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We present a determination of the gradient flow scales F0,
√
C0 and C0/F0 in isosymmetric QCD,

making use of the gauge ensembles produced by theExtendedTwistedMassCollaboration (ETMC)
with # 5 = 2 + 1 + 1 flavours of Wilson-clover twisted-mass quarks including configurations close
to the physical point for all dynamical flavours. The simulations are carried out at three values of
the lattice spacing and the scale is set through the PDG value of the pion decay constant, yielding
F0 = 0.17383(63) fm,

√
C0 = 0.14436(61) fm and C0/F0 = 0.11969(62) fm. Finally, fixing the

kaon mass to its isosymmetric value, we determine the ratio of the kaon and pion leptonic decay
constants to be 5 / 5c = 1.1995(44).
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Gradient flow scale-setting with # 5 = 2 + 1 + 1 Wilson-clover twisted-mass fermions B. Kostrzewa

ensemble V +/04 0 (fm) 0`ℓ "c (MeV) ! (fm) "c!

cA211.53.24 1.726 243 × 48 0.0947 (4) 0.00530 346.4 (1.6) 2.27 3.99
cA211.40.24 243 × 48 0.00400 301.6 (2.1) 2.27 3.47
cA211.30.32 323 × 64 0.00300 261.1 (1.1) 3.03 4.01
cA211.12.48 483 × 96 0.00120 167.1 (0.8) 4.55 3.85
cB211.25.24 1.778 243 × 48 0.0816 (3) 0.00250 259.2 (3.0) 1.96 2.57
cB211.25.32 323 × 64 0.00250 253.3 (1.4) 2.61 3.35
cB211.25.48 483 × 96 0.00250 253.0 (1.0) 3.92 5.02
cB211.14.64 643 × 128 0.00140 189.8 (0.7) 5.22 5.02
cB211.072.64 643 × 128 0.00072 136.8 (0.6) 5.22 3.62
cC211.06.80 1.836 803 × 160 0.0694 (3) 0.00060 134.2 (0.5) 5.55 3.78

Table 1: Overview of the light quark bare mass, 0`ℓ = 0`D = 0`3 , of the pion mass "c , of the lattice size ! and of
the product "c! for the various ETMC gauge ensembles used in this work. The values of the lattice spacing 0 and the
values of "c and ! correspond to the absolute scale F0 = 0.17383(63) fm.

1. Introduction

Precise and accurate scale setting is of central importance as lattice QCD calculations target high
precision determinations of the hadron spectrum, the nucleon axial radius, precision inputs for
electroweak tests of the Standard Model or the hadronic contribution to the muon 6 − 2. The
lattice scale may enter either relatively to compare calculations at different values of the inverse
bare coupling V = 6/62

0, indirectly when used to fix other bare parameters of the theory such as
the quark masses or as an absolute scale in the conversion of dimensionful observables to physical
units. Depending on the case, its uncertainty either indirecty or directly also propagates to the error
estimates of the final results of a given calculation.
The gluonic scales C0 [1] and F0 [2] have been employed widely as intermediate scales [3–12]
and have also previously been studied specifically in the context of the ETMC [13–15]. They are
attractive because they are comparatively easy to calculate with high statistical precision, do not
involve complicated fitting procedures and can easily be integrated into the ensemble production
workflow. In this contributionwe give some details on our current determinations of these scales and
also present our recent calculation of 5 / 5c [16]. We also make use of the scales in the calculation
of quark masses from mesonic inputs [17, 18] as well as leptonic meson decay constants [19].

2. Lattice Setup and Statistical Properties

We make use of # 5 = 2 + 1 + 1 flavours of Wilson-clover twisted-mass fermions tuned to maximal
twist, ensuring automatic O(0)-improvement of all physical observables [20, 21]. We employ the
tmLQCD software suite [22–24] linked against an extended version of the QPhiX [25–30] library
as well as DDUAMG [31–34]. Details of our ensembles are given in Table 1 and we refer to
Refs.[15, 16, 35] for details on their generation and the corresponding algorithmic setup.
We employ the gradient flow using the Wilson gauge action and use a third-order Runge-Kutta
algorithm as proposed in Ref. [1] to evolve the gauge field along the flow time C/02. For the
definition of the energy density 〈� (C)〉 in our observables, we make use of the clover discretisation
of the field tensor, using the notation 〈�sym(C)〉 in what follows. In Figure 1, we show the evolution
of C2 〈�sym(C)〉 and the correspondingMDhistory of the observable at the point C = Csym

0 on ensemble
cC211.06.80 at the physical point as a representative example across our ensemble landscape.

2
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Figure 2: Scaling with the number of trajectories # (of length g = 1.5) of F0/0 (left), its statistical error (middle) and
the estimate of the integrated autocorrelation time (right, in units of g = 1.0 trajectories) in an analysis on ensemble
cB211.14.64. The blue line in the middle panel is a linear fit in the range 30 ≤

√
# ≤ 60.

We use the Gamma method [36] to estimate our statistical errors. While we do not estimate the
exponential tails [37] of the autocorrelation function of our gradient flow observables, we see good
error scaling and stable estimates of the integrated autocorrelation time. This is shown exemplarily
in Figure 2 for the cB211.14.64 ensemble at a pion mass of around 190 MeV, where we give the
evolution as a function of the number of trajectories # (of length g = 1.5) of the observable F0/0,
its statistical error and the corresponding estimate of the integrated autocorrelation time. These
appear to be reliable from around

√
# ∼ 30 onwards.

The results for all observables using the clover discretisation are given in Table 2, where we make
use of the shorthand notation B0 =

√
C0.

3. Extrapolation to the Physical Point

Before we use the relative scales for further analysis, we follow Ref. [38] and extrapolate to the
physical light quark mass at each lattice spacing. Since we have fixed the sea strange and charm
quark masses to their physical values to within a few percent, we only parameterise the light quark
mass dependence via

F0/Fphys
0 (V) = 1 + 2V ·

[
("PS/ 5PS)2 −

(
" iso
c / 5 iso

c

)2
]
, (1)

where Fphys
0 /0 and 2V are fit parameters and where the pion mass "PS and pion decay constant

5PS have been corrected for finite size effects as detailed in Ref. [16]. The quantities " iso
c and 5 iso

c

3
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ensemble #traj #meas B
sym
0 /0 F

sym
0 /0 (Csym

0 /F
sym
0 )/0 B

sym
0 /F

sym
0 g

B0
int g

F0
int g

C0/F0
int g

B0/F0
int

cA211.53.24 4488 1122 1.5306(21) 1.7597(43) 1.33139(89) 0.86982(100) 23(6) 25(7) 7(1) 18(4)
cA211.40.24 4876 1219 1.5384(18) 1.7766(33) 1.33213(96) 0.86592(64) 20(5) 18(4) 7(1) 9(2)
cA211.30.32 10236 2559 1.5460( 9) 1.7928(17) 1.33314(47) 0.86233(32) 22(5) 21(4) 9(1) 10(2)
cA211.12.48 2608 326 1.5614(22) 1.8249(33) 1.33590(155) 0.85559(29) 69(30) 63(27) 59(25) 16(5)
cB211.25.24 4580 1145 1.7937(22) 2.0992(46) 1.53260(108) 0.85445(77) 21(5) 25(6) 5(1) 12(2)
cB211.25.32 3960 990 1.7922(19) 2.0991(47) 1.53018(72) 0.85380(91) 35(10) 45(14) 6(1) 28(7)
cB211.25.48 4700 1175 1.7915( 8) 2.0982(19) 1.52966(41) 0.85384(38) 28(8) 31(9) 9(2) 20(5)
cB211.14.64 4952 619 1.7992( 5) 2.1175(11) 1.52875(23) 0.84968(23) 30(8) 32(9) 8(1) 23(6)
cB211.072.64 3065 191 1.8028( 8) 2.1272(19) 1.52784(42) 0.84750(41) 45(18) 52(22) 16(5) 41(16)
cC211.06.80 3140 785 2.1094( 8) 2.5045(17) 1.77670(37) 0.84226(27) 46(17) 42(16) 14(3) 26(8)

Table 2: GF scales from the symmetrized action density and corresponding integrated autocorrelation times in units of
trajectories of length g = 1.0. The #meas measurements on each ensemble were performed using different separations in
terms of trajectories and the gint were scaled appropriately. Similarly, for the cB211.25.24, cB211.25.32 and cB211.14.64
ensembles, the gint were scaled to take into account the g = 1.5 trajectory lengths used there.
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1.836 2.5045 (17) 2.1094 (8) 1.77670 (37)

Figure 3: Extrapolation to the physical sea light quark mass of F0/0 at each lattice spacing using Equation (1) (left)
and resulting values of all the relative scales at the physical point (right).

correspond to these quantities in the isosymmetric limit of QCD. The quality of the fit is shown for
F

sym
0 /0 in the left panel of Figure 3 and the resulting values of all the relative scales at the physical

point are given in the right panel. While we cannot perform this fit for our finest lattice spacing,
the single ensemble there is very close to the physical point and we simply use the relative scales as
they are.

4. Setting the Scale

Wefirst attempt to set the scale via the pion decay constant directly, fitting the data forF0 5c (! →∞)
(which has been corrected for finite size effects) using the following functional form

F0 5c (! →∞) = F0 5

[
1 − 2blog(b) + 2�1b + �2b

2 + 0
2

F2
0
(�0 + �1b)

]
, (2)

where b is defined as

b ≡ "
2
c (! →∞)
(4c 5 )2

=
(F0"c)2
(4cF0 5 )2

1[
1 − 1

4Δ
c
FVE(!)

]2 , (3)
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Figure 5: Raw data
for the quantities
F0 5c (left) and
F0-c (right, defined
in Equation (4)).

and where, with respect to a pure NLO ansatz, we have added a possible higher-order term quadratic
in b as well as discretization effects proportional to 02 and 02"2

c . For details we refer to Ref. [16]
and show the fit with �2 = 0 in Figure 4 with the result F0 = 0.1740(15) fm, corresponding to an
0.8% error.
In order to better exploit statistical correlations in the data for 5PS and "PS as well as cancellations
of discretisation and finite size effects, we consider the quantity

-c =

(
5c"

4
c

)1/5
, (4)

for which we compare the raw data for F0 5PS in the left panel of Figure 5 to the raw data for
F0-PS in the right panel. It is clear that especially the finite size effects are greatly reduced in this
combination. We proceed to fit

F0-c = (F0 5 )
{
(4c)4b2 [

1 − 2blog(b) + 2�1b + �′2b
2 + 02 (

� ′0 + �
′
1b

) ]}1/5

·
(
1 + �FVE b

24−"c!/("c!)3/2
)
,

(5)

the result of which is shown in in the left panel of Figure 6. In the right panel, instead, we have
subtracted the resulting continuum curve to better visualise the residual lattice artefacts which are
very small and yet very well captured by the fit.
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curve subtracted to better visualise the very small residual lattice artefacts (right).

scale 0�(V = 1.726) 0� (V = 1.778) 0� (V = 1.836)
F0 0.09471(39) 0.08161(30) 0.06941(26)
√
C0 0.09217(41) 0.08002(34) 0.06844(29)

C0/F0 0.08960(47) 0.07834(41) 0.06737(35)

Table 3: Values of the lattice spacing 0 (in fm)
corresponding to the threeGF scalesF0,

√
C0, C0/F0

and to the corresponding relative scales given in the
right panel of Figure 3.

For details we again refer to Ref. [16], where different cuts in the data and variations of the higher
order terms are used to obtain estimates of systematic errors. Repeating the fits for the scales F0,
C0 and C0/F0, we obtain

F0 = 0.17383 (57)stat+fit (26)syst [63] fm , (6)
√
C0 = 0.14436 (54)stat+fit (30)syst [61] fm , (7)

C0/F0 = 0.11969 (52)stat+fit (33)syst [62] fm , (8)

with errors added in quadrature and given in square brackets, resulting in an improvement in
precision by a factor of about 2.5 compared to the determination from 5c .
The values of the lattice spacing 0 corresponding to Equations (6) to (8) are given in Table 3.
These three determinations of 0 differ by O(02) effects, which can be parameterised in their
ratios by a function linear in 02, as shown in Fig. 7. In particular, we get: 0(√C0)/0(F0) '
1−0.09 (2) 02(F0)/F2

0 and 0(C0/F0)/0(F0) ' 1−0.18 (2) 02(F0)/F2
0, consistent with 0

2-scaling.

5. The ratio 5 / 5c

Finally, we employ the lattice spacing determined via F0/0 and fixed by -c to interpolate our data
for 5 / 5c to a reference kaon mass (" ref

 
)2 = (" iso

 
)2 + ("2

c − " iso
c )

2/2. This interpolated data
for 5 / 5c is shown in Figure 8. We further apply finite size corrections as detailed in Ref. [16] and
the data using the Ansatz

5 

5c
(! →∞) = '0

[
1 + 5

4
blog(b) + '1b + '2b

2 + 0
2

F2
0

(
�̃0 + �̃1b

)]
. (9)
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Figure 9: Fit of Equation (9) to the 5 / 5c
data shown in Figure 8 corrected for finite size
effects.

As shown in Figure 9, this results in an excellent fit and we obtain

(
5 

5c

) iso
= 1.1995 (44)stat+fit (7)syst [44] , (10)

at the physical point in the isosymmetric limit of QCD, where again, estimates of the systematic
errors are obtained by performing different types of fits and data cuts.
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for 5 / 5c to those from Refs. [39–41] (right panel).

6. Conclusions and Outlook

We conclude by comparing our results for the scales F0 and
√
C0 to an incomplete selection from

Refs. [2, 8–10, 12] in the left panel of Figure 10 and our result for 5 / 5c to a selection from
Refs. [39–41] in the right panel. For more complete comparisons we refer to the FLAG review [42].
In future publications we plan to extend the set of ensembles by simulations at a fourth lattice
spacing, several more volumes and further values of the light sea quark mass at V = 1.836. An
alternative scale setting employing the mass of the omega baryon is currently being studied with
the aim of also including QED effects.
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