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Abstract
Fentanyl transdermal therapy is a suitable treatment for moderate-to-severe cancer-related pain. The inter-individual vari-
ability of the patients leads to different therapy responses. This study aims to determine the effect of physiological features 
on the achieved pain relief. Therefore, a set of virtual patients was developed by using Markov chain Monte Carlo (MCMC) 
based on actual patient data. The members of this virtual population differ by age, weight, gender, and height. Tailored digital 
twins were developed using these correlated, individualized parameters to propose a personalized therapy for each patient. 
It was shown that patients of different ages, weights, and gender have significantly different fentanyl blood uptake, plasma 
fentanyl concentration, pain relief, and ventilation rate. In the digital twins, we included the virtual patients’ response to the 
treatment, namely, pain relief. Therefore, the digital twin was able to adjust the therapy in silico to have more efficient pain 
relief. By implementing digital-twin-assisted therapy, the average pain intensity decreased by 16% compared to conventional 
therapy. The median time without pain increased by 23 h over 72 h. Therefore, the digital twin can be successfully used in 
individual control of transdermal therapy to reach higher pain relief and maintain steady pain relief.

Keywords Pharmacology population · Physics-based modeling · Physiological features · Pharmacokinetics model · 
Pharmacodynamics model · Cancer-induced pain

Introduction

Fentanyl is a strong synthetic opioid that is 50 to 100 times 
more potent than morphine and 30 to 50 times more potent 
than heroin [1–3]. It has high lipophilicity, allowing it to 

quickly pass the blood–brain barrier [4]. Fentanyl trans-
dermal patches are being extensively used for severe pain 
management, including cancer-induced pain [4, 5]. Fentanyl 
therapy has a narrow therapeutic range [6]. Therefore, keep-
ing the fentanyl concentration in plasma in this window is 
crucial to reach the therapeutic effect while avoiding its tox-
icity. Clinical results of fentanyl transdermal therapy show 
that a high inter-individual variability occurs in response 
to the therapy [7]. As such, there is a different uptake and 
response for each patient. Therefore, the therapeutic trans-
dermal dose must be adapted for every patient. Due to the 
different physiological features of patients, their cause of 
pain, the intensity of the pain, and concomitant diseases, 
every patient needs a different dose of fentanyl. However, it 
is challenging to find the optimum therapy for each patient 
by trial and error. Such trial and error is discomforting and 
dangerous for the patient and requires a higher time commit-
ment from the medical doctor.

By implementing the experimental and clinical data, 
and involving physics, physics-based modeling of the drug 
uptake can predict the patient’s plasma concentration and 
clinical response to different therapies. Via this approach, 
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we are able to examine different approaches to modify them 
based on the patient’s needs in a shorter time without put-
ting the patient in danger or discomfort. The aim of applying 
in silico study is providing additional and key information 
that is not possible or too complicated to gain by in vivo 
and in vitro studies. Numerous studies were conducted in 
order to develop a mathematical or computational model 
to predict the outcome of therapies for the patient [8–13]. 
These studies focus on different administration routes for 
medicinal products, such as oral, pulmonary, parenteral, 
and transdermal routes. These models for transdermal drug 
delivery are divided into two groups: (1) The studies focused 
on the drug’s transport from the patch through the skin at 
different scales [14–21]. (2) The studies are focused on phar-
macokinetics and pharmacodynamics modeling of fentanyl 
transport in the body [22–25]. However, simulations that 
cover the whole process of transdermal drug uptake, distri-
bution and metabolization, clinical effect, and even patient 
feedback are rarer [26]. In order to reach this aim, in our 
previous studies, we developed a physics-based digital twin 
by including virtual patient feedback. The digital twin is a 
virtual presentation of the real-world patient that contains 
all his/hers organs and processes, and it is connected to the 
real world by sensor data or patient feedback. In this digital 
twin, we took to account the drug uptake by skin, pharma-
cokinetics, and pharmacodynamics model. Additionally, 
the feedback from the virtual patient was included in the 
digital twin. Every 24 h, the digital twin received virtual 
pain intensity feedback generated by a standard randomized 
number with 1 VAS unit standard deviation [26]. This digital 
twin was used to simulate transdermal fentanyl therapy for 
virtual patients of different ages. However, in our previous 
study, other patient physiology features besides age, such as 
weight and gender, were not considered, although based on 
the clinical studies, they strongly impact therapy outcomes.

In this study, a virtual population containing 3000 vir-
tual cancer patients was generated based on sample data. 
This sample data was obtained from the available data in 
the literature [27], which included information on age, 
weight, height, gender, cancer diagnosis, and prior treat-
ment based on the WHO steps of 20 cancer patients. The 
members of this population differ from each other by age, 
gender, weight, and height. Considering other impactful 
physiological features such as liver and kidney conditions 
will help to tailor the twin to the patients; however, we did 
not include them in this study due to the lack of sufficient 
data. In order to evaluate the outcome of fentanyl transder-
mal therapy for each patient, a physics-based digital twin 
was developed. The model parameters of this digital twin 
were modified based on patient physiology and considering 
inter-individual variability. The physics-based digital twin 
contains three main parts: (I) drug uptake model to predict 
the absorption of the drug from the patch through the skin 

to reach the blood circulation, (II) pharmacokinetics model 
to predict the fentanyl concentration in plasma, and (III) 
pharmacodynamics model to predict the two clinical effects 
of fentanyl, which are pain relief (therapeutic effect) and 
reduction in ventilation rate (adverse effect). This tailored 
digital twin proposes a therapy for each individual to relieve 
the pain efficiently and avoids hypoventilation based on the 
calculated pain level compared to the targeted pain intensity.

Materials and methods

Digital twin

Drug uptake model

The drug uptake model simulates the drug diffusion in the 
transdermal patch and skin layers (stratum corneum, via-
ble epidermis, and upper part of dermis). The thickness of 
the skin layer was modified for each patient, as this was 
dependent on patient physiology, such as gender, weight, 
and age. The geometric dimensions for the patch were based 
on  Duragesic® fentanyl patches. The  Duragesic® fentanyl 
patches provide a different flux of fentanyl to the body based 
on their surface area. The surface area of these patches varies 
between 5.25 and 42  cm2. In this model, the chosen section 
of skin and the patch have a square shape. We considered the 
skin block has the same length and width as the transdermal 
patch. We assumed that there was perfect contact between 
the patch and the skin. The implemented geometry in this 
study is shown in Fig. 1.

Computational system configuration  The governing equa-
tion The drug penetration from the patch through the skin 
was modeled by transient diffusion which is described by 
Fick’s second law (Eq. 1).

where ci and Di are concentration [ng/ml] and diffusion 
coefficient  [m2/s] of fentanyl in domain i . At the interface 
of each two layer, partitioning should be considered. The 
partition coefficient at each interface is mentioned in Eq. (2).

where Ki∕j is the partition coefficient between the two 
domains i and j . The partition coefficient is the concentra-
tion ratio of one solute at the interface of two immiscible 
phases. Due to the partition coefficient, the concentration of 
fentanyl at the two sides of the interface of the layers might 
be different. This discontinuity is inconvenient to solve com-
putationally. To solve this problem, the drug’s potential �i , 

(1)
�ci

�t
= ∇.

(

Di × ∇ci
)

(2)ci = Ki∕j × cj
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as described in Eq. (3), it was used instead of the concentra-
tion, as it is continuous throughout the layers.

where Ki is drug capacity in domain i, and it is related to 
the partition coefficient as: Ki∕j = Ki∕Kj (as a result of the 
continuity of �i over the whole domain).

Fentanyl penetrates through the epidermis and reaches 
the dermis. In the dermis layer, the drug will be taken up by 
capillary vessels at different lengths of the dermis. Besides 
diffusion, other physical mechanisms, such as advection, 
will play a role. In this study, we only modeled the diffu-
sion process. Additionally, the capillaries will absorb the 
fentanyl in the upper part of the dermis, and all of the drug 
or part of it will be absorbed before reaching its bottom. To 
obtain the same drug uptake through the skin as the clinical 
studies, we used an equivalent dermis thickness, which is 
smaller than the real dermis thickness. The details of this 
assumption and modification and validation of drug uptake 
model are mentioned in our previous studies [26, 28, 29].

Boundary and initial conditions At the top boundaries 
(Fig. 1, b1) and for the peripheral boundaries (Fig. 1, b2 

(3)ci = Ki × � i

and b4), we assumed no flux of fentanyl. In this study, the 
considered patch contains 12.6 mg of fentanyl (Fig. 1, d1). 
At the bottom boundary (Fig. 1, b3), the concentration of 
fentanyl is taken equal to the concentration of fentanyl in 
blood. This concentration is obtained from the pharmacoki-
netic model. The initial concentration of fentanyl in the skin 
layers (Fig. 1, d2, d3, and d4) is equal to zero, as there is no 
drug in the skin when applying the patch. This assumption 
implies that the patch is always applied at a new location.

Pharmacokinetics modeling

In this study, a physiologically based pharmacokinetic model 
was used to predict the concentration of fentanyl in the blood 
plasma. Due to the complexity of the human body, different 
organs were lumped together into PK compartments [26]. We 
considered five compartments: (I) the central compartment, 
which contains blood and lungs (Eq. 4); (II) the rapid equili-
brated compartment, which includes the brain, heart, skin, 
and kidneys (Eq. 5); (III) the slow equilibrated compartment, 
which contains muscle, fat tissue, and the carcass (Eq. 6); 
(IV) gastrointestinal compartment which includes gut, spleen, 
and pancreas (Eq. 7); and (V) hepatic compartment where 
the metabolization happens and which only includes the liver 
(Eq. 8). The concentration of fentanyl in these compartments 
is evaluated by the following ordinary differential equations:

The parameters of these equations are mentioned in 
Table 2. In this set of equations, cp, cr , cs, cg, and cl are the 
concentration of fentanyl in the central, rapid equilibrated, 
slow equilibrated, gastrointestinal, and hepatic compart-
ments, respectively. fu is the unbound fraction of fentanyl in 
the central compartment. kij, kmet, and kre are the first-order 
equilibrium rate constants for inter-compartmental clearance, 
metabolization, and renal clearance, respectively. In our pre-
vious study, the pharmacokinetic model was validated [26].

(4)

�cp

�t
=Fluxd ×

A

Vc

−
(

kcs + kcr + kcl + kg − kre
)

× f u × cp + krc × cr + ksc × cs + klc × cl

(5)
�cr

�t
= kcr × cp − krc × cr

(6)
�cs

�t
= kcs × cp − ksc × cs

(7)
�cg

�t
= kg × cp − kgl × cg

(8)
�cl

�t
= kcl × cp − klc × cl + kspg × cg − kmet × cl

Fig. 1  Implemented geometry of skin and patch for drug uptake 
model; boundaries b1, b2, and b4 have no flux; however, fentanyl is 
absorbed by the blood circulation system in the b3 boundary. In this 
model, the patch’s thickness is 50.8 µm, the stratum corneum’s thick-
ness varies in the range of 12–27 µm, the thickness of the viable epi-
dermis is between 15 and 51 µm, and the thickness of the upper part 
dermis is between 153 and 374 µm
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Pharmacodynamics model

There is a delay between the concentration of fentanyl in 
the blood plasma and the corresponding clinical effects 
on pain relief and breathing rate [30]. To account for this 
delay, a virtual compartment is defined, called the effect 
compartment. The concentration of fentanyl in the effect 
compartment related to the central compartment is calcu-
lated in Eq. (9).

As fentanyl is a small lipid-soluble drug, it will rapidly 
penetrate through the blood–brain barrier from the blood 
circulation system and bind to opioid receptors in the cen-
tral nervous system [31]. Through this mechanism, fentanyl 
produces pain relief. We used the visual analog scale (VAS), 
which is a pain scale between 0 (indicates no pain) and 10 
(indicates the worst possible pain), to evaluate pain relief. 
Additionally, fentanyl will bind to the opioid receptor on 
chemoreceptors in the brain stem, which are responsible for 
detecting the carbon dioxide level in the blood and stimu-
lating breathing. This binding will reduce the sensitivity of 
carbon dioxide levels and may lead to stopping breathing 
in extreme cases. A sigmoidal model models the reduction 
of the ventilation rate and VAS pain score as a function of 
fentanyl concentration in the effect compartment (Eq. 10).

(9)
�ce

�t
= ke × (cp − ce)

(10)Ei = E0

i
± Emax

i
× (

c
�i

e

EC
�i

50,i
+ c

�i

e

)

where Ei,E
0

i
, and Emax

i
 are the intensity of the pharmaco-

logic, baseline, and maximum reachable effect, respectively. 
EC50,i is the concentration related to the response halfway 
between the baseline and maximum possible effect, and �i is 
the Hill coefficient. In our previous study, the parameters for 
the pharmacodynamics model for pain relief were derived 
based on experimental data [26].

Generation of the virtual population

Sample data of cancer patients

Ten women and ten men with age 40 to 68 with different 
tumor sites were studied by Zech et al. [27]. All the involved 
patients used fentanyl transdermal therapy for chronic pain 
management. The patient’s physiological features are men-
tioned in Fig. 2, including age, gender, weight, and height. 
These parameters are cross-correlated. To explore the cor-
relation between these physiology features, the correlation 
test is implemented on this set of data, and its result is shown 
in Fig. 2. This result shows a strong correlation (correla-
tion coefficient (C.C.) = 0.87) between gender and height. 
However, it should be clarified that the value for gender 
is considered Boolean in this set of data. The value for the 
male gender is one, and for the female, gender is zero. There-
fore, the positive correlation coefficient of 0.87 represents 
the higher height between male genders, as is expected. The 
correlation test result also represents a weak correlation 
between gender and weight (C.C. = 0.43) and weight and 
height (C.C. = 0.38).

Fig. 2  Pearson correlation coefficient between each two sample data parameters and the distribution of the values for these parameters
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Virtual population

In this study, we developed a virtual population of patients 
from sample data to examine the performance of digital 
twins for patients with a wider range of physiological fea-
tures. Members of this population differ from each other 
based on their age, gender, weight, and height. In reality, 
these physiological features of patients are correlated, as 
shown in Fig. 2. Therefore, our virtual patients should 
have correlated features in the same way. We used the 
Markov chain Monte Carlo (MCMC) method to produce 
the virtual population with realistic feature combinations 
for each patient. MCMC predicts the posterior distribu-
tion by sampling from the joint distribution of likelihood 
and prior distribution. This method uses the sample demo-
graphic data of cancer patients (N = 20) as a likelihood 
function. The prior distribution for age, weight, and height 
is considered normal, and gender is considered a uniform 
distribution. By using the Gibbs sampling method, the 
posterior distribution (Nburn = 20,000 and Nkeep = 3000) 
was evaluated. The demographic characterization of vir-
tual patients of the generated population (N = 3000) was 
obtained from this joint distribution. In Fig. 3, the gener-
ated virtual population is shown. By comparing the cor-
relation coefficients between predicted features for the vir-
tual population and sample data, we find that the MCMC 
method was able to mimic the correlation between sample 
data. However, the distribution of parameters in the sam-
ple data and population data are visually different due to 
the limited number of cases in the sample data. The virtual 
population members are chosen based on sample data to 
reach a population with physiological features compatible 
with sample data of real patients. The summary of sample 
data and population data is shown in Table 1.

Estimation of model parameters

The patient’s physiology changes the skin properties, vol-
ume of the organs, blood flow, glomerular filtration rate, 
metabolization, and opioid tolerance of the patient. By 
using the patient’s individual physiological features, we 
can predict the input parameters for the model. It should 
be noted that despite these equations being obtained from 
experimental data, as a result of inter-individual variability, 
different values for these parameters correspond to patients 
with the same age, gender, weight, and height. To account 
for this inter-individual variability, the calculated value was 
modified by the exponential of a normal random number 
with mean = 0 and SD = 0.1. By including this random fac-
tor, 95% of the evaluated parameters are in the range of ± 
20% of the evaluated values. The overall dependency of 
the model parameter on patient physiology is mentioned in 
Table 2. As mentioned earlier, if the gender of the patient 
is male, the value for the gender parameter is equal to 1 and 
for the female is 0.

Based on Table 2, skin layer thickness, compartment 
volumes, rate constants, clearance rate, and the concentra-
tion of half maximum effects for pain relief are directly 
calculated based on physiological features. The rest of the 
model parameters in this study are considered independent 
of the patient’s physiological features and are in Table 3. 
In real life, these parameters might depend on the patient’s 
physiology. However, for the four features considered 
in this study, based on our best knowledge, there is no 
proposed experimental model to calculate these param-
eters based on these four physiological features. By con-
sidering both parameters, dependent and independent of 
patient physiology, all input parameters change between 
the patients.

Fig. 3  Pearson correlation coefficient between each two population data parameters and the distribution of the values for these parameters
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Spatial and temporal discretization

The grid sensitivity analysis by using Richardson extrapola-
tion was done over the skin layers and fentanyl patch based 
on the flux out of the dermis, in which spatial discretization 
error was considered 0.1%. As a result of this grid sensitivity 
analysis, about 900 quadrilateral grids were built. However, 
this number varies from case to case as the thickness of the 
skin’s layer differs between cases. In some cases, almost 100 
quadrilateral grids were sufficient. In order to increase the 
numerical accuracy, the accumulation of grids near the inter-
faces is more. To define the time steps, sensitivity analysis 
based on maximum fentanyl concentration was done, which 
defined a maximum time step of 6 h; however, to reach a 
higher temporal resolution, time steps were assigned as 1 h.

Numerical implementation and simulation

COMSOL Multiphysics version 5.4 was used in this study 
to solve the diffusion process of fentanyl from the patch 
through the skin in the mechanistic model, the distribution of 
fentanyl in the human body in the pharmacokinetics model, 
and the drug’s effect in the pharmacodynamics model. The 
MUMPS (MUltifrontal Massively Parallel sparse direct 
Solver) was chosen as the solver scheme in this set of sim-
ulations. The partial differential equation (PDE) interface 
was implemented to solve the diffusion process of fentanyl  
in the mechanistic model. To take to account the distribu-
tion, elimination, and metabolization of fentanyl, the bound-
ary ordinary differential equation (ODE) was used. In the 
pharmacodynamics model, the concentration of fentanyl in 
the effect compartment was calculated by the PDE inter-
face, and the boundary probe calculated the drug’s effect. 
To apply the change of the patch and skin location during 
the therapy, the event interface was used. The population 
generation was done in RStudio by using the “mixAK” pack-
age. Analyzing the sample data, calculating the posterior 
distribution, generating the virtual patients’ characteristics, 
calculating the model parameters, and analyzing the result  
of digital twins are done in RStudio.

Proposed therapy by the digital twin

The tailored physics-based digital twin predicts the out-
come of fentanyl transdermal therapy for the patient at any 
moment of the treatment. Based on the summary of product 
characteristics (SmPC), which we will call “Conventional 
therapy” in this study, the fentanyl transdermal patch needs 
to be changed every 72 h. After applying the patch, fenta-
nyl accumulates in a depot in the skin, and it is gradually 
released into the blood circulation, and after reaching its 
peak in blood, the concentration in the blood decreases as 

the amount of drug in the patch decreases. As a result of 
the lower concentration, the analgesic effect decreases too. 
Patients who do not reach sufficient analgesic effect within 
72-h intervals can switch to 48-h intervals [43]. This pre-
scription is similar for every patient as there is a limited 
number of alternative approaches [26]. However, by using 
the predicting capability of the digital twin, we can propose 
a dynamic application time for each patch based on patient 
needs. In this regard, every 8 h, the digital twin considers 
the condition for changing the patch. If the pain intensity is 
above target (in this case, VAS pain score equal to 3), the 
patient needs to change the patch. The reason for putting a 
limit of 8 h is to avoid changing the patch too frequently, 
which may lead to an intensive increase in concentration in 
plasma and drug waste. Additionally, there is a 1 to 2 h of 
time lag between the application of the fentanyl transdermal 
patch and reaching the blood circulation [44]. Based on our 
previous study, the time to reach half maximum concentra-
tion is about 8 h [26]. In this way, the digital twin gives 
enough time to evaluate the patient’s pain relief. The general 
approach of digital-twin-assisted therapy is shown in Fig. 4.

Results and discussion

Conventional therapy

The conventional therapy was applied to all virtual patients 
over 3 days. Three thousand virtual patients implemented a 
 Duragesic® fentanyl patch with a nominal flux of 75 µg  h−1 
over 72 h based on the SmPC. The outcome of therapy 
was evaluated based on three output parameters: fentanyl 
concentration in plasma, pain intensity, and ventilation 
rate. This result is shown in Fig. 5. In Fig. 5a–c, the out-
come based on patient age is represented, which shows no 
distinct trend in the effect of age on fentanyl concentra-
tion in plasma, pain intensity, or ventilation. This implies 
inter-individual variability, and the effect of characteris-
tic features of the patient overshadows the effect of age. 
However, our previous study showed that the age of the 
patient drastically affects the therapy’s outcome [26]. By 
comparing the results of these two studies, we can con-
clude that the impact of age on fentanyl therapy outcomes 
is considerable when the other physiological features are 
similar between patients. However, the impact of other 
physiological features, such as weight, overshadows the 
impact of age. Therefore, due to the high impact of other 
characteristics of the patient, with solely the patient’s age, 
we cannot predict the therapy outcome. Figure 5d–f show 
the outcome of therapy versus weight. Based on the result, 
by increasing weight, the concentration in plasma drops, 
which leads to lower pain relief and simultaneously lower 
side effects, which is the reduction in ventilation rate. The 
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reduction of fentanyl concentration in plasma by increasing 
weight is due to the larger volume of each compartment; the 
drug will be diluted. Therefore, weight has a key impact 
on pain relief, which is the main aim of the therapy. In the 
next step, we studied the effect of height on the outcome of 
the therapy. This result is demonstrated in Fig. 5g–i, which 
shows that the concentration in plasma reduces by increas-
ing height. As a result of the reduction in plasma concentra-
tion, pain relief reduces as well. However, based on Figs. 2 
and 3, higher height is correlated to higher weight, and the 
reduction in plasma concentration is due to higher weight, 
not necessarily higher height. Here in these three graphs, we 
see a gap between genders due to the height gap between the 
genders. Nevertheless, standard fentanyl therapy clearly is 
not gender-neutral. This deviation is partially due to differ-
ent height distributions between genders; however, besides 
the height impact, the gender of the patient directly impacts 
the skin layer thickness and the volume of PK compart-
ments. Therefore, by considering similar age, weight, and 
height for the two genders, we still will end up with differ-
ent fentanyl therapy outcomes.

Digital‑twin‑assisted therapy

As mentioned in "Proposed therapy by the digital twin" sec-
tion, digital twins predict the pain intensity and how the treat-
ment influences it. Based on the intensity of the pain, the 
digital twin can propose changing the patch if the pain inten-
sity is higher than the target (VAS pain score 3). The digital 
twin is able to calculate the pain intensity at any moment 
and update the therapy based on that. However, based on 
our previous study, it takes about 8 h for a fentanyl patch to 
reach half of the maximum contraction in plasma. There-
fore, we put a limit of 8 h for the checking points to update 
the therapy. At first, for patient number one (age = 58 years, 
male, weight = 74.2 [kg], and height = 1.73[m]), we explored 
the effect of different checking points at every 2, 4, 6, 8, 12, 
24, 36, and 72 h. We did not consider frequencies shorter 
than 2 h, as the time lag of fentanyl in reaching the blood cir-
culation is about 2 h [44]. In Fig. 6a, the profile of pain relief 
for different checking points is shown, and based on Fig. 6b, 
except for the checking point every 24 and 72 h, the average 
pain intensity is lower than 3. The checking point at every 
36 h has better pain relief than 24 h because this specific 
patient has higher pain intensity around 36 h after therapy. 
Additionally, based on Fig. 6c, for all the checking points 
duration every 24 and 72 h, the time without pain is more 
than 48 h (more than 2/3 of the therapy duration). As shown 
in Fig. 6d, except for the checking point every 72 h, all other 
cases pass the plasma concentration threshold; however, the 
criteria for breathing rate are met by all the cases (shown in 
Fig. 6e). In Fig. 6f, the number of the needed patch by the 
first patient, by considering different checking points. Con-
sidering the pain relief performance while avoiding excessive 

Fig. 4  The overall structure of tailored digital twin for each member of the virtual population (created with BioRender.com)

Table 1  Patient characteristics for sample data and population

Sample data [27] Population data

Number 20 3000
Age [year] 56.75 (SD = 9.82) 56.70 (SD = 4.9)
Weight [Kg] 72.8 (SD = 14.8) 72.82 (SD = 7.57)
Gender (M/F) 10/10 (50% male and 

50% female)
1512/1488 (50.4% 

male and 49.6% 
female)

Height [m] 1.70 (SD = 0.12) 1.70 (SD = 0.06)
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patches, the four checkpoints of 6, 8, 12, and 36 h match 
our target in pain relief and minute ventilation. Other virtual 
patients might need checking more or less frequently based 
on their therapy outcome. However, we chose 8-h interval 
as it matches the time to reach half of the maximum plasma 
concentration in our previous study, and it is frequent enough 
that the patient does not remain in pain.

The concentration of fentanyl in plasma for all the vir-
tual patients during conventional therapy versus time is 
shown in Fig. 7a. As shown in the graph for a large number 
of patients, the fentanyl concentration in plasma reaches the 
upper threshold during the therapy. It should be noted that the 
threshold of 2 ng  ml−1 [45] is an average for all patients. This 
number in other studies is 3 ng  ml−1 [46]. This threshold is 

Table 2  The dependent model parameters to patient physiological features

*To produce inter-individual variability �i which is a random number with a mean of 0 and a standard deviation of 0.1

Parameter Symbol Equation Population mean condition Reference

Drug uptake 
model

SC thickness dsc (0.125 × Age [year] + 11.80 × (Gender

+(1 − Gender) × 1.40) × exp (θk)  
18.0μm Modified equation [32, 33]

Viable epidermis thickness dvep dvep × (Gender + (1 − Gender)∕1.11)

×exp (θk)  
29.7μm Exact equation [33]

Equivalent dermis thickness dedm ((Gender) × (0.0369 × weight [kg]/

(height[m])2 +0.9531) + (1 − Gender)

× (0.0325 × weight [kg]/(height[m])2

+0.8915)) ×
(

dEdm,age

dEdm,ave,ge

)

× exp (θk)
  

242.6μm Modified equation [33–35]

PK model Compartment volume Vi

(

Gender ×
(

Vmi ×
(

Weight [kg]

70

))

+ (1−

Gender) ×
(

Vfi ×
(

Weight [kg]

70

)))  
- Modified equation [36, 37]

First-order equilibrium rate 
constant

kij
(

Gender ×
(

Qmij ×
(

Weight [kg]

70

))

+ (1−

Gender) ×
(

Qfij ×
(

Weight [kg]

70

)))  
- Modified equation [36, 37]

Clearance rate Clh CLh ×
(

Weight[kg]

70

)

× exp (θk)  
- Modified equation [36, 37]

PD model Concentration of half- 
maximum effect for VAS

EC50,vas

(

−1.148 × 10
−2 × Age [year] + 1.96

)

× exp (θk)  
1.32 ng  ml−1 Modified equation [38]

Table 3  The independent model parameters to patient physiological feature

Parameter Symbol The average value for the 
population

Reference

Diffusion coefficient in the patch Dpt 6.91 ×  10−16  m2  s−1 [29]
Drug uptake model Diffusion coefficient in the epidermis Dep 3.02 ×  10−14  m2  s−1 [29]

Diffusion coefficient in the dermis Dde 3.84 ×  10−11  m2  s−1 [39]
Partition coefficient in the epidermis Kpt∕ep 1/3.4 = 0.29 [29]
Partition coefficient in the dermis Kep∕dm 3.4/3.4 = 1 -

PK model The unbound fraction of fentanyl fu 0.20 [40]
PD model Ventilation rate first-order equilibrium rate constant ke,rd 7 ×  10−4  s−1 [41]

Ventilation rate baseline effect E0
rd

20 L  min−1 [41]
Ventilation rate maximum effect Emax

rd
20 × 0.91 L  min−1 [41]

Ventilation rate half maximal effective concentration EC50,rd 1.14 ng  ml−1 [41]
Ventilation rate hill coefficient γrd 2.69 [41]
Pain relief first-order equilibrium rate constant ke,VAS 2 ×  10−3  s−1 [42]
Pain relief baseline effect E0

VAS
8 -

Pain relief maximum effect Emax
VAS

8 -
Pain relief hill coefficient γVAS 2.71 [38]

×exp (θk)

∕Vi × exp (θk)
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defined based on the fentanyl concentration, which leads to 
toxicity for the patient. By considering inter-individual vari-
ability between patients and different conditions in different 
studies, the measured fentanyl concentration corresponding 
to toxicity might vary. As the concentration of fentanyl in 
plasma after reaching the maximum reduces, the patient’s 
pain intensity starts to increase as well, as shown in Fig. 7b. 
More than 15% of the patients experience minute ventilation 
below 4 L/min during the treatment, as shown in Fig. 7c. In 
the next step, we implemented digital-twin-assisted therapy 
for each patient. The outcome of digital-twin-assisted therapy 
is shown in Fig. 7d–f. By comparing the fentanyl concen-
tration in plasma for digital-twin-assisted therapy (as it is 
shown in Fig. 7d) with conventional therapy, we realized the 
average concentration in plasma increased by 11.5%, while 
the standard deviation decreased. This increase in concentra-
tion was necessary to keep the pain intensity below target. 
However, via this method, the fluctuation in concentration 
reduces. The result in Fig. 7e shows that the digital twin 

successfully kept the pain intensity for 98.8% of the patients 
below 3 for more than half of the duration of the treatment. 
However, for conventional therapy, only 57.1% of the patients 
have pain intensity below 3 VAS for more than half of the 
treatment duration. By implementing digital-twin-assisted 
therapy, the pain intensity decreased by 16% compared to 
conventional therapy, and the standard deviation decreased. 
A lower standard deviation corresponds to a lower deviation 
for pain intensity between patients. The higher fentanyl con-
centration in plasma reduced the average minute ventilation 
by 15% compared to conventional therapy.

Besides reducing the overall pain intensity, the aim of 
digital-twin-assisted therapy is to keep the pain below the 
target. In this study, we defined a parameter for the dura-
tion that the patient experiences pain lower than VAS pain 
score 3, called the time without pain. By implementing 
digital-twin-assisted therapy, the median time without pain 
for the population increases by 23 h compared to conven-
tional therapy, which is shown in Fig. 8a. The interquartile 

Fig. 5  Result of conventional fentanyl transdermal therapy over 72 h 
for a maximum fentanyl concentration in plasma based on age, b mini-
mum pain intensity based on age, c minimum ventilation rate based 
on age, d maximum fentanyl concentration in plasma based on weight, 

e minimum pain intensity based on weight, f minimum minute venti-
lation based on weight, g minimum fentanyl concentration in plasma 
based on height, h minimum pain intensity based on height, i mini-
mum minute ventilation based on height



 Drug Delivery and Translational Research

1 3

range (IQR) of time without pain for conventional therapy 
is 23 h, while it is 7 h (70% less) for digital-twin-assisted 
therapy. This shows that the variation of therapy’s outcome 

for digital-twin-assisted therapy is less than conventional 
therapy. In the next step, we studied the effect of patient 
physiology in time without pain. In Fig. 8b and f, the effect 

Fig. 6  a VAS pain intensity for patient number one, during 72 h, by 
updating the treatment at different frequencies (the dashed line rep-
resents the pain intensity target); b the average pain intensity for the 
patient as a result of varying updating points (the dashed line repre-
sents the pain intensity target); c the subsequent time without pain 
(VAS pain intensity below 3); d the maximum concentration of fenta-

nyl in plasma (the dashed line represents the toxicity threshold), e the 
average and minimum ventilation rate throughout the therapy by con-
sidering the different frequencies of updating the therapy (the dashed 
line represents the threshold before reaching hypoventilation); f the 
number of needed patches for each scenario

Fig. 7  a Fentanyl concentration in plasma profile during conventional 
therapy (the dashed line represents the toxicity threshold), b VAS 
pain intensity during conventional therapy (the dashed line repre-
sents the pain intensity target), c the minute ventilation rate during 
conventional therapy (the dashed line represents the threshold before 
reaching hypoventilation), d fentanyl concentration in plasma profile 

during digital-twin-assisted therapy (the dashed line represents the 
toxicity threshold), e VAS pain intensity during digital-twin-assisted 
therapy (the dashed line represents the pain intensity target), f minute 
ventilation rate during digital-twin-assisted therapy in 72 h for all vir-
tual patients (the dashed line represents the threshold before reaching 
hypoventilation)
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of gender on the duration that the patient has lower pain 
intensity is shown. During conventional therapy, the differ-
ence between the median time without pain for the male 
patients and the female patients is 5 h, while this number 
is 40% less (3 h) during digital-twin-assisted therapy. This 
shows with proposed therapy by digital twin, the effect of 
gender on the outcome of therapy will reduce. The time 
without pain corresponds to the patient’s age, weight, and 
height both for conventional and digital-twin-assisted ther-
apy, as shown in Fig. 8c–e and g–i. The correlation coef-
ficient between time without pain and patient age through 
both therapies is 0.1. However, the correlation coefficient of 
time without pain through conventional therapy and digital- 
twin-assisted therapy and weight is − 0.41 and − 0.31, 
respectively. This implies that age does not affect the 

outcome of therapy, similar to conventional therapy. How-
ever, during digital-twin-assisted therapy, the outcome of 
therapy is less dependent on the patient’s weight compared 
to conventional therapy. This is evaluated for the studied 
range of weight for virtual patients (42–107 kg), and lower 
or higher weights might change the results. The correlation 
coefficient between time without pain and patient’s heights 
through conventional therapy and digital-twin-assisted ther-
apy is − 0.15 and − 0.23. However, as mentioned earlier, the 
patient’s height affects the model parameters via its effect on 
the BMI. Therefore, calculating the correlation coefficient 
for BMI will be − 0.30 and − 0.14 for conventional therapy 
and digital-twin-assisted therapy, respectively. By consider-
ing the result in Figs. 7 and 8, we conclude that digital-twin-
assisted therapy successfully increased the pain relief for the 

Fig. 8  a Time without pain during 72 h during conventional therapy and 
digital-twin-assisted therapy. Time without pain during conventional 
therapy: b based on gender, c based on age, d based on weight, e based 

on height. Time without pain during digital-twin-assisted therapy: f 
based on gender, g based on age, h based on weight, i based on height

Fig. 9  a Number of implemented 
patches for each virtual patient in 
72 h during digital-twin-assisted 
therapy based on weight. b 
Average weight and age of the 
patients, based on the number of 
patches they used in 72 h during 
digital-twin-assisted therapy; 
the blue area corresponds to 
the patients that they needed to 
change the patch more frequently
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patient and decreased the dependency of therapy outcome 
on patient physiology. With digital-twin-assisted therapy, 
we are able to provide the same efficiency of pain relief for 
men and women, old and young patients, and patients with 
higher or lower BMI.

Through digital-twin-assisted therapy, each patient will 
use an individualized number of patches for 72 h based on 
their pain intensity experience. Figure 9 presents the number 
of used patches during 72 h based on patient weight. Based 
on this result, patients with higher weights, on average, will 
need to change the patch more frequently compared to lower 
weights to achieve constant pain relief. As also mentioned ear-
lier, age does not influence the number of needed patches. By 
analyzing the data, we realize that the majority of the patients 
who need to change the patch considerably and more fre-
quently are male (shown in the blue circle). This is due to the 
fact that, on average, male patients are taller; therefore, they 
tend to have a higher weight. Therefore, they proportionally 
need more fentanyl to keep the pain intensity below the target.

In the next step, we analyzed the patients that needed to 
change the patch more frequently. We separated the part of 
the population that they need more than one patch per day. 
We compare the patient physiology distribution between the 
population and this subgroup in a density graph. The result 
in Fig. 10 shows that the two groups’ age distribution is not 
significantly different (p value = 0.45). However, for weight 
distribution, there is a shift in the mean of the distribution 
(by + 6 kg), and with a p value of 2.2 *  10−5, these two distri-
butions are different. For height distribution, the mean of the 
distribution is shifted by 3 cm, and the two distributions are 
significantly different (p value = 0.004). The ratio of females 
to males in the population is 1.02; however, in the subgroup, 
this ratio is 0.29. Based on this result, patients of the male 
gender and with higher body mass need to change the fen-
tanyl patch more frequently to reach the target pain relief.

Outlook

This study analyzed the patient characteristics that affect 
fentanyl transdermal therapy. These characteristics were age, 
weight, gender, and height. Based on patient physiological 

features and published experimental studies, model param-
eters for drug uptake, pharmacokinetics, and pharmacody-
namics model were calculated. In the next step, the tailored 
digital twin for each patient proposed a modification of the 
therapy based on the pain intensity. Digital-twin-assisted 
therapy successfully reduced the pain intensity and the var-
iation in therapy outcomes for virtual patients. However, 
there are approaches to increase the compatibility to the real-
world and higher efficiency and safety in the therapy. These 
approaches are mentioned below:

– In order to reduce the error in the calculation and predic-
tion of the digital twin, the model parameters should be 
calculated based on the outcome of fentanyl therapy on 
the patient, such as fentanyl concentration in plasma and 
pain intensity.

– Liver enzyme activity and kidney filtration rate greatly 
impact the plasma concentration level as they determine 
the elimination and metabolism rate of fentanyl [47]. 
These physiological features must be considered in tai-
loring the digital twin for the patient.

– In this study, only pain intensity was considered the main 
factor in modifying the therapy. However, in order to 
reach a safer therapy, it is important to consider adverse 
effects such as hypoventilation in decision-making.

– Besides respiratory depression, fentanyl transdermal 
therapy can cause other side effects such as nausea, skin 
dryness, muscle spasms, confusion, and anxiety [43]. 
Taking to account these side effects and trying to avoid 
them while having efficient pain relief will lead to more 
tolerable therapy for the patient.

Conclusions

In this study, we tailored a physics-based digital twin of 
transdermal fentanyl therapy for 3000 virtual patients. 
By implementing a set of sample data and Markov chain 
Monte Carlo (MCMC), these virtual patients that were dif-
ferent from each other based on age, gender, weight, and 
height were developed. The model parameters for each 

Fig. 10  a Age distribution, b weight distribution, c height distribution, d gender percentage for the population and the subgroup of patients need-
ing to use more than one patch a day
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patient were calculated based on these physiological fea-
tures and applied inter-individual variability. Conventional 
SmPC-based therapy of fentanyl transdermal patch, which 
is implementing fentanyl patch and replacing it every 72 h, 
was studied. Based on the outcome of conventional therapy, 
the maximum fentanyl concentration varied in the range of 
1.3–3.2 ng  ml−1. Additionally, the minimum VAS pain score 
varied in the range of 0–5, and the minimum minute ventila-
tion rate was in the range of 2.5–10 L  min−1 for the virtual 
patients. This result shows that the outcome of therapy has 
a high variation between patients as some patients receive 
excessive amounts of fentanyl, while some of the virtual 
patients could not reach the target pain relief.

In order to reach the target pain relief for each patient, 
we designed a new therapy by digital twin. In this digital- 
twin-assisted therapy, the patient’s pain intensity will be 
checked every 8 h, and if it is higher than the target, the 
patient implements a new patch of the same size. As a result 
of modifying the treatment based on the patient feedback, 
the average pain intensity decreased by 16%, and the stand-
ard deviation among the population decreased by 54%. 
Based on the result, the digital twin successfully kept the 
pain intensity for 98.8% of the patients below 3 for more 
than half of the treatment duration. However, this number is 
only 57.1% for conventional therapy. Digital-twin-assisted 
therapy increased the median time without pain (VAS pain 
score under 3) by 23 h in 3 days and reduced its interquar-
tile range (IQR) by 70%. Based on this result, digital-twin-
assisted therapy reduces the overall pain intensity for the 
whole virtual population and reduces the variation of the 
outcome of therapy between the patients. Therefore, the 
tailored digital twin can predict the patient’s needs and 
conditions, propose a therapy, monitor the endpoint of 
therapy, and update when the patient needs it. In this way, 
all patients suitable for fentanyl transdermal therapy can 
receive suitable pain relief.
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