Lueber, Anna; Kitzmann, Daniel; Bowler, Brendan P.; Burgasser, Adam J.; Heng, Kevin (2022). Retrieval Study of Brown Dwarfs across the L-T Sequence. Astrophysical journal, 930(2), p. 136. Institute of Physics Publishing IOP 10.3847/1538-4357/ac63b9
|
Text
Lueber_2022_ApJ_930_136.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (11MB) | Preview |
A large suite of 228 atmospheric retrievals is performed on a curated sample of 19 brown dwarfs spanning the L0–T8 spectral types using the open-source Helios-r2 retrieval code, which implements the method of short characteristics for radiative transfer and a finite-element description of the temperature–pressure profile. Surprisingly, we find that cloud-free and cloudy (both gray and nongray) models are equally consistent with the archival SpeX data from the perspective of Bayesian model comparison. Only upper limits for cloud properties are inferred if log-uniform priors are assumed, but the cloud optical depth becomes constrained if a uniform prior is used. Water is detected in all 19 objects, and methane is detected in all of the T dwarfs, but no obvious trend exists across effective temperature. As carbon monoxide is only detected in a handful of objects, the inferred carbon-to-oxygen ratios are unreliable. The retrieved radius generally decreases with effective temperature, but the values inferred for some T dwarfs are implausibly low and may indicate missing physics or chemistry in the models. For the early L dwarfs, the retrieved surface gravity depends on whether the gray-cloud or non-gray-cloud model is preferred. Future data are necessary for constraining cloud properties and the vertical variation of chemical abundances, the latter of which is needed for distinguishing between the chemical instability and traditional cloud interpretation of the L-T transition.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences 08 Faculty of Science > Physics Institute 10 Strategic Research Centers > Center for Space and Habitability (CSH) 08 Faculty of Science > Physics Institute > NCCR PlanetS |
UniBE Contributor: |
Lüber, Anna Rebekka, Kitzmann, Daniel, Heng, Kevin |
Subjects: |
500 Science > 530 Physics 500 Science > 520 Astronomy 000 Computer science, knowledge & systems |
ISSN: |
0004-637X |
Publisher: |
Institute of Physics Publishing IOP |
Language: |
English |
Submitter: |
Danielle Zemp |
Date Deposited: |
10 Mar 2023 09:29 |
Last Modified: |
10 Mar 2023 23:26 |
Publisher DOI: |
10.3847/1538-4357/ac63b9 |
BORIS DOI: |
10.48350/179712 |
URI: |
https://boris.unibe.ch/id/eprint/179712 |