are discussed
in Ref. [39], ranging from a full fit of the 𝐼 = 1 contribution to tests of the strength of infrared
singularities in the relevant fit region [49]. In the application to IB, we find that the difference
between charged and neutral pion mass gives

𝑎HVP
` [𝜋𝜋]

��
𝑀𝜋±

− 𝑎HVP
` [𝜋𝜋]

��
𝑀

𝜋0
= −7.67(4)ChPT(3)polynomial(4)⟨𝑟2

𝜋 ⟩ (21)𝑟𝑟
𝑉1
[22]total, (2)

where the uncertainties refer to chiral convergence, comparison of a normal and conformal poly-
nomial, and the uncertainties in ⟨𝑟2

𝜋⟩, 𝑟𝑟𝑉1, respectively. This effect arises predominantly from the
threshold region, in such a way that the resulting contribution is almost exclusively contained in the
long-distance (LD) window.
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Figure 1: Pion-mass dependence of �̄�HVP
` [𝜋𝜋] from the NLO (red) and NNLO (blue) IAM, for a normal

(left) and conformal (right) polynomial. Figures taken from Ref. [39].

3. 𝝆–𝝎 mixing and final-state radiation

Final-state radiation (FSR) is dominated by infrared enhanced effects, see Refs. [50, 51] for
an explicit test in the context of the forward–backward asymmetry, and we will adopt the results
from Ref. [40] obtained under this assumption, supplemented by small dispersive corrections from
Ref. [52]

𝑎HVP
` [𝜋𝜋𝛾, non-Born] = 0.15𝜋+𝜋−𝛾 + 0.03𝜋0𝜋0𝛾 = 0.18(4). (3)

With mixed higher-order terms O(𝑒2𝜖𝜔) small, ≲ 0.1, we have [40]

𝑎HVP
` [𝜋𝜋, FSR,Born] = 4.24(2), 𝑎HVP

` [𝜋𝜋, 𝜌–𝜔] = 3.68(17). (4)

While the FSR contribution represents a pureO(𝑒2) effect, it is less clear how to separate 𝜌–𝜔mixing
into its QED, O(𝑒2), and strong, O(𝛿) = O(𝑚𝑢−𝑚𝑑), parts. After removing a 𝛾–𝜔-mixing diagram
that is subtracted in the bare cross section, leading-order vector-meson ChPT [53] suggests that the
entire effect should be of O(𝛿), but later work showed that higher-order corrections are difficult to
estimate [54, 55]. We will continue to book 𝜌–𝜔 mixing in the O(𝛿) category, emphasizing that
this ambiguity could potentially shift contributions between the two classes of IB.

4. Isospin breaking in the �̄�𝑲 channel

The threshold region in the �̄�𝐾 channel is dominated by the isoscalar form factor, and can thus
be analyzed in terms of the 𝜙 resonance parameters [41]. The relevant IB effects arise from FSR,
from IB in the kaon masses, and from IB in the 𝜙 residues

𝑐𝐾
+𝐾−

𝜙 = 0.977(6), 𝑐�̄�
0𝐾0

𝜙 = 1.001(6). (5)

The latter gives the dominant contribution to the uncertainty, about ≃ 0.8 in the full HVP integral,
as it is not clear which residue, or combination of the two, should be identified with the isospin limit.
To define the kaon masses in the isospin limit, we use the charged-kaon self energy (𝑀2

𝐾±)EM =

2.12(18) × 10−3 GeV2 from the Cottingham formula [41], leading to

𝑀𝐾± = (494.58 − 3.05𝛿 + 2.14𝑒2
)
MeV, 𝑀𝐾0 = (494.58 + 3.03𝛿

)
MeV, (6)

3
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which is close to typical quark-mass-scheme decompositions in lattice-QCD [56, 57]. Using the 𝜙
spectral function from Ref. [41] and varying the kaon masses according to Eq. (6), we obtain

𝑎HVP
` [𝐾+𝐾−, FSR] = 0.75(4),
𝑎HVP
` [𝐾+𝐾−, 𝑒2] = −3.24(17), 𝑎HVP

` [𝐾0�̄�0, 𝑒2] = −0.02(0),
𝑎HVP
` [𝐾+𝐾−, 𝛿] = 4.98(26), 𝑎HVP

` [𝐾0�̄�0, 𝛿] = −4.62(23),
𝑎HVP
` [𝐾+𝐾−, 𝑒2𝛿] = −0.33(1), (7)

so that, due to the resonance enhancement, IB effects as large as 30% are observed, and the
mixed O(𝑒2𝛿) contributions come out larger than in the 2𝜋 channel. While the 𝐾0 self energy is
negligible, indirect O(𝑒2) effect from the 𝐾± contribution to the 𝜙 spectral function still produce a
non-vanishing value in Eq. (7), and the remaining differences between isospin-limit 𝐾+𝐾− (16.29)
and �̄�0𝐾0 (16.47) are due to 𝑐𝜙 and the isovector form factor.

5. Phenomenological estimates of isospin-breaking effects in the HVP contribution

A summary of all effects is shown in Table 1, separately for O(𝑒2, 𝛿) contributions and the
decomposition into Euclidean windows. The comparison to Refs. [9, 35] indicates somewhat
larger values in the intermediate window, especially for O(𝑒2), but we emphasize that the quoted
uncertainties in our phenomenological estimates do not include effects from the missing exclusive
channels, which are expected to become most relevant in the intermediate and SD windows.1 For
the full HVP contribution, both our estimate and the inclusive ChPT determination from Ref. [58]
(with the critical low-energy constant 𝛿𝐶 (1)

93 extracted from 𝜏 decays) indicate a larger O(𝛿) effect,
albeit largely consistent within uncertainties. For O(𝑒2) we observe good agreement with Ref. [9],
which emerges as a result of substantial cancellations among several individually large effects.

6. Conclusions

In this contribution we collected phenomenological estimates of IB effects in the HVP con-
tribution to the anomalous magnetic moment of the muon, improving especially the pion-mass
correction in the 2𝜋 channel and adding an estimate of resonance-enhanced �̄�𝐾 effects. In particu-
lar, we provided a breakdown into O(𝑒2, 𝛿) components and Euclidean windows, see Table 1 for the
main results. Given the limitations of the phenomenological approach to obtain inclusive numbers,
there is reasonable agreement with current lattice-QCD calculations. In some cases, O(𝑒2) for the
intermediate window and O(𝛿) for the full HVP contribution, some differences are observed, but in
both cases the result would increase further if the phenomenological estimates were adopted. We
thus conclude that IB corrections are unlikely to play a relevant role in understanding the tension
between 𝑒+𝑒− data and lattice QCD.

1Estimating IB effects in subleading channels becomes increasingly challenging. In the 3𝜋 channel, threshold effects
are strongly suppressed by phase space, while again IB in the residue 𝑐3𝜋

𝜔 is hard to quantify. FSR effects should scale
≃ 0.4 by naively comparing to the 2𝜋 channel, and the dependence of Γ𝜔 on the pion mass [59] cancels out in the integral.
Model-based estimates indicate ≃ −0.6 from a 𝜌 → 3𝜋 component [60, 61], but the underlying fit function cannot be
reconciled with the analytic properties of the 𝛾∗ → 3𝜋 amplitude. QED corrections to the 𝑅-ratio are suppressed by
O(10−3) [62], which implies a correction ≲ 0.1 in the HVP integral for the energy range in which perturbative QCD
applies.
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SD window int window LD window full HVP
O(𝑒2) O(𝛿) O(𝑒2) O(𝛿) O(𝑒2) O(𝛿) O(𝑒2) O(𝛿)

𝜋0𝛾 0.16(0) – 1.52(2) – 2.70(4) – 4.38(6) –
[𝛾 0.05(0) – 0.34(1) – 0.31(1) – 0.70(2) –

𝜌–𝜔 mixing – 0.05(0) – 0.83(6) – 2.79(11) – 3.68(17)
FSR (2𝜋) 0.11(0) – 1.17(1) – 3.14(3) – 4.42(4) –

𝑀𝜋0 vs. 𝑀𝜋± (2𝜋) 0.04(1) – −0.09(7) – −7.62(14) – −7.67(22) –
FSR (𝐾+𝐾−) 0.07(0) – 0.39(2) – 0.29(2) – 0.75(4) –

kaon mass (𝐾+𝐾−) −0.29(1) 0.44(2) −1.71(9) 2.63(14) −1.24(6) 1.91(10) −3.24(17) 4.98(26)
kaon mass (�̄�0𝐾0) 0.00(0) −0.41(2) −0.01(0) −2.44(12) −0.01(0) −1.78(9) −0.02(0) −4.62(23)

total 0.14(1) 0.08(3) 1.61(12) 1.02(20) −2.44(16) 2.92(17) −0.68(29) 4.04(39)

Ref. [9] – – −0.09(6) 0.52(4) – – −1.5(6) 1.9(1.2)
Ref. [35] – – 0.0(2) 0.1(3) – – −1.0(6.6) 10.6(8.0)
Ref. [58] – – – – – – – 3.32(89)

Table 1: Summary of IB effects from 𝜋0𝛾, [𝛾, 2𝜋(𝛾), and �̄�𝐾 (𝛾), separated into short-distance (SD),
intermediate, and LD window, in comparison to the lattice-QCD calculations from Refs. [9, 35] and the
ChPT estimate of the O(𝛿) contribution from Ref. [58].
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