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Abstract
Objectives  To evaluate and compare the measurement accuracy of two different computer-aided diagnosis (CAD) systems 
regarding artificial pulmonary nodules and assess the clinical impact of volumetric inaccuracies in a phantom study.
Methods  In this phantom study, 59 different phantom arrangements with 326 artificial nodules (178 solid, 148 ground-glass) 
were scanned at 80 kV, 100 kV, and 120 kV. Four different nodule diameters were used: 5 mm, 8 mm, 10 mm, and 12 mm. 
Scans were analyzed by a deep-learning (DL)–based CAD and a standard CAD system. Relative volumetric errors (RVE) 
of each system vs. ground truth and the relative volume difference (RVD) DL–based vs. standard CAD were calculated. The 
Bland–Altman method was used to define the limits of agreement (LOA). The hypothetical impact on LungRADS classifi-
cation was assessed for both systems.
Results  There was no difference between the three voltage groups regarding nodule volumetry. Regarding the solid nod-
ules, the RVE of the 5-mm-, 8-mm-, 10-mm-, and 12-mm-size groups for the DL CAD/standard CAD were 12.2/2.8%, 
1.3/ − 2.8%, − 3.6/1.5%, and − 12.2/ − 0.3%, respectively. The corresponding values for the ground-glass nodules (GGN) were 
25.6%/81.0%, 9.0%/28.0%, 7.6/20.6%, and 6.8/21.2%. The mean RVD for solid nodules/GGN was 1.3/ − 15.2%. Regarding 
the LungRADS classification, 88.5% and 79.8% of all solid nodules were correctly assigned by the DL CAD and the standard 
CAD, respectively. 14.9% of the nodules were assigned differently between the systems.
Conclusions  Patient management may be affected by the volumetric inaccuracy of the CAD systems and hence demands 
supervision and/or manual correction by a radiologist.
Key Points 
• The DL-based CAD system was more accurate in the volumetry of GGN and less accurate regarding solid nodules than  
   the standard CAD system.
• Nodule size and attenuation have an effect on the measurement accuracy of both systems; tube voltage has no effect on  
   measurement accuracy.
• Measurement inaccuracies of CAD systems can have an impact on patient management, which demands supervision by radiologists.
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Abbreviations
ACR​	� American College of Radiology
AI	� Artificial intelligence
AVD	� Absolute volume difference
CAD	� Computer-aided diagnosis
CT	� Computed tomography
CTDIvol	� Volume computed tomography dose index
DL	� Deep learning
DLP	� Dose length product
FBP	� Filtered back projection
GGN	� Ground-glass nodule
HU	� Hounsfield unit
IR	� Iterative reconstruction
LOA	� Limit of agreement
Lung-RADS	� Lung imaging reporting and data system
NELSON	� Nederlands-Leuvens Longkaker Screening 

Onderzoek
NLST	� National Lung Cancer Screening Trial
RVD	� Relative volume difference
RVE	� Relative volumetric error
Sv	� Sievert

Introduction

The widespread routine clinical implementation of lung can-
cer screening programs all over the world is directly linked 
to the increasing importance of standardized pulmonary 
nodule management. Current clinical practice guidelines rely 
on precise and reproducible measurements of the detected 
pulmonary nodules. Since different definitions of the nodule 
diameter can be applied (e.g., mean or maximum diameter), 
volumetry of pulmonary nodules is deemed the most accu-
rate predictor of lung cancer risk [1, 2] and may account for 
irregular shapes, air spaces, and mixed solid and subsolid 
compartments [3]. Furthermore, the repeatability of diam-
eter measurements is known to be suboptimal [4]. Therefore, 
patient management proposed in the latest guidelines by the 
British Thoracic Society (BTS), the Nederlands-Leuvens 
Longkaker Screening Onderzoek (NELSON) group, or the 
American College of Radiology (ACR) is mainly based on 
nodule volumetry [5–7].

In front of an increasing number of screening examina-
tions and the associated additional workload, careful CT 
reading and precise measurements are challenging for radi-
ologists in daily clinical routine. A nodule measurement 
variability of ± 25% has been demonstrated in several in vivo 
“coffee-break” studies, in which individuals were scanned 
twice on the same day [8, 9]. A postulated solution to tackle 
the increasing workload while at the same time maintaining 

or even improving nodule measurement accuracy is the 
introduction of artificial intelligence (AI)–based computer-
aided diagnosis (CAD) systems into clinical routine. Fur-
ther advantages of such systems comprise the automation 
of repetitive radiological duties and the avoidance of reader 
fatigue, which have been recognized as an increasing focus 
in the field [10]. In the context of pulmonary nodule detec-
tion, deep learning (DL)–based CAD systems have proven to 
be helpful as first or second reader devices [11–13]. Since it 
is very likely that the majority of pulmonary nodule analyses 
will be performed by software and not by human readers in 
the near future, it seems pertinent to evaluate the perfor-
mance of DL-based CAD systems in this regard. It is tempt-
ing to speculate whether novel DL-based CAD systems will 
have similar or lower inter-reader variability than different 
human individuals.

The influence of scanning parameters and reconstruction 
on nodule volumetry is well appreciated [14, 15]. In addi-
tion, there are studies comparing different software solutions 
in the chest area focusing on functional lung parameters 
[16]. But only few studies have compared different software 
packages regarding the accuracy of pulmonary nodule volu-
metry [17, 18].

The primary aims of this study were to evaluate the meas-
urement accuracy of a commercially available DL-based 
CAD system and a standard CAD system with an in-built 
semi-automatic volumetry tool in comparison to the true 
volume of artificial pulmonary nodules and to evaluate the 
impact on patient management recommendations. The sec-
ondary aim was to analyze the influence of tube voltage, 
nodule size, and attenuation on the measurement accuracy 
of the CAD systems.

Materials and methods

Chest phantom

A previously described dedicated anthropomorphic chest 
phantom equipped with artificial nodules was utilized in this 
study (Lungman Phantom; Kyoto Kagaku Co., Ltd.) [12, 19].

Nodules of four different diameters (corresponding volumes) 
were used: 5 mm (65.5 mm3), 8 mm (268.1 mm3), 10 mm 
(523.1 mm3), and 12 mm (904.8 mm3). Two density types of 
nodules were used, nodules with a density of + 100 Hounsfield 
units (HU) to simulate solid lesions and nodules with a density 
of − 630 HU to simulate ground-glass nodules (GGN).

In total, 59 different phantom arrangements with 326 arti-
ficial nodules (178 solid, 148 ground-glass) were analyzed. 
Each phantom was equipped with zero to eight nodules. A 
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random generator decided the nodule distribution (number, 
side, type, size, lung segment, and peripheral versus central 
location) within the simulated lung parenchyma. Exemplary 
nodules are depicted in Fig. 1.

Chest computed tomography scan parameters

All examinations were performed on a 64-row multidetec-
tor CT scanner (Somatom Sensation 64, Siemens) with 
the following scan parameters: spiral acquisition mode, 
24 × 1.2 mm, pitch, 0.8; slice thickness, 1.5 mm, increment, 
1.5 mm, field of view, 35 cm, and scan length, 33 cm. For 
image reconstruction, filtered back projection (FBP) was 
utilized with kernels of B30f (soft kernel) and B70f (hard 
kernel) and lung window setting (center, − 500 HU; width, 

1500 HU). Each phantom arrangement was scanned with 
tube voltages of 80, 100, and 120 kV. Automated modula-
tion of the tube current (CareDose4D) was used to main-
tain independence from body weight and body mass index 
(BMI) and to approximate routine scans. The mean volume 
computed tomography dose indices (CTDIvol) of the three 
voltage groups were 1.2 ± 0.6 mGy, 2.1 ± 1.0 mGy, and 
3.1 ± 1.4 mGy; the corresponding mean effective doses (E) 
were 0.9 mSv, 1.6 mSv, and 2.3 mSv. The chest phantom CT 
data sets were used in an earlier study already [20].

CAD systems

A commercially available deep-learning (DL)–CAD sys-
tem was used in this study (InferRead CT Lung, Infervision 

Fig. 1   Examples of the utilized 
solid and ground-glass nodules 
of the four size groups (window 
center/width − 500/1500 HU)
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Medical Technology Co., Ltd.). The deep-learning model 
was principally built with two convolutional neural network 
(CNN) models: a DenseNet model (feature map extractor) 
and a Faster R-CNN–based model (detector).

Since the CT scans have a property of 3D image volume, 
the Faster R-CNN network of this system was modified to 
take consecutive sections as input and to form a multichan-
nel “2.5D CNN.” The dimension “2.5D” implies that the 
model is not exact 3D convoluted due to the segmented axial 
data and their heterogeneous resolutions.

In this study, instead of regular CNN, the DenseNet model 
was used to extract the features and back propagate them. In 
contrast to regular CNN, where feature maps are usually con-
nected at one go, feature maps in DenseNet are directly con-
nected one by one, thus forming a densely connected network 
with a smaller number of layers. The feature density can thus 
be maintained during the propagation process, and the model 
will possess a higher overall expressive power.

The standard CAD system used is an established, com-
mercially available software (Syngo.CT Lung CAD, Syngo.
Via client 6.4, Siemens Medical Solutions) designed to work 
as a second-reader tool. It automatically pre-processes and 
marks nodules and measures them semi-automatically offer-
ing the possibility of subsequent manual modification. An 
integrated software tool allowed dedicated analysis of sub-
solid and solid lesions.

Statistical analysis

The average volume uses all measured volumes and is a 
first descriptive measure for the software outputs. A more 
detailed measure is the relative volumetric error (RVE). 
The RVE is calculated for each nodule and accounts for the 
known volume as ground truth (GT). It was calculated by 
using the following formula:

The RVE for the different voltage and size groups was com-
pared with descriptive measures (mean, standard deviation) 
and additionally with the Friedman test for paired samples or, 
alternatively, the Kruskal–Wallis test for unpaired samples.

The absolute and relative volume differences (AVD, 
RVD) between the systems were calculated by using the 
following formulas:

The Bland–Altman method with limits of agreement 
(LOA) was utilized to assess the variability between the 

RVE =
Measured volume − GT

GT

AVD = V
AICAD

− V
standard CAD

RVD =
AVD

V
standard CAD

volumetric measurements of the systems. In line with the lit-
erature, the RVD of each measured nodule volume was plotted 
against the respective average volume [8, 21–23]. The upper 
and lower LOA were calculated as the range of 95% of the 
observed relative differences in the two volume measurements 
(1.96 standard deviations above and below the mean differ-
ence). The hypothetical LungRADS categories were com-
pared with the Wilcoxon test between the two systems; the 
systems’ rates of correctly classified nodules were compared 
by using the McNemar test. Data analysis was performed on 
a dedicated statistic software (SPSS Statistics, IBM Corp., 
version 25.0). Since this was an exploratory and descriptive 
analysis, all p values were interpreted in a descriptive manner, 
with p < 0.05 indicating statistical significance.

Results

The DL-based CAD software automatically detected 
97.9% of all nodules (n = 319/326). The missed nodules 
(four solid, three GGN) could not be added to the analysis 
manually as this function was not implemented in the uti-
lized version of the software. Regarding the distribution of 
the missed nodules, two were located in the upper lobes, 
three in the middle lobe/lingual, and two in the lower 
lobes. Regarding their size groups, there was one 5-mm 
nodule and two nodules from each of the remaining size 
groups (8 mm, 10 mm, and 12 mm) missed.

The standard CAD system detected 81.6% (n = 266/326) 
of the nodules automatically, but the missed nodules (54 
GGN, 6 solid) could be manually added to the analysis.

Tube voltage has no effect on nodule volumetry

The detection rates of the DL-based CAD system per volt-
age group were 94.2% (n = 307/326), 97.2% (n = 317/326), 
and 97.9% (n = 319/326) for 80 kV, 100 kV, and 120 kV, 
respectively. The mean RVEs of the different voltage 
groups for DL CAD/standard CAD regarding solid nod-
ules were 1.9/0.2%, 0.2/ − 0.02%, and 1.3/1.0% for 80 kV, 
100 kV, and 120 kV, respectively (Fig. 2). There were no 
significant differences between the three voltage groups 
(80 kV vs. 100 kV vs. 120 kV) regarding solid nodules, 
neither with the DL-based CAD (p = 0.193) nor with the 
standard CAD system (p = 0.135).

The corresponding RVEs for DL CAD/standard 
CAD regarding GGN were 6.1/39.7%, 15.8/40.0%, and 
17.0/38.0%.

A subgroup analysis indicated a difference in RVE 
between the 80- and the 120-kV group in the volume-
try of the DL-based CAD system (p = 0.008). However, 
there was no difference observed between the voltage 
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groups among the GGN with the standard CAD system 
(p = 0.192).

Nodule attenuation and size have an effect 
on volumetry

Regarding the different size groups of the solid nodules, the 
RVE of the DL-based CAD system was lower for the 8-mm 
and 10-mm nodules compared to the 5-mm and 12-mm nod-
ules. The corresponding results for the standard CAD system 
showed that the 5-mm and 8-mm nodules had higher RVEs 
compared to the 10-mm and 12-mm nodules.

Regarding the GGN, both systems had higher volumet-
ric errors and higher standard deviations compared to the 
solid nodules; the DL-based CAD showed lower mean 
RVEs compared to the standard CAD. Both systems had 
higher RVEs in measuring the 5-mm GGN compared to 
the other size groups.

The RVEs of all groups are shown in Table 1 and depicted 
as boxplots in Fig. 3.

Software comparison

Three hundred nineteen nodules (174 solid, 145 GGN) were 
analyzed by both quantification systems. The DL CAD system 
showed higher measurement variability regarding the solid 
nodules, but less variability regarding the GGN, compared to 
the standard CAD system. The dependent measurements of 
both systems are depicted as spaghetti plots in Figs. 4 and 5.

As a coincidental finding, a clustering of the 10-mm 
and, even more pronounced, the 12-mm solid nodules was 
observed for the DL CAD measurements indicating a sys-
tematic error. Hereby, one nodule cluster was measured 
accurately; the second cluster was underestimated in size. 
Further workup of this observation revealed no correlation 
with nodule location or the maximum number of nodules per 
phantom (see Fig. 4b).

Fig. 2   Boxplots showing the 
RVE of all nodules by tube volt-
age group depicted as 5th–95th 
percentile. RVE = relative 
volumetric error

Table 1   RVE by size group and 
density

CAD computer-aided diagnosis, DL deep learning, GGN ground-glass nodule, RVE relative volumetric 
error, SD standard deviation

Nodule density Size group (volume) DL-based CAD
Mean RVE (SD), %

Standard CAD
Mean RVE (SD), %

Solid 5 mm (65.5 mm3) 12.2 (20.8) 2.8 (8.3)
8 mm (268.1 mm3) 1.3 (13.5)  − 2.8 (11.5)
10 mm (523.6 mm3)  − 3.6 (14.0) 1.5 (13.3)
12 mm (904.8 mm3)  − 12.1 (15.3)  − 0.3 (8.0)

GGN 5 mm (65.5 mm3) 25.6 (44.8) 81.0 (47.6)
8 mm (268.1 mm3) 9.0 (10.7) 28.0 (22.8)
10 mm (523.6 mm3) 7.6 (14.3) 20.6 (15.0)
12 mm (904.8 mm3) 6.8 (17.2) 21.2 (15.5)
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The Bland–Altman method was utilized to depict the 
RVDs between the systems. The resulting mean RVDs 
(SD) were 1.3 (18.6)% for solid nodules and − 15.2 
(23.5)% for GGN with respective lower/upper limits of 
agreement (LOA) of − 35.2/37.7% and − 61.4/30.9% 
(Figs. 4c and 5c).

The sub-analyses of the 5-mm-, 8-mm-, 10-mm-, and 
12-mm-size groups revealed that the RVDs were higher 
for the 5-mm nodules and GGN compared to those of the 

other groups. The RVDs and LOAs for all size groups and 
densities are shown in Table 2.

Volumetric inaccuracies can have an impact 
on patient management

In order to evaluate the impact of the measurement differ-
ences on patient management, the hypothetical LungRADS 
categories of the solid nodules were compared between 

Fig. 3   Boxplots showing the RVE by size group for solid nodules and for GGN depicted as 5th to 95th percentile. GGN = ground-glass nodules, 
RVE = relative volumetric error

Fig. 4   Software compari-
son depicted as spaghetti 
plots showing the dependent 
measurements of (a) 5-mm and 
8-mm nodules and (b) 10-mm 
and 12-mm nodules, and (c) a 
Bland–Altman plotshowing the 
RVD and the LOA between the 
two systems for solid nodules. 
Notice the two clusters of 
measurements obtained by the 
DL CAD in b. RVD = relative 
volume difference, LOA = limit 
of agreement
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the systems. The DL-based CAD system classified 88.5% 
(n = 154/174) of all detected solid nodules correctly; the 
respective value for the standard CAD system was 79.8% 
(n = 142/178). The difference between the two systems was 
statistically significant (p = 0.004). The majority of the 
falsely classified nodules belonged to the 8-mm-size group; 
only one falsely classified nodule of each system measured 
10 mm.

14.9% of the solid nodules (n = 26/174) were classified 
differently between the two systems (p = 0.002, Table 3), 
most of which were from the 8-mm-diameter group (n = 24) 
and the remaining two nodules from the 10-mm-diameter 
group. The 5-mm and 12-mm nodules would have all been 
classified in unison.

All GGN would have been categorized correctly as Lun-
gRADS 2 by both systems since no measurement exceeded the 
border to the LungRADS 3 classification (diameter, 30 mm; 
volume, 14'137.2 mm3).

Discussion

The results of this work showed that changing the CAD 
system has a potential effect on the correct pulmonary 
nodule classification and therefore on patient management. 
Hereby, the DL-based CAD had a higher initial detection 
rate and classified a higher proportion of solid nodules 
correctly compared to the standard CAD system.

Fig. 5   Software compari-
son depicted by spaghetti 
plots showing the dependent 
measurements of (a) 5-mm and 
8-mm nodules and (b) 10-mm 
and 12-mm nodules and (c) a 
Bland–Altman plot showing 
the RVD and the LOA between 
the two systems for GGN. 
RVD = relative volume differ-
ence, LOA = limit of agreement

Table 2   RVD and LOA by size 
group and density

RVD and LOA of both CAD systems by size group and density
GGN ground-glass nodule, LOA limit of agreement, RVD relative volume difference, SD standard deviation

Nodule density Size group (volume) Mean RVD (SD), % Lower/upper LOA, %

Solid 5 mm (65.5 mm3) 10.2 (23.6)  − 36.1/56.5
8 mm (268.1 mm3) 5.0 (12.7)  − 19.9/29.9
10 mm (523.6 mm3)  − 4.5 (11.3)  − 26.6/17.6
12 mm (904.8 mm3)  − 11.4 (14.8)  − 40.4/17.6

GGN 5 mm (65.5 mm3)  − 25.6 (35.0)  − 94.4/43.1
8 mm (268.1 mm3)  − 12.8 (16.0)  − 44.1/18.6
10 mm (523.6 mm3)  − 10.2 (12.6)  − 34.9/14.5
12 mm (904.8 mm3)  − 10.4 (18.1)  − 46.1/25.1



	 European Radiology

1 3

Inaccurate volumetry may lead to wrong lesion manage-
ment decisions, which can either delay the correct diagno-
sis and treatment on the one side or cause unnecessary costs 
on the other, especially in the context of major lung cancer 
screening programs. Regarding patient management, changes 
in lesion size and the resulting potential shift in LungRADS 
categorization are critical. The DL-based CAD classified 
88.5% of all solid nodules correctly according to LungRADS, 
which was significantly higher compared to the standard CAD 
system (79.8%, p = 0.004). Between the systems, 14.9% of 
the solid nodules were classified differently (p = 0.002). These 
numbers have to be interpreted with caution since most of the 
falsely classified nodules belonged to the 8-mm-size group, 
which is located right at the border between LungRADS cat-
egories 3 and 4A, implying that only minor volumetric mis-
takes can already lead to different classifications [24]. How-
ever, the experiment indicated that patient management can 
be affected by changing the CAD system.

The descriptive analysis indicated no clear difference 
between the three tube voltage groups in the current set-
ting. It has to be mentioned that the DL-based software did 
not detect 19 nodules in the images acquired with 80 kV 
and therefore excluded them from the analysis, which most 
probably explains the observed difference between 80 and 
120 kV regarding the GGN.

In contrast to the current observations, a previous study 
indicated that the alterations of tube current and voltage 
have an effect on the performance of this specific DL-
based CAD system in the context of pulmonary nodule 
detection [25]. However, the current findings are in line 
with various other studies, which found CAD volumetry to 
be robust over a range of exposure settings [14].

The comparison of the density groups revealed that the 
DL-based CAD system was more precise in volumetry 
of the GGN and less precise in measuring solid nodules 
than the standard CAD. Standard CAD systems classically 
struggle with the detection of ground-glass lesions, due to 
the smaller density differences between normal lung and 
lesion [26–28]. The DL-based CAD system, on the other 
hand, was trained on both types, solid and subsolid lesions, 
which is reflected by the current results and is in line with 
their reported superiority over standard CAD systems in 
this regard [29].

In the analysis of the different size groups, the DL-based 
CAD system showed two measurement clusters regarding 
mainly the solid 12-mm nodules, indicating a systematic 
measurement error. This finding was most probably caused 
by the calibration dataset, which the software was trained 
on before the implementation; this dataset mainly contained 
small pulmonary nodules < 6 mm and may have led to a sys-
tematic underestimation of the larger nodule groups.

Apart from the solid 12-mm nodule group, both systems 
had the highest RVEs measuring the 5-mm nodules. This 
finding was somewhat to be expected, since only small 
measurement deviations can lead to high RVEs in this 
size group. Additionally, in this specific study, all nod-
ules had been attached to vessels during the arrangement 
of the phantoms, making an accurate segmentation of the 
borders even more difficult. Correct segmentation of the 
nodule borders is crucial, as one pixel increase in this area 
may already alter the measured volume considerably [17]. 
In the case of the 5-mm GGN, the volumetric inaccuracy 
of the standard CAD system could even lead to the false 
assumption of nodule growth, since there was a volumetric 
error of > 25% [5, 30]

The mean RVD between the systems was 1.3 ± 18.6% 
for the solid nodules and – 15.2 ± 23.5% for the GGN. Bar-
tlett and colleagues reported a mean RVD of − 0.9 ± 16.3% 
while assessing the interscan variability of 100 nodules 
measured twice with a standard CAD system [23]. For nod-
ules < 80 mm3, they reported a mean RVD of − 0.3 ± 8.4%, 
which is much lower than the results for the respective 
group observed in the current study (10.2 ± 23.6% and 
– 25.6 ± 35.0% for solid nodules and GGN, respectively). A 
possible explanation is that Bartlett et al excluded all nod-
ules with vascular or pleural attachment, which are more 
difficult to measure.

This study has several limitations. First, the proto-
col used is not state of the art for lung cancer screen-
ing according to the current guidelines by the European 
Society of Thoracic Imaging (ESTI), in particular refer-
ring to FBP as a reconstruction algorithm and the absence 
of overlapping image reconstruction [31]. However, the 
latest ACR guidelines are less strict as they only favor 
iterative reconstruction (IR) methods over FPB and do 
not recommend an overlapping reconstruction as manda-
tory [32]. Furthermore, it is a fact that many sites still use 
FBP for lung cancer screening [33], making the results of 
this study relevant for many institutions, especially the 
ones with only limited access to innovative scanner tech-
nologies [34]. In a previous phantom study, FBP and IR 
showed nearly identical results for pulmonary nodule volu-
metry using a software from the pre-AI era [14]. However, 
the same study setup is warranted for the AI era. Another 
important limiting aspect is the fact that the study was 
conducted on one single CT scanner with fixed settings; 

Table 3   LungRADS  
classification of solid  
nodules

LungRADS classification of solid nodules 
by both systems

Standard CAD
2 3 4A Total

DL CAD 2 52 0 0 52
3 1 14 5 20
4A 0 20 82 102
Total 53 34 87 174
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therefore, the results cannot be broadly transferred to other 
institutions or CT scanners. As already reported in vari-
ous studies, the scanner settings such as reconstruction 
algorithm, slice thickness, etc. have a relevant impact 
on the performance of AI-based CAD systems [25, 35, 
36]. In contrast to the current study, most of these studies 
were focused on pulmonary nodule detection rather than 
on volumetry. Another limitation is the use of artificial, 
perfectly spherical nodules with homogenous density and 
no surrounding pathology, which is of course not realistic 
and demands for repetition of this study in a clinical set-
ting. However, the phantom setting of this study enabled 
a correlation with a perfect ground truth and an accurate 
evaluation of the CAD systems.

In conclusion, the DL-based system had a higher initial 
detection rate of pulmonary nodules and a higher propor-
tion of them would have been classified correctly accord-
ing to LungRADS compared to the standard CAD system. 
Nodule size and attenuation had an effect on the meas-
urement accuracy of both systems; there was no effect of 
tube voltage. Our results indicate that measurement inac-
curacies between CAD systems have a potential impact on 
patient management, which demands careful revision and, 
if needed, manual correction by radiologists.
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