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1 Introduction

As traditional dark matter scenarios are put under pressure by collider searches and direct
and indirect observational constraints, refined frameworks may become interesting. One
possibility originates through “resonant” effects [1, 2]. Notably, the resonance could originate
via an attractive t-channel exchange of light force carriers, leading to a large enhancement
in the spectral density of low-energy scattering states and possibly even to bound states
between dark sector particles; or it could be an elementary excitation created in the s-
channel, with a mass larger than twice the dark matter mass. Both of these could lead to
an efficient depletion of dark matter particles in the early universe, whereby the correct
abundance could be reached via the freeze-out mechanism, despite tiny couplings to the
Standard Model.

To make the point concrete, we recall that among the simplest dark matter models is
Standard Model extended by a singlet scalar field [3–6]. As this setup has been studied in
increasing detail, a curious corner of parameter space has been identified, with a small singlet
mass mϕ ∼ 60GeV < mh/2 and very weak couplings, which is not phenomenologically
excluded, despite the weak-scale mass (cf., e.g., ref. [7] and references therein).
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Curious corners of parameter space sometimes invoke non-trivial physics. Indeed, for the
said example, a substantial argument has emerged between two groups [8–11], concerning the
role that kinetic equilibrium plays in this scenario. This has led, amongst others, to recipes
for treating kinetic non-equilibrium in a numerically more manageable manner [8–14].

However, apart from kinetic non-equilibrium, there could be other reasons for uncertain-
ties in existing computations. One issue is that, as exemplified by ref. [6], the annihilation
cross section of scalar singlet particles to Standard Model particles has been estimated
by giving the Higgs propagator a finite width, namely its well-known vacuum decay rate.
Though a reasonable approximation numerically, this is conceptually unsatisfactory, given
that the Bose enhancement or Pauli blocking factors of the final-state particles in a thermal
environment are omitted.1 Indeed the Higgs width is known to be modified by thermal cor-
rections [15]. Another problem is that dark matter freeze-out takes place in the temperature
regime T ∼ (1–3)GeV, where poorly understood QCD effects could be substantial.

The purpose of the present paper is to address the latter uncertainties from a somewhat
more general perspective, while not (yet) tackling the issue of kinetic non-equilibrium. The
basic point is that in an unresummed order-by-order computation, an s-channel resonance
is to be treated as an on-shell particle. The dominant dark matter annihilation channel
is then the 2→ 1 “inverse decay” of two singlet scalars into an on-shell Higgs. The Higgs
decays, represented by the width, are next-to-leading order (NLO) reactions, such as 2→ 2.
However, at the same order, virtual corrections to the 2→ 1 process should be included, and
are in fact crucial, as they cancel mass singularities according to the KLN theorem [17, 18].
By formulating the theoretical side by a consistent NLO treatment including these effects,
we may also hope to incorporate thermal QCD effects in a somewhat reasonable manner.

Our presentation is organized as follows. Most dark matter computations adopt
Boltzmann equations as their starting point. In section 2, we recall why text-book Boltzmann
equations provide an incomplete treatment of nature when proceeding towards the NLO
level, and one way to rectify them by a quantum-field theoretic computation. Moreover the
simplifications met in the non-relativistic regime and in the presence of kinetic equilibrium
are spelled out. In section 3, the ingredients needed for implementing the NLO treatment are
summarized for the scalar singlet model, with details of matrix elements squared relegated to
appendix A, and leading-order phase-space integrals to appendix B. Our numerical results are
presented in section 4. We turn to a summary in section 5, adding at the same time a proposal
on how the issue of kinetic non-equilibrium might be attacked beyond the Boltzmann level.

2 Boltzmann equation and how to go beyond it

2.1 Basic setup and one of its deficiencies

Denoting by K ≡ (ω,k) the four-momentum of a dark matter particle, which is here assumed
to be a boson of mass mϕ, so that ω ≡

√
k2 +m2

ϕ where k ≡ |k|; and by fϕ its phase

1In vacuum, it has been proposed that this approximation can be systematized into an effective field
theory [16], however its application to a general thermal environment is unclear, since the center-of-mass
frame of the 2-particle final state differs from the plasma rest frame.

– 2 –
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space density, the Boltzmann equation governing the dark matter evolution has in local
Minkowskian coordinates in the plasma rest frame the form

Kα∂αfϕ = −
∑
m,n

aver1 +m→ n(a1, . . . , am; b1, . . . , bn) c
∑
spins
|M|2ϕ+m→n , (2.1)

where we have assumed the “mostly minus” metric convention; the ai label particles in the
initial state of the loss term (in addition to ϕ); the bi stand for final-state particles in the
loss term; and the phase space average has been defined as

aver1+m→n(a1, . . . ,am;b1, . . . , bn)

≡ 1
2

∫
dΦ1+m→n

{
fϕfa1 · · ·fam

(1±fb1) · · ·(1±fbn
)−fb1 · · ·fbn

(1+fϕ)(1±fa1) · · ·(1±fam
)
}
.

(2.2)

The phase space integral goes over the momenta of the particle sets {ai} and {bi}, and the
signs ± apply to bosons and fermions, respectively. The factor c ≡ 1/(ia!ib!) in eq. (2.1)
cancels overcounting when integrating over the momenta of ia or ib identical particles in
the initial or final state. The sum

∑
spins in eq. (2.1) goes over polarizations, and we have

assumed the symmetry |M|2ϕ+m→n = |M|2n→ϕ+m for the matrix elements squared.
In the following, we assume that all Standard Model particles are in thermal equilibrium,

so that their phase space distribution f can be replaced by the Bose (≡ fB) or Fermi
distribution (≡ fF). For equilibrated particles, 1 ± fa = eβεafa, where β ≡ 1/T and the
momenta were written as Pa ≡ (εa,pa). If the ϕ-particles were also in full equilibrium, then
energy conservation, ω + εa1 + . . .+ εam

= εb1
+ . . .+ εbn

, would guarantee detailed balance,
i.e. that the right-hand side of eq. (2.2) vanishes.

In the physical situation, the ϕ-particles may fall out of chemical and/or kinetic
equilibrium. Thereby eq. (2.1) turns into an integro-differential equation for fϕ. Even though
such equations can be solved, by discretizing momentum space (and, if the system is not
translationally invariant, configuration space as well), the solution tends to be numerically
expensive. Furthermore, such a solution does not represent an exact treatment of nature.

To appreciate the latter point, we recall that one deficiency of the Boltzmann equation
in eq. (2.1) is that its building blocks are what we call real processes, between on-shell
particles whose phase-space distributions we know or want to determine. Virtual corrections
(closed loops) can only be incorporated in so far as they amount to vacuum corrections
to the matrix elements squared. But virtual corrections involving thermal effects — for
instance, thermal corrections to masses or couplings, or more generally thermal corrections
to dispersion relations — are not present. Yet this can be important, for instance by opening
up new channels that would not be allowed by vacuum kinematics.

It is for this reason that for a systematic treatment, the Boltzmann equation needs to be
replaced by a quantum field theoretic description, in which both real and virtual processes,
as well as all cancellations between them, are automatically present. It is not clear, a priori,
how this can be achieved in general (though specific examples have been worked out, see e.g.
ref. [19]). However, one transparent possibility is if we can define coefficients that amount
to equilibration rates, which have an unambiguous physical meaning in the linear response
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regime. In the present paper, we show how this can be achieved through the definitions of a
somewhat formal construction that we call the maximal interaction rate, and the physically
important chemical equilibration rate, in sections 2.2 and 2.3, respectively.

2.2 Maximal interaction rate

The purpose of the present section is to manipulate the Boltzmann equation in eq. (2.1) in
order to identify what we term the maximal interaction rate. It should be stressed from
the outset that the result is not inherent to a Boltzmann equation, but more general. In
other words, the assumptions we make for its derivation are sufficient but not necessary.
For instance, in ref. [20], the same rate and rate equation were obtained from quantum field
theory, by carrying out an analysis to leading order in a weak coupling between a ϕ-field
and Standard Model, but to all orders in Standard Model couplings.

Let us assume for a moment that fϕ is close to equilibrium, apart from around the
momentum bin k, and expand to first order in deviations in this bin, viz.

fϕ = f̄ϕ + δfϕ , f̄ϕ(k) ≡ fB(ω) , δfϕ(k) ≡ fϕ(k)− fB(ω) . (2.3)

Given that a single momentum bin can be excluded from the integrations over Pai
and

Pbi
in eq. (2.2) without significantly affecting the outcome, fϕ can be replaced by fB if it

appears in the sets {ai} or {bi}. Recalling furthermore that the zeroth order term vanishes
by detailed balance, it follows from eq. (2.2) that, to first order in δfϕ,

aver1 +m→ n(a1, . . . , am; b1, . . . , bn)

= δfϕ ×
1
2

∫
dΦ1+m→n

{
fσa1
· · · fσam

(1 + fσb1
) · · · (1 + fσbn

)

− fσb1
· · · fσbn

(1 + fσa1
) · · · (1 + fσam

)
}

(−1)F +O(δf2
ϕ)

≡
[
fϕ(k)− fB(ω)

]
× scat1 +m→ n(−a1, . . . ,−am; b1, . . . , bn) (−1)F +O(δf2

ϕ) . (2.4)

Here σi = ± denotes the statistics of each particle species; we have introduced f+ ≡ fB,
f− ≡ −fF; F is the number of fermions in the initial (or final) state; (−1)F is a factor
originating from the sign difference between f− and fF; and scat1 +m→ n corresponds to
the notation introduced in ref. [21].

The rationale for introducing negative signs in front of the particle labels in the argument
of scat1 +m→ n in eq. (2.4) is that scat1 +m→ n can be defined as an operator, such that
negative labels invert the signs of the corresponding momenta in the matrix element squared.
Thereby all matrix elements squared can be obtained by crossings from a would-be decay
matrix element squared, which enjoys maximal symmetries. Specifically, defining

Θ(Pa1 , . . . ,Pam
,Pb1 , . . . ,Pbn

) ≡ c
∑
spins
|M|2ϕ→m+n , (2.5)

where all momenta are now in the final state, the combination originating from eqs. (2.1)
and (2.4) amounts to

(−1)F c
∑
spins
|M|2ϕ+m→n = Θ(−Pa1 , . . . ,−Pam

,Pb1 , . . . ,Pbn
) . (2.6)
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Adopting the operator notation, we define the real-scattering part of an interaction rate as

ω Γreal
max(k) ≡

∑
m,n

scat1 +m→ n(−a1, . . . ,−am; b1, . . . , bn) Θ(Pa1 , . . . ,Pam
,Pb1 , . . . ,Pbn

) .

(2.7)
Now, if eq. (2.7) originates from a quantum field theoretic equilibration rate, in the sense

described in ref. [20], where it corresponds to the imaginary part of a retarded self-energy,
then the full rate includes also virtual processes. We denote the latter by Γvirt

max. At NLO,
the physical, and thereby ultraviolet (UV) and infrared (IR) finite rate, is given by

Γphys
max (k) = Γreal

max(k) + Γvirt
max(k) . (2.8)

Going over to an expanding background, with the Hubble rate denoted by H ≡ ȧ/a, and
assuming furthermore that fϕ is translationally invariant, eq. (2.1) then takes the form(

∂t −Hk ∂k
)
fϕ(k) = −Γphys

max (k)
[
fϕ(k)− fB(ω)

]
+O(δf2

ϕ) . (2.9)

This equation can be viewed as describing equilibration in the sense of linear response theory.
On the other hand, by setting fϕ → 0 on the right-hand side, it defines the production rate
of the ϕ particles from a plasma. Both interpretations underline that the equation has a
physical meaning beyond Boltzmann equations.

A cautionary word needs to be added, however. Even though eq. (2.9) shows that Γphys
max

drives the system towards the Bose distribution if the system is already close to it, Γphys
max

should not be interpreted as a kinetic equilibration rate. Indeed kinetic equilibration is a
notion associated with particles whose phase-space distribution can differ from equilibrium
by an overall factor (if the particles are out of chemical equilibrium) and by a different
shape. Kinetic equilibration involves transfer of momentum, in order to rectify the shape,
but the overall normalization should not be simultaneously changed, as it represents the
number density. Instead, eq. (2.9) represents the maximal rate at which the ϕ-particles
interact; apart from a change of momentum or particle number, this includes the very fast
processes that lead to phase decoherence in quantum mechanics.

2.3 Chemical equilibration rate

In the previous section we defined a rate from Boltzmann equations which can arguably be
generalized to have a quantum field theoretic meaning, as the imaginary part of a retarded
self-energy in the linear response regime. We start the present section by recalling that
in the non-relativistic limit such rates have a well-defined subpart, which then also has
a quantum field theoretic meaning. Subsequently, returning to Boltzmann equations, we
show that the momentum average of this subpart has an interpretation as the chemical
equilibration rate.2

Let us separate all possible scatterings into two classes, according to whether the number
of ϕ particles changes in the reaction (“inelastic processes”), or not (“elastic processes”), viz.

Γphys
max (k) ≡ Γphys

inel (k) + Γphys
elas (k) . (2.10)

2In the non-relativistic limit a chemical equilibration rate can also be defined directly in quantum field
theory [22], with the connection to Boltzmann equations then following in the course of its practical evaluation.
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The same division can be made separately in Γreal
max and Γvirt

max. In some theories all reactions
are inelastic, but the division is non-trivial if the system displays a global or discrete
symmetry, as is typically the case in dark matter models. It is sufficient if the symmetry
is an approximate one, emerging for instance in the non-relativistic limit.

The inelastic and elastic processes proceed with very different rates if T � mϕ. In this
situation Γphys

inel is exponentially suppressed compared with Γphys
elas , viz.

Γphys
inel ∼ e

−mϕ/T Γphys
elas , T � mϕ . (2.11)

The reason is the appearance of an additional ϕ particle in the initial or final state.
If the hierarchy in eq. (2.11) is present, there is a temperature regime in which the system

should be in kinetic equilibrium, but out of the chemical one. To describe such a system, we
may take a momentum average, and adopt nϕ ≡

∫
k fϕ as the only non-equilibrium variable.

To obtain an equation for nϕ, we return to eq. (2.1), assume fϕ to be translationally
invariant, and divide by ω. Working in an expanding background, the integral over k yields
(∂t + 3H)nϕ on the left-hand side. A key point is that on the right-hand side, the division
by ω and the integration over k imply that the matrix element squared is averaged over all
momenta. Then we can symmetrize the average. In particular, for processes leading to the
elastic part of eq. (2.10), we can exchange initial- and final-state momenta, symbolically as

∫
k

1
2ω

∫
dΦ1+m→n

{
fϕ(1+fb1ϕ

)×fa1 · · ·fam
(1±fb2) · · ·(1±fbn

)

−(1+fϕ)fb1ϕ
×fb2 · · ·fbn

(1±fa1) · · ·(1±fam
)
}

ϕ↔b1ϕ=
a1···am↔b2···bn

∫
k

1
2ω

∫
dΦ1+m→n

{
fb1ϕ

(1+fϕ)×fb2 · · ·fbn
(1±fa1) · · ·(1±fam

)

−(1+fb1ϕ
)fϕ×fa1 · · ·fam

(1±fb2) · · ·(1±fbn
)
}
. (2.12)

The two terms are opposites of each other, and the result cancels by antisymmetry. If
the number of spectators changes, there are two different processes (spectators increase or
decrease), each with their own loss and gain terms. Then we may inspect the four processes
together, and the substitution ϕ↔ b1ϕ alone shows that elastic processes drop out.3

For the inelastic processes, the left-hand side of eq. (2.12) is replaced with (we show
this with the example of two dark matter particles in the initial and none in the final state,
however this can be generalized, see below)

∫
k

1
2ω

∫
dΦ1+m→n

{
fϕfa1ϕ

× fa2 · · · fam
(1± fb1) · · · (1± fbn

)

− (1 + fϕ)(1 + fa1ϕ
)× fb1 · · · fbn

(1± fa2) · · · (1± fam
)
}
. (2.13)

3As already mentioned, we assume c
∑

spins |M|
2
ϕ+m→n to be invariant in these exchanges.
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Let us analyze this in the linear response regime, writing fϕ → f̄ϕ + δfϕ. Then

fϕfa1ϕ
→ f̄ϕf̄a1ϕ︸ ︷︷ ︸

cancels by detailed balance

+ δfϕf̄a1ϕ
+ f̄ϕδfa1ϕ︸ ︷︷ ︸

ϕ↔a1ϕ⇒2 δfϕf̄a1ϕ

+ O(δ2) , (2.14)

(1 + fϕ)(1 + fa1ϕ
)→ (1 + f̄ϕ)(1 + f̄a1ϕ

)︸ ︷︷ ︸
cancels by detailed balance

+ δfϕ(1 + f̄a1ϕ
) + (1 + f̄ϕ)δfa1ϕ︸ ︷︷ ︸

ϕ↔a1ϕ⇒2 δfϕ(1+f̄a1ϕ
)

+ O(δ2) .

(2.15)

In total we get

(∂t+3H)nϕ≈−
∑
m,n

∫
k

2δfϕ
ω

1
2

∫
dΦ1+m→n (2.16)

×
{
f̄a1ϕ
· · ·fam

(1±fb1) · · ·(1±fbn
)−fb1 · · ·fbn

(1+f̄a1ϕ
) · · ·(1±fam

)
}
c
∑
spins
|M|2ϕ+m→n

=−2
∫

k

δfϕ
ω

ωΓreal
max,inel(k) , (2.17)

where we recognized an inelastic part of the maximal interaction rate, defined in eq. (2.7).
Given that Γreal

max,inel is a well-defined subpart of Γreal
max, we can consider the equally

well-defined virtual correction Γvirt
max,inel. At NLO, their sum yields

Γphys
inel (k) ≡ Γreal

max,inel(k) + Γvirt
max,inel(k) , (2.18)

in analogy with eq. (2.8).
We may now generalize the consideration of eqs. (2.13)–(2.17). For a set of i dark

matter particles appearing on one side only, we may undertake a symmetrization like in
eqs. (2.14) and (2.15). Then we may represent Γphys

inel (k) as

Γphys
inel (k) =

∞∑
i=1

Γphys
inel(i)(k) . (2.19)

Because of the symmetrization, the rate equation (2.22) obtains a symmetry factor i.
Finally, returning to eq. (2.17) and assuming kinetic equilibrium, the deviation of the

phase-space density can be expressed as

δfϕ(k) = fB(ω)
δnϕ
neq

, neq ≡
∫

k
fB(ω) , δnϕ ≡ nϕ − neq . (2.20)

The weighting by fB(ω) and the division by neq in eq. (2.20) prompt us to define

〈
Γphys

inel(i)
〉
≡
∫

k Γphys
inel(i)(k) fB(ω)∫

k fB(ω) . (2.21)

Thereby the momentum-averaged equation, expanded to first order in δnϕ, turns into

(
∂t + 3H

)
nϕ = −

∞∑
i=1

i
〈

Γphys
inel(i)

〉
δnϕ +O(δn2

ϕ) . (2.22)
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In models with a discrete or continuous symmetry, the leading contribution originates from
i = 2, and making use of nϕ − neq ≈ (n2

ϕ − n2
eq)/(2neq) as is valid in the linear response

regime on which our derivation relied, we find the usual evolution equation,

(
∂t + 3H

)
nϕ ≈ −〈σvrel〉

(
n2
ϕ − n2

eq
)
, 〈σvrel〉 ≡

〈Γphys
inel(2)〉
neq

=
∫

k Γphys
inel(2) fB

n2
eq

. (2.23)

To summarize this section, we have argued that eq. (2.7) contains a part, namely
processes that can be characterized as inelastic, cf. eq. (2.10), whose momentum average
permits to define a chemical equilibration rate and a corresponding Boltzmann equation, cf.
eq. (2.22). The strength of this formulation is that we can promote the rate coefficients
to include virtual corrections, according to eq. (2.8), which ensures the absence of mass
singularities [17, 18]. In the linear response regime and assuming the presence of kinetic
equilibrium, the formalism reduces to the usual form, cf. eq. (2.23). The coefficient 〈σvrel〉
incorporates the influence of fast processes, the functional form of eq. (2.23) those of the
slow variables. Thereby eq. (2.23) can normally also be applied once freeze-out has taken
place, i.e. nϕ � neq [23].

3 Matrix elements squared

3.1 Overview

We have argued in the previous section that the dynamical information entering the
dark matter evolution equation, cf. eq. (2.23), can be obtained from a general class of
thermally averaged rates, cf. eq. (2.7), by restricting to inelastic processes and adding
virtual corrections. For the class of eq. (2.7), an algorithm has been worked out in which all
relevant channels, and the virtual corrections that cancel mass singularities, can be derived
from minimal information, contained in the decay matrix elements defined in eq. (2.5) [21].
In this section, we illustrate how the procedure works, by introducing a specific model
(cf. section 3.2).

As far as the notation goes, we employ thermal averages like in eq. (2.4), specifically
scat1→ n(b1, . . . , bn). Kinematic invariants are defined in the usual way,

sij ≡ (Pbi
+ Pbj

)2 . (3.1)

For deriving matrix elements in which one ϕ is in the initial state and the rest of them
appear in the final state, it is convenient to shift ϕ→ ϕ+ ϕ̃ in the Lagrangian, and treat ϕ̃
as a thermalized final-state field. This simplifies the computation of combinatorial factors,
and makes explicit the linear response philosophy.

3.2 Model and parameters

We illustrate the procedure of section 2 with the scalar singlet extension of the Standard
Model (cf., e.g., refs. [3–6] and references therein), defined by

L = LSM +
{1

2∂
µϕ∂µϕ−

[1
2 m

2
ϕ0 ϕ

2 + 1
2 κϕ

2H†H + 1
4 λϕ ϕ

4
]}

, (3.2)

– 8 –
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where H is the Higgs doublet and an ad hoc Z(2) symmetry has been imposed in order to
reduce the number of parameters. After electroweak symmetry breaking, the Higgs doublet
is parametrized as

H = 1√
2

(
φ2 + iφ1
v + h− iφ3

)
, (3.3)

where v|T=0 ' 246GeV, h denotes the physical Higgs field, and the Goldstone modes φa
are numbered in analogy with the Pauli matrices. The scalar singlet is assumed to be in
its unbroken phase throughout the cosmic history, i.e. m2

ϕ0 > 0, and its tree-level vacuum
mass is given by m2

ϕ = m2
ϕ0 + κv2/2.4

On the Standard Model side, an important role is played by the charm and bottom
quarks and the strong gauge coupling. The values of the charm and bottom masses are
conventionally tabulated at a renormalization scale µ̄ ' 2GeV, and we evolve them to a
thermal scale µ̄ ' 2πT . In addition, we scale the quark masses by the temperature depen-
dence of the Higgs expectation value, v|T ' v|0 Re

√
1− T 2/T 2

c , where the pseudocritical
temperature Tc ≈ 160GeV can be adopted from ref. [24]. Of course, at the temperatures
T ∼ (1–3)GeV that are most important for us, the latter effect is minuscule.

As far as the top quark is concerned, it can be integrated out deep in the Higgs phase,
which yields the effective operator [25]

L ⊃ − g2
3

(4π)2
hGaµνG

aµν

3v , (3.4)

where g2
3 ≡ 4παs is the strong gauge coupling and Gaµν is the SU(3) field strength tensor.

We fix αs(mZ) ≈ 0.118, and again evolve this to µ̄ ' 2πT . The role that eq. (3.4) plays for
Higgs physics at temperatures of a few GeV has been elaborated upon in ref. [15].

For reference, let us start by briefly considering T > 160GeV, where electroweak
symmetry is restored, viz. v|T ' 0. This regime may play a role for freeze-in dark matter
production, and also offers for a partial crosscheck of matrix elements squared, by their
continuity. A relatively straightforward computation yields

ω Γreal
1→3 = 2κ2 scat1→ 3(ϕ̃, φ, φ) + 6λ2

ϕ scat1→ 3(ϕ̃, ϕ̃, ϕ̃) , (3.5)

where the first term represents equilibration through Higgs scatterings, and the latter
through ϕ self-interactions. By φ we have denoted a Standard Model scalar particle (with
4 real degrees of freedom) in the absence of electroweak symmetry breaking. As stressed
before, even if the 1 → 3 decays in eq. (3.5) are kinematically forbidden, their algebraic
forms capture the matrix elements squared of all allowed crossed channels. When we go to
the Higgs phase, eq. (3.5) is replaced by an expression containing contributions from many
channels, and we now turn to which of them are the most important ones.

4At high temperatures, the singlet mass squared experiences thermal corrections, first of all due to v2|T ,
but also due to other effects, if πT � min{mϕ,mh}. However, since we assume coupling strengths such that
freeze-out takes place deep in the non-relativistic regime, with πT � min{mϕ,mh}, these are unimportant
for us and omitted for simplicity. If the vacuum value of mϕ were precisely known, however, even small
effects could have an impact, due to the vicinity of the kinematic threshold at mϕ ' mh/2.
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Figure 1. Amplitudes for the decay and/or production of a ϕ-particle (denoted by a double line).
Many of these processes are kinematically forbidden, but this is inessential, as we only use them for
extracting matrix elements squared; crossings lead to allowed processes, e.g. 2↔ 2 scatterings, or
1 ↔ 2 decays or inverse decays between a Higgs boson and two ϕ-particles. Dashed lines denote
Higgs fields, wiggly lines weak gauge bosons, arrowed lines fermions, curly lines gluons, and straight
lines thermalized singlet modes, denoted by ϕ̃ in section 3. Only physical particles (no Goldstones)
are shown as final states. The small blobs denote non-Standard Model couplings, and the gray blobs
virtual corrections. The amplitudes have been classified as: (a) 1→ 2 processes; (b) 1→ 3 processes
with two singlets; (c) 1→ 3 processes with four singlets; (d) virtual corrections to 1→ 2 processes.

3.3 Which processes are important?

When T < 160GeV, the Higgs mechanism is active. Then eq. (3.5) splits into many
individual processes, and it is furthermore supplemented by additional matrix elements
squared, proportional to v. The corresponding amplitudes are illustrated in figure 1. The
expressions are collected in appendix A, and here we single out the crucial ones.

We note, first of all, that in the temperature range of interest, T <∼ 10GeV, many Stan-
dard Model particles are heavy (mh, Z0, W±, t � πT ). Real processes containing such external
states are exponentially suppressed. At the same time, virtual processes involving these
particles are not small: they contain large logarithms. But they are small compared with the
1↔ 2 process, whose parameters they correct. As a leftover from correcting parameters, they
also lead to higher-dimensional operators, the largest of which was introduced in eq. (3.4).

To summarize, the most important processes at T <∼ 10GeV are the leading-order 1↔ 2
one; those 2↔ 2 processes which contain particles with a mass <∼πT , like charm and bottom
quarks, as these are not exponentially suppressed; as well as 2↔ 2 processes originating
through the higher-dimensional operator in eq. (3.4).
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4 Numerical results

Given the matrix elements squared from appendix A, the algorithm of ref. [21] determines
all crossed processes (specifically the 2→ 2 and 3→ 1 ones) contributing to the full rate in
eq. (2.7), as well as IR sensitive virtual corrections. According to eqs. (2.10) and (2.22), we
subsequently select the inelastic reactions. Given that this subclass differs parameterically
from the elastic processes, by ∼ e−mϕ/T , the cancellation of mass singularities remains
guaranteed. After the inclusion of the virtual corrections, we obtain the coefficients denoted
by Γphys

inel in eq. (2.10). For simplicity we drop the superscript from the rate coefficients,
employing from now on just Γinel.

On the side of technical details, we remark that second order poles in matrix elements
squared are treated as parametric derivatives of first order poles, and first order poles are
regularized as principal values. The dependence on the regularization drops out when real
and virtual corrections are summed together. As for UV divergences in the virtual corrections,
they are related to the renormalization of the parameters appearing in the 1↔ 2 process.
As already mentioned, a convenient choice is to set the renormalization scale to µ̄ ' 2πT .
In practice, choices related to renormalization are numerically insignificant in our example.

In order to model confining effects influencing charm and bottom quarks as well as
gluons, we have adopted the phenomenological replacement Nc → Nc,eff < 3 from ref. [26].
However, we have also considered the non-interacting value Nc = 3, and indicate the
difference of the two prescriptions as an error band in figure 2.

As for the parameters, the key choice is the value of the coupling κ in eq. (3.2). We
have varied it around the value leading to the correct dark matter abundance, found to be

κdm[here] ≈ 0.00064 (mϕ ≈ 60 GeV) . (4.1)

This is close to but slightly smaller than the values cited in refs. [8, 11] if kinetic equilibrium
is assumed, κdm[8] ' 0.00066 and κdm[11] ' 0.00068, respectively.5

In figure 2(left) different contributions to the absolute value of 〈Γinel(2)〉 are plotted,
normalized to the Hubble rate. The plot shows that freeze-out must happen in the
range T <∼ 2GeV, when 〈Γinel(2)〉<∼H, and that NLO corrections are very small. To view
the NLO corrections more clearly, we replot them in figure 2(right) in the combination
〈σvrel〉s/H = 〈Γinel(2)〉s/(neqH), where s is the entropy density.

Given the value of 〈σvrel〉s/H from figure 2(right), we can integrate eq. (2.23). In
practice, it is convenient to normalize number densities by the entropy density s, denoting
the corresponding yield parameters by Yϕ ≡ nϕ/s, Yeq ≡ neq/s. Introducing x ≡ ln(Tmax/T )
as an integration variable, and making use of the Jacobian dx/dt = 3c2

sH , where c2
s = ∂p/∂e

is the speed of sound squared, eq. (2.23) turns into

∂xYϕ ≈ −
〈σvrel〉s
3c2
sH

(
Y 2
ϕ − Y 2

eq
)
. (4.2)

5The much larger couplings also discussed in ref. [8] correspond to their case ‘B’ that omits the elastic
channels involving charm and bottom quarks, so that the system is far from kinetic equilibrium.
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Figure 2. Left: the absolute value of the momentum-averaged chemical equilibration rate from
eq. (2.21), separated into contributions from different channels, with “+ . . .” indicating virtual
corrections. Freeze-out starts when 〈Γinel(2)〉 ∼ H , and in this regime NLO corrections are suppressed
by orders of magnitude with respect to the 2 ↔ 1 channel. Right: the coefficient 〈σvrel〉 from
eq. (2.23), normalized as it appears in eq. (4.2) (the factor 3c2

s ' 1 has been omitted here, though it
is included in our solution). The purpose of this figure is to illustrate that NLO corrections can be
negative, because of their virtual part, and because the real part involves a principal value integral
or its derivative, however this only happens in a regime where the NLO corrections are utterly
subdominant. The grey bands indicate uncertainties in the evaluation of hadronic contributions.

For the thermodynamic functions s and c2
s we adopt values derived in refs. [27, 28].6 From Yϕ,

the current energy density follows as Ωϕ/Ωdm ≈ 2.29 (mϕ/eV)Yϕ(xtoday), where Ωdmh
2 ≈

0.120 refers to the observed value and h is the reduced Hubble rate. The results obtained
with the benchmark value mϕ ' 60GeV, both for Yϕ and Ωϕ/Ωdm, are shown in figure 3.

5 Summary and outlook

The common tool of dark matter computations, Boltzmann equations in their text-book
form, do not incorporate thermal virtual corrections (i.e. closed loops involving Bose and/or
Fermi distributions), even though such effects could be important. On the formal level,
they are necessary for cancelling mass singularities (mass thresholds or massless limits) that
originate from real scatterings. Physically, they lead to modified dispersion relations, and
could then open up or close specific annihilation channels.

The purpose of this paper has been to illustrate a way to include thermal virtual
corrections when dark matter annihilation is influenced by an s-channel resonance. The
treatment is simple-minded, both conceptually and technically. As a first step we carry out

6These are tabulated at the web site http://www.laine.itp.unibe.ch/eos15/.
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Figure 3. Left: the solution of eq. (4.2) for a few values of κ, keeping the scalar singlet mass fixed
at mϕ ' 60GeV. Right: the same for the fractional contribution of ϕ to the dark matter energy
density. The hadronic error bands from figure 2 are much narrower than the line widths, given that
hadronic effects are much suppressed compared with the 2↔ 1 process when T = (1–3)GeV.

a systematic perturbative determination of the imaginary part of a retarded self-energy in
the linear response regime,7 treating the narrow resonance as an on-shell particle at leading
order. We found that a convenient way to implement this computation is the substitution
ϕ → ϕ + ϕ̃, explained in section 3.1. The finite width of the Higgs boson, modified by
thermal corrections from Bose enhancement or Pauli blocking, originates as a part of NLO
corrections, notably 2↔ 2 scatterings. But the finite width is not the only NLO correction:
virtual corrections to the leading-order 2↔ 1 process are of the same order and included at
the same time.

If the physics that we are interested in takes place in the non-relativistic regime, and
kinetic equilibrium can be assumed, the procedure can be completed by a second step.
From the imaginary part of the retarded self-energy, we may identify the subpart that
originates from inelastic reactions, and consider its momentum average. We have shown
that this reproduces the standard notion of the chemical equilibration rate (cf. section 2.3),
and ultimately leads to the usual cosmological evolution equation (cf. eq. (2.23)). However,
the overall philosophy should apply more generally than to systems in kinetic equilibrium,
notably to freeze-in scenarios that operate in the relativistic or ultrarelativistic regime
(cf., e.g., refs. [14, 29]), even if the practical implementation to such cases requires further
consideration.

For an illustration, we returned to the well-studied example of scalar singlet dark
matter, assuming again that kinetic equilibrium is maintained by elastic scatterings. Then
all NLO corrections are small (cf. figure 2), and the thermally averaged cross section can

7In particular, resummations have not been touched upon, even though they could become important if
we go very close to the resonance production threshold.
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be computed analytically (cf. eq. (B.7)). Numerically, these results are in good agreement
with previous literature (cf. section 4), which relied on more complicated computations.

Finally, in view of intensive discussions of the topic [8–13], we would like to put forward
one possibility for investigating kinetic non-equilibrium in the non-relativistic regime. This
is the use of Langevin simulations for determining momentum distributions. The Langevin
description assumes that kinetic equilibrium is established by elastic scatterings and that the
corresponding scattering rate is much smaller than the typical plasma interaction rates, i.e.
that the dark matter particles are weakly coupled. But it does not assume that the plasma
particles are weakly coupled among themselves. Therefore it permits for the inclusion
of NLO [30] or even non-perturbative information on the plasma interactions [31], as is
certainly desirable for strongly interacting particles at T ' (1–3)GeV. We note that such
frameworks have been widely applied for understanding the kinetic equilibration of charm
and bottom quarks in the heavy ion collision context [32].
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A Details of matrix elements squared

The purpose of this appendix is to list the matrix elements squared originating from the
reactions shown in figure 1. We recall that the optimal procedure is to determine the
algebraic structures of would-be 1 → 2 and 1 → 3 rates, even if these are kinematically
forbidden in practice. The other real processes (2→ 1, 2→ 2, 3→ 1) can then be generated
by crossings, whereas the IR-sensitive virtual corrections to 1↔ 2 are obtained by finding
the poles and residues appearing in the matrix elements squared [21].

A.1 Gauge and scalar effects

The leading-order diagram, shown in figure 1(a), yields

ω Γreal
1→2 = κ2v2 scat1→ 2(ϕ̃, h) , (A.1)

where scat1→ 2 corresponds to the notation introduced in eq. (2.4).
The next-to-leading order contributions from figure 1(b) are suppressed by ∼ g2 with

respect to eq. (A.1), where g2 is a generic Standard Model coupling. As a crosscheck, we have
computed them in two different ways. One goes through the usual

∑
spins |M|2, cf. eq. (2.5),

keeping only physical states as external particles and recalling that the polarization sum for a
massive gauge boson of mass m and four-momentum P reads

∑
λ ε

µ
λε
ν∗
λ = −ηµν +PµPν/m2.

The other method proceeds by computing the 2-loop self-energy of the decaying particle,
and extracting its cut. A benefit of the latter approach is that it can straightforwardly
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be carried out in a general Rξ gauge, including ghosts, and that subsequently the gauge
independence of the result can be verified. Both methods yield the same results.

Re-expressing subsequently g2v2 as a mass squared, the final expression of O(κ2) can
be put in the form

ω Γreal
1→3 ⊃ κ2

{
scat1→ 3(ϕ̃, h, h) (s23 + 2m2

h)2

2(s23 −m2
h)2

+ scat1→ 3(ϕ̃, Z0, Z0) (s23 − 2m2
Z)2 + 8m4

Z

2(s23 −m2
h)2

+ scat1→ 3(ϕ̃,W+,W−) (s23 − 2m2
W )2 + 8m4

W

(s23 −m2
h)2

}
. (A.2)

Going towards the symmetric phase, so that the masses go to zero, this agrees with the
first part of eq. (3.5).

As shown by the diagrams in figures 1(b,c), there are also amplitudes that are quadratic
in the coupling κ (κ is indicated by the small blob). For the matrix element squared, this
produces interference terms that are cubic in κ,

ω Γreal
1→3 ⊃ 2κ3v2 scat1→ 3(ϕ̃, h, h) s23 + 2m2

h

(s12 −m2
ϕ)(s23 −m2

h)
, (A.3)

as well as quartic dependences,

ω Γreal
1→3 ⊃ κ4v4

{
scat1→ 3(ϕ̃, h, h)

[ 1
(s12 −m2

ϕ)2 + 1
(s12 −m2

ϕ)(s13 −m2
ϕ)

]
(A.4)

+ scat1→ 3(ϕ̃, ϕ̃, ϕ̃)
[ 1

2(s12 −m2
h)2 + 1

(s12 −m2
h)(s13 −m2

h)

]}
.

Likewise, there are terms with one or two appearances of λϕ,

ω Γreal
1→3 ⊃ 6λϕ

{
κ2v2

s12 −m2
h

+ λϕ

}
scat1→ 3(ϕ̃, ϕ̃, ϕ̃) , (A.5)

but they only contribute to kinetic equilibration. The last term differs from eq. (3.5) in
that the mass of the ϕ-particle has changed through the Higgs mechanism.

A.2 Leptonic and hadronic effects

At low temperatures, πT � min{mW ,mh,mϕ}, the most important effects originate from
fermionic channels. As long as we are in the deconfined phase (T � 160MeV), the
contributions of leptons and light quarks (at leading order in αs) amount to

ω Γreal
1→3 ⊃ κ2 ∑

`

scat1→ 3(ϕ̃, `, ¯̀) 2m2
` (s23 − 4m2

` )
(s23 −m2

h)2

+ κ2Nc
∑
q

scat1→ 3(ϕ̃, q, q̄)
2m2

q(s23 − 4m2
q)

(s23 −m2
h)2 , (A.6)
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where ` ∈ {e, µ, τ} enumerates the charged leptons, and q ∈ {u, d, s, c, b, t} the quarks
with mq � max{πT,mϕ/2}. Quarks heavier than this can be integrated out, yielding the
higher-dimensional operator in eq. (3.4). This gives the loop-suppressed contribution

ω Γreal
1→3 ⊃

4κ2a2
s(N2

c − 1)
9 scat1→ 3(ϕ̃, g, g) s2

23
(s23 −m2

h)2 , (A.7)

where as ≡ αs/π ≡ g2
3/(4π2) and g stands for a gluon. If we instead go to T � 160MeV,

hadronic degrees of freedom are represented by pions. Treating them as degenerate for
simplicity, we find

ω Γreal
1→3 ⊃

κ2(N2
f − 1)
2 scat1→ 3(ϕ̃, π, π̄) m4

π

(s23 −m2
h)2 , (A.8)

where Nf = 2 is the number of light flavours.

B Phase space integrals for the leading-order process

We show in this appendix how the phase space integrals corresponding to the leading-order
process, cf. eq. (A.1), can be carried out analytically in the non-relativistic limit πT � mϕ.

Incorporating the crossed channels and denoting the corresponding phase-space average
by scat1↔ 2(ϕ̃, h) [21], the physical ϕϕ→ h annihilation and h→ ϕϕ pair creation rates
can be represented as

ω Γreal
1↔2 = scat1↔ 2(ϕ̃, h) Θ1↔2 , Θ1↔2 ≡ κ2v2 . (B.1)

We perform the phase-space integrals in the plasma rest frame, with (ω ≡
√
k2 +m2

ϕ,k)
denoting the four-momentum of one of the singlet scalars. For a momentum-independent
Θ1↔2 and denoting β ≡ 1/T , this yields [33]

scat1↔ 2(ϕ̃, h)
mϕ<mh/2= T

16πk ln
{ 1− e−βε

−
h

1− e−βε
+
h

1− e−β(ε+
h
−ω)

1− e−β(ε−
h
−ω)

}
ε±

h
=

m2
h

2m2
ϕ

(
ω± k

√
1−

4m2
ϕ

m2
h

)
πT�mϕ

≈ T

16πk
{
e−β(ε−

h
−ω) − e−β(ε+

h
−ω) } , (B.2)

where ε±h denote the maximal and minimal energies of the Higgs boson (originating from
different angular configurations) when the momentum of one of the ϕ particles has been
fixed, and ε±h − ω are those of the co-annihilation partner. Expanding the exponentials in
eq. (B.2) in k/ω < 1 and employing ω as the integration variable, so that k =

√
ω2 −m2

ϕ,
momentum averaging yields

〈
Γreal

1↔2
〉 πT�mϕ

≈ 1
neq

∫ ∞
0

dk k2

2π2
e−βω

ω
scat1↔ 2(ϕ̃, h) Θ1↔2

(B.2)
≈

(B.4)

mϕκ
2v2T

16π3neq

√
1−

4m2
ϕ

m2
h

∞∑
n=0

1
n!

(
m2
h − 4m2

ϕ

4mϕT

)n
K1+n

(
m2
h

2mϕT

)

(B.5)= κ2v2T

32π3neq

√
m2
h − 4m2

ϕK1

(
mh

T

)
, (B.3)
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where Kν is a modified Bessel function, and we made use of the integral representations

Kν(z) =
Γ(1

2 )
Γ(ν + 1

2 )

(
z

2

)ν ∫ ∞
1

dt e−zt(t2 − 1)ν−
1
2 (B.4)

= 1
2

(
z

2

)ν ∫ ∞
0

dt
tν+1 exp

(
−t− z2

4t

)
. (B.5)

The equilibrium density can be written as

neq =
∫ ∞

0

dk k2

2π2 fB(ω)
πT�mϕ

≈
(B.4)

m2
ϕT

2π2 K2

(
mϕ

T

)
, (B.6)

where we again took ω as an integration variable. The momentum-averaged cross section
from eq. (2.23) becomes

〈σvrel〉1↔2 ≡
〈Γreal

1↔2 〉
neq

mϕ<mh/2≈
πT�mϕ

πκ2v2
√
m2
h − 4m2

ϕK1
(mh
T

)
8m4

ϕTK
2
2
( mϕ

T

) . (B.7)
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