

SCALING METHODOLOGY AND SCALE REPORTING IN THE TREE2 PANEL SURVEY

Documentation of scales implemented in the baseline survey (2016) (Update 2023)

STEFAN SACCHI

DOMINIQUE KREBS-OESCH

Imprint

Published by TREE (Transitions from Education to Employment).

University of Bern

Fabrikstr. 8

3012 Bern/Switzerland

www.tree.unibe.ch

tree.soz@unibe.ch

Suggested citation

Sacchi, Stefan, Krebs-Oesch, Dominique (2023). Scaling methodology and scale reporting in the TREE2 panel survey. Documentation of scales implemented in the baseline survey (2016). Update 2023. Bern: TREE. doi 10.48350/179867

Abstract

This documentation refers to the database of the 2nd TREE cohort's (TREE2) as published in the 2023 data release (TREE, 2023). It outlines the statistical models and estimation methods employed for scale construction and the calculation of student scores based on questionnaire items. Furthermore, we discuss the various metrics and indicators of relevant scale properties compiled in the technical appendix for all scales implemented in the TREE2 baseline survey.

The focus of the scale reporting is on the internal consistency of the scales and on the comparability of the measurements across survey languages, survey modes and survey settings involved. With very few exceptions, the results indicate at least sufficient or high internal consistency and measurement invariance of the scales used.

A complementary documentation covering the scales employed in later panel waves can be found in the 2023 TREE2 data release (Sacchi & Krebs-Oesch, 2023). With the exception of a few additional metrics of longitudinal measurement invariance over panels waves (ibid., sections 3.6, 4.2), it basically relies on the methods presented below.

Table of Contents

Some pra	ctical guidelines for using the scales	1
Introduct	ion	2
1 Surv	ey Design and Database	4
2 Selec	tion and Adaptation of Scales	8
3 Stati	stical Modelling	14
3.1	Estimation of the confirmatory factor models	15
3.1.1	Two-step estimation based on polychoric inter-item correlations	16
3.1.2	Generalised structural equation model for short response scales	19
3.2	Student scores	20
3.2.1	Calculation and robustness of student scores	20
3.2.2	Inclusion of student scores in multivariate statistical models	21
4 Scale	s-specific reporting: content and interpretation	23
Reference	es	31
Extension	s and minor corrections since version 2021	34
Scale App	endix: Baseline survey	36
Figure	s	
Figure 1:	Design of the TREE2 baseline survey	5
Figure 2:	One-dimensional confirmatory factor model	14
Figure 3:	Example of the reported scale-specific results (first results page)	24
Figure 4:	Example of the reported scale-specific results (second results page)	27
Tables		
Table 1:	Sample size and structure of the TREE2 baseline survey	6
Table 2:	Breakdown of estimation samples by survey languages	7
Table 3:	Item-based scales and composites (without scales for subdimensions)	9
Table 4	Scales with sub-dimensions	12
Table 5:	Item-based composites	13

Some practical guidelines for using the scales

For each scale administered in the TREE2 baseline survey, the technical appendix of this documentation provides a selection of relevant scale metrics and quality measures. Section 4 of the introductory text describes the type and calculation of the reported measures and gives some clues as to their interpretation. We thus intend to support data users in assessing measurement properties of the scales in question. Note that for some of the scales administered in the baseline survey, one or more repeated measurements from later panel waves are available, which are documented in Sacchi & Krebs-Oesch (2023).

The reported scale-specific measures focus primarily on reliability (in the sense of internal consistency) and measurement invariance across survey settings, modes and languages. What we do not address in this documentation is scale validity, as TREE mostly uses commonly accepted, well-established scales and validity is therefore not likely to be a major problem. In addition, the database offers researchers many opportunities to conduct external validations tailored to their specific analytical needs.

In some cases, several scales in the TREE2 scientific use file partly draw on one and the same items. The scales in question should therefore not be used simultaneously within the same multivariate model. This concerns some scales for which several versions exist (cf. section 2: scales surrounded by dotted lines in Table 3) as well as other scales composed of main and subdimensions (cf. section 2, Table 4).

Regarding the use of student scores in the context of multivariate models, we refer the reader to the remarks on this issue in section 3.2.2. Some scores represent item composites rather than scale scores (cf. Table 5), which may, however, be used similarly. The variable names (short names without wave-specific prefix) and labels of all items, student scores and composite variables in the technical appendix correspond with those in the TREE2 data release (TREE, 2023).

When estimating the confirmatory factor models and calculating the student scores, we imputed all missing item information, provided that at least one item of a given scale had a valid rating (see section 3.1.1b for details).

Introduction

This paper documents the questionnaire-based scales and item-based composites that have been collected on the occasion of the baseline survey administered to the second TREE cohort (TREE2) in 2016. First, the paper focuses on the methods and the estimation procedures that we have adopted for the calculation of the scale values published in the scientific use data files. Second, we describe the calculation of the scale-specific key figures and quality parameters (see appended tables) and provide some useful information for their interpretation.

The TREE2 baseline survey is composed of two surveys carried out at a short interval in spring/summer 2016. The first survey is a large-scale national assessment of mathematics skills administered to students who had reached the end of compulsory school (Assessment of the Attainment of Educational Standards, henceforth AES).¹ Beyond the assessment itself, the AES survey programme included a comprehensive student background questionnaire that collected a wide range of student background characteristics presumed to influence maths skills development and/or educational and labour-market pathways in the further (post-compulsory) life course. The second survey, which we refer to as extension survey, was conducted shortly after the first one. Its main purpose was to complete some student background characteristics that had not been collected among all respondents of the first survey. In doing so, TREE was able to substantially extend the size of the TREE2 starting cohort (see section 1 for details).

All parts of the AES student questionnaire include numerous item-based measures designed to capture latent (i.e., not directly observable) respondent, family or context characteristics. Instrument selection was largely restricted to instruments validated by previous research in the relevant research fields (see section 2 for details).

The documentation of scales pertaining to the AES survey was first published along with the AES data in 2017 (Sacchi & Oesch, 2017).² The present documentation covers the extended, more complex database of the TREE2 baseline survey, which also includes data from the extension survey described above. From a methodological point of view, this raises the issue of potential survey-mode and setting effects: The AES assessment was conducted in a uniform proctored classroom setting supervised by carefully instructed test administrators; the extension survey, by contrast, took place in an unproctored individual setting outside of school.

-

The survey is part of an overarching assessment scheme implemented by the Swiss Conference of Cantonal Ministers of Education (EDK) to test basic skills in key subject areas at various stages of compulsory education. For details, see www.icer.unibe.ch and http://wegk-schweiz.ch/).

² See <u>forsbase.unil.ch/project/study-public-overview/16165/0/.</u>

Furthermore, the latter employed two sequentially applied survey modes (web survey and paperand-pencil questionnaire). With regard to scaling, this incongruence requires that we have to carefully check for measurement invariance across survey settings and modes. Consequently, this documentation includes a number of relevant invariance tests and parameters for all scales that are based on data from the extension survey.

Beyond psychometric scales stricto sensu, this documentation also includes a number of item sum scores based on two or more single items. However, we have not included scores of test results and other types of composite variables.³

For all scales and composites drawing exclusively on data of the AES assessment survey, we report the previously calculated parameters (Sacchi & Oesch 2017) in the technical appendix of this documentation. In doing so, we provide TREE2 data users with an overview of all scales and composite variables available in the TREE2 baseline survey in one single document (see particularly section 2). The introductory text describing the methods of calculation and estimation used and the parameters reported in the technical appendix largely corresponds to the 2017 AES documentation (ibid.).

For each of the scales, we report estimates (i.e., scores) of the individual scale values for all participating students. In addition, our documentation aims at enabling data users to assess the scales' quality and measurement invariance (cf. particularly the technical appendix). Last but not least, our documentation ought to allow scholars to replicate, if they wish to do so, the calculation of models, tests and scale parameters and compare them with alternative specifications.

In the following sections, we first specify some relevant aspects of the TREE2 baseline survey's design (1), the selection and adaptation of the scales (2) as well as the statistical modelling and calculation of the scale values (3). Finally, we specify how the scale-specific results, reliability and quality checks were calculated and give some information on how to interpret them (4).

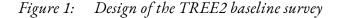
_

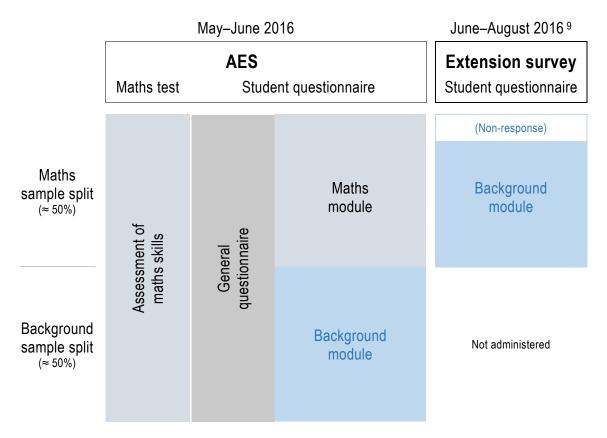
As for the scales, the extension survey considerably enlarges the database on which these scores rely.

1 Survey Design and Database

The data of the AES survey were collected by means of a computer-based classroom survey among a random sample of approximately 22,000 students who were in their last year of lower secondary education (i.e., the 11th year⁴ of compulsory schooling).⁵ The survey included a comprehensive test of basic mathematical skills, along with a computer-assisted self-interview (CASI) of approximately 45 minutes. Among other things, the student questionnaire covered a broad selection of psychometric and other item-based measures, which are the subject of this documentation.

AES implemented a modular design with two different versions of the questionnaire, each of which were administered to a randomised split-half of the total sample. The main building block of one version was the mathematics module, which mainly covered student, teacher and classroom characteristics relevant to the successful acquisition of mathematical skills during compulsory education and to related didactical and pedagogical research. The core of the second version was a student background module co-designed by TREE to collect information on a broad range of resources of the surveyed students, their families and the schools they were attending at the moment of the survey. This module was specifically developed for the TREE2 panel survey in order to measure, as comprehensively as possible, the starting conditions deemed to be relevant for the respondents' further education and labour-market careers and their life courses in general. Both questionnaire versions included a common core ('general questions') that was completed by all students participating in AES. The common core incorporated items that are of general interest for the research objectives of both modules.


Due to the modular design of the AES questionnaire, a substantial part of the questionnaire pertaining to TREE-relevant starting conditions of post-compulsory pathways was administered to only half of the AES sample (see *Figure 1*). In order to complete the missing items for the respondents to the other half (termed 'maths sample split' in Figure 1), TREE carried out an out-of-school 'extension' survey immediately after the AES survey. With a few exceptions, the questionnaire used for this survey was equivalent to that of the background module in the AES


⁵ See Verner and Helbling (2019) for a detailed description of the sampling and the population.

⁴ Including two years of kindergarten.

The random assignment of the students to one questionnaire version was to guarantee that - within each school and each test session - both versions were evenly distributed over the 13 different test booklets used for the preceding mathematics assessment. Hence, from the students' perspective, booklet and questionnaire version were two independent, fully exogenous conditions.

survey, which was implemented in two 'standalone' versions, either in the form of a web or a paper-and-pencil questionnaire. The minor adaptations of the questionnaire under these changed setting and mode conditions included slightly modifying the order of instruments and adding a newly designed scale that had not been administered in the AES survey.⁷ Apart from that, the web implementation was largely indistinguishable from the CASI instrument used by the AES.⁸

In every canton, the extension survey was carried out as soon as the AES survey had been concluded in all sampled schools. The web survey was implemented as the primary mode. Students who did not participate in the web survey received the questionnaire's paper-and-pencil version by mail as a secondary mode. As both survey modes are self-administered, they are well suited for the partly sensitive questionnaire items included in the extension survey. With this

Two additional elements were placed at the end of the questionnaire: a brief cognitive skills test (KFT 4–12 + R; Heller & Perleth, 2000) as well as an experimentally varied repeated measurement of parental education.

To maximise comparability with the AES CASI (and contrary to the web surveys in later TREE2 waves), the web mode was not adapted for smartphones (and respondents were asked to complete it on a computer).

The median lag between the AES and extension survey was 29 days. 98 % of respondents completed the questionnaire between June and August, with a few pencil-and-paper questionnaires being returned up to the end of October.

mixed-mode design, the extension survey achieved a total response rate of almost 75% (73.3% if we consider only complete questionnaires; see also Table 1). Taking the relevant methodological literature into consideration, we do not expect significant mode effects (de Leeuw & Hox, 2011; de Leeuw, 2018; for proctored surveys see also Colosante et al., 2019).

As *Table 1* illustrates, the extension survey enabled us to substantially enlarge the available initial TREE2 sample base with a comprehensive measurement of relevant starting conditions. Among other things, this also allows for a more precise estimation of the scaling models and parameters that are at the centre of this documentation.¹⁰ In light of the sample structure displayed in Table 1, it is important to address the issue of measurement invariance across the various survey settings and modes. That is why this documentation also provides statistical tests and quality measures that are relevant to this end (see section 4 and the technical appendix). The estimation of *setting effects* thereby draws exclusively on the CASI and the web survey, which rely on virtually interchangeable survey modes (i.e., it excludes the paper and pencil questionnaires, $n = 15\ 608$). And the estimation of *mode effects* draws exclusively on the extension survey (i.e., it excludes the classroom setting, $n = 5\ 119$). In doing so, we avoid the risk that the estimations of mode and setting effects are mutually confounded.

Table 1: Sample size and structure of the TREE2 baseline survey

	AES	Exter	Total	
Survey Setting:	Proctored classroom survey	Unproctored i	ndividualised setting	
Survey Mode: CASI		Web survey	P&P questionnaire	
(Sub-)sample size 2)	11 124 ³⁾	4 484	635	16 243

1) Including 89 incomplete questionnaires (with data for some scales only), which are treated as nonresponses when it comes to response statistics and the published sample weights (see also FN 10). 2) The number of cases for particular scales will generally be lower due to non-imputable missing values. 3) Background sample split (cf. Figure 1).

⁻

Regarding the scales partly relying on the extension survey, we draw on a customised sample weight tailored to the sample available for scaling purposes (cf. footer of Table 1). There are two types of non-negligible sample attrition, which exclusively affect the maths sample split (i.e., the unwillingness of AES respondents to provide their contact data for the TREE panel survey and non-participation in the extension survey). Given the high AES response rate of 93% (see Verner & Helbling, 2019: 39), the background split is therefore markedly less affected by attrition. The customised weight accounts for general and split-specific sources of attrition (see section 3.1.1a and FN 27 for further details).

These considerations do not affect the calculation of any of the scales administered in the general questionnaire and the AES maths module, as these scales do not rely on the extension survey. For calculations based on the general questionnaire, we can draw on data of the complete AES sample (approx. 22 000 students) and, for calculations based on the AES maths module, on the subsample to which the maths module was administered (approx. 11 000 students; cf. Figure 1). To ensure a statistically efficient estimate, the scaling models generally draw on the entire available sample base, including cases which, for various reasons, are not included in the scientific use files of the TREE2 dataset (Hupka-Brunner et al. 2023).¹¹

In a survey administered in several languages, we also have to be careful regarding measurement invariance across survey languages (in our case German, French and Italian), which concerns all scales administered. ¹² Basically, variance across languages can be the result of 'real' cultural or linguistic differences between language regions but also of inaccurate translations. That is why we report language-specific invariance tests and parameters (section 4 and appendix). As *Table 2* reveals, sample size substantially varies across survey languages.

Table 2: Breakdown of estimation samples by survey languages

Scales implemented in	General questionnaire	Background module	Math module
Available Estimation Sample 2)	Full AES sample	Baseline survey 2)	Math subsample
Survey Language:			
German	16 349	11 698	8 106
French	5 235	3 927	2 646
Italian	755	618	379

¹⁾ Number of cases for specific scales will in general be lower due to non-imputable missing values. 2) Cf. Table 1.

_

Data users who wish to estimate or replicate scaling models drawing on the complete database may do so. As the data excluded from the published data files are highly confidential, however, this is possible only on the premises of the study's headquarter in Bern and using a specially protected computer workplace.

In the AES, the survey language is identical with the teaching language of the sampled schools. In the extension survey, respondents were able to choose the survey language. In a few cases, this led to the situation that the extension survey was not completed in the same (national) language as the AES survey.

2 Selection and Adaptation of Scales

The AES questionnaire incorporated a broad range of more than 90 item-based instruments from relevant research areas (for theoretical considerations regarding the selection of instruments, see Hupka-Brunner et al. [2015] and Hascher et al. [2019]). As a general rule, preference was given to well-established, cross-disciplinary validated instruments used in surveys both in Switzerland and abroad.

A first selection of instruments was thoroughly pretested in the year preceding the main survey (2015).¹³ One important objective of the pretest was to assess measurement properties of the preliminary selection of questionnaire instruments and scales in the Swiss context. This included assessments of the dimensionality, reliability and the cross-language measurement invariance of the scales. Some of the scales had to be newly translated to make them available in all survey languages. In these cases, the pretest was used to check measurement invariance across language versions and to improve improper translations. Moreover, the pretest was used to clean up scales with dodgy items, to shorten others and, lastly, to narrow down and optimise the selection of instruments for the main survey. We shortened many scales to three or four items to ensure a comprehensive coverage of relevant concepts without unduly increasing response burden and interview duration.

Wherever possible, the original instruments were implemented without modification in order to preserve measurement properties of the selected scales and to maximise data comparability. However, given the multitude of aspects to be considered in questionnaire construction (Dillman, Smyth & Christian, 2014), slight adaptations of the original instruments often could not be avoided.¹⁴

10

The main objective of the pretest was to improve the assessment of mathematical skills, the design of the student questionnaire and the fieldwork for the main survey. The pretest sample was split evenly across the three test languages, German, French and Italian, and included more than 2 000 students from 70 schools.

The manifold methodological, empirical and substantive reasons for such adaptations include the following: At the methodological level, there was the need to adapt instruments that were originally developed for a different survey mode (de Leeuw, Hox & Dillman, 2008: 311f.) and to standardise the format of each type of question in order to reduce the response burden and improve comprehensibility (Dillman, Smyth & Christian, 2014: 210f.). Empirically, the pretest in some instances uncovered insufficient cross-language measurement invariance, which suggested the need to check and, in some cases, improve the translations of the instruments. Finally, there was the requirement to closely replicate some of the instruments from the first TREE cohort (TREE1).

The modifications of the original instruments can pertain to both the question format and wording of stimuli as well as to the response scales and sometimes even to the items. In most cases, however, they are minor so that a substantial impact on the measurement properties and comparability of the resulting scales seems unlikely. It should also be noted that, for similar reasons, many popular scales are far less standardised in survey practice than generally perceived. Moreover, in the case of several circulating scale versions, the original version of the scale is not necessarily the most appropriate.

Table 3 conveys a topically ordered overview of all scales and item-based instruments that were implemented in the AES main field. The 'Positive Attitude towards Life' scale was administered in the extension survey only. In a few cases, several scales partly rely on the same items. Consequently, they should not be introduced in one and the same multivariate model. Apart from scales involving main and sub-dimensions, the scales in question are framed by a dotted line in Table 3. For the 'Global self-esteem scale' (and one of its subdimensions) a shortened version implemented in later waves of TREE2 is also available (see scale reporting in the appendix).

To enable comparative analyses between TREE1 and TREE2, the range of implemented instruments also includes some original scales used in the PISA 2000 survey, the baseline survey of the first TREE cohort (TREE1). For some of these scales (family wealth, social and cultural communication within the family), we implemented both the original version already used in PISA 2000 and an adapted version that was optimised for TREE2. The former is preferable for comparative analyses of both cohorts, the latter for analyses of the second cohort only.

Table 3: Item-based scales and composites (without scales for subdimensions)

Survey topic		AES question-			
Scale / composite	[Variable name] 1)	naire module 2)	Source ³⁾		
Family background					
Family climate					
Emotional closeness to parents	[closep_comp]	Background	TREE1 - based on Szydlik, 2008		
Parental pressure to achieve	[press_fs]	Background	Böhm-Kasper et al., 2000		
Parents' achievement expectations	[expectp_fs]	Math	Hascher et al., 2019		
Mother's achievement expectations	[expectm_fs]	Math	Hascher et al., 2019		
Father's achievement expectations	[expectf_fs]	Math	Hascher et al., 2019		
Mother's social norms about mathematics	[socnormsm_fs]	Math	PISA 2012		
Father's social norms about mathematics	[socnormsf_fs]	Math	PISA 2012		
Family educational support (PISA2000) 4)	[famedsup_fs]	Background	PISA 2000		
Social communication (PISA2000) 4)	[soccom_fs]	Background	PISA 2000		
Social communication (adapted TREE2)	[soccom_m_fs]	Background	PISA 2000 (adapted TREE2)		
Social, cultural & economic resources					
Social capital (own)					
Perceived social network support	[closupp_fs]	Background	TREE2 (BHPS, ISSP 2003)		
Cultural capital (family of origin)					
Parents: reading interest	[joyreadp_comp]	Background	TREE2		
Cultural communication (PISA2000) 4)	[cultcom_fs]	Background	PISA 2000		
Cultural communication (adapted TREE2)	[cultcom_m_fs]	Background	PISA 2000 (adapted TREE2)		
Household possessions: classical culture (PISA2000) 4)	[cultposs_fs]	Background	PISA 2000		
Cultural capital (own)					
Embodied cultural capital	[inccap_fs]	Background	TREE2		
Cultural activities 5)	[cult_fs]	Background	PISA 2000 (partially adapted)		

¹⁾ Student score variable names from 2023 TREE2 data release. 2) Database by module: General \rightarrow full AES sample; background module \rightarrow TREE2 baseline sample; math module \rightarrow AES math sample split. 3) See technical appendix for a detailed list of sources. 4) Scales administered in the the first TREE cohort (TREE1). 5) A subscale of this scale has been adopted as is from PISA 2000 / TREE1 (cf. Table 4).

Table 3 (continued): Item-bases scales and comp Survey topic		AES question-	
Scale or composite	[Variable name] 1)	naire module 2)	Source 3)
Social, cultural & economic resources (continued)			
Economic capital (family of origin)			
Household possessions: family wealth (PISA2000) 4)	[wealth_fs]	Background	PISA 2000
Household possessions: family wealth (adapted TREE2)	1	Background	PISA 2000 (adapted TREE2)
Family affluence scale (FASIII)	[fasiii_comp]	Background	Hobza et al., 2017
Satisfaction and well-being	:		
Satisfaction			
Capabilities	[cap_fs]	Background	Sen, 1985; Anand & van Hees, 2006
School-related well-being			
Positive attitude towards school	[posatt_fs]	General	Hascher, 2004
Enjoyment in school	[enjoyschool_fs]	General	Hascher, 2004
Physical complaints in school	[physpain_fs]	General	Hascher, 2004
Worries about school	[trouschool_fs]	General	Hascher, 2004
Social problems in school	[socprob_fs]	General	Hascher, 2004
School reluctance	[schoolav_fs]	General	Hagenauer & Hascher, 2012 (modified)
Non-cognitive factors			
Motivational concepts			
Intrinsic achievement motivation	[achmoti_fs]	General	IGLU 2001
Extrinsic achievement motivation	[achmote_fs]	General	IGLU 2001
Instrumental learning motivation (PISA2000) 4)	[insmot_fs]	General	PISA 2000
Interest in reading (PISA2000) 4)	[intrea_fs]	General	PISA 2000
ICT interest	[ictintr_fs]	Math	ICILS 2013
Dispositional interest	[intsubj_fs]	Math	COACTIV 2008
Identified motivation (mathematics)	[instrumot_fs]	Math	PISA 2012
External motivation regulation	[extreg_fs]	Math	Ryan & Conell, 1989
Classroom participation	[engage_fs]	Math	Eder, 1995, 2007
Performance-approach goals (SELLMO)	[approxgoals_fs]	Math	SELLMO 2012
Learning goal orientation (SELLMO)	[learntarget_fs]	Math	SELLMO 2012
Work avoidance (SELLMO)	[avoidwork_fs]	Math	SELLMO 2012
Avoidance performance goals (SELLMO)	[avoidblame_fs]	Math	SELLMO 2012
Self-perception			
Global self-esteem 6)	[sel_fs]	Background	Rosenberg, 1979
General perceived self-efficacy scale (GSES)	[seef_fs]	Background	GSES (adapted TREE1)
Academic self-efficacy	[acaself_fs]	General	Hascher, 2004
Academic self-concept (PISA2000) 4)	[scacad_fs]	General	PISA 2000
Verbal self-concept (PISA2000) 4)	[scverb_fs]	General	PISA 2000
Maths self-concept	[matcon_fs]	General	PISA 2000 (adapted AES)
ICT self-concept	[ictabil_fs]	Math	ICILS 2013
Specific self-efficacy: numeracy	[selfeffa_fs]	(General) 7)	PISA 2012; Girnat, 2018
Specific self-efficacy: algebra	[selfeffb_fs]	(General) 7)	PISA 2012; Girnat, 2018
Specific self-efficacy: geometry	[selfeffc_fs]	(General) 7)	Girnat, 2018
Specific self-efficacy: probability	[selfeffd_fs]	(General) 7)	Girnat, 2018

¹⁾ Student score variable names from 2023 TREE2 data release. 2) Database by module: General \rightarrow full AES sample; background module \rightarrow TREE2 baseline sample; math module \rightarrow AES math sample split. 3) See technical appendix for a detailed list of sources. 4) Scales administered in the surveys of the first TREE cohort (TREE1). 6) Data and scale appendix also include a shortened 7-item-version of this scale. 7) Half of the items implemented in the math module.

Table 3 (continued): Item-bases scales and composites

Survey topic	1	AES question-	
Scale or composite	[Variable name] 1)	naire module 2)	Source 3)
Non-cognitive factors (continued)			
Emotions related to maths classes			
Mathematics anxiety	[anxmath_fs]	Math	PISA 2012
Mathematics boredom	[boredom_fs]	Math	AEQ-M (short-version)
Mathematics anger	[anger_fs]	Math	AEQ-M (short-version)
Mathematics enjoyment	[enjoymath_fs]	Math	AEQ-M (short-version)
Volitional strategies			
Perseverance	[persev_fs]	General	PISA 2012
Effort: learning (PISA2000) 4)	[effper_comp]	Background	PISA2000
Personality characteristics			
Big five: extraversion	[big5_e_comp]	Background	Rammstedt et al., 2014
Big five: agreeableness	[big5_a_comp]	Background	Rammstedt et al., 2014
Big five: conscientiousness	[big5_c_comp]	Background	Rammstedt et al., 2014
Big five: neuroticism	[big5_n_comp]	Background	Rammstedt et al., 2014
Big five: openness	[big5_o_comp]	Background	Rammstedt et al., 2014
Internal locus of control	[loci_comp]	Background	GESIS (short version)
External locus of control	[loce_comp]	Background	GESIS (short version)
Values & attitudes			
Work-related extrinsic value	[vawe_fs]	Background	TREE1 - based on Watermann, 2000
Work-related intrinsic value	[vawi_fs]	Background	TREE1 - based on Watermann, 2000
Family value	[vafa_comp]	Background	TREE1
Positive attitude towards life	[posl_fs]	Extension survey	TREE1; Grob et al., 1991
Attitudes related to mathematics classes			
Reality-based learning	[realref_fs]	Math	Girnat, 2015, 2017
Discovery / exploratory learning	[disclearn_fs]	Math	Girnat, 2015, 2017
Social learning	[soccomlearn_fs]	Math	Girnat, 2015, 2017
Instructivist learning	[instreplearn_fs]	Math	Girnat, 2015, 2017
System aspect	[sysformasp_fs]	Math	Girnat, 2015, 2017
Scheme aspect	[schemasp_fs]	Math	Girnat, 2015, 2017
Application aspect	[applyasp_fs]	Math	Girnat, 2015, 2017
Education and training			
Characteristics of maths lessons (end of lower secon	darv education)		
Teacher: cognitive activation	[cogself_fs]	Math	COACTIV 2008
Teacher: classroom management	[classman_fs]	Math	COACTIV 2008
Teacher: individual learning support	[indsup_fs]	Math	COACTIV 2008
Teacher: instruction quality	[instqual_fs]	Math	PISA 2006
Situational interest	[intsit_fs]	Math	COACTIV 2008
Perceived autonomy support	[persuppauto_fs]	Math	Seidel, Prenzel & Kobarg, 2005
Perceived competence support	[persuppcomp_fs]		Seidel, Prenzel & Kobarg, 2005
Perceived social relatedness	[persocincl_fs]	Math	Seidel, Prenzel & Kobarg, 2005
Classmates' appreciation of mathematics	[apprmath_fs]	Math	PISA 2012
Absenteeism / intention to change education	[466[10]	111001	7.10/12012
Absenteeism / Intention to change education Absenteeism / truancy	[truancy_fs]	General	PISA 2000, PISA 2012
Absencedon / maney	[แนสแบร_เอ]	General	1 10A 2000, FISA 2012

¹⁾ Student score variable names from 2023 TREE2 data release. 2) Database by module: General \rightarrow full AES sample; background module \rightarrow TREE2 baseline sample; math module \rightarrow AES math sample split. 3) See technical appendix for a detailed list of sources. 4) Scales administered in the first TREE cohort (TREE1).

In principle, all scales listed in Table 3 are one-dimensional, that is, they have been designed to measure *one* theoretical construct or latent dimension each.¹⁵ However, some of the scales are composed of several sub-dimensions, each representing a facet of one overarching construct. As researchers may wish to distinguish between the sub-dimensions of these scales, the scientific use files of TREE2 also include student scores for each sub-dimension. The following table lists both the main and sub-dimensions of the scales in question.

Table 4 Scales with sub-dimensions

Scale – main dimension Variable name 1)		Subdimensions	Variable name 1)		
Background module scales					
Global self-esteem 2) 3)	[sel_fs]	Positive global self-esteem 4) Negative global self-esteem / depression 4) 5)	[sele_fs] [seld_fs]		
Embodied cultural capital	[inccap_fs]	Embodied cultural capital: manners Embodied cultural capital: verbal skills	[manners_fs] [verbskill_fs]		
Cultural activities	[cult_fs]	"Lowbrow" cultural activities "Highbrow" cultural activities (PISA2000) ⁶⁾	[cultlow_fs] [culthigh_fs]		
Math module scales					
Parents' achievement expectations	[expectp_fs]	Mother's achievement expectations Father's achievement expectations	[expectm_fs] [expectf_fs]		
Instructivist learning	[instreplearn_fs]	Instructivist learning: teachers' instructions Instructivist learning: repetitive practice	[instrlearn_fs] [replearn_fs]		
Social learning	[soccomlearn_fs]	Social learning: social arrangement Social learning: communication	[soclearn_fs] [comlearn_fs]		
System aspect	[sysformasp_fs]	System aspect: logical thinking System aspect: formalism	[systasp_fs] [formasp_fs]		
Teacher: cognitive activation 7)	[cogself_fs]	Cogn. activation: finding solutions & arguing Cogn. activation: strategies and learning from mistakes	[cogselfa_fs] [cogselfb_fs]		

¹⁾ The short names of the student score variables in the TREE2 scientific use file are given in brackets. 2) In accordance with Huang et al. (2012) and Donnellan et al. (2016), this scale is clearly two-dimensional in the TREE2 baseline survey. 3) Data and appendix also include a shortened 7-Item-Version of this scale (sel_m_fs). 4) Sub-dimension labels according to Huang et al. (2012). 5) Data and appendix also include a shortened 3-item-version of this subscale ($seld_m_fs$). 6) Corresponds to 'Cultactv' scale in PISA 2000/TREE1. 7) As this scale is not one-dimensional in the AES survey, we distinguish two (inductively optimised) sub-dimensions.

Some of the instruments described in this documentation are based on two items only, making it impossible to fit any scaling model to the data. Henceforward, we call scores derived from

_

One should note, however, that the one-dimensionality of the selected scales may be empirically controversial. For one scale, 'Global Self-Esteem' (according to Rosenberg, 1979; 2014), we are aware that this is the case (see von Collani & Herzberg, 2003; Huang & Dong, 2012; Donnellan, Ackerman & Brecheen, 2016). With respect to this scale, we decided to provide the student scores for both the one-dimensional model and for the two sub-dimensions described in the literature. Hence, we treat this scale the same way as other scales with sub-dimensions and leave it up to the data users to decide on the appropriate scaling solution.

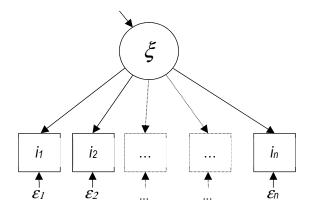
mostly short, item-based instruments *item-based composites* (for an overview see *Table 5*).¹⁶ In case of the 'Family affluence scale' in Table 5, the term «scale» is a misnomer as it represents de facto a sum score, i.e., an item-based composite (for details, see Hobca et al., 2017).¹⁷

Table 5: Item-based composites

Concept 1)			
Dimension	Variable name 2)	Number of items	
Big Five Inventory			
Extraversion	[big5_e_comp]	2	
Agreeableness	[big5_a_comp]	3 3)	
Conscientiousness	[big5_c_comp]	2	
Neuroticism	[big5_n_comp]	2	
Openness	[big5_o_comp]	2	
Locus of control			
Internal locus of control	[loci_comp]	2	
External locus of control	[loce_comp]	2	
Effort: learning (PISA2000) 4)	[effper_comp]	2	
Family values	[vafa_comp]	2	
Parents: reading interest	[joyreadp_comp]	2	
Emotional closeness to parents	[closep_comp]	2	
Family affluence scale (FASIII) FN17	[fasiii_comp]	6	

¹⁾ With the exception of 'Effort: learning' (general questionnaire, full sample), all composites belong to the background module. 2) The short variable names of the composite scores in the scientific use file are reported in brackets. 3) For the composite with one extra item, see Rammstedt and John (2007: 210). 4) This composite has been previously administered in the surveys of the first TREE cohort (TREE1).

.


¹⁶ For item composites, student scores are calculated from imputed item ratings (cf. 3.1.1 b).

Note that this composite partly draws on the same items as the wealth scales in Table 3.

3 Statistical Modelling

As mentioned above, the scales in the AES questionnaire are item-based instruments intended to measure *one* theoretical construct each. Confirmatory factor analysis (CFA) is a common approach to the empirical estimation of latent (i.e., not directly observable) characteristics captured by such measurement instruments (see, e.g., Long, 1983; Schmitt, 2011). As our selection of scales is restricted to validated instruments that were designed to measure a common latent dimension, we limit ourselves to fitting a straightforward one-dimensional CFA model (see Aichholzer, 2017: 80–84) to each scale-specific item set. The CFA model illustrated in *Figure 2* relies on *n* items ($i_1, i_2, ..., i_n$) with associated item-level measurement errors \mathcal{E}_n , which all measure the same latent dimension \mathcal{E} . For scales with several subdimensions (see Table 4 above), a separate CFA model is fitted to each subdimension.¹⁸

Figure 2: One-dimensional confirmatory factor model

For every model estimated hereafter, selected model parameters, fit statistics and scale quality measures are reported in the technical appendix (p. 34ff.). This includes a test of one-dimensionality, various measures of internal scale consistency as well as tests and indices of measurement invariance across survey languages and, where appropriate, survey settings and modes. Throughout this documentation, our primary focus is the quality of the scales (and the corresponding student scores) rather than model fit. If the fit of the straightforward one-factor model turns out to be poor, we neither modify the model to improve fit nor do we test alternative (e.g., multi-dimensional) models. It is up to the data user to judge whether the one-dimensional CFA models are appropriate and whether the scales have the required properties.

-

An alternative approach would be to fit second-order CFA models to each dimension (Aichholzer, 2017: 89f.).

3.1 Estimation of the confirmatory factor models

In its standard form, structural equation modelling - including CFA as a special case - relies on a number of quite restrictive assumptions that are hardly ever met in practice. Basically, the observations should be independent, and the indicators should be measured on a continuous scale (interval-level measurement) and follow a multi-normal distribution (see, e.g., Hoyle, 2000). As regards the database of the AES and the TREE2 baseline survey, none of these assumptions holds: The two-stage sampling procedure implies that observations are clustered within schools (see Verner & Helbling, 2019) and hence are not independent. Moreover, measurement of the indicators is at ordinal (or binary) level as it mostly relies on Likert-type rating scales. And last but not least, the skewed univariate distributions of many ratings are hardly consistent with the required multivariate normality.

The methodological literature offers a wide range of suggestions on how to relax some of the assumptions of the standard SEM model and how to deal with ordinal, binary or skewed indicators and clustered observations (cf., e.g., Bryant & Jöreskog, 2016).¹⁹ In particular, the suggestions include two-stage estimation methods that exploit polychoric correlations and generalised structural equation models (GSEM) that are suited for short response scales and categorical indicators (Rhemtulla, Brosseau-Liard & Savalei, 2012; Bryant & Jöreskog, 2016). However, there is currently no well-established, generally accepted estimation approach tailored to both ordinal indicators that are not normally distributed and a complex sample with clustered observations.

We therefore follow the recommendations of Rhemtulla et al. (2012; similarly Harpe, 2015: 843) regarding the accurate estimation of CFA models on the basis of ordinal, Likert-type indicators. They suggest two different estimation strategies depending on the length of the rating scales. For item responses that rely on a rating scale with at least five points (i.e., ordered discrete response categories), they suggest a two-step estimation based on polychoric correlations. For item evaluations that rely on shorter rating scales with four or less points, a generalised structural equation model (GSEM) is in order. Below, we describe these estimation strategies in more detail.²⁰ As our primary goal is to estimate accurate student scores, we also implement some

-

⁹ Clustered observations may not only affect variance estimation and model fit but also bias the estimation of model parameters (i.e., factor loadings; cf. Stochl et al., 2016; Muthén & Satorra, 1995; Wu & Kwok, 2012).

All calculations were performed using Stata version 15.0 (AES) and 16.1 (TREE2 baseline survey). For both strategies, model estimations in general converge without problems. In a few cases, mostly in multi-group models, it was necessary to constrain an error variance or to collapse smaller groups to achieve convergence (which is noted in the scale reporting of the scales concerned, see appendix).

sensitivity checks to assess the equivalence of student scores obtained via alternative modelestimation strategies (see section 3.2.1).

3.1.1 Two-step estimation based on polychoric inter-item correlations

The two-step approach starts with the estimation of a matrix of polychoric correlations between all items of a given scale (tetrachoric correlations, respectively, in the case of dichotomous items).21 In the second step, maximum likelihood estimation is used to fit the one-dimensional CFA model from Figure 2 to the resulting correlation matrix.²² The models are identified by setting the loading of the first item and the variance of the latent factor to one. The CFA models are also estimated separately for each of the three language subsamples. This allows for multigroup analysis designed to test and assess measurement invariance across the survey languages (see section 4 and, e.g., Steinmetz et al., 2008; Milfont & Fischer, 2015).

Below, we briefly describe how we deal with (a) the complex AES sample and (b) with missing item values in the context of the two-step estimation approach.

(a) Complex sample design and survey weighting

The AES survey relies on a random sample of students that was disproportionally stratified by cantons and type of cantonal curriculum (Verner & Helbling, 2019).²³ Furthermore, the samples analysed here are also affected by sample attrition. An unbiased estimation of any population characteristic therefore requires the application of an appropriate survey weight to account for the disproportional sampling design as well as for unit nonresponse. This also pertains to the estimation of polychoric correlations or the parameters of the CFA models to be estimated (e.g., factor loadings).24

A polychoric correlation is defined as the maximum likelihood estimate of the correlation between two hypothetical, normally distributed continuous latent variables derived from two corresponding ordinal indicators. Estimations were calculated using the Stata package "polychoric" by Stas Kolenikov (from http://staskolenikov.net/stata).

Maximum likelihood estimation has been found to be among the most appropriate estimation methods (together with ULS and DWLS; see Yang-Wallentin, Jöreskog & Luo, 2010) for analysing polychoric correlations derived from ordinal indicators.

Lower secondary schools in Switzerland are mostly "tracked", that is, students are enrolled in separate programmes with varying academic requirements.

²⁴ Weighting would only be unnecessary in the case of a strict invariance of the postulated scaling model across subpopulations of any kind. If this strong assumption were met, the damage of unnecessarily applying survey weights would be limited to inflating the variances of the estimates to some degree (Bollen, Tueller & Oberski, 2013). Given the huge AES sample, this would not be too disturbing.

When estimating the polychoric correlations, we therefore use one out of three different survey weights, depending on whether a given scale is embedded in the background module, in the maths module or in the general questionnaire. For the scales from the latter two, we rely on the suitable AES weights.²⁵ With regard to AES, module-specific analyses require particular weights, as the sampling design of the randomised sample split for the distinct questionnaire modules (according to Figure 1) differs with respect to the shape of disproportional cantonal stratification.²⁶ On the basis of the module-specific AES weights, we have constructed an additional weight for the TREE2 baseline survey, which accounts not only for the AES sampling design and nonresponse but also for sample attrition in the extension survey.²⁷

As regards the two-step estimation approach, it should be noted that variance estimation does not account for the clustering of observations within schools implied in the two-stage sampling (see Verner & Helbling, 2019).

(b) Handling of missing item values

Missing item values are not a major problem affecting the scales in the AES survey. As usual in surveys, however, there is a small share of missing item values, owing mainly to item non-response. With the exceptions mentioned below, the share of cases with missing information on at least one item of the scale does not exceed 5%. For two out of three scales, the percentage is below 1%.

A considerably higher share of missing values results for half of the items of each of the four scales that measure different facets of 'specific self-efficacy' in mathematics. This is a direct consequence of the questionnaire design (and therefore not a matter of methodological

_

We use the respective non-response adjusted weights from the AES scientific use file ('smp_w_nrastubw' for the scales of the general questionnaire and 'smp_w_qmatb' for the scales of the maths module).

The reason is that the design of the two complementary sample splits has been optimised for two different purposes: The sample split drawn for the background module is designed to maximise statistical power at the national level, whereas the maths module split is optimised for separate analyses of cantons. In a nutshell, this was achieved by developing a disproportional subsampling scheme that further reinforces the general overrepresentation of small cantons among the sample split with the maths module and reduces it among the sample split with the background module. The weights for the sample splits then correspond to the general survey weight from the AES scientific use file ('smp_w_nrastubw') multiplied by the inverse of the within-canton subsampling fraction (see also Verner & Helbling, 2019).

For the baseline survey, we use an entropy-balancing weight (cf. Hainmueller, 2012; Hainmueller & Xu, 2013) that compensates for the AES disproportionate sampling design (incl. non-response adjustments) and, as far as the math-sample split is concerned, for the non-response related to willingness to be (re-)contacted and to participate in the extension survey (for details, see the TREE2 documentation on weighting: Sacchi, forthcoming). For the purpose of scaling, the e-balancing weight for the TREE2 baseline survey was re-estimated by taking into account the somewhat looser definition of survey participation employed throughout the scaling process (see Table 1 and the explanatory text).

concern²⁸), as half of the items of each of these scales were incorporated into the general questionnaire and the other half into the maths module. This implies that the share of missing item information is close to zero for the general questionnaire, whereas it rises to around 50% for the items implemented in the maths module.

A relatively high share of missing values is also observed for two measures in which students evaluate the items on a rating scale that includes an explicit 'don't know' option. This pertains to the scale measuring 'Perceived social network support' (closupp_fs) and the two-item composite for 'Parental reading interest' (joyreadp_comp). For both instruments, the share of missing information rises to 10.4 and 8.7%, respectively, when explicit don't-know answers are included.²⁹

Finally, there are four instruments containing some items that could not be administered to a minor portion of the sample.³⁰ With one exception, the overall share of cases with at least one missing item does not exceed 5% in these instances.³¹

These special cases and exceptions notwithstanding, the fraction of missing items is low to very low for the bulk of the scales. Hence, the impact of missing item information is presumably limited.

We applied *multiple imputation* to cope with missing values when estimating the scaling models (Rubin, 1996; White, Royston & Wood, 2011). Basically, missing item information was imputed - scale-by-scale - on the basis of all valid items pertaining to the same scale. The imputed samples thus cover all cases with a valid response for at least one of the items of a given scale. Given the ordinal measurement level of the item ratings, we applied chained equations with an ordinal (or, in a few cases, binary) logit link to create samples with imputed values (Royston, 2011). Following the rules of thumb given in White et al. (2011: 388), we set the number of

-

The randomised allocation of students to questionnaire modules ensures that the missing-at-random assumption (MAR), which is crucial for the imputation of missing values, is almost perfectly met here.

Missing item values owing to explicit don't-know answers and item non-response were imputed together.

Some items referring to specific relatives (e.g., the father) have not been administered when the students previously indicated that these relatives do not exist (this pertains to the instruments: Family Education Support, Parents Achievement Expectations, Parents Reading Interest and Emotional Closeness to Parents). The resulting missing values were treated the same way as other types of missing information. Although this is perhaps not an ideal solution in these cases, a substantial bias seems unlikely given the mostly very low number of cases to which this applies.

The exception is the 'Family Educational Support' scale (famedsup_fs) for which the share of cases with at least one missing item amounts to 14.6%. This owes mainly to the item tapping sibling support, which was not administered among students who previously indicated that they have no siblings (see footnote 29).

imputations to five.³² For each imputed dataset, we separately calculated a matrix of polychoric correlations and combined it to estimate the CFA models.³³

For each scale-specific CFA model, we calculated statistics and indices describing factor structures, model-fit and scale properties (see section 4 and the technical appendix).

3.1.2 Generalised structural equation model for short response scales

If scales rely on item evaluations with short response scales of four or less points (including binary items), they were analysed using a generalised structural equation model (GSEM), as recommended in the literature (Rhemtulla, Brosseau-Liard & Savalei, 2012; Bryant & Jöreskog, 2016). Model parameter estimates were derived in one step directly from the microdata through numeric integration.³⁴ Contrary to the two-step approach, this amounts to a full-information, true maximum likelihood method (Bryant & Jöreskog, 2016: 192). We henceforth adopted the GSEM version of a one-dimensional CFA model, mostly with an ordinal logit link to account for the ordinal measurement level of the item sets to be analysed.³⁵

(a) Accounting for the complex survey design

GSEM, as implemented in Stata, is able to account for complex sample designs. In particular, we used survey weights (as described in 3.1.1a) to obtain unbiased population estimates of the model parameters and applied cluster-robust variance estimation, which controls for the clustering of students within schools. Still, we assume that there is no substantive variation in the measurement model across schools (cf. Wu & Kwok, 2012).

(b) Handling of missing item values

GSEM estimation proceeds on an equation-by-equation basis. In the context of a simple onedimensional CFA model, this amounts to an implicit treatment (i.e., imputation) of missing item values, as each item is represented by a separate equation.

_

The relatively low number of imputations seems appropriate for two additional reasons: First, we are primarily interested in unbiased point estimates of population parameters (e.g., factor loadings) and to a lesser degree in between-imputation and sampling variances. Second, some exploratory reproducibility checks, as suggested by White et al. (2011: 387), indicate that the polychoric correlations and other point estimates are highly stable for an even smaller number of imputations.

After applying Fisher's z-transformation, we simply average the correlation matrices and transform them back (see also footnote 31).

Integration mostly relies on mean-variance Gauss-Hermite quadrature with seven integration points (StataCorp, 2017: 562)

³⁵ The ordinal logit link reduces to a simple logit link for the two scales that include binary items.

One drawback of the GSEM approach is that the calculation of most established statistics to describe model fit and scale properties is not straightforward. This is why we complemented the GSEM estimations for the item sets with short response scales by a separately estimated two-step model, as described in section 3.1. If the resulting factor structures and student scores do not substantially differ from those obtained via the GSEM approach, this may be taken as indirect evidence that the two-step approach works sufficiently well and its assumptions are met (in the appendix, we therefore also check for the equivalence of both types of student scores). Hence, the model and scale statistics taken from the two-step CFA model are likely to be valid approximations as well.

3.2 Student scores

3.2.1 Calculation and robustness of student scores

For instruments relying on item rating scales of 5 or more points, the student scores in the scientific use file (and the related descriptive statistics in the appendix) represent regression factor scores (see StataCorp, 2017: 582f. for details) from the two-step CFA models described in section 3.1.1. For scales based on item sets with short response scales (four or less categories), the student scores in the SUF are empirical Bayes means based on the GSEM models (ibid.: 566). The variable names assigned to the student scores in the scientific use file are composed of a prefix indicating the survey wave (e. g. 't2' in case of the 2nd follow-up survey), the root of the variable names of the involved items and the suffix '_fs', which is used as a marker for student score variables. The corresponding suffix for the item composites from Table 5 is '_comp'. The variable labels assigned to the student scores and item composites correspond to those contained in the scale-specific documentation in the appendix. For an unequivocal interpretation of the student scores in the TREE2 scientific use file, we recommend inspecting the factor loadings (see section 4). As a general rule, however, a high factor score will indicate that students score high on the latent dimension that is designated by the label of the student score variable.

For all scales, the model, scale and test statistics reported in the appendix rely on the two-step estimation approach described in section 3.1.1. This explicitly also applies to those instruments based on short response scales, where the student scores (and the related factor-score descriptives in the appendix) are derived from a GSEM model. We also check the calculation of student scores for robustness by reporting the shared variance of both types of student scores (from SEM and GSEM) as measured by the coefficient of determination (CD) (see appendix: Equivalence of Scores from Two-Step Approach). If their shared variance is close to 100% (i.e., CD approaches

1), one may safely conclude, first, that the different modelling strategies have a negligible impact on student scores and, second, that it also seems reasonable to take the various fit and scale statistics obtained from two-step estimation as good approximations. As documented scale by scale in the appendix, the coefficient of determination is indeed close to 1 for most scales (> .94 for 42 out of 48 involved scales). There are six exceptions, however, in which the shared variance is substantially lower (between 60 and 90%), thus indicating that some of the additional assumptions needed for the two-step model have probably been violated. This pertains to the scales measuring 'Absenteeism / truancy' (truancy_fs), 'Family wealth' as indicated by home possessions (both scale versions: wealth_fs, wealth_m_fs), 'Cultural activities' including one of its subscales (cult_fs, culthigh_fs) and students' 'Maths self-concept' (matcon_fs). For these scales, the model and scale statistics reported in the appendix should be interpreted with great caution, if at all. Still, this does not indicate that the student scores estimated via the GSEM approach are biased in any way.

For an additional robustness check for the student scores, we re-estimated the confirmatory factor models in s single step directly from the student microdata by using the MLMV method (StataCorp, 2017: 574). This allows us to control for the complex survey design through weighting and cluster-robust estimation and, at the same time, to implement an alternative full-information maximum-likelihood approach to account for missing item values.

Let us again look at the shared variances between the student scores obtained via the MLMV method and those via the two-step approach described in section 3.1.1 (see appendix: Equivalence of Scores from Robust MLMV).³⁶ With the exception of the aforementioned wealth scale (both scale versions), the shared variances uniformly exceed 96% (i.e., CD > .96) for all of the 87 scales in this documentation. This can again be taken as indirect evidence that the additional assumptions of the two-step approach regarding multivariate normal distributions and the measurement level are mostly met and, hence, that the statistics and indices derived from it are valid. To sum up, the robustness checks imply that with the few exceptions mentioned above, student-score estimates are very robust across the three different estimation methods recommended for the type of data analysed here.³⁷

3.2.2 Inclusion of student scores in multivariate statistical models

Instead of using the scale-specific student scores, there are often good reasons to embed scale-specific CFA models into a more comprehensive structural equation model of substantive

-

³⁶ A disadvantage of this method is that many statistics to judge model fit and scale qualities are unavailable.

³⁷ This may be due to the fact that we analyse short, one-dimensional scales based on a large sample.

interest and to fit them all together in one step (cf., e.g., Aichholzer, 2017). It should be noted, however, that simultaneous estimation of both the measurement and the substantive part of a structural equation model is not necessarily always the best choice (cf. Devlieger & Rosseel, 2017): When one analyses a subsample of limited size, for instance, robust estimation of more complex models may be impossible. Moreover, even when the sample is large, misspecification bias in one part of a complex model may spread to other parts when they are fitted in a single step. A two-step approach employing previously estimated factor scores to investigate the substantive part of the model may have methodological merits in this respect (ibid.). This approach also has methodological drawbacks, however, basically because it implicitly treats factor scores as error-free measures of the latent dimensions to be analysed.³⁸ Some of the resulting problems, possible biases and correction methods are discussed, for example, by Croon (2002), Lu and Thomas (2008), Jin et al. (2016), and Devlieger and Rossel (2017).

_

A random extraction of plausible values from the posterior distributions of the CFA models could be a quite obvious solution to this. However, contrary to skills assessment, this is an uncommon approach in the scaling of questionnaire items, possibly because of the reduced convenience this entails for data analysis.

4 Scale-specific reporting: Content and interpretation

In this section, we outline the various statistics, indices and quality measures reported in the scale appendix. For each scale (or subscale; cf. Table 4), this report includes two pages with a variety of scale-specific statistics. Below, we take the scale that measures 'Parental pressure to achieve' as an example to illustrate the scope and interpretation of scale-specific results. Figure 3 and 4, respectively, display the two pages of results for this scale as they appear in the appendix. Each scale reporting is linked with the full list of scales available in the baseline survey, and vice versa (link in the lower right corner of Figure 3). Unless otherwise specified, all reported results refer to the two-step estimation of the CFA model according to Figure 2. However, the student-scores descriptives refer to the scores obtained from the GSEM model, as the 'press' items are rated on a four-point scale (see section 3.2.1). The header of each scale-specific results section includes the name of the scale that is also used to label the related student-score variable in the 2023 data release (TREE, 2023). Furthermore, the headers specify the sample basis on which the calculations for the respective scales draw (baseline survey sample³⁹, full AES sample or maths sample split).

The *model and fit statistics* reported include two likelihood-ratio tests as well as various common goodness-of-fit statistics, as discussed in the SEM literature (cf. Schreiber et al., 2006). The likelihood-ratio tests compare the current against the saturated model and the baseline model (basically postulating uncorrelated items), respectively. Ideally, we would expect a nonsignificant likelihood-ratio test of the current against the saturated model, which, for the reasons given above, is an unlikely result, however (see also van der Eijk & Rose, 2015). Moreover, for a well-fitting model, we expect the *comparative fit index (CFI)* and the *Tucker–Lewis index (TLI)* to approach 1, whereas the root mean square error of approximation (RMSEA) and the standardised root mean squared residual (SRMR) should be close to 0. Conventional cut-off criteria indicating a good fit between the hypothesised model and the observed data are \geq .95 for CFI and TLI \leq .06 for RMSEA and \leq .08 for SRMR (see Hu & Bentler, 1999). Regarding Figure 3, one could tentatively conclude that the one-dimensional CFA model fits the 'Parental pressure to achieve' scale sufficiently well, with some reservations regarding RMSEA and TLI, however. Two fit measures designed to compare different models, Akaike's information criterion (AIC) and the Bayesian information criterion (BIC), are also reported. They may serve as a point of reference if data users wish to fit alternative scaling models to the data. Finally, the *coefficient* of determination (CD) may be considered as an alternative measure of composite reliability (in

That is, the combined sample composed of the background split-half sample of the AES and the AES extension survey.

the sense of internal consistency; cf. Bollen, 1989: 220f.), to be interpreted similarly to the reliability measures below.

Figure 3: Example of the reported scale-specific results (first results page)

0	ale: Parental pressure	to achie	eve			Ba	seline survey sample
M	odel and Fit Statistics				Reliability and	Dimensionality	′
1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronbac	h's Alpha	.811
	Model vs. saturated	462	2	.000	(Cronbach's alph	a = .751)	
	Baseline vs. saturated	20063	6	.000	McDonald's Om	ega	.811
2)) Root mean squared error (RMSEA) .122				Test of (one-)din	nensionality (par	rallel analysis)
90% Confidence interval: lower bound			.113	Criterion: Retain	factors with adj.	eigenvalue > o	
	90% Confidence interval: ι	pper boun	d	.131	A	djusted eigenval	ue
	Probability RMSEA <= 0.05			.000	factor 1	1.95	
					factor 2	04	
3)	Akaike's Information Criter	ion (AIC)		142462	factor 3	09	
	Bayesian Information Crite	rion (BIC)		142554	factor 4	18	
4)	Baseline comparison						
	Comparative Fit Index (CFI)			.977			
	Tucker-Lewis Index (TLI)			.931			
5)	Size of residuals						
	Stand. root mean squared re	sidual (SRI	MR)	.026			
	Coefficient of determination	(CD)		.816			

Standardized fa	ctor loading	Item descriptives								
							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf.	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
press1	0.69	0.01	0.68	0.70	press1	2.2	1.0	1	4	15488
press2	0.69	0.01	0.68	0.71	press2	3.0	0.9	1	4	15491
press3	0.78	0.00	0.77	0.79	press3	3.0	0.8	1	4	15488
press4	0.71	0.01	0.70	0.72	press4	2.8	0.9	1	4	15490
Parameters of g	eneralized s	tructura	l equation	model (ordi	inal logit link)					
Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃						
press1	1.66	-1.38	0.68	2.99						
press2	1.79	-3.56	-1.79	0.80						
press3	2.35	-5.01	-2.26	1.38						
press4	1.84	-3.48	-1.23	1.53				Li	st of sca	les (wave 0)

The output section to the right of the model-fit statistics presents the results on *scale reliability* and dimensionality. Among the various conceptualisations of measurement reliability discussed in the literature (e.g., Bollen, 1989), *internal scale consistency* is the most widely used in practical research. One important reason for this is certainly that internal consistency may be easily

assessed without additional re-test or parallel measurements of the indicators. It should also be noted, however, that consistency measures avoid several conceptual drawbacks of possible alternatives (see Bollen, 1989: 209ff.). We report three alternative measures of internal scale consistency: Cronbach's Alpha is still the most widespread, although much criticised, consistency measure (ibid.: 217; Sijtsma, 2009; Revelle & Zinbarg, 2009; Trizano-Hermosilla & Alvarado, 2016). In a nutshell, it is widely recognised that alpha underestimates internal consistency if the indicators are ordinal or congeneric (i.e., not tau-equivalent) as is typical of most practical research situations. We nevertheless do report the classical version of alpha as it is part of most survey documentations and — if interpreted as a lower-bound estimate of internal scale consistency — may still be useful for comparative purposes.⁴⁰ In addition, we also report Ordinal Cronbach's Alpha, which is calculated the same way as classical alpha but from the matrix of polychoric instead of Pearson correlations (see Gadermann, Guhn & Zumbo, 2012: 5). This avoids downward bias owing to ordinal measurement. Finally, we also report McDonald's Omega, which is one of the most recommended measures of internal consistency. Omega is calculated on the basis of the factor loadings of the one-dimensional CFA model (according to formula 1 in Trizano-Hermosilla & Alvarado, 2016), which implies that it is adjusted for ordinal measurement. As omega is appropriate for congeneric indicators, it is probably the most adequate measure overall of internal scale consistency in our context (see also Yang & Green, 2015). Basically, values close to 1 indicate high internal consistency for all three measures. Looking at Figure 3, many researchers would probably interpret the identical ordinal alpha and omega values of .811 each as an indication of a 'good', consistent scale. It should be noted, however, that the widely used rules of thumb to determine whether internal scale consistency can be considered 'acceptable' or 'good' (usually values above .7 and .8, respectively) are not without problems. First, there exist various such rules of thumb with different critical thresholds. Second, and more importantly, such rules should not be applied blindly, as the acceptable level of internal consistency depends strongly on the type of analysis to be performed (Lance, Butts & Michels, 2006).41

A crucial assumption of the estimated CFA models is that the analysed item set captures only one latent construct. Therefore, we have also included a *test of the assumed one-dimensionality*. However, assessing dimensionality of Likert-type items is quite 'risky business', as van der Eijk

⁴⁰ The Stata package "Alphawgt", which allows for weights, was used to calculate alpha (Jann, 2004).

There are some rather dubious rules of thumb that distinguish different levels of internal scale consistency (i.e., Cronbach's alpha). A popular variant is: α < .5: unacceptable; .5 \leq α < .6: poor; .6 \leq α < .7: questionable; .7 \leq α < .8: acceptable; .8 \leq α < .9: good; .9 \leq α : excellent

⁽cf. https://en.wikipedia.org/wiki/Internal_consistency, accessed on June 23, 2020).

and Rose (2015) put it. We used explorative factor analysis of polychoric correlations followed by Horn's parallel analysis to assess the dimensionality of the item sets, which proves to be a comparatively well-performing method (ibid.; Garrido, Abad & Ponsoda, 2013).⁴² Basically, we applied an eigenvalue criterion that was corrected for random factors to account for sampling variance to determine the number of factors to be retained. In Figure 3, this approach gives us no reason to believe that the achievement-pressure scale is not one-dimensional, as only the eigenvalue of the first factor exceeds the critical value of zero. If we leave aside the scales composed of several sub-dimensions (cf. Table 4), the eigenvalues of the second factor are mostly below or only very slightly above zero for most of the scales in this documentation.⁴³ This being the case, we have no clear indication that the one-dimensionality assumption is violated.

The section below the model-fit statistics in Figure 3 documents the *standardised factor loadings* for each item, including standard errors and the confidence intervals. The item names correspond to those in the scientific use file (without the prefix-marker for the survey wave). High standardised loadings above, say, .6 or .7 indicate that neither measurement errors nor strong unique factors contribute excessively to the variance of the observed indicators. Almost all loadings reported in the appended scales reach this level. Occasionally, however, items show noticeably weaker loadings below .5 or even below .4, which some researchers may consider problematic. Eventually, the definition of an acceptable factor loading remains arbitrary and depends on the type of analysis, the number of scale items affected and the quality as well as the overall internal consistency of the scale (ibid.). As in other respects, we prefer to leave it to the data users to judge a particular scale's qualities.

To the right of the loadings, a number of *item descriptives* are reported, including the mean, the standard deviation, the range of the rating scale applied for item evaluation (min., max.) and the number of students with valid item data (see section 3.1.1b).

At the bottom of the first page of our scale-specific results, we report the *parameters of the categorical GSEM model* (cf. section 3.1.2) where it is estimated. Note that for this model, there are two types of item-specific parameters, namely, factor coefficients ('coef') that measure the effect of the latent variable on the indicator rating, and the estimated cut points ('cutx') on the logit distribution that separate the rating scale category 1 from category 2, category 2 from category 3 and so on. Hence, the number of estimated 'cut' parameters equals the number of ordered rating categories minus one. Remember that the GSEM model is used to generate

-

⁴² The parallel analysis relies on the user-written "paran" package (Dinno, 2009).

Exception: the two wealth scales.

student scores (see section 3.1) where students' item evaluations rely on short rating scales with four or less points (as documented by the item descriptives).

A second page of scale-specific results (see Figure 4 below) is dedicated to tests and indices that assess measurement invariance across survey languages and, where appropriate, across survey settings and modes. This is an important facet of measurement quality, as student scores obviously should be comparable – i.e., measure the same concepts on a possibly invariant scale – across all kinds of measurement conditions and subsamples of the underlying student population. We focus on some of the most crucial tests suggested in the literature on the multigroup analysis of measurement invariance (e.g., Vandenberg & Lance, 2000; Milfont & Fischer, 2015) to assess cross-language measurement equivalence. On top of the second results page, we first report a chi-square test of the equality of the item-covariance matrices across survey languages

Figure 4: Example of the reported scale-specific results (second results page)

Scale: Parental pressure to achieve ((continu	Jed)				В	aseline	surve	y sample
Tests and Indices of Factorial Invariance ad	cross								
Equality of the									
variance-covariance matrices across	Surve	y lang	uages	Surv	ey sett	ings	Sur	vey m	odes
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	1717	28	.000	105	14	.000	26	14	.027
Tests of measurement invariance across	Surve	v lang	uages	Surv	ey sett	ings	Sur	vey m	odes
	chi2		p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	31	6	.000	33	3	.000	11	3	.013
Strong invariance (plus equal intercepts)	923	6	.000	11	3	.010	4	3	.317
Strict invariance (plus equal error variances)	73	6	.000	12	3	.008	3	3	.413
Configural factor similarity across	Surve	Survey languages		Surv	Survey settings		Survey modes		
Tucker's congruence coefficient		,	TCC		,	TCC		,	TCC
-	rman vs. F	rench	.999	classroom vs.		0	W	web vs.	
Fr	rench vs. It	talian	.997	unpro	ctored	.998		PAP	.996
Ita	lian vs. Ge	erman	.993						
Factor score equivalence: group									
specific vs. invariant models for	Surve	y lang	uages	Surv	ey sett	ings	Sur	vey m	odes
Coefficient of determination			CD			CD			CD
	Ge	rman	1.000	clas	sroom	1.000		web	1.000
	F	rench	1.000	unpro	tored	.999		PAP	.990
	I	talian	.980						
Factor score descriptives									
Std.									
Variable name Mean dev. Min. Max.	Obs.								
press_fs	15535								
Share of cases with imputed missing values:	0.6%								
(Equivalence of scores from robust MLMV: CD =									
(Equivalence of Scores from Two-Step-Approach:	: CD = .984	1)							

(German, French, Italian; cf. Table 2) and, when a scale relies on the TREE2 baseline survey (including the AES extension survey), across survey settings (classroom vs. unproctored) and survey modes (web survey vs. paper-and-pencil questionnaire (PAP); cf. Table 1).⁴⁴ If the hypothesis of equal covariance matrices is not rejected, this would be a strong indication of measurement invariance, making any further tests obsolete (ibid.).

The chi-square tests assembled in the section below refer to the one-dimensional CFA model from section 3.1.1, which was re-estimated separately for each survey language and, where appropriate, for each survey setting and survey mode. Hence, the tests assume that a common latent dimension exists, and its invariance is investigated by means of multi-group analysis. The three tests are designed to distinguish different levels of measurement equivalence, as discussed in the literature (ibid.). The first test is for metric measurement invariance, that is, for equal factor loadings. A non-significant test indicates that there is no evidence against the postulated invariance of the factor loadings across the different survey conditions. The second test takes the model with invariant loadings as its baseline and tests it against an alternative model with invariant loadings and intercepts, which implies strong measurement invariance. Third and lastly, the latter model is tested against an alternative positing strict measurement invariance, which furthermore requires invariant error variances (ε_i in Figure 2). Given the nested structure of the compared models, strong invariance would require that the first two tests be not significant and strict invariance that all three tests be not significant. Although this is a rather standard approach to assess measurement equivalence, the reservations against chi-square-based fit statistics discussed above also extend to chi-square-based multi-group comparisons: Even if the cross-language variations in the model parameters are negligible, these tests will nearly always be significant given the mostly huge samples analysed here. That is to say, a level of measurement equivalence that would be adequate for nearly all practical research purposes would still not be enough to pass these tests. Against this background, it is rather surprising that, with regard to the 'Parental pressure to achieve' scale (see Figure 4), strong or even strict measurement invariance is not rejected (p < .01) with respect to survey modes (where, however, the test samples are smaller than for survey languages or settings; cf. Table 1).

Below the section with the chi-square-based invariance tests, we report two additional measures of factor equivalence, which will perhaps do better in meeting the practical needs of many data analysts. The first one, *Tucker's congruence coefficient (TCC)*, is a measure of *configural factor invariance* (calculated according to formula 1 in Lorenzo-Seva & ten Berge, 2006). Basically, it

Technically, this was achieved by specifying a multi-group model without a latent dimension and then testing a completely unconstrained model against a constrained one with equal variances and inter-item covariances.

is a pattern-similarity measure that approaches 1 when the loading patterns observed in two groups or conditions are identical. We report the coefficient separately for each pair of survey languages as well as for the pairs of survey settings and survey modes, where appropriate. According to Lorenzo-Seva and ten Bergen (ibid.: 61), two factors may be considered as approximately equal for practical purposes if TCC is .95 or higher. If we look at the scales documented in the appendix, this criterion is met for all pairwise comparisons across survey languages, survey settings and survey modes.

In addition, we also assess the degree of *micro-level factor equivalence at the level of student scores*. For this, we compare the student scores taken from an unconstrained model fitted separately for each language, setting or mode, respectively, with the student scores taken from a model for the entire sample on the assumption of strong measurement invariance (i.e., equal loadings and intercepts). If the differences between the former and latter are negligible across the analysed survey conditions, this is a strong indication that - from a practical point of view - the measurement can be regarded as sufficiently invariant. As a measure of micro-level agreement, we report – separately for each of the subsamples delineated by survey language, survey setting, and survey mode – the coefficient of determination (CD), which is calculated by regressing the student scores from the strong-invariance model on those from the unconstrained conditionspecific models. Where the CD indicates that both scores share, say, 98% of their variance (i.e., $CD \ge .98$), deviations from the postulated strong invariance model may be regarded as negligible. All scales in the appendix satisfy this criterion with respect to mode and setting effects. With regard to survey languages, there are some differences in a limited number of cases, which mostly concern the Italian language. It should be noted, however, that a perfect agreement cannot always be expected even if the 'true' measurement model was absolutely invariant as the estimated student scores also include some random error. This is particularly true for the scores gained through the separate analysis of small subsamples, as is the case for the Italian questionnaire (n = 379 - 755, cf. Table 2) and the paper-and-pencil mode (n = 635; cf. Table 1) of the extension survey (cf. Figure 1). Notably for these subsamples, the sampling errors in the factor loadings and hence also in the student scores are likely to be more substantial.⁴⁵ With this in mind, one could also accept a coefficient of determination of, say, .95 as an indication of a still fair level of measurement equivalence. Also with regard to language-specific invariance, almost

In combination with skewed item distributions, this is probably also the reason why a few of the models underlying the invariance tests did not converge so that the subsamples for the French and the Italian languages had to be collapsed for this purpose. We added an explanatory note at the end of the measurement-equivalence section in the appendix, which is shaded in grey in these cases (e.g., the 'School reluctance' scale).

all scales in the appendix satisfy this criterion.⁴⁶ In the case of the achievement-pressure scale in Figure 4, however, our results are unambiguous and do suggest a high degree of measurement equivalence across survey languages, settings and modes.

In the section following the measurement invariance tests and indices, we report the short variable names (*press_fs* in Figure 3) of the student score variables in the scientific use file (from either ML-SEM or GSEM, depending on the length of the rating scales; see section 3.2.1).⁴⁷ The respective descriptive statistics refer to the sample base used for the calculation of the student scores (including cases not published in the scientific use files of the data release; cf. section 1).⁴⁸

Either one or two measures of factor-score equivalence across different estimation methods are reported at the bottom of the second results page (see section 3.2.1), depending on the length of the rating scales applied for item evaluation. With regard to the achievement-pressure scale in Figure 4, they confirm a high degree of equivalence between the student scores from all three estimation procedures.

_

Exceptions to the rule: the Italian versions of 'vawe', 'ictintr', 'cogselfb' and 'cultposs'. In the case of 'cultposs', this applies to the French version as well.

The full variable names include an additional prefix to distinguish TREE2 survey waves (e.g., "t2" for the second followup survey).

Relevant sample sizes are reported under "Factor score descriptives: Obs.". We also report the share of cases with imputed item values.

References

- Aichholzer, Julian (2017). Einführung in lineare Strukturgleichungsmodelle mit Stata. Springer: Wiesbaden (1. Auflage).
- Bollen, Kenneth A. (1989). Structural Equation with Latent Variables. Wiley: New York.
- Bollen, Kenneth, Stephen Tueller & Daniel Oberski (2013). 'Issues in the Structural Equation Modeling of Complex Survey Data.' International Statistical Institute (Eds.): *Proceedings of the 59th World Statistics Congress*: Hongkong.
- Bryant, Fred B. & Karl G. Jöreskog (2016). 'Confirmatory Factor Analysis of Ordinal Data Using Full-Information Adaptive Quadrature.' *Australian & New Zealand Journal of Statistics* 58 (2): 173–196.
- Colasante, Emanuela, Elisa Benedetti, Loredana Fortunato, Marco Scalese et al. (2019). 'Paper-and-pencil versus computerized administration mode: Comparison of data quality and risk behavior prevalence estimates in the European school Survey Project on Alcohol and other Drugs (ESPAD).' PLOS ONE 14 (11): e0225140.
- Croon, Marcel A. (2002). 'Using Predicted Latent Scores in General Latent Structure Models', pp. 195–224, in George A. Marcoulides & Irini Moustaki (Eds.): Latent Variable and Latent Structure Models. Lawrence Erlbaum: Mahwah, New Jersey.
- de Leeuw, Edith D. (2018). 'Mixed-Mode: Past, Present, and Future.' Survey Research Methods 12 (2). 75-89.
- de Leeuw, Edith, Joop Hox & Don. A. Dillman (2008). 'Mixed-Methods Surveys: When and Why', pp. 299–316, in Edith de Leeuw, Joop Hox & Don A. Dillman: *International Handbook of Survey Methodology*. Lawrence Erlbaum: New York.
- de Leeuw, Edith & Joop Hox (2011). 'Internet Surveys as Part of a Mixed-Mode Design', pp. 45–76, in Marcel Das, Peter Ester & Lars Kaczmirek (Eds.): Social and Behavioral Research and the Internet: Advances in Applied Methods and Research Strategies. Routledge: New York.
- Devlieger, Ines & Yves Rosseel (2017). 'Factor Score Path Analysis.' Methodology 13 (Supplement 1): 31–38.
- Dillman, Don. A., Jolene D. Smyth & Leah Melani Christian (2014). *Internet, Phone, Mail, and Mixed-Mode Surveys: The Tailored Design Method.* John Wiley & Sons: Hoboken (4th Edition).
- Dinno, Alexis (2009). 'Implementing Horn's Parallel Analysis for Principal Component Analysis and Factor Analysis.' *Stata Journal* 9 (2): 291–298.
- Donnellan, M. Brent, Robert A. Ackerman & Courtney Brecheen (2016). 'Extending Structural Analyses of the Rosenberg Self-Esteem Scale to Consider Criterion-Related Validity: Can Composite Self-Esteem Scores Be Good Enough?' *Journal of Personality Assessment* 98 (2): 169–177.
- Gadermann, Anne M., Martin Guhn & Bruno D. Zumbo (2012). 'Estimating Ordinal Reliability for Likert-Type and Ordinal Item Response Data: A Conceptual, Empirical, and Practical Guide.' *Practical Assessment, Research & Evaluation* 17 (3): 1–13.
- Garrido, Luis Eduardo, Francisco José Abad & Vicente Ponsoda (2013). 'A New Look at Horn's Parallel Analysis with Ordinal Variables.' *Psychological Methods* 18 (4): 454–474.
- Gnambs, Timo & Kai Kaspar (2016). 'Socially Desirable Responding in Web-Based Questionnaires: A Meta-Analytic Review of the Candor Hypothesis.' *Assessment* 24 (6): 746–762.
- Hainmueller, Jens (2012). 'Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies.' *Political Analysis* 20 (1): 25–46.
- Hainmueller, Jens & Yiqing Xu (2013). 'ebalance: A Stata Package for Entropy Balancing.' Journal of Statistical Software 54 (7): 18.
- Hair, Joseph F., William C. Black, Barry J. Babin, Rolph E. Anderson et al. (2006 [1987). *Multivariate Data Analysis* (6 ed.). New Jersey: Pearson Prentice Hall.
- Harpe, Spencer E. (2015). 'How to Analyze Likert and Other Rating Scale Data.' Currents in Pharmacy Teaching and Learning 7 (6): 836–850.
- Hascher, Tina, Christian Brühwiler, Andrea Erzinger, Boris Girnat et al. (2019). Erläuterungen zu den Skalen des Kontextfragebogens Mathematikteil: Theoretischer Hintergrund und Forschungsinteressen. Universität Bern, Pädagogische Hochschule St. Gallen & Pädagogische Hochschule FHNW (Eds.): Bern.
- Hobza, V., Hamrik, Z., Bucksch, J., & De Clercq, B. (2017). The Family Affluence Scale as an Indicator for Socioeconomic Status: Validation on Regional Income Differences in the Czech Republic. *International journal of environmental research and public health*, 14(12), 1540-1549. doi: 10.3390/ijerph14121540.
- Hoyle, Rick H. (2000). 'Confirmatory Factor Analysis', pp. 465–497, in Steven D. Brown (Ed.): *Handbook of Applied Multivariate Statistics and Mathematical Modeling*. Academic Press: San Diego.
- Hu, Litze & Peter M. Bentler (1999). 'Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives.' *Structural Equation Modeling 6* (1): 1–55.

- Huang, Chiungjung J. & Nianbo B. Dong (2012). 'Factor Structures of the Rosenberg Self-Esteem Scale: A Meta-Analysis of Pattern Matrices.' European Journal of Psychological Assessment 28 (2): 132–138.
- Hupka-Brunner, Sandra, Ben Jann, Thomas Meyer, Christian Imdorf et al. (2015). *Erläuterungen zum Kontextfragebogen der ÜGK 2016: Allgemeiner Teil.* Universität Bern: Bern.
- Hupka-Brunner, Sandra, Thomas Meyer, Stefan Sacchi, Ben Jann et al. (2023). 'TREE2 study design. Update 2023'. TREE: Bern. URL: boris.unibe.ch/id/eprint/175367
- Jann, Ben (2004). *ALPHAWGT: Stata Module to Compute Cronbach's Alpha for Weighted Data*. Statistical Software Components S4444101). Boston: Boston College Department of Economics.
- Jin, Shaobo, Hao Luo & Fan Yang-Wallentin (2016). 'A Simulation Study of Polychoric Instrumental Variable Estimation in Structural Equation Models.' *Structural Equation Modeling* 23 (5): 680–694.
- Lance, Charles E., Marcus M. Butts & Lawrence C. Michels (2006). 'The Sources of Four Commonly Reported Cutoff Criteria: What Did They Really Say?' Organizational Research Methods 9 (2): 202–220.
- Long, J. Scott (1983). *Confirmatory Factor Analysis*. Vol. 33 of the Sage University Paper Series on Quantitative Applications in the Social Science, edited by Michael S. Lewis-Beck. Sage: Newbury Park.
- Lorenzo-Seva, Urbano & Jos M. F. ten Berge (2006). 'Tucker's Congruence Coefficient as a Meaningful Index of Factor Similarity.' *Methodology* 2 (2): 57–64.
- Lu, Irene R. R. & D. Roland Thomas (2008). 'Avoiding and Correcting Bias in Score-Based Latent Variable Regression with Discrete Manifest Items.' *Structural Equation Modeling* 15 (3): 462–490.
- Milfont, Taciano L & Ronald Fischer (2015). 'Testing Measurement Invariance across Groups: Applications in Cross-Cultural Research.' *International Journal of Psychological Research* 3 (1): 111–130.
- Muthén, Bengt O. & Albert Satorra (1995). 'Complex Sample Data in Structural Equation Modeling.' Sociological Methodology 25: 267–316
- Rammstedt, Beatrice & Oliver P. John (2007). 'Measuring Personality in One Minute or Less: A 10-Item Short Version of the Big Five Inventory in English and German.' *Journal of Research in Personality* 41 (1): 203–212.
- Revelle, William & Richard E. Zinbarg (2009). 'Coefficients Alpha, Beta, Omega, and the GLB: Comments on Sijtsma.' *Psychometrika* 74 (1): 145–154.
- Rhemtulla, Mijke, Patricia E. Brosseau-Liard & Victoria Savalei (2012). 'When Can Categorical Variables Be Treated as Continuous? A Comparison of Robust Continuous and Categorical SEM Estimation Methods under Suboptimal Conditions.' *Psychological Methods* 17 (3): 354–73.
- Rosenberg, Morris (1979). Conceiving the Self. Basic Books: New York.
- Rosenberg, Morris (2014). Self-Esteem Scale. 'GESIS (Ed.): Zusammenstellung sozialwissenschaftlicher Items und Skalen: Mannheim. ZIS-Version 16.00. doi: 10.6102/zis46.
- Royston, Patrick (2011). 'Multiple Imputation by Chained Equations (MICE): Implementation in Stata.' *Journal of Statistical Software* 45 (4): 1–20.
- Rubin, Donald B. (1996). 'Multiple Imputation After 18+ Years.' Journal of the American Statistical Association 91 (434): 473-489.
- Sacchi, Stefan & Dominique Oesch (2017). 'ÜGK 2016: 'Assessment of mathematics skills: Documentation of questionnaire-based scales'. Assessment of the Achievement of Basic Educational Competences' TREE / University of Bern: Bern.
- Sacchi, S., & Krebs-Oesch, D. (2023). *Documentation of scales implemented from panel wave 1 onwards.* In TREE (Ed.), Transitions from Education to Employment, Cohort 2 (TREE2), panel waves 0-3 (2016-2019) (2.0.0) [Dataset]. University of Bern. Distributed by FORS data service. https://doi.org/10.48573/kz0d-8p12
- Schmitt, Thomas A. (2011). 'Current Methodological Considerations in Exploratory and Confirmatory Factor Analysis.' *Journal of Psychoeducational Assessment* 29 (4): 304–321.
- Schreiber, James B., Amaury Nora, Frances K. Stage, Elizabeth A. Barlow et al. (2006). 'Reporting Structural Equation Modeling and Confirmatory Factor Analysis Results: A Review.' *The Journal of Educational Research* 99 (6): 323–338.
- Sijtsma, Klaas (2009). 'On the Use, the Misuse, and the Very Limited Usefulness of Cronbach's Alpha.' *Psychometrika* 74 (1): 107–120.
- StataCorp (2017). Stata Structural Eqation Modeling Reference Manual. Release 15. College Station, Texas: Stata Press.
- Steinmetz, Holger, Peter Schmidt, Andrea Tina-Booh, Siegrid Wieczorek et al. (2008). 'Testing Measurement Invariance Using Multigroup CFA: Differences between Educational Groups in Human Values Measurement.' *Quality & Quantity* 43 (4): 599–616.
- Stochl, Jan, Peter B. Jones, Jesus Perez, Golam M. Khandaker et al. (2016). 'Effects of Ignoring Clustered Data Structure in Confirmatory Factor Analysis of Ordered Polytomous Items: A Simulation Study Based on PANSS.' *International Journal of Methods in Psychiatric Research* 25 (3): 205–219.
- Tabachnick, Barbara G & Linda S Fidell L. S. (2013 [1996]). Using multivariate statistics (6. ed.). Boston, MA: Pearson.

- TREE (2023), Transitions from Education to Employment, Cohort 2 (TREE2), panel waves 0-3 (2016-2019) (2.0.0) [Dataset]. University of Bern. Distributed by FORS data service. https://doi.org/10.48573/kz0d-8p12
- Trizano-Hermosilla, Italo & Jesús M. Alvarado (2016). 'Best Alternatives to Cronbach's Alpha Reliability in Realistic Conditions: Congeneric and Asymmetrical Measurements.' *Frontiers in Psychology* 7. Published online 2016 May 26: doi: 10.3389/fpsyg.2016.00769.
- van der Eijk, Cees & Jonathan Rose (2015). 'Risky Business: Factor Analysis of Survey Data Assessing the Probability of Incorrect Dimensionalisation.' *PLoS ONE* 10 (3). https://doi.org/10.1371/journal.pone.0118900
- Vandenberg, Robert J. & Charles E. Lance (2000). 'A Review and Synthesis of the Measurement Invariance Literature: Suggestions, Practices, and Recommendations for Organizational Research.' Organizational Research Methods 3 (1): 4–70.
- Verner, Martin & Laura A. Helbling (2019). Sampling ÜGK 2016: Technischer Bericht zu Stichprobendesign, Gewichtung und Varianzschätzung bei der Überprüfung der des Erreichens der Grundkompetenzen 2016. Institut für Bildungsevaluation (IBE): Zurich.
- von Collani, Gernot & Philipp Yorck Herzberg (2003). 'Zur internen Struktur des globalen Selbstwertgefühls nach Rosenberg.' Zeitschrift für Differentielle und Diagnostische Psychologie 24 (1): 9–22.
- White, Ian R., Patrick Royston & Angela M. Wood (2011). 'Multiple Imputation Using Chained Equations: Issues and Guidance for Practice.' Statistics in Medicine 30 (4): 377–399.
- Wu, Jiun-Yu & Oi-man Kwok (2012). 'Using SEM to Analyze Complex Survey Data: A Comparison between Design-Based Single-Level and Model-Based Multilevel Approaches.' *Structural Equation Modeling* 19 (1): 16–35.
- Yang-Wallentin, Fan, Karl G. Jöreskog & Hao Luo (2010). 'Confirmatory Factor Analysis of Ordinal Variables with Misspecified Models.' *Structural Equation Modeling* 17 (3): 392–423.
- Yang, Yanyun & Samuel B. Green (2015). 'Evaluation of Structural Equation Modeling Estimates of Reliability for Scales with Ordered Categorical Items.' *Methodology* 11 (1): 23–34.

Extensions and minor corrections since version 2021*

- The abstract has been revised and extended
- The shortened scales for 'Global self-esteem' (sel_m_fs) and for 'Negative global self-esteem' (seld_m_fs) used in later panel waves have been added to the scale appendix below and to the baseline survey data file (TREE2_Data_Wave_0_v2) in the data release (TREE, 2023).
- The reported Tucker coefficients for invariance across survey modes and survey settings include minor corrections.
- The student score variables *cogself1_fs*, *cogself2_fs*, *extregm_fs* have been renamed according to TREE naming conventions (to *cogselfa_fs*, *cogselfb_fs*, and *extreg_fs*).
- Some inconsistently used labels for scales and survey topics have been harmonised across the TREE2 data release (TREE, 2023).

34

Sacchi, Stefan, Krebs-Oesch, Dominique (2021). Scaling methodology and scale reporting in the TREE2 panel survey. Documentation of scales implemented in the baseline survey (2016). University of Bern: TREE. http://dx.doi.org/10.48350/152055.

SCALE APPENDIX

Scales administered in the baseline survey

(<u>Scale names</u> linked with first page of scale-specific reporting)

cale-specific reportin	<i>J</i> ,		
Variable Name	AES Module	Source	Page
[closep_comp]	Background	TREE1 - based on Szydlik, 2008	41
[press_fs]	Background	Böhm-Kasper et al., 2000	42
[expectp_fs]	Math	Hascher et al., 2019	44
[expectm_fs]	Math	Hascher et al., 2019	46
[expectf_fs]	Math	Hascher et al., 2019	48
[socnormsm_fs]	Math	PISA 2012	50
[socnormsf_fs]	Math	PISA 2012	52
[famedsup_fs]	Background	PISA 2000	54
[soccom_fs]	Background	PISA 2000	56
[soccom_m_fs]	Background	PISA 2000 (adapted)	58
[closupp_fs]	Background	TREE2 (BHPS, ISSP 2003)	60
[joyreadp_comp]	Background	TREE2	62
	J	PISA 2000	64
_	Background	PISA 2000 (adapted)	66
[cultposs_fs]	Background	PISA 2000	68
[inccap_fs]	Background	TREE2	70
[manners_fs]	Background	TREE2	72
[verbskill_fs]	Background	TREE2	74
[cult_fs]	Background	PISA 2000 (adapted)	76
[cultlow_fs]	Background	TREE2	78
[culthigh_fs]	Background	PISA 2000	80
	[closep_comp] [press_fs] [expectp_fs] [expectf_fs] [expectf_fs] [socnormsm_fs] [socnormsf_fs] [famedsup_fs] [soccom_fs] [soccom_m_fs] [coltcom_m_fs] [cultcom_m_fs] [cultcom_m_fs] [cultcom_m_fs] [cultcom_fs]	[closep_comp] Background [press_fs] Background [expectp_fs] Math [expectf_fs] Math [socnormsm_fs] Math [socnormsf_fs] Math [famedsup_fs] Background [soccom_fs] Background [soccom_m_fs] Background [coltcom_m_fs] Background [cultcom_fs] Background [manners_fs] Background [verbskill_fs] Background [cult_fs] Background [cultlow_fs] Background	Variable Name AES Module Source [closep_comp] Background TREE1 - based on Szydlik, 2008 [press_fs] Background Böhm-Kasper et al., 2000 [expectp_fs] Math Hascher et al., 2019 [expectf_fs] Math Hascher et al., 2019 [expectf_fs] Math Hascher et al., 2019 [socnormsm_fs] Math PISA 2012 [socnormsf_fs] Background PISA 2012 [famedsup_fs] Background PISA 2000 [soccom_fs] Background PISA 2000 (adapted) [closupp_fs] Background TREE2 [cultcom_fs] Background PISA 2000 (adapted) [cultcom_mfs] Background PISA 2000 (adapted) [cultposs_fs] Background TREE2 [manners_fs] Background TREE2 [werbskill_fs] Background TREE2 [cult_fs] Background PISA 2000 (adapted) [cult_fs] Background TREE2 [cult_fs] Background TREE2

Survey topics (continued)			Baseline survey	(2016)
Scale (or composite)	Variable Name	AES Module	Source	Page
5) Economic capital (family of origin)				
Household possessions: Family wealth (PISA2000)	[wealth_fs]	Background	PISA 2000	82
Household possessions: Family wealth (adapted TREE2)	[wealth_m_fs]	Background	PISA 2000 (adapted)	84
Family affluence scale (FASIII)	[fasiii_comp]	Background	Hobza et al., 2017	86
6) Satisfaction				
<u>Capabilities</u>	[cap_fs]	Background	Sen, 1985; Anand & van Hees, 2006	88
7) School-related well-being				
Positive attitude towards school	[posatt_fs]	General	Hascher, 2004	90
<u>Enjoyment in school</u>	[enjoyschool_fs]	General	Hascher, 2004	92
Physical complaints in school	[physpain_fs]	General	Hascher, 2004	94
Worries about school	[trouschool_fs]	General	Hascher, 2004	96
Social problems in school	[socprob_fs]	General	Hascher, 2004	98
School reluctance	[schoolav_fs]	General	Hagenauer & Hascher, 2012 (modified)	100
8) Motivational concepts				
Intrinsic achievement motivation	[achmoti_fs]	General	IGLU 2001	102
Extrinsic achievement motivation	[achmote_fs]	General	IGLU 2001	104
Instrumental learning motivation (PISA2000)	[insmot_fs]	General	PISA 2000	106
Interest in reading	[intrea_fs]	General	PISA 2000	108
ICT interest	[ictintr_fs]	Math	ICILS 2013	110
<u>Dispositional interest</u>	[intsubj_fs]	Math	COACTIV 2008	112
Identified motivation (mathematics)	[instrumot_fs]	Math	PISA 2012	114
External motivation regulation	[extreg_fs]	Math	Ryan & Conell, 1989	116
Classroom participation	[engage_fs]	Math	Eder, 1995, 2007	118
Performance-approach goals (SELLMO)	[approxgoals_fs]	Math	SELLMO 2012	120
Learning goal orientation (SELLMO)	[learntarget_fs]	Math	SELLMO 2012	122
Work avoidance (SELLMO)	[avoidwork_fs]	Math	SELLMO 2012	124
Avoidance performance goals (SELLMO)	[avoidblame_fs]	Math	SELLMO 2012	126

Baseline survey (2016)

Scale (or composite)	Variable Name AES Module Source				
9) Self-perception					
Global self-esteem	[sel_fs]	Background	Rosenberg, 1979 (translated)	128	
Global self-esteem (shortened)	[sel_m_fs]	Background	Rosenberg, 1979 (translated)	130	
Positive global self-esteem	[sele_fs]	Background	Rosenberg, 1979 (translated)	132	
Negative global self-esteem	[seld_fs]	Background	Rosenberg, 1979 (translated)	134	
Negative global self-esteem (shortened)	[seld_m_fs]	Background	Rosenberg, 1979 (translated)	136	
General perceived self-efficacy scale (GSES)	[seef_fs]	Background	GSES (adapted TREE1)	138	
Academic self-efficacy	[acaself_fs]	General	Hascher, 2004	140	
Academic self-concept (PISA2000)	[scacad_fs]	General	PISA 2000	142	
Verbal self-concept (PISA2000)	[scverb_fs]	General	PISA 2000	144	
Maths self-concept [PISA 2000]	[matcon_fs]	General	PISA 2000	146	
ICT self-concept	[ictabil_fs]	Math	ICILS 2013	148	
Specific self-efficacy: numeracy	[selfeffa_fs]	General [Math]	PISA 2012; Girnat, 2018	150	
Specific self-efficacy: algebra	[selfeffb_fs]	General [Math]	PISA 2012; Girnat, 2018	152	
Specific self-efficacy: geometry	[selfeffc_fs]	General [Math]	Girnat, 2018	154	
Specific self-efficacy: probability	[selfeffd_fs]	General [Math]	Girnat, 2018	156	
10) Emotions related to maths classes					
Mathematics anxiety	[anxmath_fs]	Math	PISA 2012	158	
Mathematics boredom	[boredom_fs]	Math	AEQ-M (short-version)	160	
Mathematics anger	[anger_fs]	Math	AEQ-M (short-version)	162	
Mathematics enjoyment	[enjoymath_fs]	Math	AEQ-M (short-version)	164	
11) Volitional strategies					
<u>Perseverance</u>	[persev_fs]	General	PISA 2012	166	
Effort: learning (PISA2000)	[effper_comp]	Background	PISA2000	168	

, .				, , ,
Scale (or composite)	Variable Name	AES Module	Source	Page
12) Personality characteristics				
Big Five: extraversion	[big5_e_comp]	Background	Rammstedt et al., 2014	169
Big Five: agreeableness	[big5_a_comp]	Background	Rammstedt et al., 2014	169
Big Five: conscientiousness	[big5_c_comp]	Background	Rammstedt et al., 2014	169
Big Five: neuroticism	[big5_n_comp]	Background	Rammstedt et al., 2014	169
Big Five: openness	[big5_o_comp]	Background	Rammstedt et al., 2014	169
Internal locus of control	[loci_comp]	Background	GESIS (short-version)	170
External locus of control	[loce_comp]	Background	GESIS (short-version)	170
13) Values & attitudes				
Work-related extrinsic values	[vawe_fs]	Background	TREE1 - based on Watermann, 2000	172
Work-related intrinsic values	[vawi_fs]	Background	TREE1 - based on Watermann, 2000	174
<u>Family values</u>	[vafa_comp]	Background	TREE1	176
Positive attitude towards life	[posl_fs]	AES Extension Survey	TREE1; Grob et al., 1991	178
14) Attitudes related to mathematics classes				
Reality-based learning	[realref_fs]	Math	Girnat, 2015, 2017	180
Discovery / exploratory learning	[disclearn_fs]	Math	Girnat, 2015, 2018	182
Social learning	[soccomlearn_fs]	Math	Girnat, 2015, 2019	184
Social learning: social arrangement	[soclearn_fs]	Math	Girnat, 2015, 2020	186
Social learning: communication	[comlearn_fs]	Math	Girnat, 2015, 2021	188
Instructivist learning	[instreplearn_fs]	Math	Girnat, 2015, 2022	190
Instructivist learning: teachers instructions	[instrlearn_fs]	Math	Girnat, 2015, 2023	192
Instructivist learning: repetitive practice	[replearn_fs]	Math	Girnat, 2015, 2024	194
System aspect	[sysformasp_fs]	Math	Girnat, 2015, 2025	196
System aspect: logical thinking	[systasp_fs]	Math	Girnat, 2015, 2026	198
System aspect: formalism	[formasp_fs]	Math	Girnat, 2015, 2027	200
Scheme aspect	[schemasp_fs]	Math	Girnat, 2015, 2028	202
Application aspect	[applyasp_fs]	Math	Girnat, 2015, 2029	204

Survey topics

Scale (or composite)	Variable Name	AES Module	Source	Page
15) Characteristics of maths lessons (end of I	ower secondary educat	ion)		
Teacher: cognitive activation	[cogself_fs]	Math	COACTIV 2008	206
Teacher cognitive activation: finding solutions & arguing	[cogselfa_fs]	Math	COACTIV 2008	208
Teacher: cognitive activation: strategies & learning from mistakes	[cogselfb_fs]	Math	COACTIV 2008	210
Teacher: classroom management	[classman_fs]	Math	COACTIV 2008	212
Teacher: individual learning support	[indsup_fs]	Math	COACTIV 2008	214
Teacher: instruction quality	[instqual_fs]	Math	PISA 2006	216
<u>Situational interest</u>	[intsit_fs]	Math	COACTIV 2008	218
Perceived autonomy support	[persuppauto_fs]	Math	Seidel, Prenzel & Kobarg, 2005	220
Perceived competence support	[persuppcomp_fs]	Math	Seidel, Prenzel & Kobarg, 2005	222
Perceived social relatedness	[persocincl_fs]	Math	Seidel, Prenzel & Kobarg, 2005	224
<u>Classmates' appreciation of mathematics</u>	[apprmath_fs]	Math	PISA 2012	226
15) Absenteeism/intention to change educat	ion			
Absenteeism / truancy	[truancy_fs]	General	PISA 2000, PISA 2012	228
<u>List of Sources</u>				230

Composite descriptives			Std.				
	Variable name	Mean	dev.	Min.	Max.	Obs.	
	closep_comp	4.2	0.8	1	5	15664	
Share of cases with imputed	missing values:	3.5%					
							35
Item descriptives			Std.			Valid	

icem descriptives			Jtu.			Vana
	Indicators	Mean	dev.	Min.	Max.	obs.
	closef	4.1	1.1	1	5	15223
	closem	4.4	0.9	1	5	15558

Scale: Parental pressure to achieve

Baseline survey sample

Model and Fit Statistics

Reliability and Dimensionality

					,	•
1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronbach's Alpha	.811
	Model vs. saturated	462	2	.000	(Cronbach's alpha = .751)	
	Baseline vs. saturated	20063	6	.000	McDonald's Omega	.811
2)	Root mean squared error (RMSEA)		.122	Test of (one-)dimensionality	(parallel analysis)
	90% Confidence interval:	lower bound	l	.113	Criterion: Retain factors with	adj. eigenvalue > o
	90% Confidence interval:	upper bound	ł	.131	Adjusted eige	nvalue
	Probability RMSEA <= 0.05			.000	factor 1 1.99	5
	•				factor 2oa	, 1
3)	Akaike's Information Crite	rion (AIC)		142462	factor 3og)
	Bayesian Information Crite	erion (BIC)		142554	factor 418	3
4)	Baseline comparison					
	Comparative Fit Index (CFI)			.977		
	Tucker-Lewis Index (TLI)			.931		
5)	Size of residuals					
5)		ocidual (CDM	ID)	.026		
	Stand. root mean squared re	•	ik)			
	Coefficient of determination	n (CD)		.816		

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
press1	0.69	0.01	0.68	0.70	press1	2.2	1.0	1	4	15488
press2	0.69	0.01	0.68	0.71	press2	3.0	0.9	1	4	15491
press3	0.78	0.00	0.77	0.79	press3	3.0	0.8	1	4	15488
press4	0.71	0.01	0.70	0.72	press4	2.8	0.9	1	4	15490

Parameters of generalized structural equation model (ordinal logit link)

	,			,
Indicators	Coef.	Cut1	Cut ₂	Cut ₃
press1	1.66	-1.38	0.68	2.99
press2	1.79	-3.56	-1.79	0.80
press3	2.35	-5.01	-2.26	1.38
press4	1.84	-3.48	-1.23	1.53

Equal	ity o	f the
-------	-------	-------

Survey languages		Surv	ey set	tings	Survey modes			
chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
1717	28	.000	105	14	.000	26	14	.027
Survey languages		Survey settings			Survey modes			
chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
31	6	.000	33	3	.000	11	3	.013
923	6	.000	11	3	.010	4	3	.317
73	6	.000	12	3	.008	3	3	.413
Survey languages		Survey settings			Survey modes			
		TCC			TCC			TCC
German vs. Fre	nch	.999	classro	om vs.	008	W	eb vs.	.996
French vs. Ital	lian	.997	unpro	ctored	.990		PAP	.990
Italian vs. Gerr	man	.993						
Survey	lang	guages	Surv	ey set	tings	Sur	vey m	odes
		CD			CD			CD
Germ	nan	1.000	clas	sroom	1.000		web	1.000
Fre	nch	1.000	unpro	ctored	.999		PAP	.990
lta	lian	.980						
	chi2 1717 Survey chi2 31 923 73 Survey German vs. Fre French vs. Ital Italian vs. Gern Survey Gern	chi2 df 1717 28 Survey lang chi2 df 31 6 923 6 73 6 Survey lang German vs. French French vs. Italian Italian vs. German	chi2 df p > chi2 1717 28 .000 Survey languages chi2 df p > chi2 31 6 .000 923 6 .000 73 6 .000 Survey languages French vs. Italian .997 Italian vs. German .993 Survey languages CD German 1.000 French 1.000 French 1.000	chi2 df p > chi2 chi2 1717 28 .000 105 Survey languages Surve chi2 df p > chi2 chi2 31 6 .000 33 923 6 .000 11 73 6 .000 12 Survey languages Survey French vs. Italian .999 classro Italian vs. German .993 Survey CD German 1.000 class French 1.000 unproduct	chi2 df p > chi2 chi2 df 1717 28 .000 105 14 Survey languages Survey sett chi2 df p > chi2 chi2 df 31 6 .000 33 3 923 6 .000 11 3 73 6 .000 12 3 Survey languages Survey sett TCC Classroom vs. unproctored Italian vs. German .993 Survey sett CD German 1.000 classroom French 1.000 classroom unproctored	chi2 df p > chi2 chi2 df p > chi2 1717 28 .000 105 14 .000 Survey languages Chi2 df p > chi2 31 6 .000 33 3 .000 923 6 .000 11 3 .010 73 6 .000 12 3 .008 Survey languages TCC Classroom vs. Unproctored .998 Survey languages CD CD German .993 Survey settings Unproctored .998	chi2 df p > chi2 chi2 df p > chi2 chi2 1717 28 .000 105 14 .000 26 Survey languages Survey settings CD CD <th< td=""><td>chi2 df p > chi2 chi2 df p > chi2 chi2 df p > chi2 chi2 df 1717 28 .000 105 14 .000 26 14 Survey languages Survey settings Survey m Chi2 df p > chi2 chi2 df 31 6 .000 33 3 .000 11 3 923 6 .000 12 3 .008 3 3 Survey languages Survey settings Survey m TCC TCC German vs. French .999 classroom vs. .998 PAP Italian vs. German .993 Survey settings Survey m CD CD CD CD German 1.000 classroom 1.000 web French 1.000 unproctored .999 PAP</td></th<>	chi2 df p > chi2 chi2 df p > chi2 chi2 df p > chi2 chi2 df 1717 28 .000 105 14 .000 26 14 Survey languages Survey settings Survey m Chi2 df p > chi2 chi2 df 31 6 .000 33 3 .000 11 3 923 6 .000 12 3 .008 3 3 Survey languages Survey settings Survey m TCC TCC German vs. French .999 classroom vs. .998 PAP Italian vs. German .993 Survey settings Survey m CD CD CD CD German 1.000 classroom 1.000 web French 1.000 unproctored .999 PAP

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. press_fs 0.0 0.9 -2.4 1.7 15535 Share of cases with imputed missing values: 0.6% (Equivalence of scores from robust MLMV: CD = .997) (Equivalence of Scores from Two-Step-Approach: CD = .984)

Scale: Parents' achievement expectations

Maths sample-split

Model and Fit Statistics

Reliability and Dimensionality

					,	•
1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronbach's Alpha	.837
	Model vs. saturated	8040	2	.000	(Cronbach's alpha = .774)	
	Baseline vs. saturated	24621	6	.000	McDonald's Omega	.834
2)	Root mean squared error (F	RMSEA)		.606	Test of (one-)dimensionality (parallel analysis)
	90% Confidence interval:	lower bound	d	.595	Criterion: retain factors with ac	lj. eigenvalue > o
	90% Confidence interval:	upper boun	d	.617	Adjusted eigen	value
	Probability RMSEA <= 0.05			.000	Factor 1 2.35	
					Factor 2 .43	
3)	Akaike's Information Criter	ion (AIC)		77644	Factor 3 .11	
	Bayesian Information Crite	rion (BIC)		77731	Factor 419	
4)	Baseline comparison					
	Comparative Fit Index (CFI)			.673		
	Tucker–Lewis Index (TLI)			.020		
5)	Size of residuals					
٠,	Stand. root mean squared re	esidual (SRM	1R)	.108		
	Coefficient of determination		•	.854		
		` '		51		

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
expectf2	0.70	.007	0.69	0.72	expectf2	3.4	0.7	1	4	10568
expectf3	0.85	.005	0.84	0.86	expectf3	3.3	0.7	1	4	10566
expectm2	0.63	.009	0.62	0.65	expectm2	3.4	0.7	1	4	10862
expectma	0.79	.005	0.78	0.80	expectma	3.4	0.7	1	4	10864

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
expectf2	2.12	-5.87	-4.04	-0.32
expectf3	2.31	-5.88	-3.69	0.30
expectm2	1.75	-5.42	-3.28	0.14
expectma	2.11	-6.40	-4.13	-0.12

Scale: Parents' achievement expectations (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

chi2	df	p > chi2
297	28	.000
chi2	df	p > chi2
15	6	.017
126	6	.000
12	6	.072
	297 chi2 15 126	297 28 chi2 df 15 6 126 6

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	1.000
French vs. Italian language version	.996
Italian vs. German language version	.995

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	.964

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. expectp_fs 0.0 0.9 -3.1 1.1 10952 Share of cases with imputed missing values: 4.3% (Equivalence of scores from robust MLMV: CD = .991) (Equivalence of scores from two-step approach: CD = .941)

Scale: Mother's achievement expectations

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	4828	2	.000

2) Root mean squared error (RMSEA) .000 90% Confidence interval: lower bound .000 90% Confidence interval: upper bound .000 Probability RMSEA <= 0.05 1.000

3) Akaike's Information Criterion (AIC) 67851 **Bayesian Information Criterion (BIC)** 67917

4) Baseline comparison

Comparative Fit Index (CFI) 1.000 Tucker-Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR) .000 Coefficient of determination (CD) .729

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.642
(Cronbach's alpha = .552)	
McDonald's Omega	.663

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

Factor 1 1.01 Factor 2 -.07 Factor 3 -.22

Standardized factor loadings

Standardized fac	Item descriptives								
							Std.		
Indicators	Coef.	(SE)	[95% Conf	interval]	Indicators	Mean	dev.	Min.	I
expectm1	0.42	.010	0.40	0.44	expectm1	2.8	0.8	1	
expectm2	0.80	.013	0.77	0.82	expectm2	3.4	0.7	1	
expectm3	0.65	.011	0.63	0.67	expectm3	3.4	0.7	1	

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
expectm1	0.83	-2.97	-0.79	1.48
expectm2	2.27	-6.07	-3.61	0.24
expectm3	1.68	-5.59	-3.50	-0.04

List of scales (wave 0)

Valid

Obs. 10859

10862

10864

Max.

4

4

Scale: Mother's achievement expectations (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 536	df 18	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	112	4	.000
Strong invariance (plus equal intercepts)	126	4	.000
Strict invariance (plus equal error variances)	66	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.965
French vs. Italian language version	.982
Italian vs. German language version	.979

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	.964
Language: French	.961
Language: Italian	.970

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. expectm_fs 0.0 0.8 -2.8 1.2 10864
Share of cases with imputed missing values: 0.1% (Equivalence of scores from robust MLMV: CD = .987) (Equivalence of scores from two-step approach: CD = .957)

Scale: Father's achievement expectations

Maths sample-split

Model and Fit Statistics

Reliability and Dimensionality

1)	Likelihood-ratio tests c	hi2 d	lf p	> chi2	Ordinal Cronbach's Alp	ha .738
	Model vs. saturated	0 0			(Cronbach's alpha = .653	
	Baseline vs. saturated 79	517 3	3	.000	McDonald's Omega	.749
2)	Root mean squared error (RMS	EA)		.000	Test of (one-)dimension	nality (parallel analysis)
	90% Confidence interval: lower	er bound		.000	Criterion: retain factors	with adj. eigenvalue > o
	90% Confidence interval: uppe	er bound		.000	Adjusted	d eigenvalue
	Probability RMSEA <= 0.05			1.000	Factor 1	1.31
					Factor 2	09
3)	Akaike's Information Criterion	(AIC)		65854	Factor 3	19
	Bayesian Information Criterion	(BIC)		65920		
4)	Baseline comparison					
	Comparative Fit Index (CFI)			1.000		
	Tucker–Lewis Index (TLI)			1.000		
5)	Size of residuals					
	Stand. root mean squared residu	ıal (SRMR)		.000		
	Coefficient of determination (CD))		.791		

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
expectf1	0.55	.008	0.53	0.56	expectf1	2.9	0.9	1	4	10565
expectf2	0.83	.008	0.82	0.85	expectf2	3.4	0.7	1	4	10568
expectf3	0.72	.008	0.70	0.74	expectf3	3.3	0.7	1	4	10566

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
expectf1	1.17	-3.07	-1.05	1.32
expectf2	3.04	-7.28	-4.84	-0.32
expectf3	1.92	-5.13	-3.06	0.33

Scale: Father's achievement expectations (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	429	18	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	100	4	.000
Strong invariance (plus equal intercepts)	57	4	.000
Strict invariance (plus equal error variances)	84	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.986
French vs. Italian language version	.997
Italian vs. German language version	.990

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	.997
Language: French	.998
Language: Italian	.982

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. expectf_fs 0.0 0.8 -2.7 1.2 10569
Share of cases with imputed missing values: 0.1% (Equivalence of scores from robust MLMV: CD = .988) (Equivalence of scores from two-step approach: CD = .957)

Scale: Mother's social norms about mathematics

Maths sample-split

Model and Fit Statistics

1)

)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cro
	Model vs. saturated	0	0		(Cronbach's
	Baseline vs. saturated	12780	3	.000	McDonald's

Ordinal Cronbach's Alpha .789 (Cronbach's alpha = .715) McDonald's Omega .812

Reliability and Dimensionality

2) Root mean squared error (RMSEA) .000
90% Confidence interval: lower bound .000
90% Confidence interval: upper bound .000
Probability RMSEA <= 0.05 1.000

Test of (one-)dimensionality (parallel analysis) Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

3) Akaike's Information Criterion (AIC) 66659Bayesian Information Criterion (BIC) 66724

 Factor 1
 1.66

 Factor 2
 -.05

 Factor 3
 -.15

4) Baseline comparison

Comparative Fit Index (CFI) 1.000
Tucker–Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR) .000 Coefficient of determination (CD) .881

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
socnormsm1	0.87	.006	o.86	0.88	socnormsm1	3.2	0.7	1	4	10833
socnormsm2	0.89	.006	0.88	0.91	socnormsm2	3.1	0.8	1	4	10834
socnormsm3	0.50	.008	0.49	0.52	socnormsm3	2.4	0.9	1	4	10795

Parameters of generalized structural equation model (ordinal logit link)

				(
Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
socnormsm1	3.95	-8.08	-4.66	1.62
socnormsm2	3.36	-5.95	-2.64	1.65
socnormsm3	0.99	-1.65	0.37	2.19

Scale: Mother's social norms about mathematics (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 195	df 18	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	11	4	.030
Strong invariance (plus equal intercepts)	44	4	.000
Strict invariance (plus equal error variances)	80	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.999
French vs. Italian language version	.998
Italian vs. German language version	1.000

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	.999
Language: French	.990
Language: Italian	.999

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. socnormsm_fs 0.1 0.9 -2.3 1.4 10847 Share of cases with imputed missing values: 0.6% (Equivalence of scores from robust MLMV: CD = .996) (Equivalence of scores from two-step approach: CD = .971)

Scale: Father's social norms about mathematics

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	15486	3	.000
2)	Root mean squared error ((RMSEA)		.000
	90% Confidence interval:	lower bound		.000
	90% Confidence interval:	upper bound		.000
	Probability RMSEA <= 0.05			1.000
3)	Akaike's Information Crite Bayesian Information Crit	, ,		60431 60496
4)	Baseline comparison			
	Comparative Fit Index (CFI)			1.000
	Tucker–Lewis Index (TLI)			1.000
5)	Size of residuals			
	Stand. root mean squared r	esidual (SRM	R)	.000

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.837
(Cronbach's alpha = .771)	
McDonald's Omega	.851

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o
Adjusted eigenvalue

	,	3
Factor 1		1.85
Factor 2		04
Factor 3		14

Stand. root mean squared residual (SRMR)	.000
Coefficient of determination (CD)	.922

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
socnormsf1	0.95	.004	0.94	0.96	socnormsf1	3.3	0.7	1	4	10576
socnormsf2	0.85	.005	0.84	0.86	socnormsf2	3.2	0.8	1	4	10572
socnormsf3	0.60	.007	0.59	0.62	socnormsf3	3.1	0.9	1	4	10567

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
socnormsf1	4.84	-9.33	-5.83	1.21
socnormsf2	3.14	-5.97	-3.09	1.20
socnormsf3	1.25	-2.99	-1.28	0.85

Scale: Father's social norms about mathematics (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 198	at 18	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	15	4	.005
Strong invariance (plus equal intercepts)	85	4	.000
Strict invariance (plus equal error variances)	72	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.999
French vs. Italian language version	.999
Italian vs. German language version	.996

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	.999
Language: French	.996
Language: Italian	.956

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. socnormsf_fs 0.1 0.9 -2.4 1.2 10587 Share of cases with imputed missing values: 0.4% (Equivalence of scores from robust MLMV: CD = .992) (Equivalence of scores from two-step approach: CD = .960)

Scale: Family educational support (PISA2000)

Baseline survey sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	16654	3	.000
2)	Root mean squared error	(RMSEA)		.000
	90% Confidence interval:	lower bound		.000
	90% Confidence interval:	upper bound		.000
	Probability RMSEA <= 0.05			1.000
3)	Akaike's Information Crite	erion (AIC)		147278
	Bayesian Information Crit	erion (BIC)		147347
4)	Baseline comparison			
	Comparative Fit Index (CFI))		1.000
	Tucker-Lewis Index (TLI)			1.000

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.785
(Cronbach's alpha = .746)	
McDonald's Omega	.803

Test of (one-)dimensionality (parallel analysis)

Criterion: Retain factors with adj. eigenvalue > o
Adjusted eigenvalue

1.60
07
16

5) Size of residuals

Stand. root mean squared residual (SRMR)	.000
Coefficient of determination (CD)	.861

Standardized factor loadings

Indicators *	Coef.	(SE)	[95% Conf.	. interval]
famedsup1	0.88	0.01	0.87	0.89
famedsup2	0.85	0.01	0.84	0.86
famedsup3	0.53	0.01	0.51	0.54
* Note: Replication of 'Famedsup'-Scale from TREE1 / PISA2000				

Item descriptives

		Std.			Valid
Indicators *	Mean	dev.	Min.	Max.	Obs.
famedsup1	2.8	1.4	1	5	15462
famedsup2	2.6	1.4	1	5	15131
famedsup3	2.3	1.4	1	5	13709

Equal	ity o	f the
-------	-------	-------

variance-covariance matrices across	Survey languages		Survey settings		Survey modes				
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	365	18	.000	101	9	.000	34	9	.000
Tests of measurement invariance across	Surve	y lan	guages	Surv	ey sett	tings	Sur	vey m	odes
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	20	4	.001	9	2	.013	11	2	.005
Strong invariance (plus equal intercepts)	300	4	.000	32	2	.000	11	2	.003
Strict invariance (plus equal error variances)	12	4	.015	18	2	.000	2	2	.324
Configural factor similarity across	Surve	y lan	guages	Surv	ey seti	tings	Sur	vey m	odes
Tucker's congruence coefficient			TCC		•	TCC		•	TCC
-	German vs. Fr		.998	classro		.999	W	eb vs.	.994
	French vs. Ita	alian	.999	unpro	ctored	333		PAP	331
	Italian vs. Gei	rman	.999						
Factor score equivalence: group									
specific vs. invariant models for	Surve	y lan	guages	Surv	ey sett	tings	Sur	vey m	odes
Coefficient of determination			CD		=	CD		=	CD
	Ger	man	1.000	clas	sroom	1.000		web	1.000
	Fr	ench	.999	unpro	ctored	.998		PAP	.996

Italian

.997

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. famedsup_fs 0.0 1.1 -1.6 2.2 15592 Share of cases with imputed missing values: 14.6% (Equivalence of scores from robust MLMV: CD = .998)

Scale: Social communication (PISA2000)

Baseline survey sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	9734	3	.000
2)	Root mean squared error ((RMSEA)		.000
	90% Confidence interval:	lower bound		.000
	90% Confidence interval:	upper bound		.000
	Probability RMSEA <= 0.05			1.000
3)	Akaike's Information Crite Bayesian Information Crite	• •		124277 124346
	,	(/		- +5+-

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.723
(Cronbach's alpha = .647)	
McDonald's Omega	.729

Test of (one-)dimensionality (parallel analysis)

Criterion: Retain factors with adj. eigenvalue > o
Adjusted eigenvalue

	rajostea eigenvaioe	
factor 1	1.24	
factor 2	11	
factor 3	20	

4) Baseline comparison

Comparative Fit Index (CFI)	1.000
Tucker-Lewis Index (TLI)	1.000

5) Size of residuals

Stand. root mean squared residual (SRMR)	.000
Coefficient of determination (CD)	.750

Standardized factor loadings

Indicators *	Coef.	(SE)	[95% Conf	. interval]
soccom1	0.57	0.01	0.56	0.58
soccom2	0.71	0.01	0.69	0.72
soccom3	0.78	0.01	0.76	0.79

^{*} Note: Replication of 'Soccom'-Scale from TREE1 / PISA2000

Item descriptives

		Std.			Valid
Indicators *	Mean	dev.	Min.	Max.	Obs.
soccom1	3.9	1.1	1	5	15566
soccom2	4.6	0.9	1	5	15570
soccom3	4.0	1.1	1	5	15555

Equal	lity	of	the
-------	------	----	-----

variance-covariance matrices across		Survey languages		Survey settings			Survey modes		
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	626	18	.000	611	9	.000	20	9	.017
Tests of measurement invariance across	. Surve	y lan	guages	Surv	ey set	tings	Sur	vey m	odes
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	31	4	.000	26	2	.000	9	2	.012
Strong invariance (plus equal intercepts)	228	4	.000	107	2	.000	3	2	.231
Strict invariance (plus equal error variances)	92	4	.000	201	2	.000	3	2	.258
Configural factor similarity across	Survey languages		Survey settings		tings	Survey modes			
Tucker's congruence coefficient			TCC			TCC			TCC
	German vs. Fr	ench	1.000	classro	om vs.	005	W	eb vs.	.986
	French vs. Ita	alian	.992	unpro	ctored	.995		PAP	.900
	Italian vs. Ge	rman	.988						
Factor score equivalence: group									
specific vs. invariant models for	Surve	y lan	guages	Surv	ey set	tings	Sur	vey m	odes
Coefficient of determination			CD			CD			CD
	Ger	man	1.000	clas	sroom	.998		web	.999
	Fr	ench	1.000	unpro	ctored	.980		PAP	.925
	It	alian	.973						

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. soccom_fs 0.0 0.5 -2.1 0.5 15588 Share of cases with imputed missing values: 0.4% (Equivalence of scores from robust MLMV: CD = .986)

Scale: Social communication (adapted TREE2)

Baseline survey sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	26651	3	.000
2)	Root mean squared error	(RMSEA)		.000
	90% Confidence interval:	lower bound		.000
	90% Confidence interval:	upper bound		.000
	Probability RMSEA <= 0.05			1.000
3)	Akaike's Information Crite	erion (AIC)		119342
	Bayesian Information Crit	erion (BIC)		119411
4)	Baseline comparison			
	Comparative Fit Index (CFI))		1.000
	Tucker-Lewis Index (TLI)			1.000
5)	Size of residuals			
	Stand. root mean squared i	residual (SRMF	₹)	.000

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.889
(Cronbach's alpha = .851)	
McDonald's Omega	.889

Test of (one-)dimensionality (parallel analysis)

Criterion: Retain factors with adj. eigenvalue > o
Adjusted eigenvalue

	, ajostea eigeiit
factor 1	2.06
factor 2	11
factor 3	11

Stand. root mean squared residual (SRMR)	.000
Coefficient of determination (CD)	.890

Standardized factor loadings

Indicators *	Coef.	(SE)	[95% Conf	. interval]
soccom3 **	0.84	0.00	0.84	0.85
soccom4	o.86	0.00	0.85	0.86
soccom5	o.86	0.00	0.86	0.87

^{*} Note: Scale from TREE1 / PISA2000 adapted for TREE2

Item descriptives

		Std.			Valid
Indicators *	Mean	dev.	Min.	Max.	Obs.
soccom3 **	4.0	1.1	1	5	15555
soccom4	3.9	1.2	1	5	15560
soccom5	4.0	1.1	1	5	15563

^{**} Note: Original item from TREE1 / PISA2000

Equal	lity o	f the

ariance-covariance matrices across Survey languages Survey		rvey set	Survey modes					
	chi2 d	f p > cl	nia chia	df	p > chi2	chi2	df	p > chi2
	942 18	.000	159	9	.000	49	9	.000
Tests of measurement invariance across	Survey la	nguages	Sı	rvey set	tings	Sur	vey m	odes
	chi2 d	f p > cl	nia chia	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	50 4	.000	5	2	.094	2	2	.459
Strong invariance (plus equal intercepts)	129 4	.000	37	2	.000	2	2	.408
Strict invariance (plus equal error variances)	211 4	.000	19	2	.000	6	2	.041
Configural factor similarity across	Survey languages		Su	Survey settings		Survey modes		
Tucker's congruence coefficient		TCC	-		TCC			TCC
	German vs. Frenc	h .999	e clas	sroom vs.	1.000	W	eb vs.	1.000
	French vs. Italia	n .999	ց սոբ	proctored	1.000	PAP		1.000
	Italian vs. Germa	n .997	7					
Factor score equivalence: group								
specific vs. invariant models for	Survey la	nguages	Su	rvey set	tings	Sur	vey m	odes
Coefficient of determination		CD			CD			CD
	Germa	n 1.00	о с	lassroom	1.000		web	1.000
	Frenc	h 1.00	o unp	roctored	1.000		PAP	1.000
	Italia	n .997	7					

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. soccom_m_fs 0.0 0.9 -2.6 0.9 15591 Share of cases with imputed missing values: 0.5% (Equivalence of scores from robust MLMV: CD = .997)

Scale: Perceived social network support

Baseline survey sample

Model and Fit Statistics

1)	Likelihood-ratio tests Model vs. saturated Baseline vs. saturated	chi2 2147 58182	df 5 10	p > chi2 .000 .000
2)	Root mean squared error (90% Confidence interval: 90% Confidence interval: Probability RMSEA <= 0.05	lower bound		.169 .163 .175 .000
3)	Akaike's Information Crite Bayesian Information Crite			233311 233425
4)	Baseline comparison Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)			.963 .926
5)	Size of residuals			

Stand. root mean squared residual (SRMR)

Coefficient of determination (CD)

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.920
(Cronbach's alpha = .896)	
McDonald's Omega	.920

Test of (one-)dimensionality (parallel analysis)

Criterion: Retain factors with adj. eigenvalue > o

	Adjusted eigenvalue	
factor 1	3.45	
factor 2	.09	
factor 3	.00	
factor 4	06	
factor 5	12	

Standardized factor loadings

Indicators	Coef.	(SE)	[95% Conf	. interval]
closupp1	0.81	0.00	0.80	0.81
closupp2	0.93	0.00	0.93	0.93
closupp3	o.88	0.00	0.88	o.88
closupp4	o.68	0.00	0.67	0.69
closupp5	o.86	0.00	0.86	0.87

Item descriptives

.035

.939

		Std.			Valid
Indicators	Mean	dev.	Min.	Max.	Obs.
closupp1	5.4	1.6	1	7	14695
closupp2	5.6	1.6	1	7	14756
closupp3	5.7	1.6	1	7	14760
closupp4	5.1	1.7	1	7	14086
closupp5	5.5	1.8	1	7	14430

Equality of the	Eq	υal	ity	of	the
-----------------	----	-----	-----	----	-----

variance-covariance matrices across	Survey	lang	guages	Surv	ey set	tings	Sur	vey m	odes
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	635	40	.000	802	20	.000	105	20	.000
Tests of measurement invariance across	Survey	lang	guages	Surv	ey set	tings	Sur	vey m	odes
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	33	8	.000	87	4	.000	8	4	.075
Strong invariance (plus equal intercepts)	205	8	.000	219	4	.000	13	4	.014
Strict invariance (plus equal error variances)	291	8	.000	17	4	.002	26	4	.000
Configural factor similarity across	Survey languages		Survey settings		tings	Survey modes		odes	
Tucker's congruence coefficient			TCC			TCC			TCC
	German vs. Frei	nch	1.000	classro	om vs.	.998	W	eb vs.	000
	French vs. Itali	ian	.999	unprod	ctored	.990		PAP	.999
	Italian vs. Germ	nan	.999						
Factor score equivalence: group									
specific vs. invariant models for	Survey	lang	guages	Surv	ey set	tings	Sur	vey m	odes
Coefficient of determination			CD			CD			CD
	Germ	nan	1.000	class	sroom	1.000		web	1.000
	Frei	nch	1.000	unprod	ctored	.999		PAP	1.000
	Ital	lian	1.000						

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. closupp_fs 0.0 1.2 -3.9 1.2 15034 Share of cases with imputed missing values: 10.4% (Equivalence of scores from robust MLMV: CD = .999)

Composite descriptives	Variable name	Mean	Std. dev.	Min.	Max.	Obs.	
Share of cases with imputed r (Including "don't know"-answ	•	3.1 8.7%	0.8	1	4	15244	
Item descriptives	Indicators	Mean	Std. dev.	Min.	Max.	Valid obs.	
	joyreadm joyreadf	3·4 2.9	0.9 1.1	1	4 4	15004 14164	

Scale: Cultural communication (PISA2000)

Baseline survey sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	8034	3	.000
2)	Root mean squared error ((RMSEA)		.000
	90% Confidence interval:	lower bound		.000
	90% Confidence interval:	upper bound		.000
	Probability RMSEA <= 0.05			1.000
3)	Akaike's Information Crite	erion (AIC)		146251
	Bayesian Information Crit		146320	
4)	Baseline comparison			
	Comparative Fit Index (CFI)	1		1.000
	Tucker-Lewis Index (TLI)			1.000

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.677
(Cronbach's alpha = .606)	
McDonald's Omega	.690

Test of (one-)dimensionality (parallel analysis)

Criterion: Retain factors with adj. eigenvalue > o Adjusted eigenvalue

	,		
factor 1		1.11	
factor 2		10	
factor 3		21	

5) Size of residuals

Stand. root mean squared residual (SRMR) .000 Coefficient of determination (CD) .727

Standardized factor loadings

Indicators * Coef. (SE) [95% Conf. interval] cultcom1 0.72 0.01 0.70 0.73 cultcom₂ 0.75 0.01 0.74 0.77 cultcom₃ 0.01 0.47 0.45 0.49 * Note: Replication of 'Cultcom'-Scale from TREE1 / PISA2000

Item descriptives

		Std.			Valid
Indicators *	Mean	dev.	Min.	Max.	Obs.
cultcom1	3.0	1.3	1	5	15593
cultcom2	3.2	1.3	1	5	15578
cultcom3	1.7	1.2	1	5	15575

Equal	ity o	f the
-------	-------	-------

variance-covariance matrices across	Survey languages			Survey settings			Survey modes			
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2	
	369	18	.000	267	9	.000	42	9	.000	
Tests of measurement invariance across	. Surve	y lan	guages	Surv	ey set	tings	Sur	vey m	odes	
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2	
Metric invariance (equal factor loadings)	16	4	.003	8	2	.019	1	2	.673	
Strong invariance (plus equal intercepts)	263	4	.000	141	2	.000	14	2	.001	
Strict invariance (plus equal error variances)	30	4	.000	15	2	.001	13	2	.002	
Configural factor similarity across	Surve	Survey languages		Surv	Survey settings			Survey modes		
Tucker's congruence coefficient			TCC			TCC			TCC	
	German vs. Fr French vs. Ita Italian vs. Ge	alian	.987	classro unpro	om vs. ctored	.999	W	eb vs. PAP	.998	
Factor score equivalence: group specific vs. invariant models for	Surve	v lan	guages	Surv	ey set	tinas	Sur	vey m	odes	
Coefficient of determination		,	CD		-,	CD		,	CD	
	Ger	man	.999	clas	sroom	1.000		web	1.000	

.996

.970

French

Italian

unproctored .999

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. cultcom_fs 0.0 0.8 -1.6 1.8 15601 Share of cases with imputed missing values: 0.3% (Equivalence of scores from robust MLMV: CD = .998)

List of scales (wave 0)

PAP

.996

Scale: Cultural communication (adapted TREE2)

Baseline survey sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	16199	3	.000
2)	Root mean squared error	(RMSEA)		.000
	90% Confidence interval:	lower bound		.000
	90% Confidence interval:	upper bound		.000
	Probability RMSEA <= 0.05			1.000
3)	Akaike's Information Crite Bayesian Information Crit	137695 137764		
4)	Baseline comparison			
••	Comparative Fit Index (CFI)			1.000
	Tucker-Lewis Index (TLI)			1.000
5)	Size of residuals			
	Stand. root mean squared r	esidual (SRM	R)	.000

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.811
(Cronbach's alpha = .762)	
McDonald's Omega	.814

Test of (one-)dimensionality (parallel analysis)

Criterion: Retain factors with adj. eigenvalue > o
Adjusted eigenvalue

	rajostea eigenva
factor 1	1.63
factor 2	11
factor 3	17

Standardized factor loadings

Coefficient of determination (CD)

Indicators *	Coef.	(SE)	[95% Conf	. interval]
cultcom1 **	0.80	0.00	0.79	0.81
cultcom2 **	0.68	0.01	0.67	0.69
cultcom4	0.83	0.00	0.82	0.84

^{*} Note: Scale from TREE1 / PISA2000 adapted for TREE2

Item descriptives

.829

		Std.			Valid
Indicators *	Mean	dev.	Min.	Max.	Obs.
cultcom1 **	3.0	1.3	1	5	15593
cultcom2 **	3.2	1.3	1	5	15578
cultcom4	3.8	1.1	1	5	15571

^{**} Note: Original items from TREE1 / PISA2000

Equality (of the
------------	--------

variance-covariance matrices across	Survey languages		Surv	Survey settings		Survey modes			
	chi2 d	f	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	313 18	8	.000	333	9	.000	26	9	.002
Tests of measurement invariance across	. Survey languages		Survey settings		tings	Survey modes		odes	
	-	_	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	14 4	+	.008	8	2	.015	5	2	.073
Strong invariance (plus equal intercepts)	206 4	ŀ	.000	212	2	.000	1	2	.519
Strict invariance (plus equal error variances)	30 4	ŀ	.000	24	2	.000	7	2	.032
Configural factor similarity across	Survey languages		Surv	Survey settings		Survey modes		odes	
Tucker's congruence coefficient	•	_	TCC		•	TCC		•	TCC
			1.000 ·997	classro unpro		.999	W	eb vs. PAP	.997
	Italian vs. Germa		.996	onproctored					
Factor score equivalence: group									
specific vs. invariant models for	Survey la	ngı	uages	Surv	ey set	tings	Sur	vey m	odes
Coefficient of determination			CD			CD			CD
	Germa	n	1.000	clas	sroom	1.000		web	1.000
	Frenc	ch	1.000	unpro	ctored	.999		PAP	.998

Italian

.996

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. cultcom_m_fs 0.0 0.9 -2.4 1.5 15610 Share of cases with imputed missing values: 0.4% (Equivalence of scores from robust MLMV: CD = .997)

Scale: Household possessions: classical culture (PISA2000)

Baseline survey sample

Model and Fit Statistics

Reliability and Dimensionality

1)	Likelihood-ratio tests Model vs. saturated	chi2 0	df o	p > chi2	Ordinal Cronbach's A (Cronbach's alpha = .5	•	.720
	Baseline vs. saturated	11545	3	.000	McDonald's Omega		.742
2)	Root mean squared error (I	RMSEA)		.000	Test of (one-)dimens	ionality (parallel	l analysis)
	90% Confidence interval:	lower bound		.000	Criterion: Retain facto	ors with adj. eiger	nvalue > o
	90% Confidence interval:	upper bound		.000	Adjust	ted eigenvalue	
	Probability RMSEA <= 0.05			1.000	factor 1	1.30	
					factor 2	06	
3)	Akaike's Information Criter	rion (AIC)		5 ² 733	factor 3	20	
	Bayesian Information Crite	rion (BIC)		52802			
4)	Baseline comparison						
	Comparative Fit Index (CFI)			1.000			
	Tucker-Lewis Index (TLI)			1.000			
5)	Size of residuals						
	Stand. root mean squared re	esidual (SRMF	۲)	.000			
	Coefficient of determination	n (CD)		.817			

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators *	Coef.	(SE)	[95% Conf	. interval]	Indicators *	Mean	dev.	Min.	Max.	Obs.
cultposs1	0.74	0.01	0.73	0.76	cultposs1	0.4	0.5		1	15977
cultposs2	0.86	0.01	0.85	0.88	cultposs2	0.4	0.5		1	15990
cultposs3	0.46	0.01	0.45	0.48	cultposs3	0.7	0.4		1	16009

^{*} Note: Replication of 'Cultposs'-Scale from TREE1 / PISA2000

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
cultposs1	1.90	0.71		
cultposs2	3.51	0.55		
cultposs3	0.91	-1.23		

Scale: Household possessions: classical culture (PISA2000) (cont.)

Baseline survey sample

Tests and Indices of Factorial Invariance across ...

Equality of the													
variance-covaria	ance mat	rices ac	ross		Survey languages			Survey settings			Survey modes		
					chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
					4574	18	.000	101	9	.000	79	9	.000
Tests of measur	ement in	varian	a acros	:c	Surve	v lan	guages	Surv	ey seti	inas	Sur	vey m	odes
rests of fileason	ement m	variani	Le acios		chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Motric invariance	o (ogual fa	ctorlo	adinac)		-		•			•			.002
Metric invariance			_		53	4	.000	1	2	.759	13	2	
Strong invariance					887	4	.000	52	2	.000	21	2	.000
Strict invariance	(plus equ	al error	variano	es)	366	4	.000	21	2	.000	19	2	.000
Configural facto	r similari	ty acro	ss		Surve	y land	guages	Surv	ey seti	tings	Survey modes		odes
Tucker's congrue		•				,	TCC		,	TCC			TCC
					German vs. F	rench	.996	classro	om vs.		W	eb vs.	
					French vs. It		1.000		ctored	1.000		PAP	006
					Italian vs. Ge								
					realian vs. Ge	a	.33/						
Factor score equ	uivalence	: aroup)										
specific vs. inva					Survey languages		Surv	ey seti	tinas	Sur	vey m	odes	
Coefficient of de						,	CD		-,	CD		, ,	CD
200		•			Ge	rman	.979	clas	sroom	1.000		web	.999
						rench	0.0		ctored	1.000		PAP	.985
						talian	J -	onpro	ctoreu	1.000		1 🔼	.905
Footor come de					'	tallall	.619				* Note:	The	
Factor score de	escriptiv										calculation		madal
Maniala Ianaan	N 4 = = ::	Std.	N 4:		Ob						based in		
Variable name	Mean	dev.		Ma									
cultposs_fs	0.0	0.8	-1.0	1.:							requires		
Share of cases wi	•		_		0.5%						constrair		
(Equivalence of scores from robust MLMV: 0											of <i>cul</i>	tposs2 to	
(Equivalence of S	cores fro	m Two-	Step-Ap	proa	ch: CD = .96)						zero.		

Scale: Embodied cultural capital

Baseline survey sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	1455	9	.000
	Baseline vs. saturated	42913	15	.000

2) Root mean squared error (RMSEA) .101
90% Confidence interval: lower bound .096
90% Confidence interval: upper bound .105
Probability RMSEA <= 0.05 .000

3) Akaike's Information Criterion (AIC) 166162 Bayesian Information Criterion (BIC) 166300

4) Baseline comparison
 Comparative Fit Index (CFI) .966
 Tucker-Lewis Index (TLI) .944

5) Size of residuals

Stand. root mean squared residual (SRMR) .033 Coefficient of determination (CD) .883

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.870
(Cronbach's alpha = .822)	
McDonald's Omega	.872

Test of (one-)dimensionality (parallel analysis)

Criterion: Retain factors with adj. eigenvalue > o

	Adjusted eigenvalue	
factor 1	3.13	
factor 2	.11	
factor 3	04	
factor 4	05	
factor 5	12	
factor 6	15	

Standardized factor loadings

Indicators	Coef.	(SE)	[95% Conf.	interval]
manners1	0.53	0.01	0.52	0.55
manners2	0.80	0.00	0.80	0.81
manners3	0.74	0.00	0.73	0.75
verbskill1	0.75	0.00	0.74	0.76
verbskill2	0.78	0.00	0.78	0.79
verbskill3	0.75	0.00	0.74	0.75

Item descriptives

		Std.			Valid
Indicators	Mean	dev.	Min.	Max.	Obs.
manners1	3.0	0.8	1	4	15819
manners2	3.1	0.7	1	4	15805
manners3	3.1	0.7	1	4	15807
verbskill1	3.0	0.7	1	4	15827
verbskill2	3.0	0.8	1	4	15817
verbskill3	2.9	0.7	1	4	15776

Parameters of generalized structural equation model (ordinal logit link)

i aranneters or ge	inci anzea 3	cioccoiai	equation	illouci (
Indicators	Coef.	Cut1	Cut ₂	Cut ₃
manners1	1.21	-3.68	-1.95	1.19
manners2	2.57	-6.65	-2.90	1.98
manners3	2.10	-6.12	-2.90	1.50
verbskill1	2.13	-5.28	-2.04	1.80
verbskill2	2.39	-5.71	-2.08	1.73
verbskill3	2.13	-5.33	-1.79	2.15

Equa	lity	of t	he
------	------	------	----

variance-covariance matrices across	Survey languages			Survey settings			Survey modes		
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	765	54	.000	221	27	.000	63	27	.000
Tests of measurement invariance across	Survey languages			Survey settings			Survey modes		
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	21	10	.018	36	5	.000	14	5	.018
Strong invariance (plus equal intercepts)	70	10	.000	24	5	.000	10	5	.085
Strict invariance (plus equal error variances)	197	10	.000	57	5	.000	15	5	.011
Configural factor similarity across	Survey languages			Survey settings			Survey modes		odes
Tucker's congruence coefficient			TCC		TCC				TCC
	German vs. Fi	rench	1.000	classroom vs.			W	eb vs.	007
	French vs. It	alian	.999	unpro	ctored	.999		PAP	.997
	Italian vs. Ge	rman	.999						
Factor score equivalence: group									
specific vs. invariant models for	Surve	y lang	guages	Surv	ey set	tings	Sur	vey m	odes
Coefficient of determination			CD			CD			CD
	Ger	man	1.000	clas	sroom	1.000		web	1.000
	Fi	rench	1.000	unpro	ctored	.999		PAP	.998

Italian .999

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. inccap_fs 0.0 0.9 -3.2 1.8 15846
Share of cases with imputed missing values: 0.9% (Equivalence of scores from robust MLMV: CD = .999)
(Equivalence of Scores from Two-Step-Approach: CD = .989)

Scale: Embodied cultural capital: manners

Baseline survey sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2		
	Model vs. saturated	0	0			
	Baseline vs. saturated	12618	3	.000		
2)	2) Root mean squared error (RMSEA)					
	00% Confidence interval:	lower bound		000		

2) Root mean squared error (RMSEA) .000
90% Confidence interval: lower bound .000
90% Confidence interval: upper bound .000
Probability RMSEA <= 0.05 1.000

3) Akaike's Information Criterion (AIC) 88215 Bayesian Information Criterion (BIC) 88284

4) Baseline comparison

Comparative Fit Index (CFI) 1.000
Tucker-Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR) .000 Coefficient of determination (CD) .798

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.763
(Cronbach's alpha = .684)	
McDonald's Omega	.769

Test of (one-)dimensionality (parallel analysis)

Criterion: Retain factors with adj. eigenvalue > o Adjusted eigenvalue

factor 1 1.41 factor 2 -.10 factor 3 -.20

Standardized factor loadings

Indicators	Coef.	(SE)	[95% Conf	. interval]
manners1	0.60	0.01	0.58	0.61
manners2	0.74	0.01	0.73	0.76
mannersa	0.83	0.01	0.81	0.84

Item descriptives

		Std.			Valid
Indicators	Mean	dev.	Min.	Max.	Obs.
manners1	3.0	0.8	1	4	15819
manners2	3.1	0.7	1	4	15805
manners3	3.1	0.7	1	4	15807

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
manners1	1.41	-3.87	-2.07	1.28
manners2	2.10	-5.87	-2.59	1.77
manners3	2.85	-7.40	-3.62	1.88

Equal	lity	of	the
-------	------	----	-----

variance-covariance matrices across	Survey languages			Survey settings			Survey modes		
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	470	18	.000	138	9	.000	15	9	.082
Tests of measurement invariance across	Survey	vey languages		Survey settings		Survey modes		odes	
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	7	4	.160	1	2	.751	3	2	.231
Strong invariance (plus equal intercepts)	28	4	.000	16	2	.000	3	2	.280
Strict invariance (plus equal error variances)	40	4	.000	14	2	.001	4	2	.119
Configural factor similarity across	rity across Survey languages		Survey settings		tings	Survey modes			
Tucker's congruence coefficient			TCC	TCC		TCC			TCC
	German vs. Fre		333	classro		1.000	W	eb vs.	.998
	French vs. Ita		.999	unpro	ctored			PAP	
	Italian vs. Ger	man	.999						
Factor score equivalence: group									
specific vs. invariant models for	Survey	/ lan	guages	Surv	ey set	tings	Sur	vey m	odes
Coefficient of determination			CD			CD			CD
	Gerr	man	1.000	clas	sroom	1.000		web	1.000
	Fre	ench	.998	unpro	ctored	1.000		PAP	.998

Italian

-997

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. manners_fs 0.0 0.8 -2.8 1.5 15843 Share of cases with imputed missing values: 0.5% (Equivalence of scores from robust MLMV: CD = .998) (Equivalence of Scores from Two-Step-Approach: CD = .988)

Scale: Embodied cultural capital: verbal skills

Baseline survey sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	16621	3	.000
2)	Root mean squared error ((RMSEA)		.000
	90% Confidence interval:	lower bound		.000
	90% Confidence interval:	upper bound		.000
	Probability RMSEA <= 0.05		1.000	

4) Baseline comparison

3) Akaike's Information Criterion (AIC)

Bayesian Information Criterion (BIC)

Comparative Fit Index (CFI) 1.000
Tucker-Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR) .000
Coefficient of determination (CD) .821

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.818
(Cronbach's alpha = .759)	
McDonald's Omega	.819

Test of (one-)dimensionality (parallel analysis)

Criterion: Retain factors with adj. eigenvalue > o

Adjusted eigenvalue

	Aujusteu eigenvalue
factor 1	1.64
factor 2	14
factor 3	15

90127

90196

Standardized factor loadings

Indicators	Coef.	(SE)	[95% Conf	. interval]
verbskill1	0.74	0.00	0.73	0.75
verbskill2	0.80	0.00	0.79	0.81
verbskill3	0.79	0.00	0.78	0.80

Item descriptives

		Std.			Valid
Indicators	Mean	dev.	Min.	Max.	Obs.
verbskill1	3.0	0.7	1	4	15827
verbskill2	3.0	0.8	1	4	15817
verbskill3	2.9	0.7	1	4	15776

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
verbskill1	2.03	-5.16	-2.00	1.78
verbskill2	2.49	-5.91	-2.15	1.82
verbskill3	2.43	-5.80	-1.96	2.36

Equal	lity	of	the
-------	------	----	-----

variance-covariance matrices across	Survey languages		Survey settings			Survey modes		
	chi2 df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	209 18	.000	24	9	.005	34	9	.000
Tests of measurement invariance across	Survey languages		Survey settings		Survey modes		odes	
	chi2 df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	6 4	.227	4	2	.137	12	2	.003
Strong invariance (plus equal intercepts)	36 4	.000	2	2	.425	4	2	.106
Strict invariance (plus equal error variances)	89 4	.000	13	2	.002	8	2	.023
Configural factor similarity across	Survey languages		Surve	Survey settings		Survey modes		odes
Tucker's congruence coefficient		TCC			TCC			TCC
	German vs. French	1.000	classro	om vs.	1.000	W	eb vs.	005
	French vs. Italian	.998	unprod	unproctored		PAP		.995
	Italian vs. German	.999						
Factor score equivalence: group								
specific vs. invariant models for	Survey lan	guages	Surv	ey set	tings	Sur	vey m	odes
Coefficient of determination		CD			CD			CD
	German	1.000	class	sroom	1.000		web	1.000
	French	1.000	unprod	tored	1.000		PAP	.993
	Italian	.998						

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. verbskill_fs 0.0 0.9 -2.7 1.6 15841
Share of cases with imputed missing values: 0.6% (Equivalence of scores from robust MLMV: CD = .999)
(Equivalence of Scores from Two-Step-Approach: CD = .992)

Scale: Cultural activities

Baseline survey sample

Model and Fit Statistics

Reliability and Dimensionality

				,	•	
Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronbac	:h's Alpha	.743
Model vs. saturated	7949	14	.000	(Cronbach's alph	a = .668)	
Baseline vs. saturated	27943	21	.000	McDonald's Om	ega	.726
Root mean squared error (I	RMSEA)		.189	Test of (one-)dir	mensionality (par	rallel analysis)
90% Confidence interval:	lower bound		.186	Criterion: Retain	factors with adj.	eigenvalue > o
90% Confidence interval:	upper bound	l	.193	A	Adjusted eigenval	ue
Probability RMSEA <= 0.05			.000	factor 1	2.14	
•				factor 2	.76	
Akaike's Information Criter	rion (AIC)		260288	factor 3	.03	
Bayesian Information Crite	rion (BIC)		260449	factor 4	02	
•				factor 5	13	
Baseline comparison				factor 6	20	
Comparative Fit Index (CFI)			.716	factor 7	20	
Tucker-Lewis Index (TLI)			.574			
Size of residuals						
Stand. root mean squared re	esidual (SRM	IR)	.118			
· ·			.809			
	Model vs. saturated Baseline vs. saturated Root mean squared error (I 90% Confidence interval: 90% Confidence interval: Probability RMSEA <= 0.05 Akaike's Information Criter Bayesian Information Criter Baseline comparison Comparative Fit Index (CFI) Tucker-Lewis Index (TLI) Size of residuals Stand. root mean squared residuals	Model vs. saturated 7949 Baseline vs. saturated 27943 Root mean squared error (RMSEA) 90% Confidence interval: lower bound 90% Confidence interval: upper bound Probability RMSEA <= 0.05 Akaike's Information Criterion (AIC) Bayesian Information Criterion (BIC) Baseline comparison Comparative Fit Index (CFI) Tucker-Lewis Index (TLI) Size of residuals	Model vs. saturated 7949 14 Baseline vs. saturated 27943 21 Root mean squared error (RMSEA) 90% Confidence interval: lower bound 90% Confidence interval: upper bound Probability RMSEA <= 0.05 Akaike's Information Criterion (AIC) Bayesian Information Criterion (BIC) Baseline comparison Comparative Fit Index (CFI) Tucker-Lewis Index (TLI) Size of residuals Stand. root mean squared residual (SRMR)	Model vs. saturated 7949 14 .000 Baseline vs. saturated 27943 21 .000 Root mean squared error (RMSEA) .189 90% Confidence interval: lower bound .186 90% Confidence interval: upper bound .193 Probability RMSEA <= 0.05 .000 Akaike's Information Criterion (AIC) 260288 Bayesian Information Criterion (BIC) 260449 Baseline comparison Comparative Fit Index (CFI) .716 Tucker-Lewis Index (TLI) .574 Size of residuals Stand. root mean squared residual (SRMR) .118	Model vs. saturated 7949 14 .000 (Cronbach's alph Baseline vs. saturated 27943 21 .000 McDonald's Om Root mean squared error (RMSEA) .189 Test of (one-)dir 90% Confidence interval: lower bound .186 Criterion: Retain 90% Confidence interval: upper bound .193 Arctor 1 factor 2 Probability RMSEA <= 0.05 .000 factor 1 factor 2 Akaike's Information Criterion (AIC) 260288 factor 3 Bayesian Information Criterion (BIC) 260449 factor 4 factor 5 Tucker-Lewis Index (CFI) .716 factor 7 Size of residuals Stand. root mean squared residual (SRMR) .118	Model vs. saturated 7949 14 .ooo (Cronbach's alpha = .668) Baseline vs. saturated 27943 21 .ooo McDonald's Omega Root mean squared error (RMSEA) 90% Confidence interval: lower bound .186 Criterion: Retain factors with adj. ooo Good Good Good Good Good Good Good

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators *	Coef.	(SE)	[95% Conf	. interval]	Indicators *	Mean	dev.	Min.	Max.	Obs.
cult1 **	0.36	0.01	0.34	0.37	cult1 **	2.8	1.0	1	4	15787
cult2 **	0.70	0.01	0.69	0.71	cult2 **	1.8	0.9	1	4	15776
cult3 **	0.50	0.01	0.48	0.51	cult3 **	1.6	0.8	1	4	15769
cult4 **	0.77	0.00	0.76	0.78	cult4 **	1.3	0.6	1	4	15771
cult5 **	0.74	0.01	0.73	0.75	cult5 **	1.6	0.7	1	4	15761
cult7	0.29	0.01	0.27	0.31	cult7	2.6	1.0	1	4	15766
cult9	0.24	0.01	0.23	0.26	cult9	2.4	1.2	1	4	15761

^{*} Note: Scale from TREE1 / PISA2000 adapted for TREE2

Parameters of generalized structural equation model (ordinal logit link)

				,
Indicators	Coef.	Cut1	Cut ₂	Cut ₃
cult1	0.83	-2.69	-0.45	0.93
cult2	1.54	-0.32	2.13	3.59
cult3	1.17	0.43	2.48	3.64
cult4	1.93	2.19	4.18	5.39
cult5	1.76	0.12	3.13	4.74
cult7	0.70	-1.83	0.18	1.41
cult9	0.60	-0.93	0.30	1.17

^{**} Note: Original items from TREE1 / PISA2000

Equality	of the	
----------	--------	--

variance-covariance matrices across	Survey languages		guages	Survey settings			Survey modes		
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	1553	70	.000	737	35	.000	149	35	.000
Tests of measurement invariance across	Survey	/ lan	guages	Surv	ey set	tings	Sur	vey m	odes
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	107	12	.000	30	6	.000	19	6	.005
Strong invariance (plus equal intercepts)	1198	12	.000	231	6	.000	74	6	.000
Strict invariance (plus equal error variances)	142	12	.000	269	6	.000	35	6	.000
Configural factor similarity across	Survey languages		Survey settings			Survey modes			
Tucker's congruence coefficient			TCC			TCC			TCC
	German vs. Fre	-	23	classro	.997		W	eb vs.	.987
	French vs. Ita		.996	unpro	ctored	337		PAP	3 ,
	Italian vs. Ger	man	.992						
Factor score equivalence: group									
specific vs. invariant models for	Survey	/ lang	guages	Surv	ey set	tings	Sur	vey m	odes
Coefficient of determination			CD			CD			CD
	Gerr	man	1.000	clas	sroom	1.000		web	1.000
	Fre	ench	.995	unpro	ctored	.997		PAP	.990

Italian

.998

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. cult_fs 0.0 0.8 -1.8 3.1 15797

Share of cases with imputed missing values: 0.6% (Equivalence of scores from robust MLMV: CD = .977) (Equivalence of Scores from Two-Step-Approach: CD = .886)

Scale: Lowbrow cultural activities

Baseline survey sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	7348	3	.000

2) Root mean squared error (RMSEA) .000 90% Confidence interval: lower bound .000 90% Confidence interval: upper bound .000 Probability RMSEA <= 0.05 1.000

3) Akaike's Information Criterion (AIC) 124416 **Bayesian Information Criterion (BIC)** 124485

4) Baseline comparison

Comparative Fit Index (CFI) 1.000 Tucker-Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR) .000 Coefficient of determination (CD) .728

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.668
(Cronbach's alpha = .599)	
McDonald's Omega	.679

Test of (one-)dimensionality (parallel analysis)

Criterion: Retain factors with adj. eigenvalue > o

Std.

	Adjusted eigenvalue
factor 1	1.05
factor 2	10
factor 3	22

Standardized factor loadings

Item descriptives

Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
cult3 *	0.54	0.01	0.52	0.56	cult3 *	1.6	0.8	1	4	15769
cult7	0.58	0.01	0.56	0.59	cult7	2.6	1.0	1	4	15766
cult9	0.80	0.01	0.78	0.82	cultg	2.4	1.2	1	4	15761

^{*} Note: Original item from TREE1 / PISA2000

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
cult3	1.11	0.43	2.46	3.56
cult7	1.27	-2.14	0.17	1.64
cult9	2.25	-1.53	0.47	1.88

List of scales (wave 0)

Valid

Equal	lity	of	the
-------	------	----	-----

variance-covariance matrices across	Survey language		guages	Survey settings			Survey modes		
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	993	18	.000	164	9	.000	50	9	.000
Tests of measurement invariance across	Survey	land	20061	Surv	ey set	tinas	Sur	vey m	odes
reses of friedsorement invariance across		df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	65		.000	18	2	.000			.002
·		4					13	2	
Strong invariance (plus equal intercepts)	674	4	.000	107	2	.000	24	2	.000
Strict invariance (plus equal error variances)	162	4	.000	13	2	.002	5	2	.071
Configural factor similarity across	Survey languages		Survey settings			Survey modes			
Tucker's congruence coefficient			TCC			TCC			TCC
	German vs. Frei	nch	.985	classro	om vs.	226	w	eb vs.	0.40
	French vs. Itali	ian	.999	unpro	ctored	.996		PAP	.949
	Italian vs. Germ	nan	.989						
Factor score equivalence: group									
specific vs. invariant models for	Survey	lang	guages	Surv	ey set	tings	Sur	vey m	odes
Coefficient of determination	•		CD		•	CD		-	CD
	Germ	nan	.992	clas	sroom	.999		web	.999
	Frei	nch	.975	unpro	ctored	.990		PAP	.852

Italian

.996

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. cultlow_fs 0.0 0.8 -1.4 1.8 15788 Share of cases with imputed missing values: 0.3% (Equivalence of scores from robust MLMV: CD = .99) (Equivalence of Scores from Two-Step-Approach: CD = .975)

Scale: Highbrow cultural activities [PISA 2000]

Baseline survey sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	14402	3	.000
2)	Root mean squared error	(RMSEA)		.000
	90% Confidence interval:	lower bound		.000
	90% Confidence interval:	upper bound		.000
	Probability RMSEA <= 0.05			1.000
3)	Akaike's Information Crite	erion (AIC)		90498
	Bayesian Information Crit	erion (BIC)		90567
4)	Baseline comparison			
••	Comparative Fit Index (CFI))		1.000
	Tucker-Lewis Index (TLI)			1.000
5)	Size of residuals			

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.793
(Cronbach's alpha = .690)	
McDonald's Omega	.795

Test of (one-)dimensionality (parallel analysis)

Criterion: Retain factors with adj. eigenvalue > o Adjusted eigenvalue

factor 1	1.53	
factor 2	13	
factor 3	17	

Size of residuals	
Stand. root mean squared residual (SRMR)	.000
Coefficient of determination (CD)	.805

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators *	Coef.	(SE)	[95% Conf.	. interval]	Indicators *	Mean	dev.	Min.	Max.	Obs.
cult2	0.69	0.01	o.68	0.70	cult2	1.8	0.9	1	4	15776
cult4	0.82	0.01	0.81	0.83	cult4	1.3	0.6	1	4	15771
cult5	0.74	0.01	0.73	0.75	cult5	1.6	0.7	1	4	15761

^{*} Note: Replication of 'Cultactv'-Scale from TREE1 / PISA2000

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
cult2	1.69	-0.33	2.26	3.75
cult4	2.53	2.64	4.95	6.28
cult5	2.01	0.15	3.41	5.05

Equa	lity	of t	he
------	------	------	----

variance-covariance matrices across	Survey languages			Survey settings			Survey modes		
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	283	18	.000	436	9	.000	58	9	.000
Tests of measurement invariance across	Surve	y lan	guages	Surv	ey set	tings	Sur	vey m	odes
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	40	4	.000	5	2	.085	1	2	.518
Strong invariance (plus equal intercepts)	125	4	.000	48	2	.000	10	2	.008
Strict invariance (plus equal error variances)	48	4	.000	176	2	.000	13	2	.001
Configural factor similarity across	Survey languages			Survey settings			Survey modes		
Tucker's congruence coefficient			TCC			TCC			TCC
	German vs. F	rench	.997	classro	om vs.	.999	W	eb vs.	.999
	French vs. It	alian	.999	unpro	ctored	.555		PAP	.333
	Italian vs. Ge	rman	.999						
Factor score equivalence: group									
specific vs. invariant models for	Surve	y lan	guages	Surv	ey set	tings	Sur	vey m	odes
Coefficient of determination			CD			CD			CD
	Gei	rman	1.000	clas	sroom	1.000		web	1.000
	F	rench	.993	unpro	ctored	.999		PAP	.996

Italian

.999

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. culthigh_fs 0.0 0.8 -0.9 2.6 15788 Share of cases with imputed missing values: 0.3% (Equivalence of scores from robust MLMV: CD = .98) (Equivalence of Scores from Two-Step-Approach: CD = .886)

Scale: Household Possessions: Family Wealth (PISA2000)

Baseline survey sample

Model and Fit Statistics

Reliability and Dimensionality

1)	Likelihood-ratio tests Model vs. saturated	chi2 12119	df 27	p > chi2 .000	Ordinal Cronbach (Cronbach's alpha	= .565)	.782
	Baseline vs. saturated	41971	36	.000	McDonald's Ome	ga	.789
2)	Root mean squared error (F	RMSEA)		.167	Test of (one-)dim	ensionality (paralle	l analysis)
	3	ower bound		.000	Criterion: Retain fa	actors with adj. eige	nvalue > o
	90% Confidence interval: υ	pper bound			Ac	ljusted eigenvalue	
	Probability RMSEA <= 0.05			.000	factor 1	2.83	
					factor 2	.49	
3)	Akaike's Information Criter	ion (AIC)		138697	factor 3	.40	
	Bayesian Information Crite	rion (BIC)		138904	factor 4	.08	
					factor 5	.07	
4)	Baseline comparison				factor 6	.02	
	Comparative Fit Index (CFI)			.712	factor 7	10	
	Tucker-Lewis Index (TLI)			.616	factor 8	15	
					factor 9	25	
5)	Size of residuals						
	Stand. root mean squared re	sidual (SRMF	?)	.079			
	Coefficient of determination	(CD)		.839			

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators *	Coef.	(SE)	[95% Conf.	. interval]	Indicators *	Mean	dev.	Min.	Max.	Obs.
wealth1	0.71	0.00	0.70	0.72	wealth1	0.9	0.3		1	16040
wealth2	0.57	0.01	0.56	0.58	wealth2	0.9	0.3		1	16039
wealth3	0.31	0.01	0.29	0.32	wealth3	0.6	0.5		1	15942
wealth4	0.81	0.00	0.80	0.82	wealth4	1.0	0.1		1	16043
wealthn1	0.59	0.01	0.58	0.61	wealthn1	3.9	0.4	1	4	16037
wealthn2	0.35	0.01	0.33	0.36	wealthn2	2.8	0.8	1	4	16037
wealthn3	0.50	0.01	0.49	0.51	wealthn3	3.3	0.8	1	4	16032
wealthn4	0.42	0.01	0.41	0.44	wealthn4	2.7	0.8	1	4	16030
wealthn5	0.55	0.01	0.54	0.56	wealthn5	2.9	0.7	1	4	16037

^{*} Note: Replication of 'Wealth'-Scale from TREE1 / PISA2000

Parameters of generalized structural equation model (ordinal logit link)

raiailleteis oi ye	iliei alizeu s	tioctorai	equation	illouei (
Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
wealth1	1.64	-3.46		
wealth2	1.08	-2.75		
wealth3	0.29	-0.36		
wealth4	1.76	-5.87		
wealthn1	1.46	-6.37	-4.51	-3.29
wealthn2	0.79	-3.58	-0.51	1.35
wealthn3	1.01	-4.94	-1.65	-0.01
wealthn4	1.18	-3.18	-0.25	2.19
wealthn5	1.48	-6.23	-1.26	2.00

Scale: Household Possessions: Family Wealth (PISA2000) (cont.)

Baseline survey sample

Tests and Indices of Factorial Invariance across ...

Equal	ity of	the
-------	--------	-----

variance-covariance matrices across	Surve	Survey languages			Survey settings				Survey modes		
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2		
	4879	108	.000	1025	54	.000	1065	54	.000		
Tests of measurement invariance across	Surve	y lang	guages	Surve	ey sett	tings	Sur	vey m	odes		
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2		
Metric invariance (equal factor loadings)	139	16	.000	92	8	.000	103	8	.000		
Strong invariance (plus equal intercepts)	499	16	.000	74	8	.000	44	8	.000		
Strict invariance (plus equal error variances)	1367	16	.000	270	8	.000	147	8	.000		
Configural factor similarity across	Survey languages		Surve	ey sett	tings	Sur	vey m	odes			
Tucker's congruence coefficient			TCC			TCC			TCC		
	German vs. Fr	ench	.989	classro	om vs.	007	W	eb vs.	265		
	French vs. Ita	alian	.992	unprod	tored	.997		PAP	.965		
	Italian vs. Ger	rman	.991								
Factor score equivalence: group											
specific vs. invariant models for	Surve	y lang	guages	Surve	ey sett	tings	Sur	vey m	odes		
Coefficient of determination			CD			CD			CD		
	Ger	man	1.000	class	room	1.000		web	.997		
	Fr	ench	.999	unprod	tored	.995		PAP	.964		

Italian

.959

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. wealth_fs 0.0 0.8 -4.0 1.8 16057 Share of cases with imputed missing values: 1.0% (Equivalence of scores from robust MLMV: CD = .641) (Equivalence of Scores from Two-Step-Approach: CD = .508)

Scale: Household Possessions: Family Wealth (adapted TREE2)

Baseline survey sample

Model and Fit Statistics

Reliability and Dimensionality

1)	Likelihood-ratio tests Model vs. saturated Baseline vs. saturated	chi2 8521 38309	df 14 21	p > chi2 .000 .000	Ordinal Cronbacl (Cronbach's alpha McDonald's Ome	a = .548)	.813 .815
2)	Root mean squared error (I 90% Confidence interval: 90% Confidence interval: Probability RMSEA <= 0.05	ower bound		.195 .191 .198 .000	Criterion: Retain f	nensionality (paral factors with adj. eig djusted eigenvalue 2.76 .46	genvalue > o
3) 4)	Akaike's Information Criter Bayesian Information Crite Baseline comparison	• •		59604 59765	factor 3 factor 4 factor 5 factor 6	.20 .02 07 12	
	Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)			.778 .667	factor 7	24	
5)	Size of residuals Stand. root mean squared re Coefficient of determination	•	₹)	.079 .837			

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators *	Coef.	(SE)	[95% Conf	. interval]	Indicators *	Mean	dev.	Min.	Max.	Obs.
wealth1 **	0.77	0.00	0.76	0.77	wealth1 **	0.9	0.3		1	16040
wealth2 **	0.62	0.01	0.61	0.63	wealth2 **	0.9	0.3		1	16039
wealth4 **	0.75	0.00	0.74	0.76	wealth4 **	1.0	0.1		1	16043
wealth5	0.61	0.01	0.60	0.62	wealth5	0.7	0.5		1	16021
wealthn1 **	0.51	0.01	0.50	0.52	wealthn1 **	3.9	0.4	1	4	16037
wealthn3 **	0.47	0.01	0.46	0.49	wealthn3 **	3.3	0.8	1	4	16032
wealthn5 **	0.60	0.01	0.59	0.61	wealthn5 **	2.9	0.7	1	4	16037

^{*} Note: Scale from TREE1 / PISA2000 adapted for TREE2

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
wealth1	2.07	-3.91		
wealth2	1.43	-3.03		
wealth4	2.04	-6.28		
wealth5	1.44	-0.76		
wealthn1	1.07	-5.80	-4.09	-2.96
wealthn3	0.87	-4.81	-1.60	-0.01
wealthn5	1.79	-6.65	-1.40	2.20

^{**} Note: Original items from TREE1/PISA2000

Equality	y of the
----------	----------

variance-covariance matrices across	Surve	y lan	guages	Surv	ey set	tings	Sur	vey m	odes
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	2014	70	.000	777	35	.000	890	35	.000
Tests of measurement invariance across	Surve	y lan	guages	Surv	ey set	tings	Sur	vey m	odes
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	168	12	.000	144	6	.000	74	6	.000
Strong invariance (plus equal intercepts)	329	12	.000	65	6	.000	25	6	.000
Strict invariance (plus equal error variances)	983	12	.000	175	6	.000	140	6	.000
Configural factor similarity across	Survey languages		guages	Surv	ey set	tings	Sur	vey m	odes
Tucker's congruence coefficient			TCC			TCC			TCC
	German vs. F	rench	.996	classro	om vs.		W	eb vs.	065
	French vs. It	alian	.975	unpro	ctored	.992		PAP	.965
	Italian vs. Ge	rman	.989						
Factor score equivalence: group									
specific vs. invariant models for	Surve	y lan	guages	Surv	ey set	tings	Sur	vey m	odes
Coefficient of determination			CD			CD			CD
	Gei	rman	.999	clas	sroom	.999		web	.999
	Fi	rench	.978	unpro	ctored	.991		PAP	.947
	If	talian	.902						

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. wealth_m_fs 0.0 0.8 16056 -3.6 1.3 Share of cases with imputed missing values: 0.4% (Equivalence of scores from robust MLMV: CD = .83) (Equivalence of Scores from Two-Step-Approach: CD = .692)

Composite descriptives	Variable name	Mean	Std. dev.	Min.	Max.	Obs.	
Share of cases with imputed	fasiii_comp missing values:	9·5 0.5%	2.1	0	13	16059	
Item descriptives	Indicators	Mean	Std. dev.	Min.	Max.	Valid obs.	
	wealthn4 wealth2	1.5 0.9	o.6 o.3	0 0	2 1	16030 16039	*
	wealthn3 wealthn5	2.3 1.9	o.8 o.7	0 0	3	16032 16037	*
	wealth1	0.9	0.3	0	1	16040	

^{*} Items recoded for composite calculation (see Hobza et al. 2017)

Scale: Capabilities	Baseline survey sample
---------------------	------------------------

Model and Fit Statistics

Reliability and Dimensionality

1)	Likelihood-ratio tests Model vs. saturated Baseline vs. saturated	chi2 1666 37134	df 5 10	p > chi2 .000 .000	Ordinal Cronback (Cronbach's alpha McDonald's Ome	a = .845)	.871 .871
2)	Root mean squared error (R 90% Confidence interval: lo 90% Confidence interval: u Probability RMSEA <= 0.05	wer bound		.145 .139 .151 .000	Criterion: Retain	nensionality (para factors with adj. e djusted eigenvalu 2.79 .10	igenvalue > o
3) 4)	Akaike's Information Criteri Bayesian Information Criter Baseline comparison Comparative Fit Index (CFI)	, ,		221347 221462 -955	factor 3 factor 4 factor 5	07 13 13	
5)	Tucker-Lewis Index (TLI) Size of residuals Stand. root mean squared res Coefficient of determination		R)	.911 .038 .874			

Standardized factor loading	as	loadin	ctor	fa	lized	arc	Stand	9
-----------------------------	----	--------	------	----	-------	-----	-------	---

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
cap1	0.76	0.00	0.75	0.77	cap1	5.9	1.3	1	7	15756
cap2	0.78	0.00	0.77	0.79	cap2	5.7	1.2	1	7	15733
cap3	0.79	0.00	0.78	0.80	cap3	5.9	1.2	1	7	15732
cap4	0.69	0.00	0.68	0.70	cap4	5.3	1.3	1	7	15714
cap5	0.76	0.00	0.75	0.77	cap5	5.7	1.2	1	7	15738

Equality	y of the
----------	----------

variance-covariance matrices across	Survey languages		Surv	Survey settings		Survey modes			
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	1233	40	.000	412	20	.000	32	20	.042
Tests of measurement invariance across	Survey	land	guages	Surv	ey seti	tings	Sur	vey m	odes
	-	df .	_	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	106	8	.000	21	4	.000	7	4	.145
Strong invariance (plus equal intercepts)	601	8	.000	75	4	.000	11	4	.025
Strict invariance (plus equal error variances)	216	8	.000	15	4	.005	4	4	.456
Configural factor similarity across	Survey languages		Survey settings		tings	Survey modes		odes	
Tucker's congruence coefficient			TCC		TCC				TCC
	German vs. Fre	nch	.996	classro	om vs.		web vs. PAP		008
	French vs. Ital	ian	.997	unpro	ctored	.999			.998
	Italian vs. Gern	nan	.997						
Factor score equivalence: group									
specific vs. invariant models for	Survey languages		Survey settings		tings	Survey modes			
Coefficient of determination			CD			CD			CD
	Germ	nan	1.000	clas	sroom	1.000		web	1.000
	Fre	nch	.998	unpro	ctored	1.000		PAP	.998

Italian

.999

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. cap_fs 0.0 0.9 -4.3 1.2 15783 Share of cases with imputed missing values: 0.7% (Equivalence of scores from robust MLMV: CD = .997)

Scale: Positive attitude towards school

Full AES sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	22788	3	.000
2)	Root mean squared error (RMSEA)		.000
	90% Confidence interval:	lower bound		.000
	90% Confidence interval:	upper bound		.000
	Probability RMSEA <= 0.05			1.000
3)	Akaike's Information Crite	rion (AIC)		205667
	Bayesian Information Crite	erion (BIC)		205739
4)	Baseline comparison			
	Comparative Fit Index (CFI)			1.000
	Tucker–Lewis Index (TLI)			1.000

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.809
(Cronbach's alpha = .784)	
McDonald's Omega	.813

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

	,	_
Factor 1		1.61
Factor 2		10
Factor 3		17

5) Size of residuals Stand. root mean squared residual (SRMR) .000 Coefficient of determination (CD) .835

Standardized factor loadings

Item descriptives Std. Valid Indicators Coef. (SE) [95% Conf. interval] Indicators Mean dev. Min. Max. Obs. posatt1 .004 posatt1 3.8 6 0.74 0.73 0.75 1.3 1 22295 0.86 6 22288 posatt2 .004 0.85 0.87 posatt2 4.1 1.3 1 posatt3 0.70 0.69 posatt3 4.6 22287 .004 0.71 1.3

Scale: Positive attitude towards school (continued)

Full AES sample

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 998	df 18	p > chi2 .000
Tests of measurement invariance Metric invariance (equal factor loadings) Strong invariance (plus equal intercepts) Strict invariance (plus equal error variances)	chi2 17 172 217	df 4 4 4	p > chi2 .002 .000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.999
French vs. Italian language version	1.000
Italian vs. German language version	.999

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	1.000

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. posatt_fs 0.0 0.9 -2.5 1.4 22299 Share of cases with imputed missing values: 0.1% (Equivalence of scores from robust MLMV: CD = .999)

Scale: Enjoyment in school

Full AES sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	24844	3	.000

2) Root mean squared error (RMSEA) .000
90% Confidence interval: lower bound .000
90% Confidence interval: upper bound .000
Probability RMSEA <= 0.05 1.000

3) Akaike's Information Criterion (AIC) 216963 Bayesian Information Criterion (BIC) 217035

4) Baseline comparison

Comparative Fit Index (CFI) 1.000
Tucker–Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR) .000 Coefficient of determination (CD) .856

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.821
(Cronbach's alpha = .796)	
McDonald's Omega	.825

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o

Adjusted eigenvalue
Factor 1 1.67
Factor 2 -.08
Factor 3 -.16

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
enjoyschool1	0.76	.004	0.75	0.77	enjoyschool1	3.2	1.5	1	6	22254
enjoyschool2	0.89	.004	0.88	0.89	enjoyschool2	3.5	1.4	1	6	22252
enjoyschool3	0.69	.004	0.68	0.70	enjoyschool3	3.9	1.4	1	6	22257

Scale: Enjoyment in school (continued)

Full AES sample

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 506	df 18	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	33	4	.000
Strong invariance (plus equal intercepts)	258	4	.000
Strict invariance (plus equal error variances)	34	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.999
French vs. Italian language version	.992
Italian vs. German language version	.996

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.998
Language: Italian	.994

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. enjoyschool_fs 0.0 1.1 -2.1 2.1 22267
Share of cases with imputed missing values: 0.1%
(Equivalence of scores from robust MLMV: CD = .999)

Scale: Physical complaints in school

Full AES sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronbach's Alpha
	Model vs. saturated	29	2	.000	(Cronbach's alpha = .772)
	Baseline vs. saturated	36796	6	.000	McDonald's Omega

2)	Root mean squared error (RMSEA	.025
	90% Confidence interval: lower b	ound .017
	90% Confidence interval: upper b	ound .o33
	Probability RMSEA <= 0.05	1.000

3)	Akaike's Information Criterion (AIC)	272002
	Bayesian Information Criterion (BIC)	272098

4)	Baseline comparison
	Comparative Fit Index

(CFI) .999 Tucker–Lewis Index (TLI) .998

5) Size of residuals

Stand. root mean squared residual (SRMR)	.005
Coefficient of determination (CD)	.857

na .847

Reliability and Dimensionality

.849

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

/ lajostea eigenvaloe	
2.22	
09	
10	
12	
	2.22 09 10

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
physpain1	0.78	.003	0.77	0.79	physpain1	1.7	1.3	1	6	22260
physpain2	0.79	.003	0.78	0.79	physpain2	1.7	1.4	1	6	22249
physpain3	0.82	.003	0.81	0.82	physpain3	1.7	1.3	1	6	22222
physpain4	0.67	.004	0.66	0.68	physpain4	2.3	1.6	1	6	22245

Scale: Physical complaints in school (continued)

Full AES sample

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	1179	28	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	76	6	.000
Strong invariance (plus equal intercepts)	188	6	.000
Strict invariance (plus equal error variances)	542	6	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.999
French vs. Italian language version	.997
Italian vs. German language version	.996

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	.988

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. physpain_fs 0.0 0.8 -.6 3.5 22271 Share of cases with imputed missing values: 0.3% (Equivalence of scores from robust MLMV: CD = .995)

					_	
SC3	Δ.	\// /	Orrida	: ahc	viit c	choo
J Ca	ш.	~ ~	OHIE	Jane	<i>,</i> U L 3	

Full AES sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	21848	3	.000
2)	Root mean squared error	(RMSEA)		.000
	90% Confidence interval:	lower bound		.000
	90% Confidence interval:	upper bound		.000
	Probability RMSEA <= 0.05			1.000
3)	Akaike's Information Crite	erion (AIC)		240309
	Bayesian Information Crit	erion (BIC)		240381
4)	Baseline comparison			
	Comparative Fit Index (CFI))		1.000
	Tucker–Lewis Index (TLI)			1.000

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.795
(Cronbach's alpha = .753)	
McDonald's Omega	.802

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

	,	9
Factor 1		1.57
Factor 2		09
Factor 3		18

Tucker–Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR) .000 Coefficient of determination (CD) .836

Standardized factor loadings	Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
trouschool1	0.78	.004	0.78	0.79	trouschool1	2.9	1.6	1	6	22260
trouschool2	o.86	.004	0.85	0.87	trouschool2	3.2	1.7	1	6	22263
trouschool3	0.62	.005	0.61	0.63	trouschool3	3.4	1.9	1	6	22263

Scale: Worries about school (continued)

Full AES sample

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 1522	df 18	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	51	4	.000
Strong invariance (plus equal intercepts)	889	4	.000
Strict invariance (plus equal error variances)	295	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.998
French vs. Italian language version	.999
Italian vs. German language version	.999

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	.996

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. trouschool_fs 0.0 1.2 -1.9 2.5 22270 Share of cases with imputed missing values: 0.1% (Equivalence of scores from robust MLMV: CD = .997)

Scale: Social problems in school

Full AES sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	39687	3	.000
2)	Root mean squared error	(RMSEA)		.000
	90% Confidence interval:	lower bound		.000
	90% Confidence interval:	upper bound		.000
	Probability RMSEA <= 0.05			1.000
3)	Akaike's Information Crite	erion (AIC)		164458
	Bayesian Information Crit	erion (BIC)		164530
4)	Baseline comparison			
	Comparative Fit Index (CFI)	1		1.000
	Tucker–Lewis Index (TLI)			1.000
5)	Size of residuals			

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.886
(Cronbach's alpha = .817)	
McDonald's Omega	.889

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o
Adjusted eigenvalue

Factor 1	2.07	
Factor 2	05	
Factor 3	12	

Standardized factor loadings

Indicators	Coef.	(SE)	[95% Conf	. interval]
socprob1	0.95	.002	0.95	0.95
socprob2	0.84	.003	0.84	0.85
socprob3	0.76	.003	0.75	0.77

Stand. root mean squared residual (SRMR)

Coefficient of determination (CD)

Item	des	crin	tiv	65

.000

.929

		Std.			Valid
Indicators	Mean	dev.	Min.	Max.	Obs.
socprob1	1.5	1.0	1	6	22244
socprob2	1.7	1.2	1	6	22259
socprob3	1.5	1.1	1	6	22239

Scale: Social problems in school (continued)

Full AES sample

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 466	df 18	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	16	4	.003
Strong invariance (plus equal intercepts)	129	4	.000
Strict invariance (plus equal error variances)	157	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	1.000
French vs. Italian language version	.999
Italian vs. German language version	.999

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	1.000

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. socprob_fs 0.0 0.9 -0.5 4.3 22265 Share of cases with imputed missing values: 0.2% (Equivalence of scores from robust MLMV: CD = .991)

_						
Scal	Δ.	Sch	\sim	r۵	luctan	0
Jua	ш.	201	IUU		IULLAII	LE

Full AES sample

Model	and	Fit 9	Stati	stics
Model	unu		Juli	30,03

L)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	14239	3	.000

2)	Root mean squared error	(RMSEA)	.000	
	90% Confidence interval:	lower bound	.000	
	90% Confidence interval:	upper bound	.000	
	Probability RMSEA <= 0.0	5	1.000	

3)	Akaike's Information Criterion (AIC)	245338
	Bayesian Information Criterion (BIC)	245410

4) Baseline comparison

Comparative Fit Index (CFI) 1.000
Tucker–Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR)	.000
Coefficient of determination (CD)	.835

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.702
(Cronbach's alpha = .661)	
McDonald's Omega	.727

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o

	Adjusted eigenvalue
Factor 1	1.23
Factor 2	05
Factor 3	22

Standardized factor loadings

Indicators	Coef.	(SE)	[95% Conf	. interval]
schoolav1	0.89	.007	0.88	0.91
schoolav2	0.67	.007	0.66	0.69
schoolava	0.46	.006	0.45	0.47

Item descriptives

		Std.			Valid
Indicators	Mean	dev.	Min.	Max.	Obs.
schoolav1	3.1	1.8	1	6	22245
schoolav2	3.7	1.9	1	6	22248
schoolav3	2.2	1.5	1	6	22235

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 1451	df 9	p > chi2 .000		
Tests of measurement invariance	chi2	df	p > chi2		
Metric invariance (equal factor loadings)	99	2	.000		
Strong invariance (plus equal intercepts)	981	2	.000		
Strict invariance (plus equal error variances)	49	2	.000		
Configural factor similarity					
Tucker's Congruence Coefficient	TCC				
German vs. French language version	.999				
French vs. Italian language version					
Italian vs. German language version					
Factor score equivalence: group specific vs. inva	riant mode	ls			
Coefficient of determination	CD				
Language: German	.994				
Language: French/ Italian	.981				
* Note: Due to sparse tables for the italian version converge and were reestimated with colla		•		d to	

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. schoolav_fs 0.0 1.4 $^{-2.0}$ 2.6 22266 Share of cases with imputed missing values: 0.2% (Equivalence of scores from robust MLMV: CD = .999)

Scale: Intrinsic achievement motivation

Full AES sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	12995	3	.000
2)	Root mean squared error (I	RMSEA)		.000

2) Root mean squared error (RMSEA) .ooo
90% Confidence interval: lower bound .ooo
90% Confidence interval: upper bound .ooo
Probability RMSEA <= 0.05 1.000

3) Akaike's Information Criterion (AIC) 152039 Bayesian Information Criterion (BIC) 152111

4) Baseline comparison

Comparative Fit Index (CFI) 1.000
Tucker–Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR) .000 Coefficient of determination (CD) .795

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.703
(Cronbach's alpha = .652)	
McDonald's Omega	.718

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o

Adjusted eigenvalue

	/ lajostea eigenvaloe
Factor 1	1.19
Factor 2	08
Factor 3	22

Standardized factor loadings

Item	descr	iptives
100111	acsci	iptive.

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
achmot2	0.54	.006	0.52	0.55	achmot2	3.0	0.8	1	4	22249
achmot4	0.62	.006	0.60	0.63	achmot4	2.8	0.8	1	4	22242
achmot6	o.86	.007	0.85	0.87	achmot6	2.6	0.9	1	4	22239

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
achmot2	1.16	-3.58	-1.45	1.12
achmot4	1.47	-3.30	-0.89	2.11
achmot6	2.88	-4.12	-0.77	3.70

Scale: Intrinsic achievement motivation (continued)

Full AES sample

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	1286	18	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	14	4	.007
Strong invariance (plus equal intercepts)	956	4	.000
Strict invariance (plus equal error variances)	141	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.999
French vs. Italian language version	.993
Italian vs. German language version	.996

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	.999
Language: French	.999
Language: Italian	.990

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. achmoti_fs 0.0 0.9 -2.2 1.8 22262

Share of cases with imputed missing values: 0.2% (Equivalence of scores from robust MLMV: CD = .994) (Equivalence of scores from two-step approach: CD = .982)

Scale: Extrinsic achievement motivation

Full AES sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	О	0	
	Baseline vs. saturated	12774	3	.000
- \	D4	DNACEAN		

2) Root mean squared error (RMSEA) .000
90% Confidence interval: lower bound .000
90% Confidence interval: upper bound .000
Probability RMSEA <= 0.05 1.000

3) Akaike's Information Criterion (AIC) 148710Bayesian Information Criterion (BIC) 148782

4) Baseline comparison

Comparative Fit Index (CFI) 1.000
Tucker–Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR) .000
Coefficient of determination (CD) .792

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.648
(Cronbach's alpha = .589)	
McDonald's Omega	.690

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

Factor 1 1.14 Factor 2 -.04 Factor 3 -.22

Standardized factor loadings

Item o	lescriptives
--------	--------------

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf.	interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
achmot1	0.33	.007	0.32	0.34	achmot1	3.2	0.7	1	4	22263
achmot3	0.73	.009	0.72	0.75	achmot3	1.8	0.8	1	4	22239
achmot5	0.85	.009	0.83	o.86	achmot5	1.9	0.9	1	4	22235

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
achmot1	0.58	-3.66	-2.13	0.51
achmot3	2.18	-0.50	2.38	5.22
achmot5	2.49	-0.62	2.16	5.11

Scale: Extrinsic achievement motivation (continued)

Full AES sample

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 1767	df 18	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	36	4	.000
Strong invariance (plus equal intercepts)	954	4	.000
Strict invariance (plus equal error variances)	211	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.982
French vs. Italian language version	.995
Italian vs. German language version	.996

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	.979
Language: French	.961
Language: Italian	.993

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. achmote_fs 0.0 0.8 -1.3 2.3 22266

Share of cases with imputed missing values: 0.2% (Equivalence of scores from robust MLMV: CD = .990) (Equivalence of scores from two-step approach: CD = .981)

Scale: Instrumental learning motivation (PISA2000)

Full AES sample

Model and Fit Statistics

Reliability and Dimensionality

1)	Likelihood-ratio tests chi2	df	p > chi2	Ordinal Cronbach'	s Alpha .848
	Model vs. saturated o	0		(Cronbach's alpha =	= .796)
	Baseline vs. saturated 28969	3	.000	McDonald's Omeg	ı a .850
	Buseline vs. sucorated 20909	3	.000	McDonald 5 Onleg	.050
2)	Root mean squared error (RMSEA)		.000	Test of (one-)dime	ensionality (parallel analysis)
	90% Confidence interval: lower bou	ınd	.000	Criterion: retain fac	ctors with adj. eigenvalue > o
	90% Confidence interval: upper box		.000		justed eigenvalue
	- 11	Jiid	1.000	Factor 1	1.81
	Probability RMSEA <= 0.05		1.000		
				Factor 2	10
3)	Akaike's Information Criterion (AIC)		144091	Factor 3	14
	Bayesian Information Criterion (BIC)	144163		
4)	Baseline comparison				
4/	•		4 000		
	Comparative Fit Index (CFI)		1.000		
	Tucker–Lewis Index (TLI)		1.000		
5)	Size of residuals				
-	Stand. root mean squared residual (S	RMR)	.000		
	Coefficient of determination (CD)	•	.865		

Standardized factor loadings

Item	descri	ptives

							Std.			Valid
Indicators *	Coef.	(SE)	[95% Conf	. interval]	Indicators *	Mean	dev.	Min.	Max.	Obs.
insmot1	0.75	0.00	0.74	0.76	insmot1	2.8	0.9	1	4	22246
insmot2	0.79	0.00	0.78	0.80	insmot2	2.9	0.9	1	4	22220
insmot3	o.88	0.00	o.88	0.89	insmot3	3.1	0.9	1	4	22220

^{*} Note: Replication of 'Insmot'-Scale from TREE1 / PISA2000

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
insmot1	2.05	-3.82	-0.83	2.13
insmot2	2.35	-3.90	-1.28	1.70
insmot ₃	3.48	-6.32	-3.28	0.89

Scale: Instrumental learning motivation (PISA2000) (continued)

Full AES sample

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	347	18	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	29	4	.000
Strong invariance (plus equal intercepts)	136	4	.000
Strict invariance (plus equal error variances)	55	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	1.000
French vs. Italian language version	.997
Italian vs. German language version	.994

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	1.000
Language: Italian	.982

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. insmot_fs 0.0 0.9 -2.2 1.4 22265

Share of cases with imputed missing values: 0.4% (Equivalence of scores from robust MLMV: CD = .996) (Equivalence of scores from two-step approach: CD = .978)

Scale: Interest in reading

Full AES sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal (
	Model vs. saturated	0	0		(Cronbac
	Baseline vs. saturated	44643	3	.000	McDonal

2) Root mean squared error (RMSEA) .000 90% Confidence interval: lower bound .000 90% Confidence interval: upper bound .000 Probability RMSEA <= 0.05 1.000

3) Akaike's Information Criterion (AIC) 153979 **Bayesian Information Criterion (BIC)** 154051

4) Baseline comparison

Comparative Fit Index (CFI) 1.000 Tucker-Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR) .000 Coefficient of determination (CD) .924

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.906
(Cronbach's alpha = .864)	
McDonald's Omega	.907

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

	rajostea eigenvaloe
Factor 1	2.19
Factor 2	07
Factor 3	11

Standardized factor loadings

Indicators *	Coef.	(SE)	[95% Conf	. interval]
intrea1	0.86	.002	0.85	o.86
intrea2	0.94	.002	0.93	0.94
intrea3	0.83	.003	0.82	0.83

macaz	0.94	.002	0.93	0.94
intrea3	0.83	.003	0.82	0.83
* Note: Replication	of 'Intrea'-S	cale from T	TREE1 / PIS	A2000

Item descriptives

		Std.			Valid
Indicators *	Mean	dev.	Min.	Max.	Obs.
intrea1	2.2	1.0	1	4	22180
intrea2	2.1	1.1	1	4	22178
intrea3	2.3	1.1	1	4	22165

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
intrea1	3.03	-1.81	0.96	3.55
intrea2	5.35	-1.65	2.08	5.65
intrea3	2.63	-1.67	0.17	2.61

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	732	18	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	94	4	.000
Strong invariance (plus equal intercepts)	560	4	.000
Strict invariance (plus equal error variances)	7	4	.155

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.999
French vs. Italian language version	1.000
Italian vs. German language version	.999

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	.999
Language: French	.998
Language: Italian	.998

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. intrea_fs 0.0 0.9 -1.3 1.7 22200

Share of cases with imputed missing values: 0.3% (Equivalence of scores from robust MLMV: CD = .997) (Equivalence of scores from two-step approach: CD = .973)

Scale: ICT interest

Maths sample-split

Model and Fit Statistics

Reliability and Dimensionality

						_	
1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronbach's Alph	ı a .855	
	Model vs. saturated	0	0		(Cronbach's alpha = .797)		
	Baseline vs. saturated	15929	3	.000	McDonald's Omega	.860	
2)	Root mean squared error (RMSEA)		.000	Test of (one-)dimension	ality (parallel analysis)	
	90% Confidence interval:	lower bound		.000	Criterion: retain factors w	vith adj. eigenvalue > o	
	90% Confidence interval:	upper bound		.000	Adjusted eigenvalue		
	Probability RMSEA <= 0.05			1.000	Factor 1	1.88	
					Factor 2	09	
3)	Akaike's Information Crite	rion (AIC)		69317	Factor 3	13	
	Bayesian Information Crite	erion (BIC)		69383			
4)	Baseline comparison						
	Comparative Fit Index (CFI)			1.000			
	Tucker–Lewis Index (TLI)			1.000			
5)	Size of residuals						
٠,	Stand. root mean squared re	esidual (SRM	R)	.000			

Standardized factor loadings

Coefficient of determination (CD)

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf.	interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
ictmot2	0.69	.006	0.68	0.71	ictmot2	3.2	0.7	1	4	11068
ictmot3	0.88	.004	0.87	0.89	ictmot3	2.4	1.0	1	4	11065
ictmot4	0.87	.004	0.86	o.88	ictmot4	2.8	0.9	1	4	11060

.884

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
ictmot2	1.77	-4.71	-2.62	0.94
ictmot3	3.41	-3.34	0.41	3.52
ictmot4	3.42	-4.79	-1.57	2.83

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 408	df 18	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	69	4	.000
Strong invariance (plus equal intercepts)	95	4	.000
Strict invariance (plus equal error variances)	34	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.995
French vs. Italian language version	.997
Italian vs. German language version	.995

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.994
Language: Italian	.892

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. ictintr_fs 0.0 0.9 -2.1 1.6 11071 Share of cases with imputed missing values: 0.2% (Equivalence of scores from robust MLMV: CD = .999) (Equivalence of scores from two-step approach: CD = .992)

Scale: Dispositional interest

Maths sample-split

Model and Fit Statistics

Reliability and Dimensionality

IVI	duei and Fit Statistics				Reliability and	Dimensionality	
1)	Likelihood-ratio tests Model vs. saturated	chi2 1805	df 9	p > chi2 .000	Ordinal Cronbac (Cronbach's alph	•	.875
	Baseline vs. saturated	31076	15	.000	McDonald's Om	=	.876
2)	Root mean squared error (I	RMSEA)		.135	Test of (one-)dir	mensionality (par	allel analysis)
	90% Confidence interval:	ower bound	d	.130	Criterion: retain f	factors with adj. ei	genvalue > o
	90% Confidence interval:	upper boun	d	.140	Δ	Adjusted eigenvalu	ie .
	Probability RMSEA <= 0.05			.000	Factor 1	3.19	
					Factor 2	.14	
3)	Akaike's Information Criter	ion (AIC)		137195	Factor 3	01	
	Bayesian Information Crite	rion (BIC)		137326	Factor 4	05	
					Factor 5	13	
4)	Baseline comparison				Factor 6	14	
	Comparative Fit Index (CFI)			.942			
	Tucker–Lewis Index (TLI)			.904			
5)	Size of residuals						
	Stand. root mean squared re	esidual (SRN	ЛR)	.041			
	Coefficient of determination	ı (CD)		.888			

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
intsubj1	0.84	.004	0.83	0.85	intsubj1	2.5	0.9	1	4	10889
intsubj2	0.65	.006	0.64	0.66	intsubj2	3.2	0.7	1	4	10922
intsubj3	0.75	.005	0.74	0.76	intsubj3	2.9	0.8	1	4	10845
intsubj4	0.66	.006	0.65	0.67	intsubj4	2.6	0.9	1	4	10842
intsubj5	0.69	.006	0.68	0.71	intsubj5	2.8	0.8	1	4	10905
intsubj6	0.80	.004	0.80	0.81	intsubj6	2.4	1.0	1	4	10853

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
intsubj1	2.92	-3.37	-0.29	3.76
intsubj2	1.58	-4.54	-2.81	0.59
intsubj3	2.12	-4.06	-1.70	1.90
intsubj4	1.63	-2.34	-0.39	2.29
intsubj5	1.80	-3.88	-0.89	2.43
intsubj6	2.53	-2.10	0.31	3.26

Scale: Dispositional interest (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	885	54	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	91	10	.000
Strong invariance (plus equal intercepts)	332	10	.000
Strict invariance (plus equal error variances)	77	10	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.996
French vs. Italian language version	.995
Italian vs. German language version	.998

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	.999

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. intsubj_fs 0.0 0.9 -2.6 2.1 10949
Share of cases with imputed missing values: 1.6% (Equivalence of scores from robust MLMV: CD = .999)
(Equivalence of scores from two-step approach: CD = .988)

Scale: Identified motivation (mathematics)

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronba
	Model vs. saturated	45	2	.000	(Cronbach's alph
	Baseline vs. saturated	43936	6	.000	McDonald's On
2)	Root mean squared error	(RMSEA)		.044	Test of (one-)di
	90% Confidence interval:	lower bound		.034	Criterion: retain
	90% Confidence interval:	upper bound		.056	
	Drobability DMCEA 0 05	• •		777	Eactor 1

Probability RMSEA <= 0.05 .777 3) Akaike's Information Criterion (AIC) 72033 **Bayesian Information Criterion (BIC)** 72121

4) Baseline comparison Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)

Size of residuals	
Stand. root mean squared residual (SRMR)	.004
Coefficient of determination (CD)	.955

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.946
(Cronbach's alpha = .918)	
McDonald's Omega	.947

limensionality (parallel analysis) n factors with adj. eigenvalue > o

Adjusted eigenvalue

Factor 1	3.20
Factor 2	04
Factor 3	05
Factor 4	04

2.8

2.9

0.9

0.9

instrumot3

instrumot4

Standardized factor loadings

instrumot3

instrumot4

Standardized factor loadings					Item descrip	Item descriptives			
							Std.		
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	
instrumot1	0.95	.001	0.94	0.95	instrumot1	2.9	0.9	1	
instrumot2	0.93	.002	0.93	0.94	instrumot2	2.9	0.9	1	

0.89

0.85

0.88

0.84

.999

.997

Parameters of generalized structural equation model (ordinal logit link)

.002

.003

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
instrumot1	4.16	-7.00	-2.77	2.59
instrumot2	3.66	-5.86	-2.07	1.94
instrumot3	2.86	-5.38	-1.92	2.16
instrumot4	2.49	-5.04	-2.19	1.86

0.89

0.85

List of scales (wave 0)

Valid

Obs.

11018

11020

11030

11013

Max.

4

4

4

4

Scale: Identified motivation (mathematics) (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 3 ⁸ 7	df 14	p > chi2 .000			
Tests of measurement invariance	chi2	df	p > chi2			
Metric invariance (equal factor loadings)	111	3	.000			
Strong invariance (plus equal intercepts)	75	3	.000			
Strict invariance (plus equal error variances)	135	3	.000			
Configural factor similarity						
Tucker's Congruence Coefficient	TCC					
German vs. French language version French vs. Italian language version Italian vs. German language version	1.000					
Factor score equivalence: group specific vs. invariant models						
Coefficient of determination	CD					
Language: German	1.000					
Language: French/ Italian	1.000					
* Note: Due to sparse tables for the italian version of the scale, equivalence tests failed to converge and were reestimated with collapsed italian and french versions.						

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. instrumot_fs -0.1 1.0 -2.4 1.5 11033

Share of cases with imputed missing values: 0.3% (Equivalence of scores from robust MLMV: CD = .999) (Equivalence of scores from two-step approach: CD = .985)

Scale: External motivation regulation

Maths sample-split

Model and Fit Statistics

Reliability and Dimensionality

					, , , , , , , , , , , , , , , , , , , ,	,	
1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronbach's	Alpha .820	
	Model vs. saturated	687	2	.000	(Cronbach's alpha =	.764)	
	Baseline vs. saturated	16452	6	.000	McDonald's Omega	.826	
2)	Root mean squared error (RMSEA)		.177	Test of (one-)dimer	nsionality (parallel analy	rsis)
	90% Confidence interval:	lower bound		.166	Criterion: retain fact	ors with adj. eigenvalue	> 0
	90% Confidence interval:	upper bound		.188	Adju	ısted eigenvalue	
	Probability RMSEA <= 0.05			.000	Factor 1	2.06	
					Factor 2	.06	
3)	Akaike's Information Crite	rion (AIC)		100910	Factor 3	15	
	Bayesian Information Crite	erion (BIC)		100998	Factor 4	15	
4)	Baseline comparison						
	Comparative Fit Index (CFI)			.958			
	Tucker–Lewis Index (TLI)			.875			
5)	Size of residuals						
٠,	Stand. root mean squared re	esidual (SRN	IR)	.038			
	Coefficient of determination		•	.844			
				• •			

Standardized factor loadings

Item descriptives

	_						Std.			Valid
Indicators *	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
extreg2	0.76	.005	0.75	0.77	extreg2	1.9	0.9	1	4	10901
extreg3	0.81	.005	0.80	0.82	extreg3	2.0	0.9	1	4	10830
extreg4	0.58	.008	0.56	0.59	extreg4	2.4	0.9	1	4	10841
extreg5	0.78	.005	0.77	0.79	extreg5	1.8	0.9	1	4	10827

^{*} Note: Items Extreg1 and Extreg6 Excluded to Improve Scale Quality

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
extreg2	2.11	-0.76	1.62	4.25
extreg3	2.55	-1.03	1.52	4.56
extreg4	1.28	-1.75	0.01	2.39
extreg5	2.34	-0.17	2.28	4.99

Scale: External motivation regulation (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 222	df 28	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	46	6	.000
Strong invariance (plus equal intercepts)	113	6	.000
Strict invariance (plus equal error variances)	35	6	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.998
French vs. Italian language version	.990
Italian vs. German language version	.996

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.998
Language: Italian	.997

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. extreg_fs 0.0 0.9 -1.4 2.5 10930 Share of cases with imputed missing values: 1.5% (Equivalence of scores from robust MLMV: CD = .999) (Equivalence of scores from two-step approach: CD = .977)

Scale: Classroom participation

Maths sample-split

Model and Fit Statistics

L)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	584	5	.000
	Baseline vs. saturated	28718	10	.000

2) Root mean squared error (RMSEA) .103 90% Confidence interval: lower bound .096 90% Confidence interval: upper bound .110 Probability RMSEA <= 0.05 .000

3)	Akaike's Information Criterion (AIC)	97128
	Bayesian Information Criterion (BIC)	97238

4) Baseline comparison

Comparative Fit Index (CFI)	.980
Tucker–Lewis Index (TLI)	.960

5) Size of residuals

Stand. root mean squared residual (SRMR)	.024
Coefficient of determination (CD)	.890

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.888
(Cronbach's alpha = .848)	
McDonald's Omega	.888

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

	Aujusteu eigenvalue	
Factor 1	2.95	
Factor 2	.02	
Factor 3	05	
Factor 4	11	
Factor 5	11	

Standardized factor loadings

Indicators	Coef.	(SE)	[95% Conf. interval]	
engage1	0.76	.005	0.75 0.77	
engage2	0.83	.004	0.82 0.84	
engage3	0.75	.005	0.74 0.76	
engage4	0.80	.004	0.79 0.81	
engage5	0.77	.005	0.76 0.78	

Item descriptives

		Std.			Valid
Indicators	Mean	dev.	Min.	Max.	Obs.
engage1	2.9	0.8	1	4	10897
engage2	2.9	0.7	1	4	10852
engage3	3.0	0.7	1	4	10907
engage4	3.0	0.8	1	4	10898
engage5	2.8	0.8	1	4	10829

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
engage1	2.22	-4.53	-1.82	2.06
engage2	2.82	-5.44	-2.01	3.03
engage3	2.14	-4.97	-2.11	1.89
engage4	2.51	-5.30	-2.40	2.21
engage5	2.28	-4.28	-1.30	3.10

Scale: Classroom participation (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	938	40	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	51	8	.000
Strong invariance (plus equal intercepts)	31	8	.000
Strict invariance (plus equal error variances)	149	8	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.997
French vs. Italian language version	.997
Italian vs. German language version	.999

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	.999

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. engage_fs 0.0 0.9 -2.7 1.9 10936

Share of cases with imputed missing values: 1.5% (Equivalence of scores from robust MLMV: CD = .996) (Equivalence of scores from two-step approach: CD = .984)

Scale: Performance-approach goals (SELLMO)

Maths sample-split

.834

Model and Fit Statistics

1)	Likelihood-ratio tests Model vs. saturated Baseline vs. saturated	chi2 620 17637	df 2 6	p > chi2 .000 .000	Ordinal Cronba (Cronbach's alph McDonald's Om	na = .804)
2)	Root mean squared error (I 90% Confidence interval: 1 90% Confidence interval: 1 Probability RMSEA <= 0.05	ower bound		.171 .159 .182 .000	Test of (one-)di Criterion: retain Factor 1	
3)	Akaike's Information Criter Bayesian Information Crite	• •		117025 117112	Factor 2 Factor 3 Factor 4	- - - -
4)	Baseline comparison Comparative Fit Index (CFI) Tucker–Lewis Index (TLI)			.965 .895		

Reliability and Dimensionality

(Cronbach's alpha = .804)	
McDonald's Omega	.837
Tast of (and Adiocensis mality)	احتيامهم امالمهم

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

Factor 1	2.16
Factor 2	.05
Factor 3	15
Factor 4	13

5) Size of residuals

Stand. root mean squared residual (SRMR)	.040
Coefficient of determination (CD)	.865

Standardized factor loadings Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
approxgoals1	0.74	.006	0.73	0.75	approxgoals1	2.8	1.2	1	5	10608
approxgoals2	0.84	.004	0.83	0.84	approxgoals2	2.5	1.2	1	5	10478
approxgoals3	0.57	.008	0.55	0.58	approxgoals3	3.3	1.1	1	5	10596
approxgoals4	0.84	.004	0.83	0.85	approxgoals4	2.7	1.2	1	5	10474

Scale: Performance-approach goals (SELLMO) (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 370	df 28	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	51	6	.000
Strong invariance (plus equal intercepts)	89	6	.000
Strict invariance (plus equal error variances)	76	6	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.999
French vs. Italian language version	.988
Italian vs. German language version	.985

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	.991

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. approxgoals_fs 0.0 0.8 -1.4 1.9 10628

Share of cases with imputed missing values: 1.8% (Equivalence of scores from robust MLMV: CD = .999)

Scale: Learning goal orientation (SELLMO)

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	396	2	.000
	Baseline vs. saturated	16559	6	.000
2)	Root mean squared error ((RMSEA)		.136
	90% Confidence interval:	lower bound		.125
	90% Confidence interval:	upper bound		.147
	Probability RMSEA <= 0.05			.000
3)	Akaike's Information Crite	rion (AIC)		113590
	Bayesian Information Crite	erion (BIC)		113677
4)	Baseline comparison			
	Comparative Fit Index (CFI)			.976
	Tucker–Lewis Index (TLI)			.929

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.839
(Cronbach's alpha = .808)	
McDonald's Omega	.839

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

Factor 1	2.15
Factor 2	01
Factor 3	15
Factor 4	13

5) Size of residuals

Stand. root mean squared residual (SRMR)	.028
Coefficient of determination (CD)	.841

Standardized factor loadings Item descriptives

	_				·		Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
learntarget1	0.74	.006	0.72	0.75	learntarget1	3.3	1.1	1	5	10637
learntarget2	0.76	.006	0.75	0.77	learntarget2	3.4	1.1	1	5	10481
learntarget3	0.73	.006	0.72	0.74	learntarget3	3.3	1.1	1	5	10606
learntarget4	0.78	.005	0.77	0.79	learntarget4	3.1	1.1	1	5	10485

Scale: Learning goal orientation (SELLMO) (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

chi2	df	p > chi2
887	28	.000
chi2	df	p > chi2
12	6	.072
421 254	6 6	.000
	887 chi2 12 421	887 28 chi2 df 12 6 421 6

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	1.000
French vs. Italian language version	.999
Italian vs. German language version	.998

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	1.000
Language: Italian	.997

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. learntarget_fs 0.0 0.7 -2.0 1.5 10649
Share of cases with imputed missing values: 1.8% (Equivalence of scores from robust MLMV: CD = .998)

Scale: Work avoidance (SELLMO)

Maths sample-split

Model and Fit Statistics

Reliability	/ and	Dimens	sionality	

1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronbach	n's Alpha	.747	
	Model vs. saturated	370	2	.000	(Cronbach's alpha	= .712)		
	Baseline vs. saturated	9625	6	.000	McDonald's Ome	ga	.750	
2)	Root mean squared error (l	RMSEA)		.131	Test of (one-)dim	ensionality (paral	lel analysis)	
	90% Confidence interval:	ower bound		.120	Criterion: retain fa	actors with adj. eig	envalue > o	
	90% Confidence interval:	upper bound		.143	Adjusted eigenvalue			
	Probability RMSEA <= 0.05			.000	Factor 1	1.59		
					Factor 2	02		
3)	Akaike's Information Criter	ion (AIC)		122140	Factor 3	09		
	Bayesian Information Crite	rion (BIC)		122227	Factor 4	22		
4)	Baseline comparison							
	Comparative Fit Index (CFI)			.962				
	Tucker–Lewis Index (TLI)			.885				
5)	Size of residuals							
	Stand. root mean squared re	esidual (SRMI	₹)	.033				
	Coefficient of determination	n (CD)		.761				

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
avoidwork1	0.53	.009	0.51	0.54	avoidwork1	2.9	1.1	1	5	10615
avoidwork2	0.70	.007	0.68	0.71	avoidwork2	3.1	1.1	1	5	10483
avoidwork3	0.67	.008	0.66	0.69	avoidwork3	3.2	1.2	1	5	10599
avoidwork₄	0.71	.007	0.70	0.72	avoidwork₄	3.1	1.1	1	5	10480

Scale: Work avoidance (SELLMO) (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 611	df 28	p > chi2
	011	20	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	11	6	.087
Strong invariance (plus equal intercepts)	282	6	.000
Strict invariance (plus equal error variances)	170	6	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.999
French vs. Italian language version	.989
Italian vs. German language version	.994

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.998
Language: Italian	.991

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. avoidwork_fs 0.0 0.5 -1.2 1.2 10637
Share of cases with imputed missing values: 1.8% (Equivalence of scores from robust MLMV: CD = .996)

Scale: Avoidance performance goals (SELLMO)

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	550	2	.000
	Baseline vs. saturated	20651	6	.000
2)	Root mean squared error ((RMSEA)		.160
	90% Confidence interval:	lower bound		.149
	90% Confidence interval:	upper bound		.172
	Probability RMSEA <= 0.05			.000
3)	Akaike's Information Crite	erion (AIC)		117023
	Bayesian Information Crit	erion (BIC)		117111
4)	Baseline comparison			
•	Comparative Fit Index (CFI)			.973
	Tucker–Lewis Index (TLI)			.920
,	c'			

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.866
(Cronbach's alpha = .830)	
McDonald's Omega	.867

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o
Adjusted eigenvalue

	,		
Factor 1		2.37	
Factor 2		.01	
Factor 3		09	
Factor 4		14	

5) Size of residuals

Stand. root mean squared residual (SRMR)	.027
Coefficient of determination (CD)	.877

Standardized factor loadings Item descriptives

	_				·		Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
avoidblame1	0.73	.005	0.72	0.74	avoidblame1	2.6	1.2	1	5	10594
avoidblame2	0.75	.005	0.74	0.76	avoidblame2	2.6	1.3	1	5	10496
avoidblame3	o.86	.004	0.85	0.87	avoidblame3	2.5	1.2	1	5	10604
avoidblame4	0.81	.005	0.80	0.81	avoidblame4	2.3	1.1	1	5	10509

Scale: Avoidance performance goals (SELLMO) (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 378	df 28	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	19	6	.004
Strong invariance (plus equal intercepts)	120	6	.000
Strict invariance (plus equal error variances)	161	6	.000
· · · · · · · · · · · · · · · · · · ·			

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.999
French vs. Italian language version	.997
Italian vs. German language version	1.000

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	1.000

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. avoidblame_fs 0.0 0.8 -1.2 2.1 10642
Share of cases with imputed missing values: 1.9% (Equivalence of scores from robust MLMV: CD = .998)

Scale: Global self-esteem

Baseline survey sample

Model and Fit Statistics

Reliability and Dimensionality

1)	Likelihood-ratio tests Model vs. saturated Baseline vs. saturated	chi2 20015 64288	df 20 28	p > chi2 .000 .000	Ordinal Cronbach (Cronbach's alpha McDonald's Ome	= .820)	.859 .852
2)	Root mean squared error (I	RMSEA)		.250		ensionality (paralle	-
	90% Confidence interval:	lower bound		.000	Criterion: Retain fa	actors with adj. eige	nvalue > o
	90% Confidence interval:	upper bound			Ac	djusted eigenvalue	
	Probability RMSEA <= 0.05			.000	factor 1	3.56	
					factor 2	1.12	
3)	Akaike's Information Criter	rion (AIC)		329588	factor 3	.07	
	Bayesian Information Crite	rion (BIC)		329772	factor 4	05	
					factor 5	09	
4)	Baseline comparison				factor 6	10	
	Comparative Fit Index (CFI)			.689	factor 7	12	
	Tucker-Lewis Index (TLI)			.564	factor 8	13	
5)	Size of residuals						
	Stand. root mean squared re	esidual (SRM	R)	.147			
	Coefficient of determination	n (CD)		.887			

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators *	Coef.	(SE)	[95% Conf	. interval]	Indicators *	Mean	dev.	Min.	Max.	Obs.
sele1	0.63	0.01	0.62	0.64	sele1	4.0	0.9	1	5	15991
sele2	0.51	0.01	0.49	0.52	sele2	4.1	0.8	1	5	15961
sele3	0.44	0.01	0.43	0.46	sele3	3.9	0.8	1	5	15957
sele4	0.49	0.01	0.48	0.51	sele4	3.8	1.0	1	5	15946
seld1	0.85	0.00	0.84	0.85	seldı	3.8	1.2	1	5	15972
seld3	0.75	0.00	0.74	0.75	seld3	3.2	1.2	1	5	15953
seld4	0.65	0.01	0.64	0.66	seld4	3.2	1.3	1	5	15902
seld5	0.80	0.00	0.79	0.81	seld5	4.0	1.2	1	5	15943

^{*} **Note:** Reversed categories for all seld-items

Tests and Indices of Factorial Invariance across ...

Equa	lity	of t	he
------	------	------	----

variance-covariance matrices across	Surve	guages	Survey settings			Survey modes			
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	5550	88	.000	693	44	.000	136	44	.000
Tests of measurement invariance across	. Surve	y lan	guages	Surv	ey set	tings	Sur	vey m	odes
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	85	14	.000	27	7	.000	38	7	.000
Strong invariance (plus equal intercepts)	3216	14	.000	618	7	.000	42	7	.000
Strict invariance (plus equal error variances)	415	14	.000	205	7	.000	25	7	.001
Configural factor similarity across	Survey langua		guages	Survey setti		tings S		Survey modes	
Tucker's congruence coefficient			TCC			TCC			TCC
	German vs. F French vs. It		.999 .998	classro unpro	om vs. ctored	.999	W	eb vs. PAP	.991
	Italian vs. Ge	rman	.996						
Factor score equivalence: group									
specific vs. invariant models for	Surve	y lan	guages	Surv	ey set	tings	Sur	vey m	odes
Coefficient of determination			CD			CD			CD
	Ge	rman	1.000	clas	sroom	1.000		web	1.000
	F	rench	.994	unpro	ctored	.998		PAP	.985

Italian

.989

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. sel_fs 0.0 0.5 -1.8 0.8 16003 Share of cases with imputed missing values: 1.2% (Equivalence of scores from Robust MLMV: CD = .997)

Scale: Global self-esteem (shortened)

Baseline survey sample

Model and Fit Statistics

Reliability and	d Dimensionality

1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronbach's Alph	na .852
	Model vs. saturated	17789	14	.000	(Cronbach's alpha = .809))
	Baseline vs. saturated	55337	21	.000	McDonald's Omega	.852
2)	Root mean squared error (F	RMSEA)		.282	Test of (one-)dimension	ality (parallel analysis)
	90% Confidence interval:	ower bound		.000	Criterion: Retain factors	with adj. eigenvalue > o
	90% Confidence interval: υ	pper bound			Adjusted	eigenvalue
	Probability RMSEA <= 0.05			.000	factor 1	3.24
					factor 2	.97
3)	Akaike's Information Criter	ion (AIC)		283054	factor 3	01
	Bayesian Information Crite	rion (BIC)		283215	factor 4	06
					factor 5	11
4)	Baseline comparison				factor 6	12
	Comparative Fit Index (CFI)			.679	factor 7	14
	Tucker-Lewis Index (TLI)			.518		
5)	Size of residuals					
	Stand. root mean squared re	sidual (SRM	R)	.133		
	Coefficient of determination	(CD)		.860		

Standardized factor loadings

Item descriptives

		-								
							Std.			Valid
Indicators *	Coef.	(SE)	[95% Conf	interval]	Indicators *	Mean	dev.	Min.	Max.	Obs.
sele1	0.77	0.00	0.76	0.78	sele1	4.0	0.9	1	5	15991
sele2	0.72	0.01	0.71	0.73	sele2	4.1	0.8	1	5	15961
sele3	0.67	0.01	0.66	0.68	sele3	3.9	0.8	1	5	15957
sele4	0.68	0.01	0.67	0.69	sele4	3.8	1.0	1	5	15946
seld1	0.66	0.01	0.64	0.67	seld1	3.8	1.2	1	5	15972
seld3	0.56	0.01	0.55	0.58	seld3	3.2	1.2	1	5	15953
seld5	0.63	0.01	0.62	0.64	seld5	4.0	1.2	1	5	15943

^{*} Note: Reversed categories for all seld-items

Parameters of generalized structural equation model (ordinal logit link)

Indicators Coef. Cut1 Cut2 Cut3

Tests and Indices of Factorial Invariance across ...

Equality of the	Equa	lity	of	the
-----------------	------	------	----	-----

variance-covariance matrices across	Survey	Survey languages			Survey settings			Survey modes		
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2	
	4643	70	.000	628	35	.000	125	35	.000	
Tests of measurement invariance across	Survey	land	quages	Surv	ey seti	tings	Sur	vey m	odes	
	chi2	df .		chi2	df	p > chi2	chi2	df	p > chi2	
Metric invariance (equal factor loadings)	130	12	.000	40	6	.000	12	6	.069	
Strong invariance (plus equal intercepts)	1838	12	.000	589	6	.000	52	6	.000	
Strict invariance (plus equal error variances)	320	12	.000	142	6	.000	15	6	.017	
Configural factor similarity across	Survey languages		guages	Survey settings		tings	Survey modes		odes	
Tucker's congruence coefficient	_		TCC		-	TCC		-	TCC	
	German vs. Fre		33		room vs.		W	eb vs. PAP	.996	
	French vs. Ital		.983	unpro	ctored			PAP		
	Italian vs. Gerr	nan	.966							
Factor score equivalence: group										
specific vs. invariant models for	Survey	lan	guages	Surv	ey set	tings	Sur	vey m	odes	
Coefficient of determination			CD			CD			CD	
	Gern	nan	.999	clas	sroom	.999		web	1.000	
	Fre	nch	.997	unpro	ctored	.991		PAP	.997	

Italian .826

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. sel_m_fs 0.0 0.6 $^{-2.7}$ 1.0 16003 Share of cases with imputed missing values: 1.0% (Equivalence of Scores from Robust MLMV: CD = .997)

Scale: Positive global self-esteem

Baseline survey sample

Model and Fit Statistics

L)	Likelihood-ratio tests	chi2	df	p > chi2	
	Model vs. saturated	329	2	.000	
	Baseline vs. saturated	26567	6	.000	

2)	Root mean squared error	(RMSEA)	.101
	90% Confidence interval:	lower bound	.092
	90% Confidence interval:	upper bound	.110
	Probability RMSEA <= 0.05	5	.000

3)	Akaike's Information Criterion (AIC)	140371
	Bayesian Information Criterion (BIC)	140463

4) Baseline comparison

Comparative Fit Index (CFI) .988
Tucker-Lewis Index (TLI) .963

5) Size of residuals

Stand. root mean squared residual (SRMR)	.018
Coefficient of determination (CD)	.856

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.848
(Cronbach's alpha = .801)	
McDonald's Omega	.849

Test of (one-)dimensionality (parallel analysis)

Criterion: Retain factors with adj. eigenvalue > o
Adjusted eigenvalue

	riajostea eigenvaloe	
factor 1	2.21	
factor 2	06	
factor 3	07	
factor 4	15	

Standardized factor loadings

Indicators	Coef.	(SE)	[95% Conf	. interval]
sele1	0.72	0.00	0.71	0.73
sele2	0.83	0.00	0.82	0.83
sele3	0.78	0.00	0.78	0.79
sele4	0.72	0.00	0.71	0.73

Item descriptives

			Std.			Valid
	Indicators	Mean	dev.	Min.	Max.	Obs.
	sele1	4.0	0.9	1	5	15991
	sele2	4.1	0.8	1	5	15961
	sele3	3.9	0.8	1	5	15957
	sele4	3.8	1.0	1	5	15946

Tests and Indices of Factorial Invariance across ...

Equa	lity	of	the	
------	------	----	-----	--

variance-covariance matrices across	Survey languages		Survey settings		Survey modes				
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	1803	28	.000	346	14	.000	35	14	.002
Tests of measurement invariance across	Surve	y lan	guages	Surv	ey set	tings	Sur	vey m	odes
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	21	6	.002	11	3	.013	1	3	.769
Strong invariance (plus equal intercepts)	1214	6	.000	140	3	.000	8	3	.052
Strict invariance (plus equal error variances)	216	6	.000	123	3	.000	10	3	.017
Configural factor similarity across	Surve	y lan	guages	Surv	ey set	tings	Sur	vey m	odes
Tucker's congruence coefficient			TCC			TCC			TCC
	German vs. Fr	rench	1.000	classro	om vs.	1.000	W	eb vs.	1.000
	French vs. It	alian	.998	unpro	ctored	1.000		PAP	1.000
	Italian vs. Ge	rman	.997						
Factor score equivalence: group									
specific vs. invariant models for	Surve	y lan	guages	Surv	ey set	tings	Sur	vey m	odes
Coefficient of determination			CD			CD			CD
	Ger	man	1.000	clas	sroom	1.000		web	1.000
	Fr	rench	.998	unpro	ctored	1.000		PAP	1.000

Italian

.992

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. sele_fs 0.0 0.6 $^{-2.5}$ 0.9 15997 Share of cases with imputed missing values: 0.6% (Equivalence of scores from robust MLMV: CD = .996)

Scale: Negative global self-esteem

Baseline survey sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	712	2	.000
	Baseline vs. saturated	31810	6	.000
2)	Root mean squared error (.149
	90% Confidence interval:	lower bound		.140
	90% Confidence interval:	upper bound		.158
	Probability RMSEA <= 0.05			.000
3)	Akaike's Information Crite	rion (AIC)		175983
	Bayesian Information Crite	erion (BIC)		176075
4)	Baseline comparison			
	Comparative Fit Index (CFI)			.978
	Tucker-Lewis Index (TLI)			.933
۲)	Size of residuals			

Reliability and Dimensionality

Ordinal Cronbach's Alpha			
(Cronbach's alpha = .824)			
McDonald's Omega	.868		

Test of (one-)dimensionality (parallel analysis)

Criterion: Retain factors with adj. eigenvalue > o Adjusted eigenvalue

factor 1	2.39
factor 2	.02
factor 3	13
factor 4	12

5) Size of residuals

Stand. root mean squared residual (SRMR)	.028
Coefficient of determination (CD)	.887

Standardized factor loadings Item descriptives

	J				•		Std.			Valid
Indicators *	Coef.	(SE)	[95% Conf	. interval]	Indicators *	Mean	dev.	Min.	Max.	Obs.
seld1	0.88	0.00	0.88	0.89	seld1	3.8	1.2	1	5	15972
seld3	0.79	0.00	0.78	0.80	seld3	3.2	1.2	1	5	15953
seld4	0.67	0.01	0.66	0.68	seld4	3.2	1.3	1	5	15902
seld5	0.80	0.00	0.80	0.81	seld5	4.0	1.2	1	5	15943

^{*} Note: Reversed Item Categories

Tests and Indices of Factorial Invariance across ...

Equa	lity	of t	he
------	------	------	----

variance-covariance matrices across	Survey languages			Surv	tings	Survey modes			
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	4554	28	.000	140	14	.000	59	14	.000
Tests of measurement invariance across	Survey	/ lan	guages	Surv	ey set	tings	Sur	vey m	odes
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	107	6	.000	4	3	.235	7	3	.064
Strong invariance (plus equal intercepts)	2496	6	.000	86	3	.000	27	3	.000
Strict invariance (plus equal error variances)	355	6	.000	1	3	.707	7	3	.089
Configural factor similarity across	Survey	/ lan	guages	Survey settings			Survey modes		
Tucker's congruence coefficient			TCC			TCC			TCC
	German vs. Fre French vs. Ita	-	.997 1.000	classro unpro	om vs. ctored	1.000	W	eb vs. PAP	.998
	Italian vs. Ger	man	.998						
Factor score equivalence: group									
specific vs. invariant models for	Survey	/ lang	guages	Surv	ey set	tings	Sur	vey m	odes
Coefficient of determination			CD			CD			CD
	Gerr	man	1.000	clas	sroom	1.000		web	1.000
	Fre	ench	.990	unpro	ctored	1.000		PAP	.999

Italian

.980

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. seld_fs 0.0 1.0 -2.6 1.3 15995 Share of cases with imputed missing values: 0.9% (Equivalence of scores from robust MLMV: CD = .993)

Scale: Negative global self-esteem (shortened)

Baseline survey sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	23184	3	.000

2) Root mean squared error (RMSEA) .ooo
90% Confidence interval: lower bound .ooo
90% Confidence interval: upper bound .ooo
Probability RMSEA <= 0.05 1.000

3) Akaike's Information Criterion (AIC) 130616 Bayesian Information Criterion (BIC) 130685

4) Baseline comparison

Comparative Fit Index (CFI) 1.000
Tucker-Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR) .000
Coefficient of determination (CD) .885

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.863
(Cronbach's alpha = .816)	
McDonald's Omega	.865

Test of (one-)dimensionality (parallel analysis)

Criterion: Retain factors with adj. eigenvalue > o
Adjusted eigenvalue

	rajostea eigenvaloe	
factor 1	1.90	
factor 2	08	
factor 3	14	

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators *	Coef.	(SE)	[95% Conf	. interval]	Indicators *	Mean	dev.	Min.	Max.	Obs.
seld1	0.91	0.00	0.90	0.91	seld1	3.8	1.2	1	5	15972
seld3	0.80	0.00	0.79	0.80	seld3	3.2	1.2	1	5	15953
seld5	0.77	0.00	0.76	0.78	seld5	4.0	1.2	1	5	15943

^{*} Note: Reversed Item Categories

Parameters of generalized structural equation model (ordinal logit link)

Indicators Coef. Cut1 Cut2 Cut3

Tests and Indices of Factorial Invariance across ...

Equal	lity o	f the

variance-covariance matrices across	Survey languages			Surv	tings	Survey modes			
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	2872	18	.000	104	9	.000	53	9	.000
Tests of measurement invariance across	Surve	y lan	guages	Surv	ey set	tings	Sur	vey m	odes
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	61	4	.000	1	2	.749	6	2	.061
Strong invariance (plus equal intercepts)	1218	4	.000	62	2	.000	26	2	.000
Strict invariance (plus equal error variances)	27	4	.000	1	2	.511	5	2	.087
Configural factor similarity across	Surve	y lan	guages	Survey settings			Survey modes		
Tucker's congruence coefficient			TCC			TCC			TCC
	German vs. Fi		.998	classro		1.000	W	eb vs.	.998
	French vs. It	alian	1.000	unpro	ctored			PAP	-55-
	Italian vs. Ge	rman	.998						
Factor score equivalence: group									
specific vs. invariant models for	Surve	y lan	guages	Surv	ey set	tings	Sur	vey m	odes
Coefficient of determination			CD			CD			CD
	Ger	man	.999	clas	sroom	1.000		web	1.000
	Fi	rench	.989	unpro	ctored	1.000		PAP	.997

Italian

.980

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. seld_m_fs 0.0 1.0 -2.6 1.2 15994 Share of cases with imputed missing values: 0.5% (Equivalence of Scores from Robust MLMV: CD = .999)

Scale: General perceived self-efficacy scale (GSES)

chi2

df

p > chi2

Baseline survey sample

Model and Fit Statistics

1) Likelihood-ratio tests

Ordinal Cronbach's Alpha	.835
(Cronbach's alpha = .772)	

Reliability and Dimensionality

-,				P
	Model vs. saturated	63	2	.000
	Baseline vs. saturated	23581	6	.000

McDonald's Omega .835

2)	Root mean squared error	(RMSEA)	.044
	90% Confidence interval:	lower bound	.035
	90% Confidence interval:	upper bound	.053
	Probability RMSEA <= 0.0	.847	

Test of (one-)dimensionality (parallel analysis) Criterion: Retain factors with adj. eigenvalue > o Adjusted eigenvalue

2.10
08
12

3) Akaike's Information Criterion (AIC) 104477 **Bayesian Information Criterion (BIC)** 104569 factor 4 -.13

4) Baseline comparison

Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)

.997

.992

5) Size of residuals

Stand. root mean squared residual (SRMR) .009 Coefficient of determination (CD) .836

Standardized factor loadings

l+om	dacer	riptives
iteiii	uesci	ipuves

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
seef1	0.73	0.00	0.72	0.74	seef1	3.1	0.6	1	4	15941
seef2	0.77	0.00	0.76	0.78	seef2	3.1	0.7	1	4	15928
seef3	0.76	0.00	0.75	0.77	seef3	2.8	0.7	1	4	15916
seef4	0.73	0.00	0.72	0.74	seef4	3.0	0.7	1	4	15923

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
seef1	2.04	-6.05	-3.17	2.22
seef2	2.28	-6.20	-2.91	1.82
seef3	2.14	-5.09	-1.43	2.66
seef4	2.03	-5.56	-2.00	2.27

Tests and Indices of Factorial Invariance across ...

Equal	lity o	f the

variance-covariance matrices across	Surve	y lang	guages	Surv	ey set	tings	Sur	vey m	odes
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	1049	28	.000	104	14	.000	24	14	.044
Tests of measurement invariance across	Surve	y lang	guages	Surv	ey set	tings	Sur	vey m	odes
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	47	6	.000	1	3	.763	4	3	.252
Strong invariance (plus equal intercepts)	448	6	.000	10	3	.018	2	3	.652
Strict invariance (plus equal error variances)	230	6	.000	12	3	.008	4	3	.303
Configural factor similarity across	Survey languages		guages	Survey settings			Survey modes		odes
Tucker's congruence coefficient			TCC	TCC classroom vs.		TCC			TCC
	German vs. Fr	ench	.998			1.000	web vs.		000
	French vs. Ita	alian	.995	unpro	ctored	1.000		PAP	.999
	Italian vs. Ger	man	.996						
Factor score equivalence: group									
specific vs. invariant models for	Surve	y lang	guages	Survey settings		tings	Sur	vey m	odes
Coefficient of determination			CD			CD			CD
	Ger	man	1.000	clas	sroom	1.000		web	1.000
	Fr	ench	.997	unpro	ctored	1.000		PAP	.999

Italian

.993

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. seef_fs 0.0 0.9 -3.0 1.8 15951 Share of cases with imputed missing values: 0.4% (Equivalence of scores from robust MLMV: CD = .996) (Equivalence of Scores from Two-Step-Approach: CD = .989)

Scale: Academic self-efficacy

Full AES sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	32752	3	.000
2)	Root mean squared error ((RMSEA)		.000
	90% Confidence interval:	lower bound		.000
	90% Confidence interval:	upper bound		.000
	Probability RMSEA <= 0.05			1.000
3)	Akaike's Information Crite	• •		179405
	Bayesian Information Crit	erion (BIC)		179477
4)	Baseline comparison			
	Comparative Fit Index (CFI)			1.000
	Tucker–Lewis Index (TLI)			1.000

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.868
(Cronbach's alpha = .836)	
McDonald's Omega	.869

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o
Adjusted eigenvalue

	,	5
Factor 1		1.92
Factor 2		11
Factor 3		13

5) Size of residuals

Stand. root mean squared residual (SRMR) .000 Coefficient of determination (CD) .874

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
acaself1	0.81	.003	0.80	0.81	acaself1	4.7	1.1	1	6	22256
acaself2	0.87	.003	0.87	0.88	acaself2	4.1	1.2	1	6	22248
acaself3	0.81	.003	0.80	0.81	acaself3	4.3	1.2	1	6	22252

Scale: Academic self-efficacy (continued)

Full AES sample

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 774	df 18	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	77	4	.000
Strong invariance (plus equal intercepts)	250	4	.000
Strict invariance (plus equal error variances)	318	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.998
French vs. Italian language version	.998
Italian vs. German language version	.996

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	.989

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. acaself_fs 0.0 0.8 $^{-2.7}$ 1.4 22264 Share of cases with imputed missing values: 0.1% (Equivalence of scores from robust MLMV: CD = .999)

Scale: Academic self-concept (PISA2000)

Full AES sample

Model and Fit Statistics

Reliability and Dimensionality

					•	•	
1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronbach	n's Alpha	.856
	Model vs. saturated	0	0		(Cronbach's alpha	= .795)	
	Baseline vs. saturated	31794	3	.000	McDonald's Ome	ga	.860
2)	Root mean squared error	(RMSEA)		.000	Test of (one-)dime	ensionality (paral	lel analysis)
	90% Confidence interval: I	lower bound		.000	Criterion: retain fa	actors with adj. ei	genvalue > o
	90% Confidence interval: 1	upper bound		.000	Ad	djusted eigenvalu	ie
	Probability RMSEA <= 0.05	-)		1.000	Factor 1 1.89		
					Factor 2	08	
3)	Akaike's Information Crite	erion (AIC)		111791	Factor 3	14	
	Bayesian Information Crit	terion (BIC)		111863			
4)	Baseline comparison						
	Comparative Fit Index (CFI))		1.000			
	Tucker–Lewis Index (TLI)			1.000			
5)	Size of residuals						
-	Stand. root mean squared	residual (SRM	1R)	.000			
	Coefficient of determination		•	.884			
				•			

Standardized factor loadings

Item	descriptives	
------	--------------	--

							Std.			Valid
Indicators *	Coef.	(SE)	[95% Conf.	. interval]	Indicators *	Mean	dev.	Min.	Max.	Obs.
scacad1	0.70	.004	0.70	0.71	scacad1	2.9	0.7	1	4	22202
scacad2	0.89	.003	0.89	0.90	scacad2	2.9	0.7	1	4	22175
scacad3	0.85	.003	0.84	0.86	scacad3	2.9	0.7	1	4	22168

^{*} Note: Replication of 'Scacad'-Scale from TREE1 / PISA2000

Parameters of generalized structural equation model (ordinal logit link)

. arameters or ge	c. azca sc.	occo.a. co	1000.0	ac. (0. a
Indicators	Coef.	Cut1	Cut ₂	Cut ₃
scacad1	1.87	-4.54	-1.94	2.37
scacad2	3.96	-7.57	-2.86	3.92
scacada	3.05	-6.36	-2.61	2.7.1

Scale: Academic self-concept (PISA2000) (continued)

Full AES sample

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	1571	18	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	76	4	.000
Strong invariance (plus equal intercepts)	768	4	.000
Strict invariance (plus equal error variances)	427	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.998
French vs. Italian language version	.999
Italian vs. German language version	1.000

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	.999
Language: French	.987
Language: Italian	.996

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. scacad_fs 0.0 0.9 -2.5 1.7 22210 Share of cases with imputed missing values: 0.3% (Equivalence of scores from robust MLMV: CD = .997) (Equivalence of scores from two-step approach: CD = .986)

Scale: Verbal self-concept (PISA2000)

Full AES sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	32226	3	.000
2)	Root mean squared error	(RMSEA)		.000
	90% Confidence interval:	lower bound		.000
	90% Confidence interval:	upper bound		.000
	Probability RMSEA <= 0.05			1.000
۵۱	Alcaileala Information Crite	wien (AIC)		429062
3)	Akaike's Information Crite	, ,		128063
	Bayesian Information Crit	erion (BIC)		128135
(۱	Raseline comparison			

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.856
(Cronbach's alpha = .795)	
McDonald's Omega	.861

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o
Adjusted eigenvalue

Factor 1	1.90
Factor 2	08
Factor 3	14

4) Baseline comparison

Comparative Fit Index (CFI)	1.000
Tucker–Lewis Index (TLI)	1.000

5) Size of residuals

Stand. root mean squared residual (SRMR)	.000
Coefficient of determination (CD)	.888

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators *	Coef.	(SE)	[95% Conf	. interval]	Indicators *	Mean	dev.	Min.	Max.	Obs.
scverb1 **	0.70	0.00	0.69	0.70	scverb1 **	3.2	0.8	1	4	22196
scverb2	0.90	0.00	0.89	0.90	scverb2	2.8	0.8	1	4	22173
scverb3	o.86	0.00	0.85	o.86	scverb3	2.9	0.8	1	4	22171

^{*} Note: Replication of 'Scverb'-Scale from TREE1 / PISA2000

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
scverb1	1.84	-4.49	-2.24	0.34
scverb2	3.52	-6.01	-1.79	3.39
scverb3	2.89	-5.94	-2.37	2.79

^{**} Note: Reversed Categories for Item Scverb1

Scale: Verbal self-concept (PISA2000) (continued)

Full AES sample

Tests and Indices of Factorial Invariance across Survey Languages

chi2	df	p > chi2
621	18	.000
chi2	df	p > chi2
30	4	.000
58	4	.000
215	4	.000
	621 chi2 30 58	621 18 chi2 df 30 4 58 4

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	1.000
French vs. Italian language version	.989
Italian vs. German language version	.986

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.998
Language: Italian	.998

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. scverb_fs 0.0 0.9 -2.4 1.6 22205

Share of cases with imputed missing values: 0.3% (Equivalence of scores from robust MLMV: CD = .999) (Equivalence of scores from two-step approach: CD = .988)

Scale: Maths self-concept [PISA 2000]

Full AES sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	57824	3	.000

Ordinal Cronbach's Alpha .927 (Cronbach's alpha = .888) McDonald's Omega .930

Reliability and Dimensionality

2) Root mean squared error (RMSEA) .000 90% Confidence interval: lower bound .000 90% Confidence interval: upper bound .000 Probability RMSEA <= 0.05 1.000

Test of (one-)dimensionality (parallel analysis)
Criterion: retain factors with adj. eigenvalue > o

	Adjusted eigenvalue
Factor 1	2.38
Factor 2	01
Factor 3	08

3)	Akaike's Information Criterion (AIC)	134733
	Bayesian Information Criterion (BIC)	134805

4) Baseline comparison

Comparative Fit Index (CFI)	1.000
Tucker–Lewis Index (TLI)	1.000

5) Size of residuals

Stand. root mean squared residual (SRMR)	.000
Coefficient of determination (CD)	.980

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators *	Coef.	(SE)	[95% Conf	. interval]	Indicators *	Mean	dev.	Min.	Max.	Obs.
matcon1	0.90	.002	0.90	0.90	matcon1	2.7	0.9	1	4	22183
matcon2	0.99	.001	0.99	0.99	matcon2	2.4	1.1	1	4	22187
matcon3	0.82	.002	0.81	0.82	matcon3	2.4	1.0	1	4	22180

^{*} Note: Replication of 'Matcon'-Scale from TREE1 / PISA2000

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
matcon1	3.38	-4.50	-1.06	2.95
matcon ₂	4.96	-3.20	0.21	4.25
matcon ₃	2.40	-2.30	0.21	2.53

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2	
	937	18	.000	
Tests of measurement invariance	chi2	df	p > chi2	
Metric invariance (equal factor loadings)	335	4	.000	
Strong invariance (plus equal intercepts)	47	4	.000	
Strict invariance (plus equal error variances)	241	2	.000	
Configural factor similarity				
Tucker's Congruence Coefficient	TCC			
German vs. French language version	.998			
French vs. Italian language version	.997			
Italian vs. German language version	.999			
Factor score equivalence: group specific vs. in	variant mode	ls		
Coefficient of determination	CD			
Language: German	1.000			
Language: French	1.000			
Language: Italian	1.000			

* Note: Language-specific models do not converge and the related invariance tests and indices may not be

Factor score descriptives

Std.

calculated unless the error variance of item matcon2 is constrained to zero.

Variable name Mean dev. Min. Max. Obs. matcon_fs 0.0 1.0 -1.7 1.6 22193

Share of cases with imputed missing values: 0.1% (Equivalence of scores from robust MLMV: CD = .967) (Equivalence of scores from two-step approach: CD = .899)

Scale: ICT self-concept

Maths sample-split

Model and Fit Statistics

1) Likelihood-ratio tests

Model vs. saturated

Baseline vs. saturated

Ordinal Cronbach's Alpha	.896
(Cronbach's alpha = .849)	
McDonald's Omega	.898

Reliability and Dimensionality

2) Root mean squared error (RMSEA) .000
90% Confidence interval: lower bound .000
90% Confidence interval: upper bound .000
Probability RMSEA <= 0.05 1.000

chi2

0

20861

df

p > chi2

.000

Test of (one-)dimensionality (parallel analysis) Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

Akaike's Information Criterion (AIC) 68148
Bayesian Information Criterion (BIC) 68214

 Factor 1
 2.12

 Factor 2
 -.08

 Factor 3
 -.10

4) Baseline comparison

Comparative Fit Index (CFI) 1.000
Tucker–Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR) .000
Coefficient of determination (CD) .912

Standardized factor loadings

Item	descri	ptives
		P

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf.	interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
ictmot6	0.78	.004	0.77	0.79	ictmot6	2.9	0.9	1	4	11064
ictmot7	0.90	.003	0.89	0.90	ictmot7	2.2	0.9	1	4	11057
ictmot8	0.91	.003	0.90	0.91	ictmot8	2.4	0.9	1	4	11058

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
ictmot6	2.31	-4.15	-1.43	1.80
ictmot7	3.82	-2.56	1.99	5.06
ictmot8	4.06	-3.74	0.04	4.72

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	628	18	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	82	4	.000
Strong invariance (plus equal intercepts)	47	4	.000
Strict invariance (plus equal error variances)	170	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.996
French vs. Italian language version	.987
Italian vs. German language version	.997

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	.996

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. ictabil_fs 0.0 0.9 -1.8 1.8 11067

Share of cases with imputed missing values: 0.2% (Equivalence of scores from robust MLMV: CD = .997) (Equivalence of scores from two-step approach: CD = .989)

Scale: Specific self-efficacy: numeracy

Full AES sample

Model and Fit Statistics

Reliability and Dimensionality

					•	•
1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronbach's Alph	a .851
	Model vs. saturated	536	2	.000	(Cronbach's alpha = .831)	
	Baseline vs. saturated	36814	6	.000	McDonald's Omega	.852
2)	Root mean squared error (RMSEA)		.110	Test of (one-)dimensiona	ality (parallel analysis)
	90% Confidence interval:	lower bound	l	.103	Criterion: retain factors w	ith adj. eigenvalue > o
	90% Confidence interval:	upper bound	t	.118	Adjusted (eigenvalue
	Probability RMSEA <= 0.05			.000	Factor 1	2.23
					Factor 2	05
3)	Akaike's Information Crite	rion (AIC)		196455	Factor 3	08
	Bayesian Information Crite	erion (BIC)		196551	Factor 4	16
4)	Baseline comparison					
	Comparative Fit Index (CFI)			.985		
	Tucker–Lewis Index (TLI)			.956		
5)	Size of residuals					
	Stand. root mean squared re		1R)	.020		
	Coefficient of determination	n (CD)		.854		

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
selfeffoı	0.77	.004	0.76	0.77	selfeffoı	3.3	0.9	1	4	21801
selfeffo2	0.77	.004	0.76	0.78	selfeffo2	3.0	0.9	1	4	21827
selfeffo3	0.80	.003	0.79	0.81	selfeffo3	2.8	0.9	1	4	10734
selfeffo4	0.73	.004	0.72	0.74	selfeffo4	2.7	0.9	1	4	10755

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
selfeffo1	2.35	-4.76	-2.62	-0.16
selfeffo2	2.38	-4.13	-1.77	1.07
selfeffo3	3.03	-5.40	-1.83	2.94
selfeffo/	2.27	-/12	-1.00	2./.0

Scale: Specific self-efficacy: numeracy (continued)

Full AES sample

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	651	28	.000
-	1 .	10	1.5
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	72	6	.000
Strong invariance (plus equal intercepts)	85	6	.000
Strict invariance (plus equal error variances)	33	6	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.998
French vs. Italian language version	.998
Italian vs. German language version	1.000

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.998
Language: Italian	1.000

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. selfeffa_fs 0.0 0.9 -2.4 1.6 21881
Share of cases with imputed missing values: 51.2% (Equivalence of scores from robust MLMV: CD = .995) (Equivalence of scores from two-step approach: CD = .976)

Scale: Specific self-efficacy: algebra

Full AES sample

Model and Fit Statistics

Reliability and Dimensionality

					,	,
1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronbach's	Alpha .947
	Model vs. saturated	3889	2	.000	(Cronbach's alpha = .	926)
	Baseline vs. saturated	92426	6	.000	McDonald's Omega	.948
2)	Root mean squared error (I	RMSEA)		.298	Test of (one-)dimen	sionality (parallel analysis)
	90% Confidence interval:	lower bound		.290	Criterion: retain facto	ors with adj. eigenvalue > o
	90% Confidence interval:	upper bound		.306	Adju	sted eigenvalue
	Probability RMSEA <= 0.05			.000	Factor 1	3.24
					Factor 2	.07
3)	Akaike's Information Criter	rion (AIC)		147967	Factor 3	06
	Bayesian Information Crite	rion (BIC)		148063	Factor 4	06
4)	Baseline comparison					
	Comparative Fit Index (CFI)			.958		
	Tucker–Lewis Index (TLI)			.874		
5)	Size of residuals					
٠,	Stand. root mean squared re	esidual (SRMI	R)	.026		
	Coefficient of determination		•	.957		
		· /		-551		

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
selfeffo5	0.86	.002	0.86	0.87	selfeffo5	3.3	0.9	1	4	21809
selfeffo6	0.95	.001	0.95	0.96	selfeffo6	3.0	1.0	1	4	21794
selfeffo7	0.88	.002	0.88	0.89	selfeffo7	2.8	1.0	1	4	10747
selfeffo8	0.92	.001	0.92	0.93	selfeffo8	3.2	0.9	1	4	10730

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
selfeffo5	3.39	-5.99	-3.58	-0.95
selfeffo6	8.35	-11.55	-5.35	1.58
selfeffo7	4.65	-6.43	-2.51	1.99
selfeffo8	5.99	-9.89	-5.56	-0.57

Scale: Specific self-efficacy: algebra (continued)

Full AES sample

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 506	df 28	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	17	6	.010
Strong invariance (plus equal intercepts)	116	6	.000
Strict invariance (plus equal error variances)	238	6	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	1.000
French vs. Italian language version	1.000
Italian vs. German language version	1.000

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	1.000
Language: Italian	.998

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. selfeffb_fs -0.1 0.9 -2.2 1.1 21872 Share of cases with imputed missing values: 51.2% (Equivalence of scores from robust MLMV: CD = .998) (Equivalence of scores from two-step approach: CD = .957)

Scale: Specific self-efficacy: geometry

Full AES sample

Model and Fit Statistics

Reliability and Dimensionality

1) Likelihood-ratio tests chi2 df p > chi2 Ordinal Cronbach's Alpha .823 Model vs. saturated 229 2 .000 (Cronbach's alpha = .803) Baseline vs. saturated 30977 6 .000 McDonald's Omega .825 2) Root mean squared error (RMSEA) .072 Test of (one-)dimensionality (parallel analysis) go% Confidence interval: lower bound .064 Criterion: retain factors with adj. eigenvalue > 0 go% Confidence interval: upper bound .080 Adjusted eigenvalue > 0 Probability RMSEA <= 0.05 Factor 1 2.05 Factor 207 3) Akaike's Information Criterion (AIC) 203347 Factor 309 Bayesian Information Criterion (BIC) 203443 Factor 416 4) Baseline comparison Comparative Fit Index (CFI) .993 Tucker-Lewis Index (TLI) .978 5) Size of residuals Stand. root mean squared residual (SRMR) .015 Coefficient of determination (CD) .836	Model and Fit Statistics					Reliability and Dimensionality		
Baseline vs. saturated 30977 6 .000 McDonald's Omega .825 2) Root mean squared error (RMSEA) .072 Test of (one-)dimensionality (parallel analysis) 90% Confidence interval: lower bound 90% Confidence interval: upper bound .080 Adjusted eigenvalue > 0 Probability RMSEA <= 0.05 .000 Factor 1 2.05 Factor 207 3) Akaike's Information Criterion (AIC) 203347 Factor 309 Bayesian Information Criterion (BIC) 203443 Factor 416 4) Baseline comparison Comparative Fit Index (CFI) .993 Tucker-Lewis Index (TLI) .978 5) Size of residuals Stand. root mean squared residual (SRMR) .015	1)		-		•		•	.823
2) Root mean squared error (RMSEA) 90% Confidence interval: lower bound 90% Confidence interval: upper bound Probability RMSEA <= 0.05 Akaike's Information Criterion (AIC) Bayesian Information Criterion (BIC) Comparative Fit Index (CFI) Tucker-Lewis Index (TLI) Size of residuals Stand. root mean squared error (RMSEA) 907 Test of (one-)dimensionality (parallel analysis) Criterion: retain factors with adj. eigenvalue > 0 Adjusted eigenvalue Probability RMSEA <= 0.05 Factor 1 2.05 Factor 207 Factor 309 Factor 309 Factor 416			229		.000	· ·	<u>.</u>	
90% Confidence interval: lower bound 90% Confidence interval: upper bound .o80 Adjusted eigenvalue > 0 Adjusted eigenvalue Probability RMSEA <= 0.05 .o00 Factor 1 2.05 Factor 207 3) Akaike's Information Criterion (AIC) 203347 Factor 309 Bayesian Information Criterion (BIC) 203443 Factor 416 4) Baseline comparison Comparative Fit Index (CFI) .993 Tucker-Lewis Index (TLI) .978 5) Size of residuals Stand. root mean squared residual (SRMR) .o15		Baseline vs. saturated	30977	6	.000	McDonald's Ome	ga	.825
90% Confidence interval: upper bound .080 Adjusted eigenvalue Probability RMSEA <= 0.05 .000 Factor 1 2.05 Factor 207 3) Akaike's Information Criterion (AIC) 203347 Factor 309 Bayesian Information Criterion (BIC) 203443 Factor 416 4) Baseline comparison Comparative Fit Index (CFI) .993 Tucker-Lewis Index (TLI) .978 5) Size of residuals Stand. root mean squared residual (SRMR) .015	2) Root mean squared error (RMSEA) .072					Test of (one-)dimensionality (parallel analysis)		
Probability RMSEA <= 0.05 Probability RMSEA <= 0.05 Akaike's Information Criterion (AIC) Bayesian Information Criterion (BIC) Baseline comparison Comparative Fit Index (CFI) Tucker-Lewis Index (TLI) Size of residuals Stand. root mean squared residual (SRMR) .000 Factor 1 2.05 Factor 207 Factor 309 Factor 309 Factor 416 Size of residuals Stand. root mean squared residual (SRMR) .015		90% Confidence interval:	lower bound		.064	Criterion: retain fa	ctors with adj. eige	nvalue > o
Factor 207 Akaike's Information Criterion (AIC) 203347 Factor 309 Bayesian Information Criterion (BIC) 203443 Factor 416 Baseline comparison Comparative Fit Index (CFI) .993 Tucker-Lewis Index (TLI) .978 Size of residuals Stand. root mean squared residual (SRMR) .015		90% Confidence interval:	upper bound		.080	Ac	ljusted eigenvalue	
Akaike's Information Criterion (AIC) Bayesian Information Criterion (BIC) Akaike's Information Criterion (BIC) 203347 Factor 30916 Baseline comparison Comparative Fit Index (CFI) Tucker—Lewis Index (TLI) 5) Size of residuals Stand. root mean squared residual (SRMR) .015		Probability RMSEA <= 0.05			.000	Factor 1	2.05	
Bayesian Information Criterion (BIC) 203443 Factor 416 4) Baseline comparison Comparative Fit Index (CFI) Tucker–Lewis Index (TLI) 5) Size of residuals Stand. root mean squared residual (SRMR) .015						Factor 2	07	
4) Baseline comparison Comparative Fit Index (CFI) .993 Tucker–Lewis Index (TLI) .978 5) Size of residuals Stand. root mean squared residual (SRMR) .015	3)	Akaike's Information Criter	rion (AIC)		203347	Factor 3	09	
Comparative Fit Index (CFI) .993 Tucker–Lewis Index (TLI) .978 5) Size of residuals Stand. root mean squared residual (SRMR) .015		Bayesian Information Crite	erion (BIC)		203443	Factor 4	16	
Tucker–Lewis Index (TLI) .978 5) Size of residuals Stand. root mean squared residual (SRMR) .015	4)	Baseline comparison						
5) Size of residuals Stand. root mean squared residual (SRMR) .015		Comparative Fit Index (CFI)			.993			
Stand. root mean squared residual (SRMR) .015		Tucker–Lewis Index (TLI)			.978			
Stand. root mean squared residual (SRMR) .015	5)	Size of residuals						
•	3.	Stand. root mean squared re	esidual (SRM	R)	.015			
		•		•	.836			

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
selfeffo9	0.81	.004	0.80	0.81	selfeffo9	3.3	0.9	1	4	10752
selfeff10	0.76	.004	0.75	0.76	selfeff10	3.2	0.9	1	4	21783
selfeff11	0.75	.004	0.74	0.75	selfeff11	3.0	1.0	1	4	21802
selfeff12	0.63	.005	0.62	0.64	selfeff12	2.6	0.9	1	4	10751

Parameters of generalized structural equation model (ordinal logit link)

				•
Indicators	Coef.	Cut1	Cut ₂	Cut ₃
selfeffo9	3.22	-6.78	-3.69	-0.03
selfeff10	2.24	-4.55	-2.29	0.17
selfeff11	2.15	-3.88	-1.49	0.85
selfeff12	1.75	-3.32	-0.62	2.77

Scale: Specific self-efficacy: geometry (continued)

Full AES sample

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	3499	28	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	59	6	.000
Strong invariance (plus equal intercepts)	2400	6	.000
Strict invariance (plus equal error variances)	320	6	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.999
French vs. Italian language version	.997
Italian vs. German language version	.993

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.993
Language: Italian	.988

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. selfeffc_fs 0.0 0.9 -2.5 1.5 21875

Share of cases with imputed missing values: 51.3% (Equivalence of scores from robust MLMV: CD = .995) (Equivalence of scores from two-step approach: CD = .965)

Scale: Specific self-efficacy: probability

Full AES sample

Model and Fit Statistics

Reliability and Dimensionality

IVIC	odei and Fit Statistics				Reliability and	Dimensionality		
1)	Likelihood-ratio tests Model vs. saturated	chi2 1326	df 2	p > chi2 .000	Ordinal Cronbac (Cronbach's alpha	•	.917	
	Baseline vs. saturated	63299	6	.000	McDonald's Ome	= :	.917	
2) Root mean squared error (RMSEA) .174				.174	Test of (one-)dimensionality (parallel analysis)			
	90% Confidence interval:	lower bound	d	.166	Criterion: retain f	factors with adj. eig	genvalue > o	
	90% Confidence interval:	upper boun	d	.182	Adjusted eigenvalue			
	Probability RMSEA <= 0.05			.000	Factor 1	2.86		
					Factor 2	.01		
3)	Akaike's Information Crite	rion (AIC)		178726	Factor 3	09		
	Bayesian Information Crite	erion (BIC)		178821	Factor 4	10		
4)	Baseline comparison							
	Comparative Fit Index (CFI)			.979				
	Tucker–Lewis Index (TLI)			.937				
5)	Size of residuals							
-	Stand. root mean squared re	esidual (SRN	⁄IR)	.022				
	Coefficient of determination			.919				

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
selfeff13	0.87	.002	0.86	0.87	selfeff13	2.7	1.0	1	4	21778
selfeff14	0.84	.002	0.83	0.84	selfeff14	2.6	1.0	1	4	10754
selfeff15	0.89	.002	0.88	0.89	selfeff15	2.8	0.9	1	4	21776
selfeff16	0.83	.003	0.83	0.84	selfeff16	2.5	0.9	1	4	10751

Parameters of generalized structural equation model (ordinal logit link)

				•
Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
selfeff13	3.46	-4.44	-0.85	2.41
selfeff14	3.65	-4.88	-0.67	3.58
selfeff15	3.96	-5.27	-1.24	2.74
selfeff16	3.51	-4.69	-0.45	3.96

Scale: Specific self-efficacy: probability (continued)

Full AES sample

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	118	28	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	11	6	.102
Strong invariance (plus equal intercepts)	42	6	.000
Strict invariance (plus equal error variances)	21	6	.002

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	1.000
French vs. Italian language version	1.000
Italian vs. German language version	1.000

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	1.000
Language: Italian	1.000

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. selfeffd_fs 0.0 0.9 -2.0 1.7 21858 Share of cases with imputed missing values: 51.2% (Equivalence of scores from robust MLMV: CD = .997) (Equivalence of scores from two-step approach: CD = .986)

Scale: Mathematics anxiety

Maths sample-split

Model and Fit Statistics

Reliability and Dimensionality

					•	•	
1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronbach	n's Alpha	.914
	Model vs. saturated	1904	5	.000	(Cronbach's alpha	= .877)	
	Baseline vs. saturated	37885	10	.000	McDonald's Ome	ga	.914
2)	Root mean squared error (RMSEA)		.186	Test of (one-)dim	ensionality (parall	el analysis)
	90% Confidence interval:	lower bound		.179	Criterion: retain fa	actors with adj. eige	envalue > o
	90% Confidence interval:	upper bound		.193	Ad	djusted eigenvalue	
	Probability RMSEA <= 0.05			.000	Factor 1	3.35	
					Factor 2	.10	
3)	Akaike's Information Criter	rion (AIC)		114426	Factor 3	03	
	Bayesian Information Crite	erion (BIC)		114535	Factor 4	10	
					Factor 5	12	
4)	Baseline comparison						
	Comparative Fit Index (CFI)			.950			
	Tucker–Lewis Index (TLI)			.900			
5)	Size of residuals						
-	Stand. root mean squared re	esidual (SRMF	₹)	.035			
	Coefficient of determination			.916			
				-			

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
anxmath1	0.83	.004	0.82	0.84	anxmath1	2.4	1.0	1	4	10999
anxmath2	0.79	.004	0.79	0.80	anxmath2	1.9	0.9	1	4	10996
anxmath3	0.84	.004	0.83	0.85	anxmath3	1.8	0.9	1	4	10992
anxmath4	0.80	.004	0.79	0.81	anxmath4	2.5	1.0	1	4	10995
anxmath5	0.86	.003	0.85	o.86	anxmath5	2.1	1.0	1	4	10994

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
anxmath1	2.83	-2.61	0.30	3.40
anxmath2	2.48	-0.85	1.87	4.52
anxmath3	2.94	-0.26	2.70	5.39
anxmath4	2.50	-2.49	-0.24	2.32
anxmath5	3.11	-1.59	1.60	4.41

Scale: Mathematics anxiety (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	1137	40	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	141	8	.000
Strong invariance (plus equal intercepts)	502	8	.000
Strict invariance (plus equal error variances)	151	8	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.998
French vs. Italian language version	.995
Italian vs. German language version	.988

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	.980

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. anxmath_fs 0.0 0.9 -1.6 2.3 11005

Share of cases with imputed missing values: 0.2% (Equivalence of scores from robust MLMV: CD = .999) (Equivalence of scores from two-step approach: CD = .976)

Scale.	Mathematics	horedom
Julie.	Mathematics	DOICUOIII

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	689	2	.000
	Baseline vs. saturated	20215	6	.000
2)	Root mean squared error ((RMSEA)		.178
	90% Confidence interval:	lower bound		.167
	90% Confidence interval:	upper bound		.189
	Probability RMSEA <= 0.05			.000
3)	Akaike's Information Crite	rion (AIC)		125128
	Bayesian Information Crit	erion (BIC)		125216
4)	Baseline comparison			
	Comparative Fit Index (CFI)			.966
	Tucker–Lewis Index (TLI)			.898

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.863
(Cronbach's alpha = .831)	
McDonald's Omega	.863

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

Factor 1	2.34
Factor 2	.02
Factor 3	11
Factor 4	15

5) Size of residuals

Stand. root mean squared residual (SRMR)	.032
Coefficient of determination (CD)	.863

Standardized factor loadings Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
boredom1	0.78	.005	0.77	0.79	boredom1	2.9	1.3	1	5	10877
boredom2	0.78	.005	0.77	0.79	boredom2	2.6	1.2	1	5	10834
boredom3	0.80	.005	0.79	0.81	boredom3	2.5	1.3	1	5	10813
boredom4	0.77	.005	0.76	0.78	boredom4	3.0	1.3	1	5	10877

Scale: Mathematics boredom (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	815	28	.000
Tests of measurement invariance Metric invariance (equal factor loadings)	chi2	df	p > chi2
	15	6	.022
Strong invariance (plus equal intercepts) Strict invariance (plus equal error variances)	599 166	6 6	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.999
French vs. Italian language version	.997
Italian vs. German language version	.999

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	.995

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. boredom_fs 0.0 0.9 $^{-1.5}$ 1.9 10902 Share of cases with imputed missing values: 1.1% (Equivalence of scores from robust MLMV: CD = .998)

Scale: Mathematics anger

Maths sample-split

Reliability and Dimensionality

Model and Fit Statistics

1)	Likelihood-ratio tests Model vs. saturated	chi2 79	df 2	p > chi2 .000	Ordinal Cronba	•	.895
	Baseline vs. saturated	27251	6	.000	McDonald's Om	3.	.897
2)	Root mean squared error (90% Confidence interval:	lower bound		.059 .049	Criterion: retain	mensionality (para factors with adj. ei	genvalue > o
	90% Confidence interval: Probability RMSEA <= 0.05	upper bound		.071 .073	Factor 1	Adjusted eigenvalu 2.66	e
	1 Toddomey RWIDEA V= 0.05			.0/3	Factor 2	05	
3)	Akaike's Information Crite	rion (AIC)		120644	Factor 3	08	
	Bayesian Information Crite	erion (BIC)		120732	Factor 4	09	
4)	Baseline comparison						
	Comparative Fit Index (CFI)			.997			
	Tucker–Lewis Index (TLI)			.992			
5)	Size of residuals						
	Stand. root mean squared re	esidual (SRMI	₹)	.010			

Standardized factor loadings

Coefficient of determination (CD)

	_						Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
anger1	0.70	.005	0.69	0.71	anger1	2.6	1.2	1	5	10891
anger2	0.89	.003	0.89	0.90	anger2	2.4	1.3	1	5	10815
anger3	0.89	.003	0.88	0.89	anger3	2.5	1.3	1	5	10810
anger4	0.82	.004	0.82	0.83	anger4	2.5	1.4	1	5	10869

Item descriptives

.915

Scale: Mathematics anger (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 1045	df 28	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	52	6	.000
Strong invariance (plus equal intercepts)	264	6	.000
Strict invariance (plus equal error variances)	48	6	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.998
French vs. Italian language version	.997
Italian vs. German language version	.998

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	.996

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. anger_fs 0.0 0.9 -1.4 2.1 10902 Share of cases with imputed missing values: 1.1% (Equivalence of scores from robust MLMV: CD = .999)

Scale: Mathematics enjoyment

Maths sample-split

Model and Fit Statistics

L)	Likelihood-ratio tests	chi2	df	p > chi2	Or
	Model vs. saturated	191	2	.000	(Cı
	Baseline vs. saturated	23069	6	.000	М

2) Root mean squared error (RMSEA) .093
90% Confidence interval: lower bound .082
90% Confidence interval: upper bound .104
Probability RMSEA <= 0.05 .000

3) Akaike's Information Criterion (AIC) 114281
Bayesian Information Criterion (BIC) 114369

4) Baseline comparison
 Comparative Fit Index (CFI)
 Tucker–Lewis Index (TLI)

5) Size of residuals
Stand. root mean squared residual (SRMR) .014
Coefficient of determination (CD) .892

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.877
(Cronbach's alpha = .845)	
McDonald's Omega	.879

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o

Adjusted eigenvalue

	rajostea eigeirraioe	
Factor 1	2.47	
Factor 2	04	
Factor 3	09	
Factor 4	11	

Standardized factor loadings

enjoymath4

Indicators	Coef.	(SE)	[95% Conf	. interval]
enjoymath1	o.86	.004	0.86	0.87
enjoymath2	o.86	.004	0.86	0.87
eniovmatha	0.73	.005	0.72	0.74

0.75

.005

0.74

.992

.975

0.76

		Std.			Valid
Indicators	Mean	dev.	Min.	Max.	Obs.
enjoymath1	2.5	1.2	1	5	10880
enjoymath2	2.5	1.2	1	5	10830
enjoymath3	2.3	1.2	1	5	10882
eniovmath4	2.3	1.1	1	5	10823

Scale: Mathematics enjoyment (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	333	28	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	44	6	.000
Strong invariance (plus equal intercepts)	152	6	.000
Strict invariance (plus equal error variances)	40	6	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.998
French vs. Italian language version	1.000
Italian vs. German language version	.998

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	.998

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. enjoymath_fs 0.0 0.9 -1.4 2.5 10907
Share of cases with imputed missing values: 1.0% (Equivalence of scores from robust MLMV: CD = .999)

Scale: Perseverance Full AES sample

Model and Fit Statistics

Reliability and Dimensionality

1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronbach	's Alpha
	Model vs. saturated	0	0		(Cronbach's alpha	= .731)
	Baseline vs. saturated	18182	3	.000	McDonald's Ome	ga
2)	Root mean squared error (RMSEA)		.000	Test of (one-)dime	ensionalit
	90% Confidence interval:	lower bound		.000	Criterion: retain fa	ctors with
	90% Confidence interval:	upper bound		.000	Ad	ljusted eig
	Probability RMSEA <= 0.05			1.000	Factor 1	1.
					Factor 2	(
3)	Akaike's Information Criter	rion (AIC)		168695	Factor 3	:
	Bayesian Information Crite	erion (BIC)		168767	-	
4)	Baseline comparison					
"	Comparative Fit Index (CFI)			1.000		

of (one-)dimensionality (parallel analysis)

.767

.775

rion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

Factor 1	1.43	
Factor 2	09	
Factor 3	20	

Tucker-Lewis Index (TLI)

5) Size of residuals Stand. root mean squared residual (SRMR) .000 Coefficient of determination (CD) .825

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
persev1	0.67	.005	0.66	0.68	persev1	3.5	0.9	1	5	22268
persev2	0.87	.005	0.86	0.88	persev2	3.4	1.0	1	5	22269
persev3	0.64	.005	0.63	0.65	persev3	2.9	1.0	1	5	22265

1.000

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	2678	18	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	79	4	.000
Strong invariance (plus equal intercepts)	1498	4	.000
Strict invariance (plus equal error variances)	207	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.997
French vs. Italian language version	.999
Italian vs. German language version	.994

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	.998
Language: French	.990
Language: Italian	.989

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. persev_fs 0.0 0.5 $^{-1.5}$ 1.1 22280 Share of cases with imputed missing values: 0.1% (Equivalence of scores from robust MLMV: CD = .997)

Composite descriptives			Std.					
	Variable name	Mean	dev.	Min.	Max.	Obs.		
	effper_comp	2.8	0.8	1	4	22265		
Share of cases with imputed n	nissing values:	0.2%						
Item descriptives			Std.			Valid		
	Indicators	Mean	dev.	Min.	Max.	Obs.		
	effper1 *	2.7	0.8	1	4	22243		
	effper4 *	2.9	0.9	1	4	22249		

^{*} Note: Original items from TREE1 / PISA2000

Composite descriptives			Std.			
	Variable name	Mean	dev.	Min.	Max.	Obs.
Big five: extraversion						
D' ('	big5_e_comp	3.3	0.9	1	5	15915
Big five: agreeableness	big5_a_comp	2.5	0.7	1	-	15015
Big five: conscientiousness	big5_a_comp	3.5	0.7	1	5	15915
= ·g ··· · · · · · · · · · · · · · · · ·	big5_c_comp	3.2	0.8	1	5	15915
Big five: neuroticism						
	big5_n_comp	2.9	0.9	1	5	15915
Big five: openness	1 •					
	big5_o_comp	3.3	0.9	1	5	15915
Share of cases with imputed i	missing values:	1.4%				

Std. Valid Valid Indicators Mean dev. Min. Max. obs.
big five: extraversion bigfive1 3.1 1.1 1 5 15890 * big five6 3.6 1.0 1 5 15851 Big five: agreeableness
bigfive1 3.1 1.1 1 5 15890 * bigfive6 3.6 1.0 1 5 15851 Big five: agreeableness
bigfive6 3.6 1.0 1 5 15851 Big five: agreeableness
bigfive6 3.6 1.0 1 5 15851 Big five: agreeableness
Big five: agreeableness
higfiyos 3.3 1.1 1 5 15870
bigfive2 3.2 1.1 1 5 15879
bigfive7 3.3 1.0 1 5 15854 *
bigfive11 3.8 1.0 1 5 15838
Big five: conscientiousness
bigfive3 2.8 1.1 1 5 15863 *
bigfive8 3.6 o.9 1 5 15854
Big five: neuroticism
bigfive4 2.8 1.1 1 5 15875 *
bigfive9 3.0 1.1 1 5 15869
Big five: openness
bigfive5 3.0 1.4 1 5 15875 *
bigfive10 3.7 1.1 1 5 15864

^{*} Item category order reversed for composit calculation (see Rammstedt et al., 2007)

Locus of control Baseline survey sample

Composite descriptives			Std.				
composite descriptives	Variable name	Mean	dev.	Min.	Max.	Obs.	
Internal locus of control							
	loci_comp	4.0	0.7	1	5	15833	
External locus of control							
	loce_comp	2.5	0.9	1	5	15833	
	·				_		
Share of cases with imputed	missing values:	0.6%					
Item descriptives			Std.			Valid	
item descriptives	Indicators	Mean	dev.	Min.	Max.	Obs.	
Internal locus of control	areacors	сан				C 23.	
	loci1	3.9	0.9	1	5	15811	
			_		_	=	
	loci2	4.2	0.8	1	5	15812	

15793

15777

loce1

loce2

2.3

2.6

1.1

Scale: Work-related extrinsic values

Baseline survey sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronba
	Model vs. saturated	0	0		(Cronbach's alp
	Baseline vs. saturated	6673	3	.000	McDonald's On
2)	Root mean squared error (I	RMSEA)		.000	Test of (one-)di
	90% Confidence interval:	lower boun	ıd	.000	Criterion: Retain
	90% Confidence interval:	upper bour	nd	.000	
	Probability RMSEA <= 0.05			1.000	factor 1
					factor 2
3)	Akaike's Information Criter	rion (AIC)		96617	factor 3
	Bayesian Information Crite	rion (BIC)		96686	
4)	Baseline comparison				
	Comparative Fit Index (CFI)			1.000	
	Tucker-Lewis Index (TLI)			1.000	
5)	Size of residuals				

.000

.668

Reliability and Dimensionality

.655
.658

Test of (one-)dimensionality (parallel analysis)

Criterion: Retain factors with adj. eigenvalue > o Adjusted eigenvalue *

factor 1 .96 factor 2 -.14 factor 3 -.20

* No component with an adjusted eigenvalue ≥ 1

Standardized factor loadings

Indicators	Coef.	(SE)	[95% Conf.	interval]
vawe1	0.70	0.01	0.68	0.71
vawe2	0.62	0.01	0.60	0.63
vawe4	0.56	0.01	0.54	0.58

Stand. root mean squared residual (SRMR)

Coefficient of determination (CD)

Item descriptives

		Std.			Valid
Indicators	Mean	dev.	Min.	Max.	Obs.
vawe1	3.2	0.7	1	4	16066
vawe2	3.7	0.6	1	4	16064
vawe4	2.9	0.9	1	4	16065

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
vawe1	1.80	-5.36	-2.46	1.06
vawe2	1.42	-5.41	-3.92	-1.02
vawe4	1.19	-3.30	-0.98	1.39

Scale: Work-related extrinsic values (continued)

Baseline survey sample

Tests and Indices of Factorial Invariance across ...

Equalit	y of	the
---------	------	-----

variance-covariance matrices across	Survey languages		Surv	Survey settings		Survey modes			
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	273	18	.000	237	9	.000	19	9	.026
Tests of measurement invariance across	Surve	ey lang	guages	Surv	ey set	tings	Sur	vey m	odes
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	12	4	.016	7	2	.033	1	2	.629
Strong invariance (plus equal intercepts)	86	4	.000	21	2	.000	О	2	.815
Strict invariance (plus equal error variances)	90	4	.000	6	2	.050	6	2	.043
Configural factor similarity across	Configural factor similarity across Survey languages		guages	Survey settings		tings	Survey modes		
Tucker's congruence coefficient			TCC			TCC			TCC
	man vs. F		.997	classro		000	W	eb vs.	.997
	ench vs. I		.988	unprod	ctored	333		PAP	33,
lta	lian vs. Ge	erman	.997						
Factor score equivalence: group									
specific vs. invariant models for	Surve	ey lang	guages	Surv	ey set	tings	Sur	vey m	odes
Coefficient of determination			CD			CD			CD
	Ge	rman	1.000	class	sroom	1.000		web	1.000
	F	rench	.994	unprod	ctored	.995		PAP	.988
	ļ	Italian	.977						

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. vawe_fs 0.0 0.7 -2.8 1.2 16084 Share of cases with imputed missing values: 0.3% (Equivalence of scores from robust MLMV: CD = .996) (Equivalence of Scores from Two-Step-Approach: CD = .975)

Scale: Work-related intrinsic values

Baseline survey sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	14560	3	.000
2)	.000			

2) Root mean squared error (RMSEA) .000 90% Confidence interval: lower bound .000 90% Confidence interval: upper bound .000 Probability RMSEA <= 0.05 1.000

3) Akaike's Information Criterion (AIC) 80533 Bayesian Information Criterion (BIC) 80602

4) Baseline comparison

Comparative Fit Index (CFI)	1.000
Tucker-Lewis Index (TLI)	1.000

5) Size of residuals

Stand. root mean squared residual (SRMR)	.000
Coefficient of determination (CD)	.818

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.789
(Cronbach's alpha = .705)	
McDonald's Omega	.793

Test of (one-)dimensionality (parallel analysis)

Criterion: Retain factors with adj. eigenvalue > o
Adjusted eigenvalue

	Aujusteu eigenvalue	
factor 1	1.52	
factor 2	11	
factor 3	18	

Standardized factor loadings

Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicat
vawiı	0.72	0.01	0.71	0.73	vawiı
vawi2	0.85	0.01	0.84	0.86	vawi2
vawi5	0.67	0.01	0.66	0.68	vawi5

Item descriptives

		Std.			Valid
Indicators	Mean	dev.	Min.	Max.	Obs.
vawi1	3.2	0.7	1	4	16078
vawi2	3.5	0.6	1	4	16071
vawi5	3.5	0.6	1	4	16065

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
vawiı	1.83	-5.30	-2.78	0.95
vawi2	3.18	-8.88	-6.16	-0.70
vawis	1.64	-5.46	-3.70	-0.35

Tests and Indices of Factorial Invariance across ...

Equal	ity o	of the
-------	-------	--------

variance-covariance matrices across Survey languages		Survey settings			Survey modes				
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
	376	18	.000	413	9	.000	32	9	.000
Tests of measurement invariance across	Survey languages		Survey settings		tings	Survey modes		odes	
	chi2	df	p > chi2	chi2	df	p > chi2	chi2	df	p > chi2
Metric invariance (equal factor loadings)	2	4	.727	5	2	.075	24	2	.000
Strong invariance (plus equal intercepts)	179	4	.000	109	2	.000	1	2	.760
Strict invariance (plus equal error variances)	81	4	.000	3	2	.236	5	2	.070
Configural factor similarity across	ross Survey langua		guages	Survey settings		tings	Survey modes		odes
Tucker's congruence coefficient			TCC			TCC			TCC
Ger	man vs. F	rench	1.000	classro	om vs.	000	W	eb vs.	.985
Fr	ench vs. I	talian	1.000	unprod	tored	.999		PAP	.905
Ital	ian vs. Ge	erman	1.000						
Factor score equivalence: group									
specific vs. invariant models for	Survey langua		guages	es Survey set		ettings		Survey modes	
Coefficient of determination			CD			CD			CD
	Ge	rman	1.000	class	room	1.000		web	.999
	F	rench	1.000	unprod	tored	.999		PAP	.962
	I	Italian	1.000						

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. vawi_fs 0.0 0.8 -3.0 1.1 16086

Share of cases with imputed missing values: 0.2% (Equivalence of scores from robust MLMV: CD = .993) (Equivalence of Scores from Two-Step-Approach: CD = .964)

Family values Baseline survey sample

Composite descriptives	Variable name	Mean	Std. dev.	Min.	Max.	Obs.	
Share of cases with imputed	vafa_comp missing values:	3.1 0.2%	0.8	1	4	16075	
Item descriptives	Indicators	Mean	Std. dev.	Min.	Max.	Valid obs.	
	vafa1 vafa2	3·3 3.0	o.8 o.9	1 1	4 4	16064 16051	

Scale: Positive attitude towards life

AES Extension Survey

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	1110	5	.000
	Baseline vs. saturated	13955	10	.000
2)	Root mean squared error ((RMSEA)		.208
	90% Confidence interval:	lower bound		.198
	90% Confidence interval:	upper bound		.218
	Probability RMSEA <= 0.05			.000
3)	Akaike's Information Crite	rion (AIC)		57850
	Bayesian Information Crite	erion (BIC)		57948
4)	Baseline comparison			
	Comparative Fit Index (CFI)			.921
	Tucker-Lewis Index (TLI)			.841

Stand. root mean squared residual (SRMR)

Coefficient of determination (CD)

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.880
(Cronbach's alpha = .844)	
McDonald's Omega	.881

Test of (one-)dimensionality (parallel analysis)

Criterion: Retain factors with adj. eigenvalue > 0

	Adjusted eigenvalue	
factor 1	2.91	
factor 2	.18	
factor 3	03	
factor 4	13	
factor 5	11	

Standardized factor loadings

5) Size of residuals

Indicators	Coef.	(SE)	[95% Conf	. interval]
posl1	0.72	0.01	0.70	0.74
posl ₂	0.84	0.01	0.83	0.85
posl3	0.78	0.01	0.76	0.79
posl5	0.67	0.01	0.65	0.69
posl6	0.85	0.01	0.84	0.86

Item descriptives

.050

.893

		Std.			Valid
Indicators	Mean	dev.	Min.	Max.	Obs.
posl1	5.0	0.9	1	6	5106
posl2	5.4	0.9	1	6	5107
posl3	4.8	1.0	1	6	5106
posl5	4.6	1.1	1	6	5108
posl6	5.0	1.1	1	6	5103

Tests and Indices of Factorial Invariance across ...

Equa	lity	of	the	
------	------	----	-----	--

variance-covariance matrices across	Survey lan	guages	Surve	y settings	Survey r	nodes
	chi2 df	p > chi2	chi2	df p > chi2	chi2 df	p > chi2
	933 40	.000	1	1	146 20	.000
Tests of measurement invariance across	Survey lan	guages	Surve	y settings	Survey r	nodes
	chi2 df	p > chi2	chi2	df p > chi2	chi2 df	p > chi2
Metric invariance (equal factor loadings)	9 8	.385	1	1	17 4	.002
Strong invariance (plus equal intercepts)	311 8	.000	1	1	7 4	.113
Strict invariance (plus equal error variances)	282 8	.000	1	1	20 4	.001
Configural factor similarity across	nilarity across Survey languages		Surve	Survey settings		nodes
Tucker's congruence coefficient		TCC		TCC		TCC
	German vs. French	.999	classroc	1	web vs	800
	French vs. Italian	.998	unproc	tored '	PAF	.930
	Italian vs. Germar	1.000				
Factor score equivalence: group						
specific vs. invariant models for	Survey lan	guages	Surve	y settings	Survey r	nodes
Coefficient of determination		CD		CD		CD
	German	1.000	class	room ,	web	1.000
	French	1.000	unproc	tored '	PAF	.999
	Italian	.999				

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. posl_fs 0.0 0.6 -3.0 0.7 5114 Share of cases with imputed missing values: 0.5% (Equivalence of scores from robust MLMV: CD = .997)

Scale: Reality-based learning

Maths sample-split

Model and Fit Statistics

Reliability and Dimensionality	
Oudinal Cuauhaahla Aluha	

1)	Likelihood-ratio tests Model vs. saturated	chi2	df	p > chi2	Ordinal Cronbach	•	.807
	Baseline vs. saturated	129	2 6	.000	(Cronbach's alpha McDonald's Ome		.811
	baseiiile vs. saturateu	14527	O	.000	MICDOIIAIU S OIIIe	ya	.011
2)	Root mean squared error (RMSEA)		.076	Test of (one-)dim	ensionality (para	lel analysis)
	90% Confidence interval:	lower bound		.065	Criterion: retain fa	ctors with adj. eig	envalue > o
	90% Confidence interval:	upper bound		.087	Ac	ljusted eigenvalue	!
	Probability RMSEA <= 0.05			.000	Factor 1	1.94	
					Factor 2	04	
3)	Akaike's Information Crite	rion (AIC)		145766	Factor 3	11	
	Bayesian Information Crite	erion (BIC)		145853	Factor 4	15	
4)	Baseline comparison						
	Comparative Fit Index (CFI)			.991			
	Tucker–Lewis Index (TLI)			.974			
5)	Size of residuals						
	Stand. root mean squared re	esidual (SRM	R)	.016			
	Coefficient of determination	n (CD)		.832			

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
realref1	0.61	.007	0.60	0.63	realref1	3.8	1.5	1	6	11042
realref2	0.65	.007	0.64	0.66	realref2	3.9	1.4	1	6	10995
realref3	0.80	.005	0.79	0.81	realref3	3.7	1.5	1	6	10984
realref4	0.80	.005	0.79	0.81	realref4	4.1	1.5	1	6	11035

Scale: Reality-based learning (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

chi2 388	df 28	p > chi2 .000
chi2	df	p > chi2
210	6	.000
116	6	.000
78	6	.000
	388 chi2 210 116	388 28 chi2 df 210 6 116 6

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.983
French vs. Italian language version	.993
Italian vs. German language version	.998

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	.999
Language: French	.989
Language: Italian	1.000

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. realref_fs 0.0 0.8 -2.1 1.6 11063

Share of cases with imputed missing values: 1.1% (Equivalence of scores from robust MLMV: CD = .998)

Scale: Discovery / exploratory learning

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	132	2	.000
	Baseline vs. saturated	19790	6	.000
2)	Root mean squared error	•		.076

2) Root mean squared error (RMSEA) .076
90% Confidence interval: lower bound .066
90% Confidence interval: upper bound .088
Probability RMSEA <= 0.05 .000

3) Akaike's Information Criterion (AIC) 143687 Bayesian Information Criterion (BIC) 143775

4) Baseline comparison

Comparative Fit Index (CFI) .993 Tucker–Lewis Index (TLI) .980

5) Size of residuals

Stand. root mean squared residual (SRMR) .013
Coefficient of determination (CD) .867

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.858
(Cronbach's alpha = .8 ₃ 6)	
McDonald's Omega	.859

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o

Adjusted eigenvalue

	riajostea eigeniaioe
Factor 1	2.30
Factor 2	06
Factor 3	09
Factor 4	13

Standardized factor loadings

Indicators Coef. (SE) [95% Conf. interval] disclearn1 0.73 .005 0.72 0.74 disclearn2 0.84 .004 0.83 0.85 disclearna 0.81 0.80 0.82 .004 disclearn4 0.72 .005 0.71 0.74

Item descriptives

		Std.			Valid
Indicators	Mean	dev.	Min.	Max.	Obs.
disclearn1	3.5	1.6	1	6	11049
disclearn2	3.5	1.5	1	6	10986
disclearn3	3.6	1.5	1	6	11002
disclearn4	3.7	1.5	1	6	11006

Scale: Discovery / exploratory learning (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	712	28	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	83	6	.000
Strong invariance (plus equal intercepts)	126	6	.000
Strict invariance (plus equal error variances)	190	6	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.985
French vs. Italian language version	.992
Italian vs. German language version	.998

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.993
Language: Italian	1.000

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. disclearn_fs 0.0 1.1 -2.3 2.1 11067
Share of cases with imputed missing values: 1.1% (Equivalence of scores from robust MLMV: CD = .998)

		_			
Sca	le:	50	cıal	lea	rning

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	5090	9	.000
	Baseline vs. saturated	36459	15	.000
2)	Root mean squared error (RMSEA)		.226
	90% Confidence interval:	lower bound		.221
	90% Confidence interval:	upper bound		.231
	Probability RMSEA <= 0.05			.000
3)	Akaike's Information Criterion (AIC) Bayesian Information Criterion (BIC)			211536
				211668
4)	Baseline comparison			

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.869
(Cronbach's alpha = .849)	
McDonald's Omega	.865

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o

Adjusted eigenvalue

	Aujusteu eigerivalue	
Factor 1	3.20	
Factor 2	.48	
Factor 3	06	
Factor 4	08	
Factor 5	09	
Factor 6	13	

5) Size of residuals

Stand. root mean squared residual (SRMR) .096
Coefficient of determination (CD) .912

Standardized factor loadings

Comparative Fit Index (CFI)

Tucker-Lewis Index (TLI)

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf.	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
comlearn1	0.54	.007	0.52	0.55	comlearn1	3.8	1.5	1	6	11035
comlearn2	0.51	.008	0.50	0.53	comlearn2	3.5	1.5	1	6	11009
comlearn3	0.62	.006	0.61	0.64	comlearn3	3.7	1.5	1	6	10993
soclearn1	0.83	.004	0.83	0.84	soclearn1	4.0	1.6	1	6	11039
soclearn2	o.88	.003	0.87	0.89	soclearn2	4.3	1.5	1	6	11004
soclearn3	0.87	.003	0.87	0.88	soclearn3	4.2	1.5	1	6	10990

.861

.768

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 580	df 54	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	55	10	.000
Strong invariance (plus equal intercepts)	202	10	.000
Strict invariance (plus equal error variances)	155	10	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.998
French vs. Italian language version	.997
Italian vs. German language version	.997

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	1.000
Language: Italian	.998

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. soccomlearn_fs 0.0 0.8 -1.9 1.2 11065
Share of cases with imputed missing values: 1.2% (Equivalence of scores from robust MLMV: CD = .999)

Scale: Social learning: social arrangement

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	21585	3	.000
2)	Root mean squared error ((RMSEA)		.000
	90% Confidence interval:	lower bound		.000
	90% Confidence interval:	upper bound		.000
	Probability RMSEA <= 0.05			1.000
3)	Akaike's Information Crite	erion (AIC)		100479
	Bayesian Information Crit	erion (BIC)		100545
4)	Baseline comparison			
	Comparative Fit Index (CFI)			1.000
	Tucker–Lewis Index (TLI)			1.000

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.904
(Cronbach's alpha = .882)	
McDonald's Omega	.905

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

Factor 1	2.16
Factor 2	07
Factor 3	11

Standardized factor loadings

5) Size of residuals

Indicators	Coef.	(SE)	[95% Conf	. interval]
soclearn1	0.85	.003	0.84	o.86
soclearn2	0.92	.003	0.92	0.93
soclearn3	0.84	.004	0.84	0.85

Stand. root mean squared residual (SRMR)

Coefficient of determination (CD)

_			
Item	desc	ripti	ves

.000

.914

		Std.			Valid
Indicators	Mean	dev.	Min.	Max.	Obs.
soclearn1	4.0	1.6	1	6	11039
soclearn2	4.3	1.5	1	6	11004
soclearn3	4.2	1.5	1	6	10990

Scale: Social learning: social arrangement (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	142	18	.000
		16	
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	25	4	.000
Strong invariance (plus equal intercepts)	54	4	.000
Strict invariance (plus equal error variances)	21	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.999
French vs. Italian language version	.999
Italian vs. German language version	.998

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	1.000
Language: Italian	.999

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. soclearn_fs 0.0 1.2 $^{-2.9}$ 1.7 11060 Share of cases with imputed missing values: 1.0% (Equivalence of scores from robust MLMV: CD = .999)

Scale: Social learning: communication

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	9617	3	.000
2)	Root mean squared error	(RMSEA)		.000
	90% Confidence interval:	lower bound		.000
	90% Confidence interval:	upper bound		.000
	Probability RMSEA <= 0.05			1.000
2)	Akaike's Information Crite	rion (AIC)		111136
3)		• •		,
	Bayesian Information Crit	erion (BIC)		111202
4)	Baseline comparison			
4/	Baseline companison			

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.782
(Cronbach's alpha = .751)	
McDonald's Omega	.786

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

Factor 1	1.47	
Factor 2	10	
Factor 3	18	

Comparative Fit Index (CFI) 1.000 Tucker-Lewis Index (TLI) 1.000

5) Size of residuals

Indicators

comlearn1

comlearn₂

comlearn₃

Stand. root mean squared residual (SRMR) .000 Coefficient of determination (CD) .816

(SE)

.007

.007

.007

Standardized factor loadings

Coef.

0.70

0.66

0.85

Item descriptives

				Std.			Valid
[95% Conf.	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
0.69	0.72	comlearn1	3.8	1.5	1	6	11035
0.65	0.68	comlearn2	3.5	1.5	1	6	11009
0.84	0.87	comlearn3	3.7	1.5	1	6	10993

Scale: Social learning: communication (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	261	18	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	9	4	.070
Strong invariance (plus equal intercepts)	53	4	.000
Strict invariance (plus equal error variances)	17	4	.002

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.999
French vs. Italian language version	.999
Italian vs. German language version	1.000

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	1.000

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. comlearn_fs 0.0 0.9 $^{-2.1}$ 1.8 11062 Share of cases with imputed missing values: 1.0% (Equivalence of scores from robust MLMV: CD = .999)

Scale: Instructivist learning

Model vs. saturated

Baseline vs. saturated

Maths sample-split

.842

Model and Fit Statistics

1) Likelihood-ratio tests

Ordinal Cronbach's Alpha	.841
(Cronbach's alpha = .818)	

Reliability and Dimensionality

McDonald's Omega

2)	Root mean squared error	(RMSEA)	.143
	90% Confidence interval: 90% Confidence interval:		.139 .146
	Probability RMSEA <= 0.05	5	.000

chi2

4517

29913

df

20

28

p > chi2

.000

.000

Test of (one-)dimensionality (parallel analysis)
Criterion: retain factors with adj. eigenvalue > o

Adjusted eigenvalue

3)	Akaike's Information Criterion (AIC) Bayesian Information Criterion (BIC)	286311 286487
<u>د)</u>	Baseline comparison	

	,	9	
Factor 1		3.18	
Factor 2		.36	
Factor 3		.21	
Factor 4		.05	
Factor 5		10	
Factor 6		14	
Factor 7		14	
Factor 8		20	

4)	Baseline comparison	
	Comparative Fit Index (CFI)	.850
	Tucker–Lewis Index (TLI)	.789

5) Size of residuals

Stand. root mean squared residual (SRMR)	.066
Coefficient of determination (CD)	.848

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
instrlearn1	0.65	.006	0.64	0.67	instrlearn1	4.6	1.4	1	6	11031
instrlearn2	0.65	.007	0.63	0.66	instrlearn2	3.8	1.4	1	6	11001
instrlearn3	0.48	.008	0.47	0.50	instrlearn3	3.3	1.5	1	6	10993
instrlearn4	0.70	.006	0.69	0.71	instrlearn4	4.6	1.4	1	6	11052
replearn1	0.67	.006	0.66	0.68	replearn1	4.4	1.4	1	6	11041
replearn2	0.59	.007	0.58	0.61	replearn2	4.3	1.3	1	6	10990
replearn3	0.60	.007	0.59	0.62	replearn3	3.6	1.4	1	6	10991
replearn4	0.70	.006	0.69	0.71	replearn4	4.3	1.4	1	6	11010

Scale: Instructivist learning (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 4066	df 88	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	117	14	.000
Strong invariance (plus equal intercepts)	1511	14	.000
Strict invariance (plus equal error variances)	337	14	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.994
French vs. Italian language version	.996
Italian vs. German language version	.990

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	.999
Language: French	.998
Language: Italian	.993

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. instreplearn_fs 0.0 0.8 -2.7 1.5 11069
Share of cases with imputed missing values: 1.3% (Equivalence of scores from robust MLMV: CD = .997)

Scale: Instructivist learning: teachers instructions

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	605	2	.000
	Baseline vs. saturated	9077	6	.000
2)	Root mean squared error	(RMSEA)		.165
	90% Confidence interval:	lower bound		.154
	90% Confidence interval:	upper bound		.176
	Probability RMSEA <= 0.05			.000
3)	Akaike's Information Crite	erion (AIC)		147556
	Bayesian Information Crit	erion (BIC)		147643
4)	Baseline comparison			
	Comparative Fit Index (CFI))		.934
	Tucker–Lewis Index (TLI)			.801
5)	Size of residuals			

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.723
(Cronbach's alpha = .683)	
McDonald's Omega	.727

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

Factor 1	1.48	
Factor 2	.05	
Factor 3	12	
Factor 4	22	

Size of residuals

Stand. root mean squared residual (SRMR)	.045
Coefficient of determination (CD)	.741

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
instrlearn1	0.66	.008	0.65	0.68	instrlearn1	4.6	1.4	1	6	11031
instrlearn2	0.68	.008	0.67	0.70	instrlearn2	3.8	1.4	1	6	11001
instrlearn3	0.49	.009	0.47	0.51	instrlearn3	3.3	1.5	1	6	10993
instrlearn∡	0.69	.008	0.67	0.70	instrlearn₄	4.6	1.4	1	6	11052

Scale: Instructivist learning: teachers instructions (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	2118	28	.000
			_
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	49	6	.000
Strong invariance (plus equal intercepts)	466	6	.000
Strict invariance (plus equal error variances)	146	6	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.994
French vs. Italian language version	.975
Italian vs. German language version	.978

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	.998
Language: French	.998
Language: Italian	.958

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. instrlearn_fs 0.0 0.8 -2.6 1.4 11064
Share of cases with imputed missing values: 1.1% (Equivalence of scores from robust MLMV: CD = .989)

So	ale: Instructivist learni	ing: repe	titive	practice			Maths sample-split
М	odel and Fit Statistics				Reliability and	l Dimensionalit	у
1)	Likelihood-ratio tests Model vs. saturated	chi2	df	p > chi2 .000	Ordinal Cronba (Cronbach's alpl	•	.745
	Baseline vs. saturated	24 9920	2 6	.000	McDonald's On		.751
2)	Root mean squared error (R			.032	Test of (one-)dimensionality (parallel analysis)		
	90% Confidence interval: lo			.021 .043	Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue		
	Probability RMSEA <= 0.05			.996	Factor 1 Factor 2	1.58 08	
3)	Akaike's Information Criteri	ion (AIC)		145662	Factor 3	10	
	Bayesian Information Criter	rion (BIC)		145750	Factor 4	16	
4)	Baseline comparison						
	Comparative Fit Index (CFI)			.998			
	Tucker–Lewis Index (TLI)			.993			
5)	Size of residuals						
	Stand. root mean squared re		R)	.008			
	Coefficient of determination	(CD)		.774			

Standardized factor loadings					Item descriptives				
						Std.			Valid
Coef.	(SE)	[95% Conf.	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
0.76	.007	0.75	0.78	replearn1	4.4	1.4	1	6	11041
0.71	.007	0.70	0.72	replearn2	4.3	1.3	1	6	10990
0.49	.009	0.48	0.51	replearn3	3.6	1.4	1	6	10991
0.64	.007	0.63	0.66	replearn4	4.3	1.4	1	6	11010
	Coef. 0.76 0.71 0.49	Coef. (SE) 0.76 .007 0.71 .007 0.49 .009	Coef. (SE) [95% Conf 0.76 .007 0.75 0.71 .007 0.70 0.49 .009 0.48	Coef. (SE) [95% Conf. interval] 0.76 .007 0.75 0.78 0.71 .007 0.70 0.72 0.49 .009 0.48 0.51	Coef. (SE) [95% Conf. interval] Indicators 0.76 .007 0.75 0.78 replearn1 0.71 .007 0.70 0.72 replearn2 0.49 .009 0.48 0.51 replearn3	Coef. (SE) [95% Conf. interval] Indicators Mean 0.76 .007 0.75 0.78 replearn1 4.4 0.71 .007 0.70 0.72 replearn2 4.3 0.49 .009 0.48 0.51 replearn3 3.6	Std. Coef. (SE) [95% Conf. interval] Indicators Mean dev. 0.76 .007 0.75 0.78 replearn1 4.4 1.4 0.71 .007 0.70 0.72 replearn2 4.3 1.3 0.49 .009 0.48 0.51 replearn3 3.6 1.4	Coef. (SE) [95% Conf. interval] Indicators Mean dev. Min. 0.76 .007 0.75 0.78 replearn1 4.4 1.4 1 0.71 .007 0.70 0.72 replearn2 4.3 1.3 1 0.49 .009 0.48 0.51 replearn3 3.6 1.4 1	Std. Coef. (SE) [95% Conf. interval] Indicators Mean dev. Min. Max. 0.76 .007 0.75 0.78 replearn1 4.4 1.4 1 6 0.71 .007 0.70 0.72 replearn2 4.3 1.3 1 6 0.49 .009 0.48 0.51 replearn3 3.6 1.4 1 6

Scale: Instructivist learning: repetitive practice (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	1353	28	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	36	6	.000
Strong invariance (plus equal intercepts)	965	6	.000
Strict invariance (plus equal error variances)	209	6	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.996
French vs. Italian language version	.999
Italian vs. German language version	.996

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	.999
Language: French	.996
Language: Italian	.997

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. replearn_fs 0.0 0.9 -2.8 1.5 11067 Share of cases with imputed missing values: 1.1% (Equivalence of scores from robust MLMV: CD = .997)

C	_	C -			
~~		• 1	CTAM	SCHOCE	
JLa	ıc.		/SLEIII	aspect	

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	2443	9	.000
	Baseline vs. saturated	31459	15	.000

2)	Root mean squared error	(RMSEA)	.157
	90% Confidence interval:	lower bound	.152
	90% Confidence interval:	upper bound	.162
	Probability RMSEA <= 0.05	5	.000

3)	Akaike's Information Criterion (AIC)	185422
	Bayesian Information Criterion (BIC)	185553

4)	Baseline comparison	
	Comparative Fit Index (CFI)	.923
	Tucker–Lewis Index (TLI)	.871

5)

Size of residuals	
Stand. root mean squared residual (SRMR)	.050
Coefficient of determination (CD)	.879

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.878
(Cronbach's alpha = .854)	
McDonald's Omega	.878

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o

contained and a second contained and a second contained a				
	Adjusted eigenvalue			
Factor 1	3.21			
Factor 2	.22			
Factor 3	03			
Factor 4	06			
Factor 5	13			
Factor 6	15			

Standardized factor loadings

Indicators	Coef.	(SE)	[95% Conf	. interval]	
formasp1	0.71	.006	0.70	0.73	
formasp2	0.72	.005	0.71	0.73	
formasp3	0.75	.005	0.74	0.76	
systasp1	0.74	.005	0.73	0.75	
systasp2	0.76	.005	0.75	0.77	
systasp3	0.75	.005	0.74	0.76	

Item descriptives

		Std.			Valid
Indicators	Mean	dev.	Min.	Max.	Obs.
formasp1	4.3	1.3	1	6	10946
formasp2	4.1	1.3	1	6	10932
formasp3	4.4	1.2	1	6	10965
systasp1	5.0	1.2	1	6	10967
systasp2	4.7	1.2	1	6	10925
systasp3	4.7	1.2	1	6	10975

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 478	df 54	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	64	10	.000
Strong invariance (plus equal intercepts)	171	10	.000
Strict invariance (plus equal error variances)	45	10	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.998
French vs. Italian language version	.998
Italian vs. German language version	.996

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	.998

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. sysformasp_fs 0.0 0.8 -3.2 1.3 11006 Share of cases with imputed missing values: 1.3% (Equivalence of scores from robust MLMV: CD = .999)

Scale: System aspect: logical thinking

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	12550	3	.000
2)	Root mean squared error	(RMSEA)		.000
	90% Confidence interval:	lower bound	ł	.000
	90% Confidence interval:	upper bound	b	.000
	Probability RMSEA <= 0.05			1.000
3)	Akaike's Information Crite	rion (AIC)		92905
	Bayesian Information Crit	erion (BIC)		92970
4)	Baseline comparison			
	Comparative Fit Index (CFI))		1.000
	Tucker–Lewis Index (TLI)			1.000
5)	Size of residuals			
	Stand. root mean squared r	esidual (SRN	IR)	.000

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.832
(Cronbach's alpha = .792)	
McDonald's Omega	.832

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

	, lajostea eigeiliaioe	
Factor 1	1.70	
Factor 2	13	
Factor 3	14	

Standardized factor loadings

Coefficient of determination (CD)

Indicators	Coef.	(SE)	[95% Conf	. interval]
systasp1	0.76	.006	0.75	0.78
systasp2	0.81	.005	0.79	0.82
systaspa	0.80	.005	0.79	0.81

• -				
Item	de	scri	ptiv	es.

.833

		Std.			Valid
Indicators	Mean	dev.	Min.	Max.	Obs.
systasp1	5.0	1.2	1	6	10967
systasp2	4.7	1.2	1	6	10925
systasp3	4.7	1.2	1	6	10975

Scale: System aspect: logical thinking (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	210	18	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	35	4	.000
Strong invariance (plus equal intercepts)	84	4	.000
Strict invariance (plus equal error variances)	13	4	.012

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.997
French vs. Italian language version	1.000
Italian vs. German language version	.996

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.997
Language: Italian	.995

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. systasp_fs 0.0 0.8 -3.1 1.0 11004
Share of cases with imputed missing values: 1.0% (Equivalence of scores from robust MLMV: CD = .999)

Scale: System aspect: formalism

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	11712	3	.000
2)	Root mean squared error	(RMSEA)		.000
	00% Confidence interval.	lower hound		000

2)Root mean squared error (RMSEA).00090% Confidence interval:lower bound.00090% Confidence interval:upper bound.000Probability RMSEA <= 0.05</td>1.000

3) Akaike's Information Criterion (AIC) 97123 Bayesian Information Criterion (BIC) 97189

4) Baseline comparison

Comparative Fit Index (CFI) 1.000
Tucker–Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR) .000
Coefficient of determination (CD) .822

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.821
(Cronbach's alpha = .791)	
McDonald's Omega	.821

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o

	Adjusted eigenvalue
Factor 1	1.65
Factor 2	14
Factor 3	14

Standardized factor loadings

Indicators Coef. (SE) [95% Conf. interval] formasp1 0.78 .006 0.77 0.79 formasp2 0.79 .006 0.78 0.80 formasp3 .006 0.76 0.78 0.77

Item descriptives

		Std.			Valid
Indicators	Mean	dev.	Min.	Max.	Obs.
formasp1	4.3	1.3	1	6	10946
formasp2	4.1	1.3	1	6	10932
formasp3	4.4	1.2	1	6	10965

Scale: System aspect: formalism (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	193	18	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	11	4	.025
Strong invariance (plus equal intercepts)	83	4	.000
Strict invariance (plus equal error variances)	14	4	.008

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	1.000
French vs. Italian language version	.994
Italian vs. German language version	.993

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	1.000
Language: Italian	.985

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. formasp_fs 0.0 0.9 -2.7 1.5 10992 Share of cases with imputed missing values: 0.9% (Equivalence of scores from robust MLMV: CD = 1.00)

_				
Can	 Cab	eme	200	~~+
7 (A	 7 (1)	121112	471	1

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	12713	3	.000
٦)	Poot maan squared error (DMCE A)		000

2) Root mean squared error (RMSEA) .000
90% Confidence interval: lower bound .000
90% Confidence interval: upper bound .000
Probability RMSEA <= 0.05 1.000

3) Akaike's Information Criterion (AIC) 100471 Bayesian Information Criterion (BIC) 100537

4) Baseline comparison

Comparative Fit Index (CFI) 1.000
Tucker–Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR) .000 Coefficient of determination (CD) .843

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.832
(Cronbach's alpha = .806)	
McDonald's Omega	.833

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o

Adjusted eigenvalue
Factor 1 1.72
Factor 2 -.11
Factor 3 -.16

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
schemasp1	0.76	.006	0.75	0.77	schemasp1	3.9	1.4	1	6	10967
schemasp2	0.76	.006	0.75	0.77	schemasp2	4.0	1.3	1	6	10926
schemasp3	0.85	.005	0.84	o.86	schemasp3	3.7	1.4	1	6	10927

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	313	18	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	8	4	.092
Strong invariance (plus equal intercepts)	98	4	.000
Strict invariance (plus equal error variances)	25	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	1.000
French vs. Italian language version	1.000
Italian vs. German language version	.999

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	.998

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. schemasp_fs 0.0 0.9 $^{-2.4}$ 1.8 10990 Share of cases with imputed missing values: 0.9% (Equivalence of scores from robust MLMV: CD = .999)

Scale: Application aspect

Maths sample-split

Model and Fit Statistics

1)

	Likelihood-ratio tests Model vs. saturated Baseline vs. saturated	chi2 316 20302	df 2 6	p > chi2 .000 .000	Ordinal Cronbach's Alpha (Cronbach's alpha = .839) McDonald's Omega	.86 ₃
1	Root mean squared error (F	RMSEA)		.119	Test of (one-)dimensionality (pa	arallel analysis)

2)	Root mean squared error	(RMSEA)	.119	
	90% Confidence interval:	lower bound	.109	
	90% Confidence interval:	upper bound	.131	
	Probability RMSEA <= 0.0	5	.000	

	,	
3)	Akaike's Information Criterion (AIC) Bayesian Information Criterion (BIC)	129471 129559
		5555

4)	Baseline comparison
	Comparative Fit Index (CFI)

Standardized factor loadings

Comparative Fit Index (CFI) .985
Tucker–Lewis Index (TLI) .954

5) Size of residuals

Stand. root mean squared residual (SRMR)	.021
Coefficient of determination (CD)	.866

	_	_	_
Item	desc	rint	ives

Factor 1

Factor 2

Factor 3

Factor 4

Reliability and Dimensionality

Criterion: retain factors with adj. eigenvalue > o
Adjusted eigenvalue

2.33

-.03

-.11

-.13

	3				•		Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
applyasp1	0.80	.005	0.79	0.81	applyasp1	4.2	1.3	1	6	10982
applyasp2	0.79	.005	0.78	0.80	applyasp2	4.6	1.3	1	6	10933
applyasp3	0.73	.005	0.72	0.74	applyasp3	3.9	1.4	1	6	10958
applyasp4	0.81	.005	0.80	0.82	applyasp4	4.3	1.3	1	6	10924

Scale: Application aspect (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

chi2 498	df 28	p > chi2 .000
chi2	df	p > chi2
70	6	.000
151	6	.000
53	6	.000
	chi2 70 151	498 28 chi2 df 70 6 151 6

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.997
French vs. Italian language version	.992
Italian vs. German language version	.998

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	.999

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. applyasp_fs 0.0 1.0 $^{-3.0}$ 1.6 11007 Share of cases with imputed missing values: 1.1% (Equivalence of scores from robust MLMV: CD = .999)

Scale: Teacher: cognitive activation

Maths sample-split

Model and Fit Statistics

Reliability and Dimensionality

Model and Fit Statistics Reliability a						Dimensionality	
1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronbac	h's Alpha	.873
	Model vs. saturated	5636	20	.000	(Cronbach's alpha	a = .844)	
	Baseline vs. saturated	38613	28	.000	McDonald's Ome	ega	.872
2)	Root mean squared error (RMSEA)		.164	Test of (one-)dim	nensionality (para	allel analysis)
	90% Confidence interval:	lower bound		.160	Criterion: retain f	actors with adj. ei	genvalue > o
	90% Confidence interval:	upper bound		.167	А	djusted eigenvalu	e
	Probability RMSEA <= 0.05			.000	Factor 1	3.74	
					Factor 2	.52	
3)	Akaike's Information Criter	rion (AIC)		176245	Factor 3	.15	
	Bayesian Information Crite	rion (BIC)		176419	Factor 4	03	
					Factor 5	07	
4)	Baseline comparison				Factor 6	13	
	Comparative Fit Index (CFI)			.854	Factor 7	14	
	Tucker–Lewis Index (TLI)			.796	Factor 8	14	
5)	Size of residuals						
	Stand. root mean squared re	esidual (SRM	R)	.078			
	Coefficient of determination	n (CD)		.894			

• •				
Item	des	crin	tiv	es

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
cogself1	0.83	.004	0.82	0.83	cogself1	2.8	0.9	1	4	10443
cogself2	0.50	.008	0.48	0.51	cogself2	2.6	0.8	1	4	10290
cogself3	0.56	.007	0.54	0.57	cogself3	2.7	0.9	1	4	10324
cogself4	0.75	.005	0.74	0.76	cogself4	2.9	0.8	1	4	10423
cogself5	0.82	.004	0.81	0.83	cogself5	2.8	0.9	1	4	10428
cogself6	0.66	.006	0.64	0.67	cogself6	2.9	0.8	1	4	10432
cogself7	0.62	.007	0.61	0.63	cogself7	2.7	0.8	1	4	10271
cogself8	0.67	.006	0.66	o.68	cogself8	2.7	0.8	1	4	10278

Parameters of Generalized Structural Equation Model (Ordinal Logit Link)

				(
Indicators	Coef.	Cut1	Cut ₂	Cut ₃
cogself1	2.85	-4.53	-1.62	2.57
cogself2	1.13	-2.48	-0.26	2.42
cogself3	1.29	-2.66	-0.59	2.07
cogself4	2.17	-3.98	-1.53	1.87
cogself5	2.75	-4.35	-1.27	2.61
cogself6	1.67	-3.68	-1.26	1.58
cogself7	1.56	-3.22	-0.69	2.66
cogself8	1.77	-3.44	-0.88	2.53

Scale: Teacher: cognitive activation (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

chi2	df	p > chi2
943	88	.000
chia	df	p > chi2
	14	.000
495	14	.000
321	14	.000
	943 chi2 46 495	943 88 chi2 df 46 14 495 14

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.998
French vs. Italian language version	.998
Italian vs. German language version	.996

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	1.000
Language: Italian	.999

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. cogself_fs 0.0 0.9 -2.8 2.3 10496 Share of cases with imputed missing values: 3.2% (Equivalence of scores from robust MLMV: CD = .998) (Equivalence of scores from two-step approach: CD = .983)

Scale: Cogn. activation: finding solutions & arguing

Maths sample-split

Model and Fit Statistics

Reliability and Dimensionality

1)	Likelihood-ratio tests chi2 Model vs. saturated 332 Baseline vs. saturated 19997	df 2 6	p > chi2 .000 .000	Ordinal Cronbach's Alpha (Cronbach's alpha = .825) McDonald's Omega	.864 .865
2)	Root mean squared error (RMSEA) 90% Confidence interval: lower bound 90% Confidence interval: upper bound Probability RMSEA <= 0.05		.125 .114 .137 .000	Test of (one-)dimensionality Criterion: retain factors with a Adjusted eige Factor 1 2.37 Factor 202	dj. eigenvalue > o nvalue
3)	Akaike's Information Criterion (AIC) Bayesian Information Criterion (BIC)		85451 85538	Factor 308 Factor 415	
4)	Baseline comparison Comparative Fit Index (CFI) Tucker–Lewis Index (TLI)		.984 .951		
5)	Size of residuals Stand. root mean squared residual (SRMF Coefficient of determination (CD)	₹)	.023 .878		

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
cogself1	0.83	.004	0.83	0.84	cogself1	2.8	0.9	1	4	10443
cogself4	0.75	.005	0.74	0.76	cogself4	2.9	0.8	1	4	10423
cogself5	0.86	.004	0.85	0.86	cogself5	2.8	0.9	1	4	10428
cogself6	0.69	.006	0.68	0.71	cogself6	2.9	0.8	1	4	10432

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
cogself1	2.72	-4.62	-1.74	2.31
cogself4	2.19	-4.18	-1.71	1.71
cogself5	3.03	-4.91	-1.50	2.61
cogself6	1.91	-4.07	-1.49	1.53

Scale: Cogn. activation: finding solutions & arguing (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	351	28	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	24	6	.000
Strong invariance (plus equal intercepts)	110	6	.000
Strict invariance (plus equal error variances)	105	6	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	1.000
French vs. Italian language version	.997
Italian vs. German language version	.997

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	1.000
Language: Italian	.995

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. cogselfa_fs -0.1 0.9 -2.4 1.7 10467

Share of cases with imputed missing values: 0.9% (Equivalence of scores from robust MLMV: CD = .999) (Equivalence of scores from two-step approach: CD = .985)

Scale: Cogn. activation: strategies & learning from mistakes

Maths sample-split

Model and Fit Statistics

Reliability and Dimensionality

1)	Likelihood-ratio tests Model vs. saturated Baseline vs. saturated	chi2 1037 12679	df 2 6	p > chi2 .000 .000	Ordinal Cronbac (Cronbach's alpha McDonald's Ome	a = .743)	.788 .787		
2)	Root mean squared error (I 90% Confidence interval: 1 90% Confidence interval: 1	ower bound		.224	Test of (one-)dimensionality (parallel analy Criterion: retain factors with adj. eigenvalue				
	Probability RMSEA <= 0.05	эррег воопа		.235 .000	Factor 1 Factor 2	djusted eigenvalu 1.84 .12	e		
3)	Akaike's Information Criter Bayesian Information Crite	• •		90475 90562	Factor 3 Factor 4	18 17			
4)	Baseline comparison Comparative Fit Index (CFI) Tucker–Lewis Index (TLI)			.918 ·755					
5)	Size of residuals Stand. root mean squared re Coefficient of determination	•	₹)	.061 .816					

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
cogself2	0.60	.008	0.59	0.62	cogself2	2.6	0.8	1	4	10290
cogself3	0.58	.008	0.56	0.59	cogself3	2.7	0.9	1	4	10324
cogself7	0.76	.006	0.75	0.78	cogself7	2.7	0.8	1	4	10271
cogself8	0.81	.006	0.80	0.82	cogself8	2.7	0.8	1	4	10278

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
cogself2	1.45	-2.80	-0.35	2.62
cogself3	1.36	-2.79	-0.64	2.10
cogself7	2.13	-3.95	-0.89	3.12
cogself8	2.37	-4.28	-1.14	3.01

Scale: Cogn. activation: strategies & learning from mistakes (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

chi2	df	p > chi2
402	28	.000
chi2	df	p > chi2
70	6	.000
151	6	.000
124	6	.000
	402 chi2 70 151	402 28 chi2 df 70 6 151 6

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.998
French vs. Italian language version	.962
Italian vs. German language version	.975

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.999
Language: Italian	.936

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. cogselfb_fs 0.0 0.9 -2.4 2.1 10334 Share of cases with imputed missing values: 0.9% (Equivalence of scores from robust MLMV: CD = .996) (Equivalence of scores from two-step approach: CD = .985)

Scale: Teacher: classroom management

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	16993	3	.000
2)	Root mean squared error (RMSEA)		.000
	90% Confidence interval:	lower bound		.000
	90% Confidence interval:	upper bound		.000
	Probability RMSEA <= 0.05			1.000
3)	Akaike's Information Crite	rion (AIC)		63509
3/	Bayesian Information Crite	• •		63574
4)	Baseline comparison			
	Comparative Fit Index (CFI)			1.000
	Tucker–Lewis Index (TLI)			1.000
5)	Size of residuals			

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.882
(Cronbach's alpha = .842)	
McDonald's Omega	.883

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

	-	•	
Factor 1		2.02	
Factor 2		09	
Factor 3		12	

Stand. root mean squared residual (SRMR) .000 Coefficient of determination (CD) .892

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf. i	nterval]	Indicators	Mean	dev.	Min.	Max.	Obs.
classman1	0.79	.005	0.78	0.80	classman1	2.4	0.9	1	4	10313
classman2	0.85	.004	0.84	0.85	classman2	2.4	0.9	1	4	10295
classman3	0.90	.004	0.89	0.90	classman3	2.3	0.9	1	4	10272

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
classman1	2.48	-3.02	0.54	3.83
classman2	3.05	-3.19	0.28	4.06
classman3	3.96	-3.53	0.98	5.59

Scale: Teacher: classroom management (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 267	df 18	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	6	4	.169
Strong invariance (plus equal intercepts)	58	4	.000
Strict invariance (plus equal error variances)	13	4	.010

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	1.000
French vs. Italian language version	.999
Italian vs. German language version	.999

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	1.000
Language: Italian	.999

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. classman_fs 0.0 0.9 -1.7 2.0 10343

Share of cases with imputed missing values: 0.9% (Equivalence of scores from robust MLMV: CD = .999) (Equivalence of scores from two-step approach: CD = .992)

Scale: Teacher: individual learning support

Maths sample-split

Model and Fit Statistics

Reliability and Dimensionality

					,	,	
1)	Likelihood-ratio tests	chi2	df	p > chi2	Ordinal Cronback	n's Alpha	.935
	Model vs. saturated	121	5	.000	(Cronbach's alpha	ı = .907)	
	Baseline vs. saturated	42736	10	.000	McDonald's Ome	ga	.935
2)	Root mean squared error (RMSEA)		.047	Test of (one-)dim	nensionality (para	llel analysis)
	90% Confidence interval:	lower bound		.040	Criterion: retain fa	actors with adj. eig	genvalue > o
	90% Confidence interval:	upper bound		.055	A	djusted eigenvalue	9
	Probability RMSEA <= 0.05			.730	Factor 1	3.63	
					Factor 2	04	
3)	Akaike's Information Criter	rion (AIC)		94824	Factor 3	06	
	Bayesian Information Crite	erion (BIC)		94932	Factor 4	05	
					Factor 5	06	
4)	Baseline comparison						
	Comparative Fit Index (CFI)			.997			
	Tucker–Lewis Index (TLI)			.995			
5)	Size of residuals						
	Stand. root mean squared re	esidual (SRM	R)	.007			
	Coefficient of determination	n (CD)		.936			

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
indsup1	o.86	.003	0.85	0.86	indsup1	2.7	0.9	1	4	10434
indsup2	0.89	.003	0.88	0.89	indsup2	3.0	0.9	1	4	10436
indsup3	0.87	.003	0.87	0.88	indsup3	2.8	0.9	1	4	10464
indsup4	0.87	.003	0.86	0.87	indsup4	2.8	0.9	1	4	10439
indsup5	0.82	.004	0.81	0.83	indsup5	2.9	0.9	1	4	10423

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut1	Cut ₂	Cut ₃
indsup1	3.14	-4.44	-1.26	2.84
indsup2	3.72	-5.69	-2.62	1.91
indsup3	3.43	-4.89	-1.86	2.64
indsup4	3.29	-4.42	-1.53	2.12
indsup5	2.74	-4.43	-1.76	2.14

Scale: Teacher: individual learning support (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	515	40	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	35	8	.000
Strong invariance (plus equal intercepts)	196	8	.000
Strict invariance (plus equal error variances)	57	8	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.999
French vs. Italian language version	.999
Italian vs. German language version	1.000

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	1.000
Language: Italian	1.000

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. indsup_fs 0.0 0.9 -2.2 1.6 10486 Share of cases with imputed missing values: 1.0% (Equivalence of scores from robust MLMV: CD = 1.00) (Equivalence of scores from two-step approach: CD = .981)

Scale: Teacher: instruction quality

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	9348	3	.000

2) Root mean squared error (RMSEA) .000
90% Confidence interval: lower bound .000
90% Confidence interval: upper bound .000
Probability RMSEA <= 0.05 1.000

3) Akaike's Information Criterion (AIC) 71991 Bayesian Information Criterion (BIC) 72056

4) Baseline comparison

Comparative Fit Index (CFI) 1.000
Tucker–Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR) .000
Coefficient of determination (CD) .829

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.765
(Cronbach's alpha = .712)	
McDonald's Omega	.780

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

Factor 1 1.47
Factor 2 -.08
Factor 3 -.18

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
instqual1	0.80	.007	0.79	0.82	instqual1	2.8	0.9	1	4	10426
instqual2	0.85	.007	0.84	0.87	instqual2	2.8	0.8	1	4	10285
instqual3	0.53	.008	0.51	0.54	instqual3	2.6	0.9	1	4	10266

Parameters of generalized structural equation model (ordinal logit link)

				•
Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
instqual1	2.52	-3.80	-1.28	1.99
instqual2	3.09	-4.94	-1.54	3.53
instqual3	1.15	-2.11	-0.25	2.18

Scale: Teacher: instruction quality (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 432	df 18	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	31	4	.000
Strong invariance (plus equal intercepts)	310	4	.000
Strict invariance (plus equal error variances)	21	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.996
French vs. Italian language version	.999
Italian vs. German language version	.999

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.998
Language: Italian	.996

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. instqual_fs 0.0 0.9 -2.0 1.7 10473

Share of cases with imputed missing values: 2.6% (Equivalence of scores from robust MLMV: CD = .999) (Equivalence of scores from two-step approach: CD = .988)

Scale: Situational interest

Maths sample-split

Reliability and Dimensionality

Model and Fit Statistics

1)	Likelihood-ratio tests Model vs. saturated Baseline vs. saturated	chi2 0 11000	df o 3	p > chi2 .000	Ordinal Cronbach (Cronbach's alpha McDonald's Omeg	= .757)	
2)	Root mean squared error (I 90% Confidence interval: 90% Confidence interval: Probability RMSEA <= 0.05	lower bound		.000 .000 .000 1.000	Test of (one-)dimensionality (parallel and Criterion: retain factors with adj. eigenvalue Adjusted eigenvalue Factor 1 1.60 Factor 210		
3)4)	Akaike's Information Criter Bayesian Information Criter Baseline comparison Comparative Fit Index (CFI) Tucker–Lewis Index (TLI)	• •		76347 76413 1.000 1.000	Factor 3	17	

.000

.834

Standardized factor loadings

Stand. root mean squared residual (SRMR)

Coefficient of determination (CD)

5) Size of residuals

Standardized fa	Item descriptives									
	Std.					Valid				
Indicators	Coef.	(SE)	[95% Conf	interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
intsit1	0.75	.006	0.73	0.76	intsit1	2.6	0.9	1	4	10891
intsit2	0.68	.007	0.67	0.70	intsit2	2.3	0.9	1	4	10836
intsit3	0.86	.006	0.85	0.87	intsit3	2.4	0.9	1	4	10897

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
intsit1	2.09	-3.06	-0.39	3.19
intsit2	1.82	-1.86	0.46	3.11
intsit3	3.24	-2.76	0.54	4.35

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 801	df 18	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	282	4	.000
Strong invariance (plus equal intercepts)	61	4	.000
Strict invariance (plus equal error variances)	251	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.974
French vs. Italian language version	.999
Italian vs. German language version	.983

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	.998
Language: French	.971
Language: Italian	.995

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. intsit_fs 0.0 0.9 -1.7 2.0 10926
Share of cases with imputed missing values: 1.2% (Equivalence of scores from robust MLMV: CD = .996) (Equivalence of scores from two-step approach: CD = .988)

Scale: Perceived autonomy support

Maths sample-split

Reliability and Dimensionality

Model and Fit Statistics

1)	Likelihood-ratio tests Model vs. saturated	chi2 0	df o	p > chi2	Ordinal Cronbach (Cronbach's alpha	•	.799	
		•	U			,	_	
	Baseline vs. saturated	10030	3	.000	McDonald's Ome	:ga	.800	
2)	Root mean squared error (RMSEA)		.000	Test of (one-)dimensionality (parallel analys			
	90% Confidence interval:	lower bound		.000	Criterion: retain fa	actors with adj. eic	jenvalue > o	
	90% Confidence interval:	upper bound		.000	A	djusted eigenvalue	2	
	Probability RMSEA <= 0.05			1.000	Factor 1	1.55		
					Factor 2	13		
3)	Akaike's Information Crite	rion (AIC)		72281	Factor 3	17		
	Bayesian Information Crite	erion (BIC)		72346				
4)	Baseline comparison							
,	Comparative Fit Index (CFI)			1.000				
	Tucker–Lewis Index (TLI)			1.000				
5)	Size of residuals							
3/	5.20 01 105.00015							

.000

.809

Standardized factor loadings

Stand. root mean squared residual (SRMR)

Coefficient of determination (CD)

Standardized fac	Item descriptives									
							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
persuppauto1	0.74	.006	0.73	0.76	persuppauto1	2.7	0.9	1	4	10665
persuppauto2	0.82	.006	0.81	0.83	persuppauto2	2.9	0.9	1	4	10627
persuppauto3	0.70	.007	0.69	0.72	persuppauto3	3.0	0.8	1	4	10655

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
persuppauto1	2.02	-3.46	-0.78	2.16
persuppauto2	2.67	-4.43	-1.76	2.02
persuppauto3	1.88	-4.13	-1.81	1.12

Scale: Perceived autonomy support (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2	df	p > chi2
	229	18	.000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	34	4	.000
Strong invariance (plus equal intercepts)	142	4	.000
Strict invariance (plus equal error variances)	28	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.996
French vs. Italian language version	.994
Italian vs. German language version	.998

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.993
Language: Italian	.993

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. persuppauto_fs 0.0 0.9 -2.2 1.5 10674
Share of cases with imputed missing values: 0.5%
(Equivalence of scores from robust MLMV: CD = .999)
(Equivalence of scores from two-step approach: CD = .987)

Scale: Perceived competence support

Maths sample-split

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2	Ord
	Model vs. saturated	0	0		(Cro
	Baseline vs. saturated	19504	3	.000	McI
٦)	Poot maan squared error (DMCEAL		000	Toc

2) Root mean squared error (RMSEA) .000
90% Confidence interval: lower bound .000
90% Confidence interval: upper bound .000
Probability RMSEA <= 0.05 1.000

3) Akaike's Information Criterion (AIC) 61112 Bayesian Information Criterion (BIC) 61178

4) Baseline comparison

Comparative Fit Index (CFI) 1.000
Tucker–Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR) .000
Coefficient of determination (CD) .951

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.888
(Cronbach's alpha = .842)	
McDonald's Omega	.892

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o Adjusted eigenvalue

Factor 2 -.03
Factor 3 -.13

Standardized factor loadings

Item descriptives

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
persuppcomp1	0.97	.003	0.96	0.98	persuppcomp1	2.9	0.8	1	4	10639
persuppcomp2	0.77	.005	0.77	0.78	persuppcomp2	2.7	0.9	1	4	10639
persuppcomp3	0.82	.004	0.81	0.83	persuppcomp3	3.0	0.8	1	4	10645

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
persuppcomp1	4.74	-7.76	-3.07	3.05
persuppcomp2	2.29	-3.63	-0.99	2.34
persuppcomp3	2.73	-5.44	-2.51	1.35

Scale: Perceived competence support (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 281	df 18	p > chi2 .000
Tests of measurement invariance	chi2	df	p > chi2
Metric invariance (equal factor loadings)	61	4	.000
Strong invariance (plus equal intercepts)	124	4	.000
Strict invariance (plus equal error variances)	43	4	.000

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.998
French vs. Italian language version	.998
Italian vs. German language version	.997

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.998
Language: Italian	.982

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. persuppcomp_fs 0.0 0.9 -2.2 1.5 10665 Share of cases with imputed missing values: 0.5% (Equivalence of scores from robust MLMV: CD = .994) (Equivalence of scores from two-step approach: CD = .953)

Scale: Perceived social relatedness

Bayesian Information Criterion (BIC)

Maths sample-split

.858

.862

Model and Fit Statistics

1)	Likelihood-ratio tests Model vs. saturated	chi2 0	df o	p > chi2	Ordinal Cronba (Cronbach's alpl	•
	Baseline vs. saturated	15653	3	.000	McDonald's On	
2)	Root mean squared error (I	RMSEA)		.000	Test of (one-)di	mensionalit
·		lower bound		.000	Criterion: retain	factors with
	90% Confidence interval:	upper bound		.000		Adjusted eig
	Probability RMSEA <= 0.05			1.000	Factor 1	1.9
					Factor 2	
3)	Akaike's Information Criter	rion (AIC)		69393	Factor 3	

ne-)dimensionality (parallel analysis)

etain factors with adj. eigenvalue > o Adjusted eigenvalue

Factor 1	1.90
Factor 2	08
Factors	12

Reliability and Dimensionality

4) Baseline comparison

Comparative Fit Index (CFI)	1.000
Tucker–Lewis Index (TLI)	1.000

5) Size of residuals

Stand. root mean squared residual (SRMR)	.000
Coefficient of determination (CD)	.886

Standardized factor loadings

• •		
Itam	decci	riptives
110	uesc	iipuve3
		•

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
persocincl1	0.89	.004	0.88	0.89	persocincl1	2.7	0.9	1	4	10635
persocincl2	0.70	.006	0.69	0.71	persocincl2	2.7	0.9	1	4	10640
persocincl3	0.87	.004	0.86	0.88	persocincl3	2.4	0.9	1	4	10632

69459

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
persocincl1	3.65	-4.81	-1.00	3.37
persocincl2	1.82	-3.18	-0.78	2.11
persocincl3	3.34	-2.89	0.28	4.36

Scale: Perceived social relatedness (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

chi2 1205	df 18	p > chi2 .000
chi2	df	p > chi2
74	4	.000
745	4	.000
216	4	.000
	1205 chi2 74 745	chi2 df 74 4 745 4

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.993
French vs. Italian language version	.993
Italian vs. German language version	1.000

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	1.000
Language: French	.992
Language: Italian	1.000

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. persocincl_fs 0.0 0.9 -1.9 1.8 10684
Share of cases with imputed missing values: 0.9% (Equivalence of scores from robust MLMV: CD = .996) (Equivalence of scores from two-step approach: CD = .987)

Scale: Classmates' appreciation of mathematics

Maths sample-split

Model and Eit Statistics

М	odel and Fit Statistics	Reliability and Dimensionality						
1)	Likelihood-ratio tests Model vs. saturated	chi2 0	df o	p > chi2	Ordinal Cronbach's Alpha (Cronbach's alpha = .776)		.834	
	Baseline vs. saturated	19804	3	.000	McDonald's Ome	ega .	.859	
2)	2) Root mean squared error (RMSEA)				Test of (one-)dimensionality (parallel analysis			
	90% Confidence interval:	lower bound		.000	Criterion: retain factors with adj. eigenvalue			
	90% Confidence interval: ເ	upper bound		.000	A	djusted eigenvalu	е	
	Probability RMSEA <= 0.05			1.000	Factor 1	1.94		
					Factor 2	02		
3)	Akaike's Information Crite	rion (AIC)		53455	Factor 3	08		
	Bayesian Information Crite	erion (BIC)		53521				
4)	Baseline comparison							

Standardized factor loadings

Coefficient of determination (CD)

Stand. root mean squared residual (SRMR)

Comparative Fit Index (CFI)

Tucker-Lewis Index (TLI)

5) Size of residuals

_				
Item	desc	crip	tive	S

							Std.			Valid
Indicators	Coef.	(SE)	[95% Conf	. interval]	Indicators	Mean	dev.	Min.	Max.	Obs.
apprmath1	0.92	.004	0.92	0.93	apprmath1	2.0	0.7	1	4	10778
apprmath2	0.96	.004	0.95	0.97	apprmath2	2.0	0.7	1	4	10775
apprmath3	0.53	.007	0.51	0.54	apprmath3	2.7	0.8	1	4	10776

1.000

1.000

.000

.946

Parameters of generalized structural equation model (ordinal logit link)

Indicators	Coef.	Cut ₁	Cut ₂	Cut ₃
apprmath1	4.34	-2.78	3.80	8.49
apprmath2	4.83	-2.94	4.63	9.65
apprmath3	1.14	-2.82	-0.55	2.41

Scale: Classmates' appreciation of mathematics (continued)

Maths sample-split

Tests and Indices of Factorial Invariance across Survey Languages

Equality of variance-covariance matrices	chi2 320	df 9	p > chi2 .000		
Tests of measurement invariance	chi2	df	p > chi2		
Metric invariance (equal factor loadings)	13	2	.001		
Strong invariance (plus equal intercepts)	67	2	.000		
Strict invariance (plus equal error variances)	5	2	.082		
Configural factor similarity					
Tucker's Congruence Coefficient	TCC				
German vs. French language version	1.000				
French vs. Italian language version					
Italian vs. German language version					
Factor score equivalence: group specific vs. inv	ariant mode	els			
Coefficient of determination	CD				
Language: German	.999				
Language: French/ Italian	.991				
* Note: Due to sparse tables for the italian version	on of the sca	le, equiva	lence tests fail	led to	

* **Note:** Due to sparse tables for the italian version of the scale, equivalence tests failed to converge and were reestimated with collapsed italian and french versions.

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. apprmath_fs 0.0 0.9 -1.6 2.4 10784 Share of cases with imputed missing values: 0.1% (Equivalence of scores from robust MLMV: CD = .997) (Equivalence of scores from two-step approach: CD = .980)

Scale: Absenteeism / truancy

Full AES sample

Model and Fit Statistics

1)	Likelihood-ratio tests	chi2	df	p > chi2
	Model vs. saturated	0	0	
	Baseline vs. saturated	30122	3	.000

2) Root mean squared error (RMSEA) .000 90% Confidence interval: lower bound .000 90% Confidence interval: upper bound .000 Probability RMSEA <= 0.05 1.000

3) Akaike's Information Criterion (AIC) 84033 **Bayesian Information Criterion (BIC)** 84105

4) Baseline comparison

Comparative Fit Index (CFI) 1.000 Tucker-Lewis Index (TLI) 1.000

5) Size of residuals

Stand. root mean squared residual (SRMR) .000 Coefficient of determination (CD) .923

Reliability and Dimensionality

Ordinal Cronbach's Alpha	.819
(Cronbach's alpha = .648)	
McDonald's Omega	.837

Test of (one-)dimensionality (parallel analysis)

Criterion: retain factors with adj. eigenvalue > o

	Adjusted eigenvalue
Factor 1	1.77
Factor 2	03
Factor 3	14

Standardized factor loadings

Indicators Coef. (SE) [95% Conf. interval] truancy1 0.84 0.83 0.85 .004)4 0.96 55 0.57

truancy2 *	0.95	.004	0.94
truancy3 *	0.56	.005	0.5
* Note: Original item	n from TRE	E1/PISA2	000

Item	des	crip	tiv	es
	acs	C P		

		Std.			Valid
Indicators	Mean	dev.	Min.	Max.	Obs.
truancy1	1.1	0.4	1	4	22242
truancy2 *	1.2	0.5	1	4	22245
truancy3 *	1.5	0.8	1	4	22251

Parameters of generalized structural equation model (ordinal logit link)

				(
Indicators	Coef.	Cut1	Cut ₂	Cut ₃
truancy1	3.27	4.85	7.51	8.62
truancy2	4.63	5.31	8.79	10.99
truancy3	1.16	0.54	2.44	3.49

Scale: Absenteeism / truancy (continued)

Full AES sample

Tests and Indices of Factorial Invariance across Survey Languages

2001 18 .0	00
2001 18 .0	
Tests of measurement invariance chi2 df p >	chi2
Metric invariance (equal factor loadings) 38 4 .o	00
Strong invariance (plus equal intercepts) 734 4 .o	00
Strict invariance (plus equal error variances) 680 4 .o	00

Configural factor similarity

Tucker's Congruence Coefficient	TCC
German vs. French language version	.999
French vs. Italian language version	.998
Italian vs. German language version	1.000

Factor score equivalence: group specific vs. invariant models

Coefficient of determination	CD
Language: German	.997
Language: French	.988
Language: Italian	.954

Factor score descriptives

Std.

Variable name Mean dev. Min. Max. Obs. truancy_fs 0.0 0.7 -0.5 2.8 22254 Share of cases with imputed missing values: 0.1% (Equivalence of scores from robust MLMV: CD = .995) (Equivalence of scores from two-step approach: CD = .780)

List of Sources

AEQ-M (short-version)

Pekrun, R., Goetz, T. & Frenzel, A. C. (2005). Achievement emotions questionnaire-mathematics (AEQ-M). User's manual. Department of Psychology, University of Munich.

BHPS

Taylor, M. F., Brice, J., Buck, N., & Prentice-Lane, E. (2018). British Household Panel Survey User Documenation (Questionnaires Wave 13 & 15). Publication no. http://doi.org/10.5255/UKDA-SN-5151-2). University of Essex, Institute for Social and Economic Research.

Böhm-Kasper et al., 2000

Böhm-Kasper, O., Bos, W., Jaeckel, S. & Weishaupt, H. (2000). Skalenhandbuch zur Belastung von Schülern und Lehrern. Das Erfurter Belastungs-Inventar (EBI). Erfurt: Pädagogische Hochschule Erfurt.

COACTIV 2008

Baumert, J., Blum, W., Brunner, M., Dubberke, T., Jordan, A., Klusmann, U., Krauss, S., Kunter, M., Löwen, K., Neubrand, M., & Tsai, Y.-M. (2008). Professionswissen von Lehrkräften, kognitiv aktivierender Mathematik-unterricht und die Entwicklung von mathematischer Kompetenz (COACTIV): Dokumentation der Erhebungsinstrumente. Berlin: Max-Planck-Institut für Bildungsforschung.

Eder, 1995, 2007

Eder, F. (Ed.) (1995). Das Befinden von Kindern und Jugendlichen in der Schule. Innsbruck: Studienverlag. Eder, F. (2007): Das Befinden von Kindern und Jugendlichen in der österreichischen Schule. Befragung 2005.

GESIS (short-version)

Kovaleva, A., Beierlein, C., Kemper, C. J., & Rammstedt, B. (2012). Eine Kurzskala zur Messung von Kontrollüberzeugung: die Skala Internale-Externale-Kontrollüberzeugung-4 (IE-4) (GESIS-Working Papers, 2012/19). Mannheim: GESIS - Leibniz-Institut für Sozialwissenschaften.

http://nbn-resolving.de/urn:nbn:de:0168-ssoar-31209

Girnat, 2015, 2017

Girnat, B. (2015). Girnat, B. (2015). Konstruktivistische und instruktivistische Lehrmethoden aus Schülersicht – Entwicklung eines fragebogenbasierten Erhebungsinstrumentes. In F. Caluori, H. Linneweber-Lammerskitten, & C. Streit (Eds.), Beiträge zum Mathematikunterricht 2015 (Vol. 1, pp. 308 – 311). Münster: WTM.

Girnat, B. (2017). Gender Differences Concerning Pupils' Beliefs on Teaching Methods and Mathematical Worldviews at Lower Secondary Schools. In: C. Andrà, D. Brunetto, E. Levenson und P. Liljedahl (Eds.): Teaching and Learning in Maths Classrooms: Emerging Themes in Affect-related Research: Teachers' Beliefs, Students' Engagement and Social Interaction (Research in Mathematics Education). Cham: Springer International Publishing AG, P. 253 – 263.

Girnat, 2018

Girnat, B. (2018). The PISA Mathematics Self-Efficacy Scale: Questions of Dimensionality and a Latent Class Concerning Algebra. In H. Palmér G J. Skott (Eds), Students' and Teachers' Values, Attitudes, Feelings and Beliefs in Mathematics Classrooms. Springer International Publishing AG.

Grob et al., 1991

Grob, A., Lüthi, R., Kaiser, F. G., Flammer, A., Mackinnon, A., & Wearing, A. J. (1991). Berner Fragebogen zum Wohlbefinden Jugendlicher (BFW). Diagnostica, 37(1), 66-75.

GSES

Jerusalem, M. & Schwarzer, R. (1999). Allgemeine Selbstwirksamkeitserwartung. In: R. Schwarzer & M. Jerusalem (Hg.). Skalen zur Erfassung von Lehrer und Schülermerkmalen. Dokumentation der psychometrischen Verfahren im Rahmen der Wissenschamlichen Begleitung des Modellversuchs Selbstwirksame Schulen. Berlin: Freie Universität Berlin.

Schwarzer, R. (1999). General Perceived Self-Efficacy in 14 Cultures. In. Berlin: Freie Universität Berlin.

Schwarzer, R. (2014). Documentation of the General Self-Efficacy Scale. Retrieved from http://www.ralfschwarzer.de/.

List of Sources (continued)

Hascher, 2004

Hascher, T. (2004). Wohlbefinden in der Schule. Münster: Waxmann.

Hagenauer & Hascher, 2012 (modified)

Hagenauer, G., & Hascher, T. (2012). Erfassung kognitiver Regulationsstrategien bei Schulunlust. Empirische Pädagogik, 26(4), 452-478.

Hascher et al., 2019

Hascher, T., Brühwiler, C., & Girnat, B. (2019). Erläuterungen zu den Skalen des Kon-textfragebogens der ÜGK 2016 Mathematikteil: Theoretischer Hintergrund und Forschungsinteressen. http://uegk-schweiz.ch/uegk-2016-neu/

Hobza, et al., 2017

Hobza, V., Hamrik, Z., Bucksch, J. & De Clercq, B. (2017). 'The Family Affluence Scale as an Indicator for Socioeconomic Status: Validation on Regional Income Differences in the Czech Republic'. International journal of environmental research and public health 14 (12): 1540-1549.

see also Hartley, J. E. K., Levin, K., & Currie, C. (2016). A new version of the HBSC Family Affluence Scale - FAS III: Scottish Qualitative Findings from the International FAS Development Study. Child Indicators Research, 9: 233–245.

ICILS 2013

Jung, M., & Carstens, R. (2015). International Computer and Information Literacy Study: ICILS 2013 User Guide for the International Database. Amsterdam: International Association for the

see also Fraillon, J., Ainley, J., Schulz, W., Friedman, T., Gebhardt, E. (2014). Preparing for Life in a Digital Age. The IEA International Information Literacy Study International Report. Cham: Springer.

IGLU 2001

Bos, W., Lankes, E.-M., Prenzel, M., Schwippert, K., Walther, G. & Valtin, R. (2007): Internationale Grundschul-Lese-Untersuchung 2001 (IGLU/PIRLS 2001). Version: 1. IQB – Institut zur Qualitätsentwicklung im Bildungswesen. Datensatz. http://doi.org/10.5159/IQB_IGLU_2001_v1

ISSP 2003

ISSP Research Group. (2003). International Social Survey Programme: Social Relations and Support Systems - ISSP 2001. In. Köln: GESIS Datenarchiv.

PISA 2012

PISA Programme for International Student Assessment (2014). PISA 2012 technical report. Paris: OECD.

see also Mang, J., Ustjanzew, N., Schiepe-Tiska, A., Prenzel, M., Sälzer, C., Müller, K., & González Rodríguez, E. (Eds.) (2018). PISA 2012 Skalenhandbuch. Dokumentation der Erhebungsinstrumente. Münster/New York: Waxmann.

PISA 2006

PISA Programme for International Student Assessment (2009). PISA 2006 technical report. Paris: OECD. see also Frey, A., Taskinen, P., Schütte, K., Prenzel, M., Artelt, C., Baumert, J., . . . Pekrun, R. (Eds.) (2009). PISA 2006 Skalenhandbuch: Dokumentation der Erhebungsinstrumente. Münster: Waxmann.

PISA 2000

Adams, R. and Wu, M. (2002). PISA 2000 technical report. Paris: OECD.

see also Kunter, M., Schümer, G., Artelt, C., Baumert, J., Klieme, E., Neubrand, M., . . . Weiß, M. (Eds.) (2002). PISA 2000: Dokumentation der Erhebungsinstrumente. Berlin: Max-Planck-Institut für Bildungsforschung.

Rammstedt et al., 2014

Rammstedt, B., Kemper, C. J., Klein, M. C., Beierlein, C. & Kovaleva, A., (2014). Big Five Inventory (BFI-10). Zusammenstellung sozialwissenschaftlicher Items und Skalen. Doi:10.6102/zis76

see also Rammstedt, B., & John, O. P. (2007). Measuring personality in one minute or less: A 10-item short version of the Big Five Inventory in English and German. Journal of Research in Personality, 41(1), 203-212. doi:10.1016/j.jrp.2006.02.001

see also NEPS. (2013). Startkohorte 4: Klasse 9 (SC4) Wellen 1 und 2 Erhebungsinstrumente (SUF-Version 1.1.0). In. Bamberg: Universität Bamberg, Nationales Bildungspanel (NEPS).

List of Sources (continued)

Rosenberg 1979 (translated)

Rosenberg, M. (1979). Conceiving the self. New York: Basic Books.

Ryan & Conell, 1989

Ryan, R., & Connell, J. (1989). Perceived locus of causality and internalization: Examing reasons for acting in two domains. Journal of Personality and Social Psychology, 57, 749-761.

SELLMO 2012

Spinath, B., Stiensmeier-Pelster, J., Schöne, C., & Dickhäuser, O. (2002). Skalen zur Erfassung der Lern- und Leistungsmotivation (SELLMO). Göttingen: Hogrefe.

Seidel, Prenzel & Kobarg, 2005

Seidel, T., Prenzel, M., & Kobarg, M. (Eds.). (2005). How to run a video study: Technical report of the IPN Video Study. Münster: Waxmann.

Sen, 1985; Anand & van Hees, 2006

Sen, A. K. (1985). Commodities and Capabilities, Oxford: Elsevier

Anand, P., & van Hees, M. (2006). Capabilities and achievements: An empirical study. The Journal of Socio-Economics, 35(2), 268-284.

Szydlik, 2008

Szydlik, M. (2008). Intergenerational Solidarity and Conflict. Journal of Comparative Family Studies, 39(1), 97-114.

TREE₁

TREE (2016). Concepts and Scales. Survey waves 1 to 9, 2001-2014. Berne: TREE.

TREE₂

Hupka-Brunner, S., Jann, B., Meyer, T., Imdorf, C., Sacchi, S., Müller, B., Scharenberg, K., von Rotz, C., Koomen, M. & Becker, R. (2015). Erläuterungen zum Kontextfragebogen der ÜGK 2016: Allgemeiner Teil. Bern.

Watermann, 2000

Watermann, R. (2000). Berufliche Wertorientierungen im Wandel. Eine Kohortenanalyse zur Dynamik arbeitsbezogener Einstellungen anhand von ALLBUS-Umfragedaten. Münster: Institut für sozialwissenschaftliche Forschung e.V

List of scales (wave 0)

Appendix: List of sources [232]