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1 Introduction

The dynamics of the early universe is dictated, on one hand, by gravitational physics, account-
ing for a period of inflationary expansion that produced the seeds for structure formation.
On the other hand, the microscopic properties of matter are governed by particle physics.
The two descriptions connect to each other during reheating, in which the vacuum energy
density, sustaining inflation, is converted to thermal radiation, carried by particles. The
process establishes the highest temperature, Tmax, that can meaningfully be talked about.

It would be interesting to understand theoretically the dynamics of reheating, and to
develop empirical tests for it. As we are studying early moments, penetrating probes need
to be considered, with gravitational waves as an obvious candidate [1–4]. As tensor pertur-
bations, gravitational waves are also produced by inflation itself [5]. However, the spectra
that originate from inflation and reheating have different shapes, with the latter peaking at
higher frequencies, all the way to the microwave range MHz . . .GHz. This could be within
the reach of future observation, even if novel avenues need to be explored (cf. ref. [6] for a
review).

The purpose of this paper is to study reheating within a framework that is simple enough
to be tractable without heavy numerics, yet rich enough to offer for variants with different
observational consequences.

Specifically, we consider a pseudoscalar inflaton field ϕ [7–9], whose interactions are
governed by the Lagrangian

L ⊃ 1
2 ∂

µϕ∂µϕ− V (ϕ)− ϕχ

fa
, χ ≡ cχ ε

µνρσg2F cµνF
c
ρσ , cχ ≡

1
64π2 , (1.1)

where F cµν ≡ ∂µA
c
ν − ∂νAcµ + gf cdeAdµA

e
ν is the Yang-Mills field strength, Nc is the number

of colours, c ∈ {1, . . . , N2
c − 1}, g2 ≡ 4πα is the gauge coupling, and fa is the axion decay

constant. In the context of inflation, the allure of this model stems from its incorporation
of interactions with Standard Model-like gauge fields, but in the special way that they do
not spoil the desired flatness of the potential. That said, eq. (1.1) does involve a non-
renormalizable operator, so to keep the description self-consistent, it can only be applied for
low energy and momentum scales of ϕ, i.e. εϕ � max(4πfa, fa/α).

– 1 –
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The inflationary predictions of eq. (1.1) depend on the shape of the potential V (ϕ). A
much-used example mimics an instanton-induced periodic structure,

V (ϕ) ' m2f2
b

[
1− cos

(
ϕ

fb

)]
, (1.2)

where on the semiclassical level fb = fa (this may change after renormalization).1 However,
there are other possibilities, for example as given in eqs. (4)–(8) of ref. [10]. As we are
concerned with a late stage, we may expand the potential around its global minimum (ϕmin =
0). This then leads to a universal shape that is also familiar from chaotic inflation [11],

V (ϕ) ' m2ϕ2

2 . (1.3)

According to eqs. (1.1) and (1.3), our framework depends on the parameters fa, m, α. It
would be easy to enrich the setup by introducing more parameters, for instance via the shape
of V (ϕ). Furthermore, if the plasma contains fermions (ψk, k = 1, . . . , Nf), then it is natural
to couple ϕ also to the corresponding pseudoscalar operators, ∂µ[ψ̄kγµγ5ψk] and imkψ̄kγ5ψk,
where mk is a fermion mass. The coefficient of each operator is, a priori, independent. If the
fermions couple to the gauge fields Aaµ, then there is a certain redundancy in the couplings,
as dictated by the axial anomaly equation. At the same time, fermions affect the dynamics of
the gauge sector, with anomalous processes generating an effective chemical potential for left
and right-chiral modes, which influences the friction felt by ϕ [12]. However, in the following,
we restrict ourselves to the minimal setup of eqs. (1.1) and (1.3).

Our presentation is organized as follows. We start with a brief review of approaches to
reheating in section 2, motivating the idea that in the non-Abelian case the density matrix
of the system can be parametrized with a rapidly increasing temperature-like variable. The
main part is section 3: after reviewing how gravitational waves are produced from such a
system (section 3.1), we compute the contributions at long (section 3.2) and short wavelengths
(section 3.3), and illustrate the results numerically (section 3.4). The findings are summarized
in section 4.

2 Mechanism of sphaleron-induced reheating

Recently, a large body of literature has appeared in which the gauge fields in the operator χ
of eq. (1.1) have Abelian nature, and contribute then to the gravitational wave background
(an incomplete list can be found in refs. [13–37]). Physically, Abelian fields could represent
either a “dark photon”, or the Standard Model hypercharge gauge field. In the following, we
restrict ourselves instead to non-Abelian gauge fields, which is arguably more natural if one
thinks of embedding the Lagrangian in some Grand Unified framework.2

The methods employed in the above studies follow, roughly speaking, two lines. One
relies on the solution of mode equations (cf., e.g., ref. [8]), the other on classical field the-
ory simulations (cf., e.g., refs. [45–47]). While simulations should account for the full non-
perturbative dynamics of momentum modes with large occupation numbers, they are not

1If a confinement scale Λ related to instantons is known, the parameters are constrained by mfb ∼ Λ2.
2The assumption of a non-zero gauge field background, resulting in a partial breaking of a non-Abelian

gauge symmetry, has led to a much-studied scenario (cf. ref. [38], and refs. [39–44] for recent work and
references). Here we consider the case without any background, as it breaks discrete symmetries.

– 2 –
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sensitive to phenomena where the occupation number is of order unity. In particular, the
quantum mechanical vacuum decays that dominate at early stages, or the thermalization
towards the Bose distribution that takes place at the end, are not captured.

The framework that we adopt is a different one, modelling the complicated dynamics
of the non-Abelian sector through the assumption that the system effectively thermalizes.
In practice, this is closely related to the paradigm of warm inflation [48], well established
in the axion inflation context [49–54]. Our new implementation guarantees that the initial
vacuum-like decays are correctly incorporated as well [55].

The physical thinking behind this framework is that non-Abelian gauge fields tend
to thermalize more rapidly than other types of interactions, as both particle number and
momenta are changed at each cubic vertex. In fact, the heat bath has been argued to
represent an attractor solution even during the inflationary stage [56, 57]. General aspects
of non-Abelian thermalization have been reviewed in ref. [58].

For the case of eq. (1.1), the friction felt by ϕ takes a special form. The reason is that,
in the limit of low frequencies, the real-time topological susceptibility is rendered non-zero
through the non-perturbative dynamics mediated by “strong sphalerons” [59]. Incorporating
this physics, an interesting warm inflation scenario has been found [60–62].

In concrete terms, adopting the signature (+−−−), and splitting overall energy-
momentum conservation into field and radiation parts [63], the equations of motion take
the form

ϕ;µ
;µ + Υuµϕ;µ + V ′(ϕ) ' 0 , (2.1)[

(er + V − T∂TV )uµ
]
;µ + (pr − V )uµ;µ − V

′(ϕ)uµϕ;µ ' Υ
(
uµϕ;µ

)2
, (2.2)

where T is a local temperature; uµ is a local plasma four-velocity; Υ is a friction coefficient;
and er and pr are respectively the energy density and pressure of radiation.

The key issue is to fix Υ, as it originates from the operator in eq. (1.1). This problem
was addressed in ref. [55], where it was shown that the value is determined by the response
function of the medium, evaluated at an appropriate frequency scale, ω. Thereby both
vacuum physics (for ω � πT ) and sphaleron physics (for ω . α2T ) are incorporated.

For the present investigation, we can for the most part treat Υ as an independent
parameter. Its dynamical form in terms of fa, m, α and T can be inserted at the end (cf.
section 3.4). We also keep in mind that, as demonstrated in ref. [55] in the context of the
“weak regime” of warm inflation, the system can reheat up to temperatures Tmax ∼ fa/α
after inflation, where the influence of the operator χ in eq. (1.1) becomes of order unity.

3 Gravitational wave production from reheating

As already alluded to, an important physics phenomenon associated with the reheating pro-
cess is the production of a gravitational wave background [1–4]. In the Abelian case, this can
be used for constraining the model parameters (cf., e.g., ref. [10] and references therein). In
the current section, we study gravitational wave production within the framework of section 2.

The empirical significance of a gravitational wave background depends on its wavelength.
The physics of inflation corresponds to large wavelengths, or low frequencies, � Hz today.
In contrast, gravitational waves produced at reheating peak at high frequencies, which are
in fact similar to those originating from a thermal plasma [64–66].

To carry out the computation, we organize it in an “adiabatic” approximation, assuming
that plasma reactions are fast compared with the Hubble rate (α2T > H) and considering

– 3 –
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physical momenta well within the horizon (k � H). The first part is certainly satisfied during
and after reheating [55]. Under these conditions we can operate in a local Minkowskian
frame.3

It is generally believed that non-equilibrium processes produce more gravitational waves
than equilibrium ones, as the latter reflect the maximal entropy of the underlying system,
so that we should not be able to discern many features. Therefore thermal production as
considered here is likely to set a lower bound for the full rate.

3.1 General features

In a local Minkowskian frame, the production rate of the energy density carried by gravita-
tional radiation can be expressed as [64, 65]

deGW

dtd ln k = k4ḟGW

π2 , (3.1)

where fGW is the polarization-average phase-space density of gravitons, and the dot stands
for a time derivative. On general grounds [70], the evolution equation for fGW takes the form

ḟGW = Γ(k) [nB(k)− fGW] +O
( 1
m4

Pl

)
, (3.2)

where nB(k) ≡ 1/(ek/T−1) is the Bose distribution, andmPl ≈ 1.221×1019 GeV is the Planck
mass. In practice, fGW � nB(k), so the right-hand side can be approximated as Γ(k)nB(k).

The dynamical information about the processes taking place is encoded in the interac-
tion rate Γ(k), which in turn can be expressed as [65]

Γ(k) =
4πLαβ;µν ImGR

αβ;µν(k, k)
km2

Pl
, (3.3)

where GR
αβ;µν(ω, k) is the retarded correlator related to the energy-momentum tensor Tµν ,

GR
αβ;µν(ω, k) ≡ i

∫
X
eiK·X θ(t)

〈 [
Tαβ(X ) , Tµν(0)

] 〉
T
, K · X ≡ ωt− k · x , (3.4)

〈. . . 〉T denotes a thermal average, and L is a transverse and traceless projector,

Lαβ;µν ≡
K

T
αµK

T
βν +KT

ανK
T
βµ

2 −
K

T
αβK

T
µν

D − 2 , K
T
αβ ≡ ηαiηβj

(
δij −

kikj
k2

)
, (3.5)

with D = 4 denoting the spacetime dimension. Important properties of KT are

K
T
αµK

T
β
µ = −KT

αβ , K
T
µ
µ = 2−D . (3.6)

3Recently, the regime of typical inflationary momenta exiting the horizon (k < H) has been considered [67].
The analysis of hydrodynamic fluctuations bears a conceptual similarity to section 3.2, however the shear
viscosity was taken over from self-interacting scalar field theory [68] rather than from interactions with a
heat bath. In principle our formalism could be generalized to apply to such a situation and then be used for
addressing the full range of momenta relevant for warm inflation (cf., e.g., ref. [69] for a concrete realization),
however the approximation of a local Minkowskian frame needs to be abandoned for the momentum modes
that exit the horizon, even if the basic physical processes remain the same.

– 4 –
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In practice, it is sometimes convenient to choose the special frame in which k = k ez, whereby
rotational symmetry implies that4

L
αβ;µνGR

αβ;µν
D = 4= 4GR

xy;xy
∣∣
k=k ez

. (3.7)

The method to compute ImGR
xy;xy depends on the momentum range considered. For

very small momenta, we find ourselves in the so-called hydrodynamic domain. Then ImGR
xy;xy

evaluates to ηω, where η is the shear viscosity [64]. The task therefore is to determine the
contribution of the inflaton field ϕ to the shear viscosity, a topic that we address in section 3.2.
In contrast, for typical thermal momenta, parametrically k ∼ πT , elementary gauge bosons
and axions can be resolved as quasi-particles. Then we are faced with a Boltzmann type of
a computation, which is presented in section 3.3.

3.2 Hydrodynamic domain

We start by computing the correlator in eq. (3.7) in the hydrodynamic domain, i.e. at very
small frequencies and momenta.5 In this regime, elementary particles cannot be resolved,
and the degrees of freedom relevant for describing the gauge plasma are hydrodynamic fluc-
tuations. The contribution of a weakly coupled scalar field to eq. (3.7) has been determined
in ref. [71] in this domain, and here we improve upon that computation, by ameliorating its
ultraviolet (UV) sensitivity.

In the hydrodynamic domain, the traceless part of the energy-momentum tensor reads

Tµν ⊃ ∂µϕ∂νϕ+ T r
µν , (3.8)

where T r
µν is the contribution of radiation. Total energy-momentum is conserved, with the

coefficient Υ extracting energy from ϕ, according to eq. (2.1), and transmitting it to the
plasma, according to eq. (2.2). For us the information needed about this dynamics is the
retarded propagator of ϕ, determined in ref. [71]. In the local rest frame, it takes the form

ΠR(ω,p) = 1
−ω2 + ε2p − iωΥ , ε2p ≡ p2 +m2 . (3.9)

In order to now compute eq. (3.7), we make use of the real-time formalism of thermal
field theory, in the so-called Keldysh (r/a) basis (cf., e.g., ref. [72]). Then the propagator
becomes a matrix, (

Grr Gra
Gar Gaa

)
=
(

∆ −iΠR

−iΠA 0

)
, (3.10)

where all components are determined by eq. (3.9),

∆ = [1 + 2nB(ω)]ρ , ρ = ImΠR = ωΥ
(ω2 − ε2p)2 + ω2Υ2 , ΠA = (ΠR)∗ . (3.11)

4An algebraic way to verify the prefactor is given in footnote 2 of ref. [65]. Physically, there are two
transverse-traceless polarizations, and if we choose the one in non-diagonal components as a representative,
viz. (Txy + Tyx)/

√
2, then the equality Txy = Tyx leads to the additional factor (

√
2)2 = 2.

5The scales at which hydrodynamics applies can be estimated as follows. Consider a sound wave, carrying
the energy ω = csk, where the speed of sound is cs ' 1/

√
3. It is damped by viscous effects, with the rate

Γs ∼ ηk2/(e+p), where e+p = Ts is the enthalpy and s the entropy density. Shear viscosity is parametrically
of order η ∼ T 3/α2. Hydrodynamics is applicable for Γs � ω , which converts to ω, k � α2T .

– 5 –
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As for the vertices, they are obtained by substituting ϕ1 = ϕr+ϕa/2 and ϕ2 = ϕr−ϕa/2
in the Lagrangian L(ϕ1)−L(ϕ2). Applying this first to how a metric perturbation h couples
to the energy-momentum tensor T , we obtain

h1T1 − h2T2 = haTr + hrTa . (3.12)

Repeating the same with the specific structure from eq. (3.8) yields

h1 ϕ1,xϕ1,y − h2 ϕ2,xϕ2,y = ha

[
ϕr,xϕr,y +

ϕa,xϕa,y
4︸ ︷︷ ︸

Tr

]
+ hr

[
ϕa,xϕr,y + ϕr,xϕa,y︸ ︷︷ ︸

Ta

]
. (3.13)

We can now consider the retarded correlator of the energy-momentum tensor. Given
that the propagator Gaa vanishes, the contribution of ϕ originates from

− iGR
xy;xy

∣∣
k=k ez

= 〈TrTa〉 =
〈
(ϕr,xϕr,y)(ϕa,xϕr,y + ϕr,xϕa,y)

〉
. (3.14)

Carrying out the Wick contractions, going over to momentum space, inserting eqs. (3.10)
and (3.11), taking the imaginary part, and symmetrizing in P1 ↔ P2, yields

ImGR
xy;xy(ω, k)

∣∣
k=k ez

=
∫
P1,P2

δ̄(K − P1 − P2)
[
1 + nB(ω1) + nB(ω2)

]
(3.15)

×
{
ρ,x,x(P1)ρ,y,y(P2) + ρ,y,y(P1)ρ,x,x(P2) + 2ρ,x,y(P1)ρ,y,x(P2)

}
,

where
∫
P δ̄(P) ≡ 1.

In order to evaluate eq. (3.16), it is helpful to factorize the Bose distributions as 1 +
nB(ω1) + nB(ω2) = n−1

B (ω)nB(ω1)nB(ω2). Integrating over P2, denoting p ≡ p1, and partial
fractioning the ω1-dependence of the spectral functions, we then obtain

ImGR
xy;xy(ω, k)

∣∣
k=k ez

= n−1
B (ω)

∫
p

p2
xp

2
y

4ε̃pε̃pk

∫ ∞
−∞

dω1
2π

× nB(ω1)

 Υ
(ω1 − ε̃p)2 + Υ2

4
− Υ

(ω1 + ε̃p)2 + Υ2

4


× nB(ω − ω1)

 Υ
(ω − ω1 − ε̃pk)2 + Υ2

4
− Υ

(ω − ω1 + ε̃pk)2 + Υ2

4

 ,
(3.16)

where ε̃ 2
p ≡ ε2p−Υ2/4, ε̃ 2

pk ≡ ε2pk−Υ2/4, and ε2pk ≡ (p− k)2 +m2. The corresponding physical
process is depicted in figure 1.

As a next step, we may integrate over ω1. This can be done with the residue theorem.
We first note that the Bose distribution nB(ω1) has poles at ω1 = iωn ≡ i2πnT , n ∈ Z. The
pole at ω1 = 0 is lifted by the expression in the square brackets, and the same is true for
the pole at ω − ω1 = 0, from nB(ω − ω1). If we close the contour in the upper half-plane,
the remaining contributions are from ω1 ∈ {iωn, ω + iωn,±ε̃p + iΥ/2,±ε̃pk + ω + iΥ/2},
with n ≥ 1.

– 6 –
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Figure 1. The physical process responsible for eq. (3.16), leading to the gravitational wave production
rate shown in eq. (3.22). Dashed lines denote the inflaton ϕ; a doubled line a graviton; a blob the
operator Tµν ; and crosses thermal fluctuations, which are transmitted to ϕ via the coefficient Υ.

Even if the residues are readily determined and the corresponding expression could be
integrated numerically, it is helpful to put it in a more transparent form, by considering

ω, k,Υ� εp ∼ πT . (3.17)

The magnitude of εp originates from looking at the domain where the p-integrand becomes
suppressed, because of factors ∼ 1/(εp ± iωn)m or ∼ nB(εp), with m ∈ N+. The inequality
part of eq. (3.17) is certainly true, given that in the hydrodynamic domain, ω, k . α2T , and
that for the maximal temperature, viz. Tmax ∼ fa/α, Υmax ∼ α5T 3

max/f
2
a ∼ α3Tmax.

Now, the contributions originating from ω1 ∈ {iωn, ω + iωn} are strongly suppressed in
the limit of eq. (3.17), being parametrically ∼ ωΥ2T . The other residues yield much larger
contributions, parametrically ∼ ωT 4/Υ. In the domain of eq. (3.17) we can furthermore
approximate

ε̃p ≈ εp , ε̃pk ≈ εp − vzk , vz ≡
pz
εp
. (3.18)

Then the leading contributions combine into

ImGR
xy;xy(ω, k)

ω, k,Υ�πT
≈ n−1

B (ω)Υ
∫

p

p2
xp

2
y nB(εp)

[
1 + nB(εp)

]
ε2p [(vzk + ω)2 + Υ2] . (3.19)

This illustrates a crossover from the regime ω, k � Υ, where the result is suppressed by Υ,
to that at ω, k � Υ, where the result is enhanced by 1/Υ. The physical reason for why the
gravitational wave production rate at very low frequencies (or the shear viscosity), is inversely
proportional to the coupling [68], is that the most weakly interacting particle species display
the strongest hydrodynamic fluctuations.

The angular integral in eq. (3.19) can be carried out, by going over to spherical coordi-
nates. Inserting

∫ 2π
0 dφ cos2φ sin2φ = π/4 and denoting

F(ω, vk,Υ) ≡
∫ +1

−1
dz (1− z2)2

(vkz + ω)2 + Υ2 , v ≡ p

εp
, (3.20)

which at light-cone ω = k has the limiting values6

F(k, vk,Υ) ≈


16

15Υ2 , k � Υ

4
3v5k2

[
2v(3− 2v2)− 3(1− v2) ln 1 + v

1− v

]
v≈1≈ 8

3k2 , k � Υ ,

(3.21)

6The full expression reads F(ω, vk,Υ) = 2(9ω2−5v2k2−3Υ2)
3v4k4 − 2ω(ω2−v2k2−Υ2)

v5k5 ln
[

(ω+vk)2+Υ2

(ω−vk)2+Υ2

]
+

(ω2−v2k2)2−2(3ω2−v2k2)Υ2+Υ4

v5k5Υ

[
arctan

(
ω+vk

Υ

)
− arctan

(
ω−vk

Υ

)]
.

– 7 –
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the result from eqs. (3.1)–(3.3) and (3.7) can be expressed as

deGW

dtd ln k
k,Υ�πT
≈ k3Υ

2π3m2
Pl

∫ ∞
0

dp p6 nB(εp)
[
1 + nB(εp)

]
ε2p

F
(
k,
pk

εp
,Υ
)
. (3.22)

For the largest wavelengths, where F can be approximated by the first line of eq. (3.21), this
is illustrated numerically in figure 3 (middle).

When we go from k � Υ to k � Υ, eqs. (3.21) and (3.22) indicate that the growth of
deGW/(dtd ln k) moderates from ∼ k3 into ∼ k. But the function is still growing, and in fact
most of the energy density carried by gravitational waves lies at larger momenta, k ∼ πT .
We now turn to how this dominant contribution can be determined.

3.3 Boltzmann domain

At larger momenta, elementary particle excitations can be resolved, and we need to consider
the microscopic form of the energy-momentum tensor. Omitting trace parts, which drop out
when projected with eq. (3.5), the fields appearing in eq. (1.1) give the contribution

Tµν ⊃ ∂µϕ∂νϕ− F cµαF cν
α (3.23)

to the traceless part. These components couple to the propagating part of the graviton
field (h). We are interested in the contribution to graviton production that involves one
appearance of the vertex in eq. (1.1), as the processes without this vertex were already
considered in ref. [65]. Various processes are depicted in figure 2. (The 2 → 1 channel
ϕϕ→ h is not kinematically allowed with on-shell particle states.)

A way to represent and evaluate the rates of the reactions in figure 2 has been presented
in ref. [74]. In the following, we adopt its methods and notation. The procedure starts by
considering the processes in figure 2(b), which are not kinematically allowed, but have a
simple would-be algebraic structure, as the non-equilibrium particle and the plasma particles
are on different sides of the reaction. This contribution is represented as

L
αβ;µν ImGR

αβ;µν(k, k) ⊃ scat1→ 3(g1, ϕ, g3) Θ(Pg1 ,Pϕ,Pg3) , (3.24)

where scat1→ 3 is a phase-space average,7 and g1, g3 label two (identical) gauge bosons.
The dynamical information concerning the production process enters through the func-

tion Θ in eq. (3.24), which may be referred to as “matrix element squared”. More precisely,
if we couple Tµν to polarization vectors ĥµν of a would-be source (L ⊃ ĥµνTµν), and replace
the sum over the polarizations through eq. (3.5), viz.∑

λ

ĥαβ(λ)ĥ
µν∗
(λ) ≡ L

αβ;µν , (3.25)

then
Θ(Pg1 ,Pϕ,Pg3) = 1

2
∑

λ,s1,s3

∣∣M
ĥ(λ)→g(s1) ϕg(s3)

∣∣2 , (3.26)

7In ref. [74], the non-equilibrium particle was defined to be the initial state, i.e. time was running in the
opposite direction, which explains the reference to a 1 → 3 process. In the particle production language of
figure 2(b), it is more intuitive to depict the non-equilibrium particle as a final state, yielding a 3→ 1 reaction.
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(c)
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Figure 2. (a) matrix elements squared contributing to gravitational wave production in the Boltz-
mann domain, represented as “cuts” of a 2-point correlator of the energy-momentum tensor. Dashed
lines denote the inflaton ϕ; wiggly lines gauge fields; doubled lines gravitons; blobs the operator Tµν ;
(b) the corresponding 3 → 1 amplitudes, which are not kinematically allowed, but can be used for
deriving eq. (3.26); (c) 2↔ 2 processes, obtained by crossing symmetries from the set (b); (d) likewise,
for kinematically permitted 1→ 3 decays.

where s1, s3 label the helicities of the final-state gauge bosons, and 1
2 accounts for the gauge

bosons being identical (with this factor we can integrate over the full phase space without
the danger of overcounting).8

The tensor Lαβ;µν , defined in eq. (3.5), contains a quadratic appearance of the projec-
tor KT. After contractions with the metric tensor, linear and zeroth order terms in KT can
appear as well (cf. eq. (3.6)). Redundancies can be eliminated by making use of the fact that
K

T is orthogonal to K, implying

K
T
αβPα1 P

β
2 = KT

αβ

Pα3 P
β
3 − Pα1 P

β
1 − Pα2 P

β
2

2 , for K = P1 + P2 + P3 , (3.27)

with analogous relations obtained through the relabellings 1↔ 3 and 2↔ 3.
A further ingredient of the computation is the Levi-Civita tensor εµνρσ from eq. (1.1).

In the matrix elements squared, it appears in the structure

εµνρσεµ̄σ̄ρ̄ν̄AµBρCµ̄Dρ̄ (3.28)
=
(
A · C B ·D −A ·DB · C

)(
ηνν̄ησσ̄ − ηνσ̄ησν̄

)
+
(
Aν̄Bσ̄ −Aσ̄Bν̄)(CνDσ − CσDν)

+
(
A ·DBσ̄ −B ·DAσ̄

)(
ηνν̄Cσ − ησν̄Cν

)
+
(
A ·DBν̄ −B ·DAν̄

)(
ησσ̄Cν − ηνσ̄Cσ

)
+
(
B · C Aσ̄ −A · C Bσ̄)(ηνν̄Dσ − ησν̄Dν)+

(
B · C Aν̄ −A · C Bν̄)(ησσ̄Dν − ηνσ̄Dσ) .

The remaining contractions are a bit lengthy but conveniently handled, e.g., with FORM [73].
After these steps, and denoting s12 ≡ (Pg1

+Pϕ)2, s13 ≡ (Pg1
+Pg3

)2, s23 ≡ (Pϕ+Pg3
)2,

the result can be expressed as

Θ(Pg1
,Pϕ,Pg3

) =
16g4dAc

2
χ

f2
a

{
(s13 −m2)2

−4m2(s13 −m2)
(
p2

1⊥
s23

+ p2
2⊥

s13 −m2 + p2
3⊥
s12

)
8Alternatively, Θ can be extracted from the definition in eq. (3.24), i.e. by computing the retarded 2-point

correlator of the energy-momentum tensor and taking its imaginary part, as illustrated in figure 2(a). Either
way, it is important to crosscheck the gauge independence of the result.
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+2m4
(
p2

1⊥
s23

+ p2
2⊥

s13 −m2 + p2
3⊥
s12

)2

+2m4
[

1
s12s23

+ 1
s12(s13 −m2) + 1

s23(s13 −m2)

]

×
[
p4

1⊥ + p4
2⊥ + p4

3⊥ − 2
(
p2

1⊥p
2
2⊥ + p2

1⊥p
2
3⊥ + p2

2⊥p
2
3⊥

)]}
, (3.29)

where dA ≡ N2
c − 1, and we have denoted

p2
⊥ ≡ K

T
αβPαPβ . (3.30)

For massless gravitons and gauge bosons, the kinematic invariants are constrained by
s12 + s13 + s23 = m2, leading to a remarkable simplification of eq. (3.29). Indeed, the last
term of eq. (3.29) is eliminated by

1
s12s23

+ 1
s12(s13 −m2) + 1

s23(s13 −m2) = 0 , (3.31)

whereas the 2nd and 3rd terms contain the combination9

p2
1⊥
s23

+ p2
2⊥

s13 −m2 + p2
3⊥
s12

= − s13
s13 −m2 . (3.32)

Inserting these simplifications, the result becomes

Θ(Pg1
,Pϕ,Pg3

) =
16g4dAc

2
χ

f2
a

s4
13 +m8(

s13 −m2)2 . (3.33)

In total, eqs. (3.1)–(3.3) and (3.24) yield

deGW

dtd ln k
k∼πT≈ 4k3nB(k)

πm2
Pl
× scat2↔ 2, 1↔ 3(g1, ϕ, g3) Θ(Pg1

,Pϕ,Pg3
) , (3.34)

where scat2↔ 2, 1↔ 3 contains all crossed channels, as given in eq. (2.12) of ref. [74].
The numerical integration of eq. (3.34) can be carried out by modifying the algorithm

provided in ref. [74]. We note that the production peaks at temperatures T � m, and thus
appearances of m can be omitted in practice. In this limit there are no poles in eq. (3.33),
whereby the virtual corrections that were discussed in ref. [74] play no role.

3.4 Numerical estimates

The purpose of this section is to summarize the parametric forms of the results that were
obtained in sections 3.2 and 3.3, and to illustrate the corresponding prefactors numerically.

If we set k∼πT , where the production rate proportional to k3nB(k) peaks (cf. eq. (3.34)),
then deGW

dtd ln k ∼ αT 7/m2
Pl for the Standard Model contribution to gravitational wave produc-

tion [64]. The result in eq. (3.33) contains the prefactor α2/f2
a , implying that axion-like

9To verify this relation, the terms in the denominator can be written as s13 −m2 = (P1 + P3)2 −m2 =
(K−P2)2−m2 ω=k= −2(kε2−k·p2), and similarly in the other cases. In the numerator, p2

2⊥ = p2
2−(k·p2)2/k2 =

−m2 + (kε2 − k · p2)(kε2 + k · p2)/k2. The latter term partly cancels against the denominator, leaving over
−
∑

i
[kεi + k · pi]/(2k2) = −1, where we made use of energy-momentum conservation.
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Figure 3. Left: the Standard Model contribution to the production rate of the energy density carried
by gravitational radiation, from ref. [65], normalized as (m2

Pl/T
7) deGW

dt d ln k . Middle: the infrared (IR)
part of the axion contribution, from eq. (3.22), normalized as (m2

Pl/f
2
a/T

5) deGW
dt d ln k . The axion mass

has been set to m � T , and α has been set to a QCD-like value. Right: the ultraviolet (UV) part of
the axion contribution, from eqs. (3.33) and (3.34), normalized as (f2

am
2
Pl/T

9) deGW
dt d ln k .

inflation leads to the additional contribution deGW
dtd ln k ∼ α2T 9/(m2

Plf
2
a ). The numerical co-

efficients associated with these parametric behaviours are illustrated in figures 3 (left) and
(right), respectively, where the running of α has been taken into account, assuming Nc = 3
and a QCD-like initial value at low energies (numerically, α ∼ 0.015 in the temperature range
shown). In addition we have plotted the estimate in the extreme hydrodynamic domain, from
eq. (3.22), in figure 3 (middle), even though we do not think that this result has significance
for our main conclusions. The hydrodynamic prediction scales as deGW

dtd ln k ∼ f
2
ak

3T 2/(α5m2
Pl),

assuming Υ ' κα5T 3/f2
a , with a numerical coefficient κ ' 100 [75].

Given the similar shapes but different normalizations in figures 3 (left) and (right), we
may expect the axion contribution to gravitational wave production to exceed the Standard
Model one at T & 103fa. However, the numerical solutions in ref. [55] only reached Tmax ∼
200fa. It thus appears that the axion contribution does not exceed the Standard Model
one. Furthermore, for the Standard Model contribution, Tmax = 2 × 1017 GeV increases
the massless degrees of freedom only by ∆Neff ≈ 10−3 [65], which is very demanding to
observe [66]. Therefore, reheating through a coupling between an axion-like inflaton and
non-Abelian gauge fields is not excluded at present, and represents a viable scenario for the
foreseeable future.

4 Summary and conclusions

Depending on its magnitude, the gravitational wave background produced by a reheating
process [1–4] can lead to one of two possible consequences. If the background is substantial,
this would be exciting as a motivation for possible future experiments (cf., e.g., ref. [6]). If
it is moderate, we can be confident that the model is not already excluded, as could happen
in the case of an axion-like inflaton coupled to Abelian gauge fields (cf., e.g., ref. [10]).

For non-Abelian reheating after axion-like inflation, the magnitude of the gravitational
wave production rate depends on the parameters α, fa, m and Tmax (cf. eq. (1.1)). The
dependence on m is small enough to be negligible in practice, provided that m� πTmax, as
is the case towards the end of the reheating period [55]. Within the setup of eq. (1.1), and
in the domain where most of the energy density lies, the dependence on fa is given by the
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power law 1/f2
a , and the dependence on Tmax by dimensional analysis. Therefore the main

task has been to sort out the dependence on α, and to determine the associated prefactor.
Our numerical results are illustrated in figure 3. Parametrically, the axion contribution

exceeds the Standard Model for T > fa/
√
α. Numerically, this has turned into T > 103fa,

which is unlikely to be reached according to ref. [55]. A main reason for the numerical
suppression is the small factor cχ in eq. (1.1), which appears quadratically in the production
rate. If the production rate does not exceed the Standard Model one, it is not strongly
constrained in the temperature range that is associated with normal inflationary scenarios,
Tmax � 1017 GeV, given that in this range the Standard Model contribution increases the
energy density as parametrized by massless degrees of freedom only by ∆Neff � 10−3 [65].

It may be wondered why the non-Abelian case differs so notably from the Abelian one,
where an efficient tachyonic instability has been claimed to convert a significant fraction of
energy density to gravitational waves. The reason is that backreaction effects lead arguably
to rapid thermalization. In a thermal system, as we have assumed to be the case, tensor
modes are excited only through interactions, whereby their production is suppressed by α2.

To sharpen our conclusions, it would be nice to fix Tmax in terms of fa, m and α such
that inflationary predictions are in line with observation. This requires going beyond the
universal eq. (1.3), by defining V (ϕ) away from the minimum. Ultimately, it would also be
great to probe non-equilibrium effects, and to employ a UV complete description, as reheating
easily takes us to a domain where the non-renormalizable operator in eq. (1.1) is having a
substantial influence. We hope to return to some of these issues in the future.
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