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Amino acids have diverse and essential roles in many cellular functions such as in
protein synthesis, metabolism and as precursors of different hormones.
Translocation of amino acids and derivatives thereof across biological
membranes is mediated by amino acid transporters. 4F2hc-LAT1 is a
heterodimeric amino acid transporter that is composed of two subunits
belonging to the SLC3 (4F2hc) and SLC7 (LAT1) solute carrier families. The
ancillary protein 4F2hc is responsible for the correct trafficking and regulation
of the transporter LAT1. Preclinical studies have identified 4F2hc-LAT1 as a valid
anticancer target due to its importance in tumor progression. The scintillation
proximity assay (SPA) is a valuable radioligand binding assay that allows the
identification and characterization of ligands of membrane proteins. Here, we
present a SPA ligand binding study using purified recombinant human 4F2hc-LAT1
protein and the radioligand [3H]L-leucine as tracer. Binding affinities of different
4F2hc-LAT1 substrates and inhibitors determined by SPA are comparable with
previously reported Km and IC50 values from 4F2hc-LAT1 cell-based uptake
assays. In summary, the SPA is a valuable method for the identification and
characterization of ligands of membrane transporters including inhibitors. In
contrast to cell-based assays, where the potential interference with other
proteins such as endogenous transporters persists, the SPA uses purified
protein making target engagement and characterization of ligands highly reliable.
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1 Introduction

Amino acids are the building blocks of proteins and play critical roles in the human body,
e.g., as nutrients, metabolites, precursors of hormones and signaling molecules (Wu, 2009).
Specific and controlled transport of amino acids through biological membranes is of
fundamental physiological importance and mediated by amino acid transporters (AATs)
that are embedded in lipid bilayers (Christensen, 1990; McGivan and Pastor-Anglada, 1994).
Consequently, the absence, overexpression or dysfunction of AATs can lead to human
diseases (Bröer and Palacin, 2011). Currently, eleven solute carrier (SLC) families containing
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AATs were reported (Kandasamy et al., 2018). Based on their
substrate specificity and mechanism of transport, AATs are
classified into different systems (Christensen, 1990; McGivan and
Pastor-Anglada, 1994).

Heterodimeric amino acid transporters (HATs) are structurally
unique among amino acid transporters from the SLC superfamily as
they are composed of a heavy and a light subunit, which are connected
via a disulfide bridge (Nakamura et al., 1999; Chillaron et al., 2001;
Verrey et al., 2004; Fotiadis et al., 2013). Mutations in HATs are
associated with inherited metabolic diseases such as aminoacidurias
(e.g., cystinuria and lysinuric protein intolerance) (Chillaron et al., 2001;
Verrey et al., 2004; Fotiadis et al., 2013), viral infections (Kaleeba and
Berger, 2006; Rabinowitz et al., 2021) and tumor growth (Fotiadis et al.,
2013; Häfliger and Charles, 2019; Lu, 2019; Saito and Soga, 2021; Kanai,
2022). Heavy subunits are type II membrane N-glycoproteins and
belong to the SLC3 family (Palacin and Kanai, 2004; Verrey et al., 2004;
Fotiadis et al., 2013). On the other hand, the light and catalytic subunits
of HATs are L-type amino acid transporters (LATs) from the
SLC7 family (Reig et al., 2002; Rosell et al., 2014; Napolitano et al.,
2015). The two heavy subunits 4F2hc (SLC3A2, CD98) and rBAT
(SLC3A1) ensure the correct trafficking of LATs to the plasma
membrane in mammalian cells (Nakamura et al., 1999; Chillaron
et al., 2001; Verrey et al., 2004; Fotiadis et al., 2013). Recently, an
additional and novel function of 4F2hc in modulating the substrate
affinity and specificity of specific HATs was unveiled (Kantipudi et al.,
2020).

The light subunit LAT1 (SLC7A5) (Scalise et al., 2018) is
expressed mainly in organs such as the brain, placenta, spleen
and testis (Nakamura et al., 1999; Prasad et al., 1999).
Furthermore, LAT1 is overexpressed in numerous cancer types,
e.g., brain (Nawashiro et al., 2006), breast (Kurozumi et al., 2022),
gastric (Ichinoe et al., 2011), lung (Kaira et al., 2008), pancreatic
(Kaira et al., 2012), prostate (Sakata et al., 2009), renal cell (Betsunoh
et al., 2013) and urologic cancer (Nakanishi et al., 2007) (also see
(Wang and Holst, 2015) and (Häfliger and Charles, 2019) for
LAT1 expression in other tumors), and is used as a pathological
factor for an unfavorable prognosis in patients. In such cancer cells,
the nutritional uptake of neutral and essential neutral amino acids,
and co-regulation of the mammalian target of rapamycin (mTOR)
signaling pathway is mediated by the LAT1 transporter (Nicklin
et al., 2009). Because of its tissue distribution and expression levels,
the LAT1 transporter has become an interesting vehicle for drug
delivery into the brain and cancer cells (Wang and Holst, 2015;
Singh et al., 2018; Häfliger and Charles, 2019; Scalise et al., 2021;
Kanai, 2022).

LAT1 is part of the amino acid transport system L (Verrey,
2003). It transports large neutral amino acids with branched or
aromatic side chains (Kanai et al., 1998; Mastroberardino et al.,
1998; Yanagida et al., 2001; Meier et al., 2002) and has relatively high
affinities for L-leucine and L-histidine (Mastroberardino et al., 1998;
Yanagida et al., 2001; Napolitano et al., 2015; Kantipudi et al., 2020;
Kantipudi and Fotiadis, 2021). It is a Na+-independent obligatory
exchanger that transfers one substrate molecule out of the cell in
exchange for another into the cell with 1:1 stoichiometry (Verrey
et al., 2004; Fotiadis et al., 2013). Substrates of LAT1 are, besides
large neutral L-amino acids, the Parkinson’s and anticonvulsant
drugs L-DOPA (Kageyama et al., 2000) and gabapentin (Uchino
et al., 2002), as well as the thyroid hormones triiodothyronine (T3)

and thyroxine (T4) (Friesema et al., 2001; Zevenbergen et al., 2015).
The broad system L inhibitor 2-aminobicyclo-(2,2,1)-heptane-2-
carboxylic acid (BCH) also inhibits LAT1 (Kanai et al., 1998). In
contrast, the compound JPH203 (KYT-0353), a tyrosine-analog,
specifically and strongly inhibits the LAT1 transporter and has
shown important inhibitory effects on the growth of different
cancer cells (Oda et al., 2010; Yun et al., 2014). Moreover,
JPH203 treatment arrested in vivo the tumor growth in a fully
immunocompetent mouse model of thyroid cancer (Häfliger et al.,
2018).

The methylotrophic yeast Pichia pastoris is a well-established
cellular factory for the production of recombinant mammalian
membrane proteins (Byrne, 2015; Looser et al., 2015; Pochini and
Galluccio, 2022). Over the years, different human LATs and HATs
were successfully overexpressed in P. pastoris for functional and
structural studies (Costa et al., 2013; Meury et al., 2014; Rosell et al.,
2014; Jeckelmann and Fotiadis, 2019; 2020; Kantipudi et al., 2020;
Kantipudi et al., 2021; Kantipudi and Fotiadis, 2021; Jeckelmann
et al., 2022). For example, cell-based transport assays using P.
pastoris overexpressing 4F2hc-LAT1 were established and used
for the characterization of the specificity for substrates and
inhibitors, and their kinetic parameters (Kantipudi et al., 2020;
Kantipudi and Fotiadis, 2021). Recently, a protocol for the
production in P. pastoris and purification of human 4F2hc-LAT1
was reported that allows the isolation of milligram amounts of pure,
correctly assembled, stable and properly folded heterodimer
(Kantipudi et al., 2021).

For discovering and characterizing membrane transporter-
specific ligands, direct, rapid and robust binding assays are of
great advantage. Such a binding assay represents the scintillation
proximity radioligand binding assay (SPA) (Quick and Javitch, 2007;
Harder and Fotiadis, 2012). In the SPA, purified, detergent-
solubilized target transporter is bound to scintillation beads and
the radiolabeled substrate is added. Substrate binding to the
transporter will induce photon emission from the SPA beads,
because of the close proximity of the protein-bound radioligand
to the scintillant. The luminescence signal is measured and reflects
substrate binding. Such an assay has the advantage of being free of
endogenous transporters and other proteins, e.g., as present in cell-
based assays, thus delivering a clean target protein-ligand
interaction-specific information.

Here, we present an extensive ligand-binding study for human
4F2hc-LAT1. The recombinant HAT was overexpressed in P.
pastoris, purified and characterized using the SPA. Binding
specificities and affinities of selected substrates and inhibitors
were successfully determined for human 4F2hc-LAT1. The
obtained results were compared and validated with previously
published data, e.g., from cell-based transport assays, and are
discussed, establishing the SPA as an excellent, robust ligand-
binding assay for HATs.

2 Materials and methods

2.1 Cloning and selection of 4F2hc-LAT1

Cloning of the human HAT 4F2hc-LAT1 into the pPICZB
vector (Thermo Fisher Scientific, Waltham, MA, USA) and
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transformation into electro-competent P. pastoris strain KM71H
cells by electroporation was described previously (Kantipudi et al.,
2020). This construct contains recombinant human 4F2hc-LAT1
bearing N-terminal His- (4F2hc) and Strep- (LAT1) tags. The
screening and selection protocol of 4F2hc-LAT1 protein
expression clones was detailed in (Kantipudi et al., 2021). Large-
scale overexpression in P. pastoris, membrane isolation and protein
purification of human 4F2hc-LAT1 using the detergent glyco-
diosgenin (GDN, Anatrace) were performed as described in detail
in (Kantipudi et al., 2021).

2.2 Scintillation proximity radioligand
binding assay experiments

Purified, GDN-solubilized human 4F2hc-LAT1 was attached via
the His-tag to polyvinyltolune (PVT) copper His-tag SPA beads
(Perkin Elmer) and the protein-bound [3H]L-leucine quantified
using a scintillation counter (a detailed description of SPA with
4F2hc-LAT1 is given in the methodological publication by
(Kantipudi et al., 2021)). Briefly, experiments were conducted in
96-well plates and per well a reaction volume of 50 µL containing
250 µg PVT-SPA-beads, 1.75 µg 4F2hc-LAT1 protein, 2.5 μM
L-leucine spiked with 0.5 µCi [3H]L-leucine (ARC/Anawa, 100 Ci/
mmol, 1 mCi/ml) plus a condition-specific substance. All
components were dissolved in SPA-Buffer (100 mM BTP pH 8,
150 mM NaCl, 10% (v/v) glycerol, 0.5% (w/v) GDN). For some
condition-specific substances (i.e., the thyroid hormones), 20 min
sonication in a water bath at 4°C was necessary to dissolve them at
10× concentration in SPA-Buffer. Per reaction, 5 µL of a 10× stock
solution of the condition-specific substance was placed in a well and
diluted with 45 µL of a master mix containing the remaining
components. For determining the substrate specificities

(Figure 1), the twenty proteogenic L-amino acids and D-leucine
were used as competitors at a final concentration of 250 µM. For
determining the KD of L-leucine (Figure 2A) and Ki of L-histidine
(Figure 2B), homologous (L-leucine) and heterologous (L-histidine)
substrate competition was applied at concentrations ranging from
0.01 to 1600 µM. For Ki determination of the system L inhibitor
BCH, concentrations ranging from 0.01 to 10,000 µM BCH as
competitor were used (Figure 2C). The binding kinetics of
hydrophobic compounds such as JPH203 [(S)-2-amino-3-(4-((5-
amino-2-phenylbenzo [d] oxazol-7-yl)-methoxy)-3,5-
dichlorophenyl)-propanoic acid] also known as KYT-0353
(MedChemExpress, Monmouth Junction, NJ, United States), and
the thyroid hormones T3 (triiodothyronine) and T4 (thyroxine)
(Sigma, St. Louis, MO, United States) were also determined by SPA.
For Ki values of hydrophobic compounds, final ligand
concentrations of 0.01–1600 nM for JPH203 (Figure 2D) and
0.001-320 µM for T3 and T4 (Figures 2E, F) were used. The
binding specificities of structural analogues of L-leucine
(Figure 3) and L-histidine (Figure 4) were tested at a final
competitor concentration of 250 µM. The amino acid analogues
of L-leucine and L-histidine displayed in Figures 3, 4 were from
Sigma (Sigma St. Louis, MO, United States). To avoid minor
unspecific binding of radioactive L-leucine to the beads, the
master mix was created in a specific procedure: SPA-beads were
first mixed with the unlabeled L-leucine and shaken for 2 h at 4°C
before adding the remaining components (protein last). For
background subtraction in the bar graph experiments, a no-
protein control was included using protein-free master mix
(i.e., containing buffer instead of protein solution). The plate was
shortly mixed by shaking and incubated at 4°C for ~18 h before the
signals were counted using a microplate scintillation counter (Trilux
Microbeta, Perkin Elmer). [3H]L-leucine protein (full signal) and
no-protein (background) SPA samples had typically ~3600 and

FIGURE 1
Determination of the human 4F2hc-LAT1 binding specificity for selected amino acids by SPA. All twenty proteogenic L-amino acids and D-leucine
were used as competitors. A competitor concentration of 250 µM was used, which corresponds to ten times the Km of 4F2hc-LAT1 for L-leucine
(Kantipudi et al., 2020). Residual binding of the radioligand [3H]L-leucine in the presence of competitors was normalized with respect to control samples
without competitors (Ctrl). Means with SD from normalized data of three independent experiments (each at least in triplicate) are displayed. The
numbers above the bars represent the mean values in %.
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~800 CPM, respectively. Thus, ~20% of the full signal was
background. Three experiments with protein from at least
two different purifications were performed, each at least in
triplicates.

2.3 Data analysis, curve fitting and statistics

Data were analyzed with Prism 6 (GraphPad Software). In each
of these experiments, the net binding signals were averaged and the

KD value of homologous (L-leucine) and Ki values of heterologous
(L-histidine, BCH, JPH203, T3 and T4) L-leucine binding
competition experiments were determined by fitting the
respective sigmoidal model curve to these data. Each experiment
was done with sample number of at least three (triplicate). Data of
three independent experiments were merged by adding the
normalized data to a common data set, which was used for curve
fitting. For data analysis of the bar graphs, the signal of the no-
protein control was subtracted from the transporter signal to obtain
the net binding signal.

FIGURE 2
Determination of dissociation (KD) and inhibition constants (Ki) of selected substrates and inhibitors for human 4F2hc-LAT1 by SPA. Competitive
binding curves for determination of KD [L-leucine (A), orange], and Ki values [L-histidine (B), light blue; BCH (C), violet; JPH203 (D), green; T3 (E), blue and
T4 (F), dark pink]. Determined KD and Ki values, and 95% confidence intervals (CIs) are indicated. Mean ± standard deviation of normalized data from three
independent experiments, each at least in triplicate, are shown. If not visible, error bars are smaller than symbols.
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3 Results and discussion

An extensive ligand binding study was performed to evaluate the
potential of the SPA on HATs using human 4F2hc-LAT1 as a
paradigm. To this aim, recombinant heterodimer was overexpressed

in the methylotrophic yeast P. pastoris and purified. Previous work
from our laboratory demonstrated that recombinant human 4F2hc-
LAT1 expressed and isolated from P. pastoris is correctly assembled,
fully functional (Kantipudi et al., 2020; Kantipudi et al., 2021;
Kantipudi and Fotiadis, 2021), pure and stable in detergent

FIGURE 3
SPA binding competition experiments for L-leucine and selected structural analogues, e.g., with varying aliphatic chain lengths and number of
methyl groups. Purified 4F2hc-LAT1 and [3H]L-leucine were used for SPA as described in Materials and Methods. The competitor concentration was
250 µM. Residual binding in the presence of competitors was normalized with respect to control samples without competitors (Ctrl). Means with SD from
normalized data of three independent experiments (each at least in triplicate) are shown. The numbers next to the bars represent the mean values
in %.
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(Kantipudi et al., 2021). As radioligand for SPA experiments, [3H]L-
leucine was chosen based on our recent results from uptake studies
using P. pastoris cells expressing human 4F2hc-LAT1 (Kantipudi
et al., 2020; Kantipudi and Fotiadis, 2021). These previous functional
studies identified L-leucine as a high affinity substrate.

In a first set of experiments, the specificity of 4F2hc-LAT1 for
the twenty proteinogenic amino acids and D-leucine was explored
using purified protein and the SPA. Results from [3H]L-leucine
binding inhibition to 4F2hc-LAT1 on SPA beads (Figure 1)
indicated a pattern comparable to our previously published [3H]
L-leucine uptake inhibition study (Kantipudi et al., 2020), validating
the here presented SPA approach. For example, L-leucine and
L-histidine inhibited strongly the binding of [3H]L-leucine to

4F2hc-LAT1. The aliphatic amino acids L-isoleucine and L-valine
as well as the aromatic ones, i.e., L-phenylalanine, L-tyrosine and
L-tryptophan, indicated with residual radioligand binding of 19-
29% comparable and significant inhibitions of [3H]L-leucine
binding. Situated at the upper end of this range, L-glutamine
indicated with 29% residual [3H]L-leucine binding an inhibition
comparable to L-phenylalanine. Considering that 4F2hc-LAT1 is
involved in the exchange of L-glutamine from inside with L-leucine
from outside for intracellular L-leucine mediated mTOR activation
(Nicklin et al., 2009), this significant observation makes sense. In
stark contrast and again similar to uptake inhibition, the imino acid
L-proline did not show any radioligand binding inhibition
(Kantipudi et al., 2020; Kantipudi and Fotiadis, 2021). The other

FIGURE 4
SPA binding competition experiments for L-histidine and selected structural analogues, i.e., molecules with a methyl group at different positions in
the molecule. Purified 4F2hc-LAT1 and [3H]L-leucine were used for SPA as described in Materials and Methods. The competitor concentration was
250 µM. Residual binding in the presence of competitors was normalized with respect to control samples without competitors (Ctrl). Means with SD from
normalized data of three independent experiments (each at least in triplicate) are shown. The numbers next to the bars represent the mean values
in %.
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proteinogenic amino acids reduced the residual SPA signal to values
between 34 and 90% indicating relatively low substrate specificities.
Finally, and similar to results from previous uptake experiments
(Kantipudi et al., 2020), the D-form of leucine showed about 50%
inhibition indicating stereoselective binding of leucine to human
4F2hc-LAT1.

Next, and also for direct comparison with our previously
published [3H]L-leucine uptake inhibition data using yeast cells
expressing human 4F2hc-LAT1 (Kantipudi et al., 2020; Kantipudi
and Fotiadis, 2021), we determined the KD and Ki values of selected
substrates and inhibitors, i.e., of L-leucine, L-histidine, BCH,
JPH203, triiodothyronine (T3) and thyroxine (T4) using the SPA
(Figure 2). For the two best amino acid substrates, we obtained KD

and Ki values of 26 µM (L-leucine) and 28 µM (L-histidine),
respectively. These numbers are in good agreement with the
previously obtained Km and IC50 values of 25 µM (Kantipudi
et al., 2020) and 22 µM (L-leucine) (Kantipudi and Fotiadis,
2021), and an IC50 value of 23 µM (L-histidine) (Kantipudi et al.,
2020) using our P. pastoris cell uptake assay. It should be noted that
the Ki value of L-histidine (Figure 2B) is also in good agreement with
the external Km value of L-histidine determined using
proteoliposomes reconstituted with recombinant human LAT1
(Napolitano et al., 2015). Considering that SLC7 family
transporters have external and internal Kms for their substrates
(Meier et al., 2002; Napolitano et al., 2015; Bartoccioni et al., 2019;
Errasti-Murugarren et al., 2019), e.g., the external and internal Km

values of 24.6 µM and 2.8 mM for L-histidine as reported in the
previously mentioned study using proteoliposomes (Napolitano
et al., 2015), our ligand-binding parameters suggest that the
external side of 4F2hc-LAT1 is accessible to the here studied
ligands when the protein is solubilized and purified with the
detergent GDN. For the thyroid hormones T3 and T4, Ki values
of 2.4 µM and 10 µM were obtained by SPA. These binding
constants were comparable or identical to the previously
obtained IC50 values of 1.3 µM (T3) and 10 µM (T4) from [3H]L-
leucine uptake inhibition experiments (Kantipudi and Fotiadis,
2021). From the inhibitors, the well-known system L and the
human 4F2hc-LAT1 specific inhibitors BCH and JPH203,
delivered Ki values of 81 µM and 79 nM, respectively. Again, the
obtained binding constants were comparable with the IC50 values of
72 µM (BCH) and 197 nM (JPH203) from [3H]L-leucine uptake
inhibition experiments (Kantipudi et al., 2020; Kantipudi and
Fotiadis, 2021).

In summary, KD and Ki values from the selected substrates and
inhibitors L-leucine, L-histidine, BCH, JPH203, T3 and T4 were in
good agreement with the kinetic parameters from the same
molecules using a radioligand cell-based 4F2hc-LAT1 uptake
assay (Kantipudi et al., 2020; Kantipudi and Fotiadis, 2021).
Thus, the here presented comparative study validated the SPA
for new 4F2hc-LAT1 ligand binding experiments.

The amino acid substrates L-leucine and L-histidine showed the
highest affinities towards human 4F2hc-LAT1 (Figures 2A,B).
Therefore, we decided to explore the possibility of identifying
new, non-proteinogenic amino acids and derivatives of L-leucine
and L-histidine with higher affinities towards human 4F2hc-LAT1.

To this end, SPA competition binding experiments with [3H]
L-leucine versus L-leucine and selected non-proteinogenic amino
acid were performed (Figure 3). The selected non-proteinogenic

amino acid derivatives of L-leucine differ in the number of methyl
groups at the γ-carbon atom or in the aliphatic chain lengths with
methyl groups at different positions. L-leucine (with two methyl
groups at γ-position) inhibited strongly the binding of [3H]L-
leucine with only ~1% residual radioligand binding (RRB)
(Figure 3). The non-proteinogenic amino acid L-neopentyl
glycine (with three γ-methyl groups) and L-norvaline (with
one γ-methyl group) showed a weaker inhibition with 32–43%
RRB (Figure 3). This indicates that with addition or deletion of
one methyl group at the γ-position of L-leucine the binding
affinity towards 4F2hc-LAT1 decreases drastically. L-valine,
with two methyl groups at the β-position instead of γ-position,
showed with 27% RRB less competition than L-leucine (Figure 3).
Altering the methyl groups on β-position as in the non-
proteinogenic amino acids L-tert-leucine (three β-methyl
groups) or L-2-aminobutyric acid (one β-methyl group)
showed a further decrease of competition potential with
37–45% RRB (Figure 3). The amino acid L-isoleucine, which is
an isostereomer of L-leucine is with 28% RRB in a similar range as
L-valine (Figure 3). Therefore, the position of the methyl group in
the side chains of L-isoleucine and L-leucine, i.e., β-versus γ-
position, has a significant effect on the binding to 4F2hc-LAT1.
Further increasing the aliphatic chain length by one methyl group
with the non-proteinogenic amino acid L-norleucine decreased
the competition potential to 62% RRB (Figure 3).

A second, comparable competition SPA experiment was
performed to investigate the high-affinity substrate L-histidine
and selected non-proteinogenic amino acid derivatives (Figure 4).
The amino acid L-histidine inhibits [3H]L-leucine binding to only
~1% RRB (Figure 4). Addition of a methyl group at nitrogen atom
either at position 1 (1-methyl-L-histidine) or at position 3 (3-
methyl-L-histidine) on the imidazole ring of L-histidine decreases
radioligand binding to 4F2hc-LAT1 drastically, resulting in 59–64%
RRB binding (Figure 4).

Binding studies with methylated forms of L-leucine and
L-histidine amino acids such as N-methyl-L-leucine, L-leucine-
methyl ester, N-methyl-L-histidine and L-histidine-methyl ester
clearly show that there is no significant binding to 4F2hc-LAT1
(Figures 3, 4). These results indicate that a free amino and carboxy
group at the α-carbon of L-leucine and L-histidine are essential for
binding to human 4F2hc-LAT1.

4 Conclusion

The scintillation proximity radioligand binding assay is a
powerful method to determine the specificity and affinity of
ligands towards a specific target protein. Here, we successfully
determined binding specificities and affinities of selected substrates
and inhibitors for the human heterodimeric 4F2hc-LAT1 transporter
by applying the SPA. As radioligand for the assay, the high affinity
amino acid [3H]L-leucine was used together with purified 4F2hc-
LAT1 protein that was expressed in the methylotrophic yeast P.
pastoris. The obtained ligand inhibition pattern (Figure 1), and KD

and Ki values (Figure 2) were compared with previously determined
data and IC50 values of the same substrates and inhibitors using an
uptake assay with human 4F2hc-LAT1 overexpressing P. pastoris cells
(Kantipudi et al., 2020; Kantipudi and Fotiadis, 2021). Protein-ligand
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parameters from both assays were similar, validating the SPA for
future applications with human 4F2hc-LAT1 and enabling the focus
on ligand binding. Beyond validation and using this SPA
experimental set-up, derivatives of the high-affinity 4F2hc-LAT1
substrates L-leucine and L-histidine were tested (Figures 3, 4).
Thus, the SPA also represents an excellent ligand-binding assay to
screen for potential new substrates and inhibitors of 4F2hc-LAT1 and
possibly other HATs.
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