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We consider the functional
∫
Ω

g(∇u + X∗) dL2n where g is convex and X∗(x, y) = 2(−y, x)
and we study the minimizers in BV(Ω ) of the associated Dirichlet problem. We prove that,
under the bounded slope condition on the boundary datum, and suitable conditions on g,
there exists a unique minimizer which is also Lipschitz continuous. The assumptions on g
allow to consider both the case with superlinear growth and the one with linear growth.
Moreover neither uniform ellipticity nor smoothness of g are assumed.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the present paper we are interested in the study of the Lipschitz regularity of minimizers of a class of
functionals starting from the regularity of the boundary datum without assuming neither ellipticity nor the growth
conditions on the Lagrangian: the literature on this subject is extremely rich, we address the interested reader to [1–9]
and references therein for an overview. Our analysis moves from a recent paper by Pinamonti et al. [10] where the
area functional for the t-graph of a function u ∈ W1,1(Ω ) in the sub-Riemannian Heisenberg group Hn = Rn

x×R
n
y×Rt
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is investigated (see also further references in [10] on the Heisenberg’s literature). Precisely, if Ω ⊂ R2n is open with
ipschitz boundary and X∗(x, y) B 2(−y, x) ∈ R2n they consider the functional A : W1,1(Ω )→ R defined by

A (u) =
∫
Ω

|∇u + X∗| dL2n.

t was shown in [11] that because of the linear growth in the gradient variable, the natural variational setting for
he functional A is BV(Ω ), the space of functions of bounded variation in Ω . More precisely, it has been proved
hat the L1−relaxation of A is

A (u) =
∫
Ω

|∇u + X∗| dL2n + |Dsu|(Ω ), u ∈ BV(Ω )

here |Dsu| denotes the total variation of the singular part of the distributional derivative of u. In [10], the authors
nvestigate a suitable Dirichlet problem for A . Precisely, they show that the problem

min
{
A (u) : u ∈ BV(Ω ), u|∂Ω = φ

}
as a unique solution which is also Lipschitz continuous if φ ∈ L1(∂Ω ) satisfies the so-called bounded slope
ondition (see Section 4 for the definition).

In the present paper we are interested in the more general case of functionals of type

G (u) =
∫
Ω

g(∇u + X∗) dL2n (1.1)

here g :R2n → R is convex but not necessarily strictly convex. In particular, we want to study the Dirichlet problem
ssociated with G , i.e.

min
{
G (u) : u ∈ W1,1(Ω ), u|∂Ω = φ

}
(1.2)

here φ ∈ W1,1(∂Ω ). It is worth to remark that, while in the superlinear case the existence of a solution of (1.2)
s guaranteed by the Direct Method of the Calculus of Variations, when we consider g with linear growth it may
appen that the minimum is not achieved and we follow a widely used approach considering the relaxed functional
n BV(Ω ).

In the first part of Section 3, we start by proving a representation formula for the relaxed functional of G in the
L1-topology and then we use the fact that the functional

Gφ,Ω (u) =
∫
Ω

g(∇u + X∗) dL2n +

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu| +

∫
∂Ω

g∞((φ − u|∂Ω )νΩ ) dH2n−1 (1.3)

dmits a minimum in BV(Ω ). Here g∞ :R2n → [0,+∞) denotes the recession function of g (see (3.2)) and νΩ is
he unit outer normal to ∂Ω .

The most part of Section 3 is devoted to proving the Lipschitz regularity of a special minimizer of (1.3) using
he assumption that the boundary datum φ satisfies the Bounded Slope Condition. Our approach is inspired by
ome classical and well known results in the Calculus of Variations (see [12,13] and also [14–17]). In all the cited
esults the focus is on the existence of minimizers where the space of competitor functions coincides with the set
f Lipschitz functions and the main idea (see [18, Chapter 1]) is that the Bounded Slope Condition assumed on
he boundary data allows the use of a compactness argument even with no growth assumptions on the Lagrangian.
n recent years the use of the bounded slope condition has been renewed and applied to obtain various regularity
esults of minimizers that a priori exist in Sobolev spaces [1,3,4,7–9,19,20]. We point out that crucial points in
his approach are: the validity of comparison principles between minimizers; the invariance of minimizers under
ranslations of the domain; the fact that, if the boundary datum φ is affine, φ itself is a minimizer. In the recent
esults cited above comparison principles are extended to Sobolev functions and to problems where minimizers are
ot unique. Moreover, barriers that are different from affine functions are used. In [2,5,21], [22,23] Lagrangians
2
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of the form f (∇u) + g(x, u) have been considered and the fact that the invariance of minimizers with respect to
ranslations of the domain is peculiar of functionals depending only on the gradient has been overcome in various
ays, thanks to additional special structure assumed on the function f and/or g.
In the present paper, as in [10], a different kind of functional is considered. One of the main difficulties of

ection 3 is due to the fact that we deal with BV-functions. For some aspects, this obstacle has been overcome
n [10] but here we treat also more general situations. In Section 3.2 we state a Comparison Principle for BV

inimizers, Theorem 3.13, that relies on the validity of a general inequality proved in Theorem 3.8. We underline
hat Theorem 3.8 as here stated can have its own independent interests since it applies to more general functionals
nd its proof only relies on fine properties of BV functions. In Proposition 3.18 we also overcome the non-
moothness of the Lagrangian by proving the uniqueness of the affine function as solution of a Dirichlet problem
ith the affine map itself as boundary datum. In this section we also introduce two assumptions on g that we denote
y (A) and (B). Roughly speaking, a function g satisfying these properties is not too far from being strictly convex.
owever, the epigraphs of g and g∞ may only have n − 1-dimensional flat faces with radial directions. Radial

unctions g defined by g(z) = f (|z|) with a convex f with linear growth satisfy both (A) and (B), see Example 3.1
nd notice that this class of functions includes the Lagrangian of the t-graphs of minimal area; a non radial function
atisfying both (A) and (B) is given by g(x, y) =

√
x2/a2 + y2/b2, see Example 3.2.

Section 4 is completely devoted to the proof of uniqueness and Lipschitz regularity of minimizers in the BV
lass. Our main result is the following (see Theorem 4.4).

heorem. If φ ∈ L1(∂Ω ) satisfies the bounded slope condition with constant Q > 0 and g satisfies properties (A)
nd (B), then Gφ,Ω has a unique minimizer u ∈ BV(Ω ) with u|∂Ω = φ and it satisfies Lip(u) ≤ Q where Q is a
onstant depending on Q and Ω .

We notice that in our setting uniqueness is far from being obvious since our assumptions include non strictly
onvex Lagrangians whose epigraph may have unbounded exposed faces and, at least in the linear case, we deal
ith BV-functions. The problem of uniqueness has been previously addressed in [6,24] for the Euclidean setting,

n [10] for the Heisenberg case, and in [25] for relaxed functionals.
In Section 5 we describe how to modify the previous proofs in order to deal with the case for which g has

uperlinear growth. In particular, the main result is as follows, see Theorem 5.1.

heorem. Assume g has superlinear growth at infinity and satisfies condition (A), and assume φ ∈ L1(Ω ) satisfies
he bounded slope condition at ∂Ω . Then G (u) has a unique minimizer in φ +W1,1

0 (Ω ) which is Lipschitz.

We conclude this introduction underlying some significant aspects of the results that we present in this paper.
irst of all we recall that regularity results are usually obtained under ellipticity and growth conditions on the
agrangian. In the present paper, the bounded slope condition allows us to drop these assumptions and to prove
ipschitz regularity up to the boundary. As we mentioned above, the use of the bounded slope condition is strictly

elated to the invariance of the minimizers w.r.t. translation. This property is quite strong and it is satisfied for
xample by functionals depending only on the gradient or, as mentioned above, by functionals of sum type under
ery special assumptions on the structure of the Lagrangian. In particular, due to the x-dependence of the Lagrangian,
he functional considered here does not satisfy it. Anyhow it is interesting that, as it will be pointed out in the proof
heorem 4.4, it turns out that a slight modification of the translated minimizer is still a minimizer and this property

s crucial to complete the proof.
It is worth recalling that, in the framework of classical problems of the Calculus of Variations, the Lipschitz

egularity of minimizers is the first ingredient to prove higher regularity. The assumptions of our main Theorem are
ide enough to take into account Lagrangians that are not smooth so we cannot expect more regularity in such a
eneral case.
3
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As last remark we notice that our regularity result in particular implies the non occurrence of the Lavrentiev
phenomenon. This result is classically obtained under suitable assumptions that control both from below and from
above the growth of the functional and it has been proved also for some special classes of problems. To be more
precise it has been proved that autonomous multidimensional scalar functionals do not exhibit the Lavrentiev
phenomenon (see [26] for some special cases and [27,28] for more general results). A recent result on a class
of functional that includes those considered in this paper is contained in [29].

2. Preliminaries

2.1. Functions of bounded variation and traces

The aim of this section is to recall some basic properties of the space of functions of bounded variation; we
refer to the monographs [30,31] for a more extensive account on the subject as well as for proofs of the results we
are going to recall.

Let Ω be an open set in Rn. We say that u ∈ L1(Ω ) has bounded variation in Ω if

sup
{∫

Ω

u divφ dx | φ ∈ C1
c (Ω ,Rn), ∥φ∥∞ ≤ 1

}
< +∞; (2.1)

quivalently, u has bounded variation if there exist a Rn-valued Radon measure Du B (Du1, . . . ,Dun) in Ω which
epresents the distributional derivatives of u, i.e.,∫

Ω

u
∂φ

∂xi
dLn = −

∫
Ω

φ dDiu ∀φ ∈ C1
c (Ω ), ∀i = 1, . . . , n.

he space of functions with bounded variation in Ω is denoted by BV(Ω ). By definition, W1,1(Ω ) ⊂ BV(Ω ) and
Du = ∇uLn for any u ∈ W1,1(Ω ).

We denote by |Du| the total variation of the measure Du; |Du| defines a finite measure on Ω and the supremum
n (2.1) coincides with |Du|(Ω ).

It is well-known that BV(Ω ) is a Banach space when endowed with the norm

∥u∥BV(Ω) B ∥u∥L1(Ω) + |Du|(Ω ). (2.2)

We say that u ∈ L1
loc(Ω ) has an approximate limit z ∈ R at x ∈ Ω if

lim
ρ→0+

?
B(x,ρ)
|u − z| dLn = 0. (2.3)

he set S u of points where u has no approximate limit is called approximate discontinuity set of u; for any x ∈ Ω\S u,
e denote by ũ(x) the unique z for which (2.3) holds. By the Lebesgue Theorem we have Ln(S u) = 0.
oreover, we say that u has an approximate jump point at x ∈ Ω if there exist ν ∈ Sn−1 and a, b ∈ R, a , b such

hat
lim
ρ→0+

?
B(x,ρ;ν)+

|u − a| dLn = 0, lim
ρ→0+

?
B(x,ρ;ν)−

|u − b| dLn = 0

here

B(x, ρ; ν)+ B {y ∈ B(x, ρ) | ⟨y − x, ν⟩ > 0}

B(x, ρ; ν)− B {y ∈ B(x, ρ) | ⟨y − x, ν⟩ < 0}.

e observe that the triple (a, b, ν) is uniquely determined up to a permutation of (a, b) and a change of sign of ν;
e denote it by (u+(x), u−(x), νu(x)). The set of approximate jump points of u is denoted by Ju; clearly, Ju ⊂ S u.

emark 2.1. Depending on the context, we will sometimes use the symbols u+, u− also to denote the positive part
+ −
B max{0, u} and the negative part u B max{0,−u} of a real function u. This will not generate confusion.

4



S. Don, L. Lussardi, A. Pinamonti et al. Nonlinear Analysis 216 (2022) 112689

F

w

∞

I
h

c
∇

f

T
∇

M

a

b

t

b
t

When u has bounded variation in Ω , the set of approximate jump points Ju enjoys much finer regularity properties.
irst, there holds

|Du|(S u \ Ju) = Hn−1(S u \ Ju) = 0 , (2.4)

here Hn−1 denotes the (n − 1)-dimensional Hausdorff measure on Rn (see e.g. [30] or [31]). Moreover, by the
Federer–Vol’pert Thoerem, see [30, Theorem 3.78], Ju (and, consequently, S u) is (n−1)-rectifiable, i.e., Hn−1(Ju) <

and there exist N ⊂ Rn and a countable family of hypersurfaces {S j : j ∈ N} of class C1 such that

Ju ⊂ N ∪
∞⋃
j=0

S j and Hn−1(N) = 0.

t turns out that νu corresponds (Hn−1-a.e. and up to a sign) to a unit normal to Ju, i.e., for Hn−1-a.e. x ∈ Ju, there
olds

νu(x) = ±νS i (x) if x ∈ S i \

i−1⋃
j=0

S j, ∀i ∈ N.

By the Radon–Nikodym Theorem, if u ∈ BV(Ω ) one can write Du = Dau + Dsu, where Dau is the absolutely
ontinuous part of Du with respect to Ln and Dsu is the singular part of Du with respect to Ln. We denote by
u ∈ L1(Ω ) the density of Dau with respect to Ln, so that Dau = ∇uLn. We are now in a position to state the

ollowing result:

heorem 2.2. Let u ∈ BV(Ω ); then u is approximately differentiable at a.e. x ∈ Ω with approximate differential
u(x), i.e.,

lim
ρ→0+

?
B(x,ρ)

|u(y) − ũ(x) − ⟨∇u(x), y − x⟩ |
ρ

dLn = 0 for Ln-a.e. x ∈ Ω .

oreover, the decomposition Dsu = D ju + Dcu holds, where

D ju B Dsu Ju = (u+ − u−)νuH
n−1 Ju, Dcu B Dsu (Ω \ S u)

re called respectively the jump part and the Cantor part of the derivative Du.

Notice that Dau,Dcu,D ju are mutually singular; in particular

|Dau| = |∇u|Ln, |D ju| = |u+ − u−|Hn−1 Ju

and
|Du| = |Dau| + |Dcu| + |D ju|

ecause the total variation of a sum of mutually singular measures is the sum of their total variations.
In what follows we recall a few basic facts about boundary trace properties of BV functions; we refer again

o [30,31] for more details.
Let Ω ⊂ Rn be a fixed open set with bounded Lipschitz regular boundary; the spaces Lp(∂Ω ), p ∈ [1,+∞], will

e always understood with respect to the (finite) measure Hn−1 ∂Ω . It is well-known that for any u ∈ BV(Ω )
here exists a (unique) function u|∂Ω ∈ L1(∂Ω ) such that, for Hn−1-a.e. x ∈ ∂Ω ,

lim
ρ→0+

ρ−n
∫
Ω∩B(x,ρ)

|u − u|∂Ω (x)| dLn = lim
ρ→0+

?
Ω∩B(x,ρ)

|u − u|∂Ω (x)| dLn = 0.

The function u|∂Ω is called trace of u on ∂Ω . The trace operator u ↦→ u|∂Ω is linear and continuous between
(BV(Ω ), ∥·∥BV) and L1(∂Ω ); actually, it is continuous also when BV(Ω ) is endowed with the (weaker) topology
induced by the so-called strict convergence, see [30, Definition 3.14].
5
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Remark 2.3. It is well-known that, if u1, u2 ∈ BV(Ω ), then u B max{u1, u2} and u B min{u1, u2} belong to BV(Ω );
oreover, one can show that

u|∂Ω = max{u1|∂Ω , u2|∂Ω }, u
|∂Ω = min{u1|∂Ω , u2|∂Ω }.

The proof of this fact follows in a standard way from the very definition of traces.

Since Du ≪ |Du| we can write Du = σu|Du| for a |Du|-measurable function

σu :Ω → Sn−1.

With this notation one also has∫
Ω

u divφ dLn = −

∫
Ω

⟨σu, φ⟩ d|Du| +
∫
∂Ω

u|∂Ω ⟨φ, νΩ ⟩ dHn−1, ∀φ ∈ C1
c (Rn;Rn) (2.5)

here νΩ is the unit outer normal to ∂Ω .
Finally, we recall the following fact, whose proof essentially follows from (2.5).

roposition 2.4 ([31, Remark 2.13]). Assume that Ω and Ω0 are open subsets of Rn with bounded Lipschitz
oundary and such that Ω ⋐ Ω0. If u ∈ BV(Ω ) and v ∈ BV(Ω0 \ Ω ), then the function

f (x) B
{

u(x) if x ∈ Ω
v(x) if x ∈ Ω0 \ Ω

elongs to BV(Ω0) and

|D f |(∂Ω ) = |D j f |(∂Ω ) =
∫
∂Ω

|u|∂Ω − v|∂Ω | dHn−1,

here we have used the notation v|∂Ω to mean (v
|∂(Ω0\Ω)) ∂Ω .

For any z = (x, y) ∈ R2n, we define z∗ B (−y, x). Let X∗ :R2n → R2n be given by X∗(z) B 2z∗. We conclude this
ection with the next lemma which can be extracted from the proof of [10, Thm. 5.5].

emma 2.5. Let R > 0 and u ∈ BV(BR(0)) with u = 0 on ∂BR(0). Assume that there exists a |Du|-measurable
function λ : BR(0)→ R such that

dDu
d|Du|

= λX∗ |Du|-a.e. on BR(0).

Then u = 0.

3. The linear growth case

Throughout this section we assume that g :R2n → R is a positive convex function with linear growth, namely

1
C
|z| ≤ g(z) ≤ C(1 + |z|), (3.1)

for a constant C ≥ 1 and for any z ∈ R2n. Moreover, defining the recession function of g as the function
g∞ :R2n → [0,+∞) given by

g∞(p) B lim
t→+∞

g(tp)
t

. (3.2)

ote that, since g(0) < ∞, our definition of g∞ coincides with the one given in [30, Definition 2.32]. As proved
n [30], the recession function is positively homogeneous of degree 1, convex and lower semicontinuous. In
articular, g∞ satisfies the following inequalities

g∞(p) ≤ g∞(q) + g∞(p − q), ∀p, q ∈ R2n, (3.3)
6
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C
|p| ≤ g∞(p) ≤ C|p|, ∀p ∈ R2n. (3.4)

ince by [32, Proposition 2.32], g is Lipschitz continuous then denoting by Lg its Lipschitz constant we get

|g(tp) − g(tp + z)| ≤ Lg|z|

hich implies that for any z, p ∈ R2n we have

g∞(p) = lim
t→+∞

g(tp + z)
t

. (3.5)

e consider the following conditions:

A) If ξ1, ξ2 ∈ R
2n are such that

g
(
ξ1 + ξ2

2

)
=

g(ξ1) + g(ξ2)
2

, (3.6)

then there exists λ ∈ R such that ξ1 = λξ2.
B) If ξ1, ξ2 ∈ R

2n and p ∈ ∂g(ξ2) are such that

g∞(ξ1) = ⟨p, ξ1⟩ (3.7)

then there exists λ ∈ R such that ξ1 = λξ2. Here ∂g(q) denotes the subdifferential of g at the point q.

xample 3.1. Let f : [0,+∞) → R be a convex and strictly increasing function such that there exists C > 1
atisfying

1
C

s ≤ f (s) ≤ C(s + 1)

for any s ∈ [0,+∞). Consider the function g :R2m → R defined by g(z) B f (|z|). We claim that g satisfies conditions
(A) and (B). Indeed, for any ξ1, ξ2 ∈ R

2m satisfying (3.6) we get

f
(
|ξ1|

2
+
|ξ2|

2

)
≤

1
2

( f (|ξ1|) + f (|ξ2|)) = f
(
|ξ1 + ξ2|

2

)
≤ f

(
|ξ1|

2
+
|ξ2|

2

)
(3.8)

rom which we infer |ξ1 + ξ2| = |ξ1| + |ξ2| and the thesis follows. To prove condition (B), we start observing that
y [33, Example 16.73] we have

∂g(ξ) =

⎧⎪⎪⎨⎪⎪⎩
{
α
|ξ|
ξ | α ∈ ∂ f (|ξ|)

}
, if ξ , 0

B(0, ρ), if ξ = 0
(3.9)

here ρ ∈ [0,+∞) is such that ∂ f (0) = [−ρ, ρ]. Moreover a direct computation gives

g∞(ξ) = f∞(|ξ|) = β|ξ| (3.10)

here, denoting by f ′(t) an arbitrary selection of ∂ f (t), β = limt→+∞
f (t)
t = limt→+∞ f ′(t). Hence the convexity of

f implies also that β ≥ α for every α ∈
⋃

t∈[0,+∞) ∂ f (t). Let us now consider ξ1, ξ2 ∈ R
2n and p ∈ ∂g(ξ2) such that

∞(ξ1) = ⟨p, ξ1⟩. If ξ2 = 0 there is nothing to prove. If ξ2 , 0 then p = α ξ2
|ξ2 |

for some α ∈ ∂ f (|ξ2|) and α > 0. By
3.10) and the fact that f∞ is 1−homogeneous we get

g∞(ξ1) = ⟨α
ξ2

|ξ2|
, ξ1⟩ ≤ α|ξ1| ≤ β|ξ1| = g∞(ξ1)

nd this implies that all the inequalities are in fact equalities and in particular the vectors ξ1 and ξ2 have to be
arallel, concluding the proof. We notice that the Lagrangian describing the minimal area of t-graphs is included
n this class.
7
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Example 3.2. Let a, b ∈ (0,+∞). We claim that the function g :R2 → [0,+∞) defined by

g(z1, z2) =

√
z2

1

a2 +
z2

2

b2 (3.11)

atisfies (3.1), conditions (A) and (B). Indeed, for any z ∈ R2

min
{

1
a
,

1
b

}
|z| ≤ g(z) ≤ max

{
1
a
,

1
b

}
|z| (3.12)

and g is convex and it satisfies (A) by a direct computation. In order to prove condition (B) we start observing that,
being g 1-homogeneous and in C∞(R2 \ {(0, 0)}), we have g∞(z) = g(z) for any z ∈ R2 and ∂g(z) =

{(
z1

a2g(z)
,

z2
b2g(z)

)}
for any z ∈ R2 \ {(0, 0)}. Let ξ = (ξ1, ξ2) ∈ R2, (η1, η2) ∈ R2 \ {(0, 0)} and (p1, p2) =

(
η1

a2g(η)
,

η2
b2g(η)

)
be such that

∞(ξ) = ⟨p, ξ⟩, namely √
ξ2

1

a2 +
ξ2

2

b2 =
η1ξ1

a2g(η)
+

η2ξ2

b2g(η)
(3.13)

hich immediately implies that ξ1η2 = η1ξ2 and the thesis follows. On the other hand, let ξ = (ξ1, ξ2) and η = (η1, η2)
e such that

η ∈ ∂g((0, 0)) and g(ξ) = ⟨η, ξ⟩. (3.14)

ince the function f (z) = g(z) − ⟨p, z⟩ is convex, 1-homogeneous, nonnegative and f (ξ) = f ((0, 0)) = 0, then one
as ξ = (0, 0).

Let Ω ⊂ R2n be bounded, open and with Lipschitz boundary. We consider the functional GΩ : W1,1(Ω )→ [0,+∞]
efined by

GΩ (u) B
∫
Ω

g(∇u + X∗) dL2n (3.15)

here we recall that X∗(z) = 2(−y, x), with z = (x, y), x, y ∈ Rn. In the following proposition, we underline some
asic properties of the operator z∗, see [10, Lemma 3.1] for a proof.

roposition 3.3. The following properties hold:

(i) if z1, z2 ∈ R
2n are linearly dependent, then z1 · z∗2 = 0;

(ii) z1 · z2 = z∗1 · z
∗
2 for each z1, z2 ∈ R

2n;
iii) if Ω ⊂ R2n is open and f ∈ C∞(Ω ), then div (∇ f )∗ = 0 on Ω .

The following result, which generalizes [10, Proposition 5.1], states that if GΩ has a minimizer with some
dditional integrability, then it is unique.

roposition 3.4. Let p ∈ [1, 2], let p′ B p
p−1 , let φ ∈ W1,p′ (Ω ) and assume g satisfies condition (A). Let

∈ W1,p′ (Ω ) and v ∈ W1,p(Ω ) be two minimizers of

min
{
GΩ (u) : u ∈ φ +W1,p

0 (Ω )
}
,

hen u = v a.e. in Ω .

roof. First of all we use a standard argument in order to prove that ∇u +X∗ and ∇v +X∗ are linearly dependent
.e. on Ω . Using the convexity of g, we have

g
(
∇u + X∗

+
∇v + X∗

)
≤

g(∇u + X∗) + g(∇v + X∗)
a.e. on Ω .
2 2 2
8
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Hence, from the minimality of u and v we get

G (u) ≤
∫
Ω

g
(
∇u + X∗

2
+
∇v + X∗

2

)
dL2n ≤

1
2

∫
Ω

[
g(∇u + X∗) + g(∇v + X∗)

]
dL2n = G (u).

hen
g
(
∇u + X∗

2
+
∇v + X∗

2

)
=

g(∇u + X∗) + g(∇v + X∗)
2

, a.e. on Ω .

Using (A) we deduce that ∇u + X∗ and ∇v + X∗ are linearly dependent a.e. on Ω . The conclusion now follows
proceeding exactly as in the second part of [10, Proposition 5.1]). □

Remark 3.5. Notice that inequality (3.1) can be replaced by

1
C
|z| −C ≤ g(z) ≤ C(1 + |z|), (3.16)

n which the map g is not necessarily positive. This comes by the fact that, since we are studying minimizers, the
unction g can be replaced by g + M, for any M ∈ R.

In order to prove the existence of a minimizer for GΩ we first compute its L1 relaxed functional, namely

GΩ (u) B GΩ (u) = inf
{
lim inf

h
GΩ (uh) : uh ∈ W1,1(Ω ), uh → u in L1(Ω )

}
. (3.17)

he following proposition provides an integral representation of GΩ .

roposition 3.6. Let g be a convex function satisfying (3.1) and let Ω ⊆ R2n be open with Lipschitz boundary.
hen the following facts hold.

(i) for any u ∈ BV(Ω ) one has

GΩ (u) =
∫
Ω

g(∇u + X∗) dL2n +

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu|. (3.18)

(ii) For any φ ∈ L1(∂Ω ) the functional

Gφ,Ω (u) B
∫
Ω

g(∇u + X∗) dL2n +

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu| +

∫
∂Ω

g∞((φ − u|∂Ω )νΩ ) dH2n−1 (3.19)

admits a minimizer in BV(Ω ).

roof. (i) By [34, Remark 2.17], it is enough to check (H1)-(H5) of the reference and observing that thanks to
3.5), g∞ does not depend on x. Consider f :Ω ×R2n → R defined by f (x, z) = g(z+ X∗(x)). For the sake of clarity,
e here list the precise properties used in [34] for our specific case.

(H1) f is continuous;
(H2) f (x, ·) is quasiconvex;
(H3) there exists a bounded and continuous h :Ω → [0,+∞) and a constant M > 0 such that

1
M

h(x)∥z∥ ≤ f (x, z) ≤ Mh(x)(1 + ∥z∥),

for all x ∈ Ω , and z ∈ R2n;
(H4) for every compact set K ⊆ Ω , there exists a continuous function ω :R→ R with ω(0) = 0 and

| f (x, z) − f (x′, z)| ≤ ω(|x − x′|)(1 + |z|),

for all x, x′ ∈ Ω and z ∈ R2n. In addition, for every x0 ∈ Ω and ε > 0, there exists δ such that

f (x, z) − f (x0, z) ≥ −εh(x)(1 + |z|),

for every x ∈ Ω , z ∈ R2n with |x − x | < δ;
0

9
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(H5) There exist C′, L > 0 and 0 ≤ m < 1 such that⏐⏐⏐⏐⏐ f∞(x, z) −
f (x, tz)

t

⏐⏐⏐⏐⏐ ≤ C′h(x)
|z|1−m

tm ,

whenever x ∈ Ω , and z ∈ R2n and t > 0 are such that t|z| > L.

It is clear by construction that f is continuous and f (x, ·) is convex. This yields (H1) and (H2).
We set h ≡ 1. Then property (H3) comes directly from (3.1). To prove (H4), we first recall that g is Lipschitz

with Lipschitz constant equal to Lg and therefore

| f (x, z) − f (x′, z)| ≤ Lg|x − x′| ≤ Lg|x − x′|(1 + |z|).

n particular, if x0 ∈ Ω and δ > 0, then, whenever |x − x0| ≤
δ

Lg
we get

f (x, z) − f (x0, z) ≥ −Lg|x − x0|(1 + |z|) ≥ −δ(1 + |z|),

hich completes the proof of (H4). Finally, (H5) comes from the fact that (3.1) implies

| f∞(x, z) − f (x, z)| ≤ C(|z| + 1).

(ii) Let Ω0 ⊂ R
2n be an open Lipschitz domain with Ω ⋐ Ω0. Let φ ∈ L1(∂Ω ) and Φ ∈ W1,1(Ω0 \ Ω ) such that

= φ on ∂Ω and Φ = 0 on ∂Ω0. We set

BVΦ(Ω0) B {u ∈ BV(Ω0) : u = Φ on Ω0 \ Ω }.

y [35, Theorem 1.3] (see also [36, Theorem 1.1]) we know that GΩ0 has a minimum on BVΦ(Ω0). Now observe
hat for any u ∈ BVΦ(Ω0) we have

GΩ0 (u) =
∫
Ω

g(∇u + X∗) dL2n +

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu|

+

∫
∂Ω

g∞((φ − u|∂Ω )νΩ ) dH2n−1 + GΩ0\Ω (Φ)
(3.20)

here νΩ is the outer unit normal to Ω and u|∂Ω is the trace of u on ∂Ω . Since the last term on the right-hand side
f (3.20) is constant we can write for any u ∈ BVΦ(Ω0),

GΩ0 (u) = Gφ,Ω (u|Ω ) + constant. (3.21)

onversely, for any u ∈ BV(Ω ) the extended function

u0 =

⎧⎪⎪⎨⎪⎪⎩u on Ω ,

Φ on Ω0 \ Ω

elongs to BVΦ(Ω0) and
GΩ0 (u0) = Gφ,Ω (u) + constant.

Since GΩ0 admits a minimizer in BVΦ(Ω0), we have then proved that, for any φ ∈ L1(∂Ω ), the functional Gφ,Ω
dmits a minimizers in BV(Ω ). □

The following result will be crucial later on, it relies on the approach developed in [31] for the area functional
see also [36]).

roposition 3.7. For any φ ∈ L1(∂Ω ),

min Gφ,Ω (u) = inf
{
GΩ (u) : u ∈ W1,1

0 (Ω ) + φ
}
. (3.22)
u∈BV(Ω)

10
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Proof. First we observe that GΩ (u) = Gφ,Ω (u) for any u ∈ W1,1
0 (Ω ) + φ, therefore

inf
{
GΩ (u) : u ∈ W1,1

0 (Ω ) + φ
}
≥ min

u∈BV(Ω)
Gφ,Ω (u). (3.23)

et u ∈ BV(Ω ) and define u0 ∈ BVΦ(Ω0) as above. Then by [36, Lemma 2.1] there exists a sequence (uh) in
∞
c (Ω0) such that uh = Φ on Ω0 \ Ω , uh → u0 in L1(Ω0) and

∫
Ω0

√
1 + |∇uh|

2 →
∫
Ω0

√
1 + |∇u0|

2 as h → ∞. Then,
y Reshetnyak’s continuity theorem (see e.g. [37, Theorem 1.1]) we get

GΩ0 (u0) = lim
h
GΩ0 (uh)

n particular

Gφ,Ω ((u0)|Ω ) = lim
h
Gφ,Ω ((uh)|Ω ) = lim

h
GΩ ((uh)|Ω )

≥ inf
{
GΩ (u) : u ∈ W1,1

0 (Ω ) + φ
}

nd the conclusion follows. □

.1. A fundamental inequality

This subsection is devoted to proving the fundamental inequality (3.24), which will be useful when dealing with
omparison principles for minimizers of the functional GΩ . This inequality is a generalization of the well known
nequality for the perimeters that can be found, for the Euclidean case, in [30, Proposition 3.38 (d)] and has been
xtended for perimeters in the Heisenberg case in [10]. We underline also that, when dealing with Sobolev function
ith given boundary datum, this inequality turns out to be an equality whose proof is quite straightforward (see [23,
emma 5.1]).

We state the inequality in a quite general setting that includes the case of functionals that are not necessarily
btained by means of a relaxing argument but also fits to the relaxed functional considered in this paper. To this
im, we consider an open bounded subset of A ⊂ Rn with Lipschitz boundary, and two functions fi, i = 1, 2 such
hat

(i) f1 : A × R × Rn → R is a Carathéodory function,
(ii) f2 :Rn → [0,+∞) is convex, positively homogeneous of degree 1, and f2(ξ) = 0 if and only if ξ = 0.

hen we define the functional FA : BV(A)→ R ∪ {+∞} by

FA(u) =
∫

A
f1(x, u,∇u) dLn +

∫
A

f2

(
dDsu
d|Dsu|

)
d|Dsu|.

heorem 3.8. Let A ⊆ Rn be an open and bounded set with Lipschitz boundary and let f1 : A × R × Rn → R and
f2 : A → [0,+∞) be two functions satisfying respectively assumptions i), ii) above. Then, for any u1, u2 ∈ BV(A),

e have
FA(u1 ∨ u2) + FA(u1 ∧ u2) ≤ FA(u1) + FA(u2) . (3.24)

roof. Let us define

X B
∫

A
f1 (x, u1 ∨ u2,∇(u1 ∨ u2)) dLn +

∫
A

f1 (x, u1 ∧ u2,∇(u1 ∧ u2)) dLn,

Y B
∫

A
f2

(
dDs(u1 ∨ u2)
d|Ds(u1 ∨ u2)|

)
d|Dc(u1 ∨ u2)| +

∫
A

f2

(
dDs(u1 ∧ u2)
d|Ds(u1 ∧ u2)|

)
d|Dc(u1 ∧ u2)|,

Z B
∫

f2

(
dDs(u1 ∨ u2)

s

)
d|D j(u1 ∨ u2)| +

∫
f2

(
dDs(u1 ∧ u2)

s

)
d|D j(u1 ∧ u2)| .
A d|D (u1 ∨ u2)| A d|D (u1 ∧ u2)|
11



S. Don, L. Lussardi, A. Pinamonti et al. Nonlinear Analysis 216 (2022) 112689

w

T

a

w
3

w
t
w

Observe that (3.24) will follow if we show that

X + Y + Z ≤ FA(u1) + FA(u2). (3.25)

Without loss of generality, we may assume that u1 = ũ1 on A \ S u1 and u2 = ũ2 on A \ S u2 . Setting

A+ B (A \ (S u1 ∪ S u2 )) ∩ {u1 ≥ u2}, A− B (A \ (S u1 ∪ S u2 )) ∩ {u1 < u2}

we have (see e.g. [30, Example 3.100])

∇(u1 ∨ u2) = ∇u1 χA+ + ∇u2 χA− Ln-a.e. in A

∇(u1 ∧ u2) = ∇u2 χA+ + ∇u1 χA− Ln-a.e. in A ,

here χE denotes the characteristic function of a set E, and similarly

Dc(u1 ∨ u2) = Dcu1 A+ + Dcu2 A−;

Dc(u1 ∧ u2) = Dcu2 A+ + Dcu1 A−.

herefore
X =

∫
A+

f1 (x, u1,∇u1) dLn +

∫
A−

f1 (x, u2,∇u2) dLn

+

∫
A+

f1 (x, u2,∇u2) dLn +

∫
A−

f1 (x, u1,∇u1) dLn

=

∫
A\(S u1∪S u2 )

f1 (x, u1,∇u1) dLn +

∫
A\(S u1∪S u2 )

f1 (x, u2,∇u2) dLn

=

∫
A

f1 (x, u1,∇u1) dLn +

∫
A

f1 (x, u2,∇u2) dLn.

(3.26)

nd

Y =
∫

A+
f2

(
dDcu1

d|Dcu1|

)
d|Dcu1| +

∫
A−

f2

(
dDcu2

d|Dcu2|

)
d|Dcu2|

+

∫
A+

f2

(
dDcu2

d|Dcu2|

)
d|Dcu2| +

∫
A−

f2

(
dDcu1

d|Dcu1|

)
d|Dcu1|

=

∫
A\(S u1∪S u2 )

f2

(
dDsu1

d|Dsu1|

)
d|Dcu1| +

∫
A\(S u1∪S u2 )

f2

(
dDsu2

d|Dsu2|

)
d|Dcu2|

=

∫
A

f2

(
dDsu1

d|Dsu1|

)
d|Dcu1| +

∫
A

f2

(
dDsu2

d|Dsu2|

)
d|Dcu2|,

(3.27)

here to obtain the last equality in (3.26) and in (3.27), we used the fact that Ln(S u1∪S u2 ) = 0 (see [30, Proposition
.64]) and the fact that, since u1, u2 ∈ BV(A), then |Dcu1|(S u2 ) = |Dcu2|(S u1 ) = 0.1

Recall that, by [30, Eq. (3.90)], one has

D ju1 = (u+1 − u−1 )ν1H
n−1 Ju1

D ju2 = (u+2 − u−2 )ν2H
n−1 Ju2 ,

here ν1, ν2 are the unit normals to the (n − 1)-rectifiable sets Ju1 , Ju2 . Without loss of generality, we may assume
hat u+1 ≥ u−1 and ν1 = ν2, Hn−1-a.e. on Ju1 ∩ Ju2 ; in this way, the (n − 1)-rectifiable set T B Ju1 ∪ Ju2 is associated
ith the unit normal νT defined by

νT B ν1 on Ju1 , νT B ν2 on T \ Ju1 .

1 This last fact follows from Proposition 3.92 item c) and Remark 2.50 in [30]
12
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We extend u±1 : Ju1 → R and u±2 : Ju2 → R to the whole T by setting

u±1 B

⎧⎪⎪⎨⎪⎪⎩u±1 on Ju1

0 on T \ Ju1 ,
u±2 B

⎧⎪⎪⎨⎪⎪⎩u±2 on Ju2

0 on T \ Ju2 .

n this way one has
D j(u1 + u2) = (u+1 − u−1 + u+2 − u−2 ) νT H

n−1 T.

y [30, Theorem 3.99], |u1 − u2| ∈ BV(A) and

D j(|u1 − u2|) = (|u+1 − u+2 | − |u
−
1 − u−2 |) νT H

n−1 T. (3.28)

e can then write

D j(u1 ∨ u2) = D j
(

u1+u2
2 +

|u1−u2 |
2

)
= 1

2 D j (u1 + u2) + 1
2 D j (|u1 − u2|)

D j(u1 ∧ u2) = D j
(

u1+u2
2 −

|u1−u2 |
2

)
= 1

2 D j(u1 + u2
)
− 1

2 D j (|u1 − u2|) .

y using this decomposition and (3.28), we have

Z =
∫

T
f2

(
dD j(u1 ∨ u2)
d|D j(u1 ∨ u2)|

)
d|D j(u1 ∨ u2)| +

∫
T

f2

(
dD j(u1 ∧ u2)
d|D j(u1 ∧ u2)|

)
d|D j(u1 ∧ u2)|

=
1
2

∫
T

f2
((

u+1 − u−1 + u+2 − u−2 + |u
+
1 − u+2 | − |u

−
1 − u−2 |

)
νT

)
dHn−1

+
1
2

∫
T

f2
((

u+1 − u−1 + u+2 − u−2 − |u
+
1 − u+2 | + |u

−
1 − u−2 |

)
νT

)
dHn−1.

(3.29)

et for shortness α, β : T → R be the functions defined by

α B u+1 − u−1 + u+2 − u−2 + |u
+
1 − u+2 | − |u

−
1 − u−2 |,

β B u+1 − u−1 + u+2 − u−2 − |u
+
1 − u+2 | + |u

−
1 − u−2 |.

o estimate Z, we are going to split T into several regions. Set

T ′ B {x ∈ T : u+2 (x) ≥ u−2 (x)}, and T ′′ B {x ∈ T : u+2 (x) < u−2 (x)}.

hen, taking into account that u−1 ≤ u+1 on T , one can easily check that both α and β are positive on T ′. Being f2
ositively homogeneous, then one has

1
2

∫
T ′

f2(ανT ) dHn−1 +
1
2

∫
T ′

f2(βνT ) dHn−1 =
1
2

∫
T ′

(α + β) f2(νT ) dHn−1

=

∫
T ′

(u+1 − u−1 ) f2(νT ) dHn−1 +

∫
T ′

(u+2 − u−2 ) f2(νT ) dHn−1

=

∫
T ′

f2((u+1 − u−1 )νT ) dHn−1 +

∫
T ′

f2((u+2 − u−2 )νT ) dHn−1.

(3.30)

We now subdivide T ′′ into the union of the following disjoint subsets:

T ′′++ B {x ∈ T ′′ : u+1 (x) ≥ u+2 (x), u−1 (x) ≥ u−2 (x)}, T ′′−− B {x ∈ T ′′ : u+1 (x) < u+2 (x), u−1 (x) < u−2 (x)}

T ′′+− B {x ∈ T ′′ : u+1 (x) ≥ u+2 (x), u−1 (x) < u−2 (x)}, T ′′−+ B {x ∈ T ′′ : u+1 (x) < u+2 (x), u−1 (x) ≥ u−2 (x)}.

Notice that, for every x ∈ T ′′++, one has α(x) = 2(u+1 (x) − u−1 (x)) and β(x) = 2(u+2 (x) − u−2 (x)), conversely, for every
x ∈ T ′′−−, one has α(x) = 2(u+2 (x) − u−2 (x)) and β(x) = 2(u+1 (x) − u−1 (x)). Using this information, we easily obtain

1
2

∫
T ′′++∪T ′′−−

f2(ανT ) dHn−1 +
1
2

∫
T ′′++∪T ′′−−

f2(βνT ) dHn−1

=

∫
f2((u+1 − u−1 )νT ) dHn−1 +

∫
f2((u+2 − u−2 )νT ) dHn−1.

(3.31)
T ′′++∪T ′′−− T ′′++∪T ′′−−

13
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We now consider T ′′+−. The estimate on T ′′−+ can be done in a completely analogous way. We first write T ′′+− =
1 ∪ Γ2 ∪ Γ3 ∪ Γ4, where

Γ1 B {x ∈ T ′′+− : u+1 (x) ≥ u−2 (x), u+2 (x) ≥ u−1 (x)}, Γ2 B {x ∈ T ′′+− : u+1 (x) ≥ u−2 (x), u+2 (x) < u−1 (x)}

Γ3 B {x ∈ T ′′+− : u+1 (x) < u−2 (x), u+2 (x) ≥ u−1 (x)}, Γ4 B {x ∈ T ′′+− : u+1 (x) < u−2 (x), u+2 (x) < u−1 (x)}.

otice that, for every x ∈ T ′′+−, one has that α(x) = 2(u+1 (x)−u−2 (x)) and β(x) = 2(u+2 (x)−u−1 (x)) and, by construction,
is positive on Γ1 ∪ Γ2 and strictly negative on Γ3 ∪ Γ4, while β is positive on Γ1 ∪ Γ3 and strictly negative on

2 ∪ Γ4. Using the positive homogeneity of f2, we get

1
2

∫
Γ1

f2(ανT ) dHn−1 +
1
2

∫
Γ1

f2(βνT ) dHn−1

=

∫
Γ1

(u+1 − u−2 ) f2(νT ) dHn−1 +

∫
Γ1

(u+2 − u−1 ) f2(νT ) dHn−1

=

∫
Γ1

(u+1 − u−1 ) f2(νT ) dHn−1 +

∫
Γ1

(u+2 − u−2 ) f2(νT ) dHn−1

=

∫
Γ1

f2((u+1 − u−1 )νT ) dHn−1 +

∫
Γ1

f2((u+2 − u−2 )νT ) dHn−1.

(3.32)

aking into account that α and β are strictly negative on Γ4, we also have

1
2

∫
Γ4

f2(ανT ) dHn−1 +
1
2

∫
Γ4

f2(βνT ) dHn−1

=

∫
Γ4

(u−2 − u+1 ) f2(−νT ) dHn−1 +

∫
Γ4

(u−1 − u+2 ) f2(−νT ) dHn−1

=

∫
Γ4

(u−1 − u+1 ) f2(−νT ) dHn−1 +

∫
Γ4

(u−2 − u+2 ) f2(−νT ) dHn−1

=

∫
Γ4

f2((u+1 − u−1 )νT ) dHn−1 +

∫
Γ4

f2((u+2 − u−2 )νT ) dHn−1.

(3.33)

ecall that, by (3.1), the map f2 is positive, and therefore, for any 0 ≤ λ1 ≤ λ2 and any x ∈ R2n, one has
f2(λ1x) ≤ f2(λ2x). We can make the estimate on Γ2, taking into account that α is positive and β is strictly negative:

1
2

∫
Γ2

f2(ανT ) dHn−1 +
1
2

∫
Γ2

f2(βνT ) dHn−1

=

∫
Γ2

(u+1 − u−2 ) f2(νT ) dHn−1 +

∫
Γ2

(u−1 − u+2 ) f2(−νT ) dHn−1

=

∫
Γ2

(u+1 − u−1 + u−1 − u−2 ) f2(νT ) dHn−1 +

∫
Γ2

(u−1 − u−2 + u−2 − u+2 ) f2(−νT ) dHn−1

≤

∫
Γ2

f2((u+1 − u−1 )νT ) dHn−1 +

∫
Γ2

f2((u+2 − u−2 )νT ) dHn−1,

(3.34)

here in the last inequality we used the fact that (u−1 − u−2 )|T ′′+− < 0 and (u−2 − u+2 )|T ′′ > 0. Analogously, for Γ3, we
ave

1
2

∫
Γ3

f2(ανT ) dHn−1 +
1
2

∫
Γ3

f2(βνT ) dHn−1

=

∫
Γ3

(u−2 − u+1 ) f2(−νT ) dHn−1 +

∫
Γ3

(u+2 − u−1 ) f2(νT ) dHn−1

=

∫
Γ3

(u−2 − u+2 + u+2 − u+1 ) f2(−νT ) dHn−1 +

∫
Γ3

(u+2 − u+1 + u+1 − u−1 ) f2(νT ) dHn−1

≤

∫
f2((u+2 − u−2 )νT ) dHn−1 +

∫
f2((u+1 − u−1 )νT ) dHn−1,

(3.35)
Γ3 Γ3

14
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where in the last inequality we have used the fact that (u−2 − u+2 )|T ′′ > 0 and (u+2 − u+1 )|T ′′+− ≤ 0. Combining (3.32),
3.34), (3.35) and (3.33) one obtains

1
2

∫
T ′′+−

f2(ανT ) dHn−1 +
1
2

∫
T ′′+−

f2(βνT ) dHn−1

≤

∫
T ′′+−

f2((u+2 − u−2 )νT ) dHn−1 +

∫
T ′′+−

f2((u+1 − u−1 )νT ) dHn−1.

(3.36)

n a completely analogous fashion, we can also write

1
2

∫
T ′′−+

f2(ανT ) dHn−1 +
1
2

∫
T ′′−+

f2(βνT ) dHn−1

≤

∫
T ′′−+

f2((u+2 − u−2 )νT ) dHn−1 +

∫
T ′′−+

f2((u+1 − u−1 )νT ) dHn−1.

(3.37)

s a direct consequence of (3.31), (3.36) and (3.37), we then have

1
2

∫
T ′′

f2(ανT ) dHn−1 +
1
2

∫
T ′′

f2(βνT ) dHn−1

≤

∫
T ′′

f2((u+2 − u−2 )νT ) dHn−1 +

∫
T ′′

f2((u+1 − u−1 )νT ) dHn−1.

(3.38)

he thesis is then obtained by combining (3.26), (3.27), (3.29), (3.30) and (3.38). □

emark 3.9. The functional GΩ considered in the present paper is a special case of the functional FA where the
et Ω ⊂ R2n plays the role of A, f1(x, u, ξ) = g(ξ + X∗(x)) and f2(ξ) = g∞(ξ). Proposition 3.6 shows that GΩ is the
elaxation of a functional defined in W1,1(Ω ). We notice that in this particular case the proof of Theorem 3.8 could
e simplified by a relaxation argument.

orollary 3.10. Let Ω ⊆ R2n be an open and bounded set with Lipschitz boundary and let g :Ω → [0,+∞) be a
onvex function satisfying (3.1). Then, for every φ1, φ2 ∈ L1(∂Ω ) and every u1, u2 ∈ BV(Ω ) one has

GΩ ,φ1∨φ2 (u1 ∨ u2) + GΩ ,φ1∧φ2 (u1 ∧ u2) ≤ GΩ ,φ1 (u1) + GΩ ,φ2 (u2). (3.39)

Proof. Let u1, u2 ∈ BV(Ω ) and φ1, φ2 ∈ L1(∂Ω ).
First of all Theorem 3.8 and Proposition 3.6 imply

GΩ (u1 ∨ u2) + GΩ (u1 ∧ u2) ≤ GΩ (u1) + GΩ (u2). (3.40)

Fix any bounded open and Lipschitz set Ω0 ⋑ Ω . By [31, Theorem 2.16], we can find w1,w2 ∈ W1,1(Ω0 \ Ω ) with
1 |∂Ω = φ1 and w2 |∂Ω = φ2. Set now

v1 B

⎧⎪⎪⎨⎪⎪⎩w1 on Ω0 \ Ω

u1 on Ω
and v2 B

⎧⎪⎪⎨⎪⎪⎩w2 on Ω0 \ Ω

u2 on Ω .

y [30, Theorem 3.84], v1, v2 ∈ BV(Ω0) and, moreover, if νΩ denotes the exterior normal to Ω , one has

Dvi = Dui Ω + Dwi (Ω0 \ Ω ) + (wi − ui)νΩH2n−1 ∂Ω , for i = 1, 2,

from which we can compute, up to |Dsv|-negligible sets, the polar vector:

dDsvi

d|Dsvi|
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
dDsui

d|Dsui|
on Ω

0 on Ω0 \ Ω
(wi − ui)

νΩ on ∂Ω .

|wi − ui|

15
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Then, using the previous expression, the fact that g∞ is homogeneous and the definition of wi, we get

GΩ0 (vi) =
∫
Ω0

g(∇vi + X∗) dL2n +

∫
Ω0

g∞
(

dDsvi

d|Dsvi|

)
d|Dsvi|

= GΩ (ui) + GΩ0\Ω
(wi) +

∫
∂Ω

g∞((wi − ui)νΩ ) dH2n−1

= GΩ (ui) + GΩ0\Ω
(wi) +

∫
∂Ω

g∞((φi − ui)νΩ ) dH2n−1

= GΩ0\Ω
(wi) + GΩ ,φi (ui), for i = 1, 2.

imilarly, using Remark 2.3 we also have

GΩ0 (v1 ∨ v2) = GΩ0\Ω
(w1 ∨ w2) + GΩ ,φ1∨φ2 (u1 ∨ u2) and

GΩ0 (v1 ∧ v2) = GΩ0\Ω
(w1 ∧ w2) + GΩ ,φ1∧φ2 (u1 ∧ u2).

aking into account that (3.39) is an equality when the maps are Sobolev (see [23, Lemma 5.1]), we can then
onclude combining the previous identities with Theorem 3.8 to get

GΩ ,φ1∨φ2 (u1 ∨ u2) + GΩ ,φ1∧φ2 (u1 ∧ u2)

= GΩ0 (v1 ∨ v2) + GΩ0 (v1 ∧ v2) − GΩ0\Ω
(w1 ∨ w2) − GΩ0\Ω

(w1 ∧ w2)

≤ GΩ0 (v1) + GΩ0 (v2) − GΩ0\Ω
(w1) − GΩ0\Ω

(w2) = GΩ ,φ1 (u1) + GΩ ,φ2 (u2). □

.2. The set of minimizers and comparison principles

Given a bounded open set Ω ⊂ R2n with Lipschitz regular boundary and a function φ ∈ L1(∂Ω ) we define

Mφ B argmin
u
Gφ,Ω (u).

e have already proved that Mφ ⊂ BV(Ω ) is nonempty.
Using Theorem 3.8 and Corollary 3.10, the proof of Proposition 3.11 below is completely analogous to

10, Proposition 4.3] and we omit it.

roposition 3.11. Let φ1, φ2 ∈ L1(∂Ω ) be such that φ1 ≤ φ2 H
2n−1-a.e. on ∂Ω and assume that u1 ∈ Mφ1 and

2 ∈Mφ2 . Then (u1 ∨ u2) ∈Mφ2 and (u1 ∧ u2) ∈Mφ1 .

In [9] (see also [10]), it has been proved that the set of minimizers of a superlinear convex functional has a
aximum u (resp. a minimum u) defined as the pointwise supremum (infimum) of the minimizers. These special
inimizers are then used to prove one-sided Comparison Principles.

roposition 3.12. Let Ω ⊂ R2n be a bounded open set with Lipschitz regular boundary and let φ ∈ L1(∂Ω ). Then,
here exists u, u ∈Mφ such that the inequalities

u ≤ u ≤ u, L2n-a.e. in Ω (3.41)

old for any u ∈M .
φ
16
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Proof. We start by proving that Mφ is bounded in BV(Ω ). Define J B minu∈BV(Ω) Gφ,Ω (u) < +∞. By (3.4) and
enoting by C̃ = supΩ |X∗| we get

|Du|(Ω ) =
∫
Ω

|∇u| dL2n + |Dsu|(Ω )

≤C
∫
Ω

g(∇u + X∗) dL2n + C̃|Ω | +
∫
Ω

d|Dsu|

≤C
∫
Ω

g(∇u + X∗) dL2n + C̃|Ω | +C
∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu| +C

∫
∂Ω

g∞((φ − u|∂Ω )νΩ ) dH2n−1

=CJ + C̃|Ω |, ∀u ∈Mφ,

(3.42)

here |Ω | B L2n(Ω ). Moreover, by [31, Theorem 1.28 and Remark 2.14] there exists c = c(n) > 0 such that

∥u∥L1(Ω) ≤ |Ω |
1/2n∥u∥L2n/(2n−1)(Ω)

≤ c |Ω |1/2n
(
|Du|(Ω ) +

∫
∂Ω

|u| dH2n−1
)

≤ c|Ω |1/2n
(
|Du|(Ω ) +

∫
∂Ω

|φ − u|∂Ω | dH2n−1 +

∫
∂Ω

|φ| dH2n−1
)

= c|Ω |1/2n
(
|Du|(Ω ) +

∫
∂Ω

|(φ − u|∂Ω )νΩ | dH2n−1 +

∫
∂Ω

|φ| dH2n−1
)

≤ c|Ω |1/2n
(
C

∫
Ω

g(∇u + X∗) dL2n + C̃|Ω | +C
∫
Ω

g∞
(

dDsu
d|Dsu|

)
|Dsu|(Ω )

+C
∫
∂Ω

g∞((φ − u|∂Ω )νΩ ) dH2n−1 +

∫
∂Ω

|φ| dH2n−1
)

= c|Ω |1/2n
(
CJ + C̃|Ω | +

∫
∂Ω

|φ| dH2n−1
)
, ∀u ∈Mφ,

here in the second last inequality we argued as in (3.42). This, together with (3.42), implies that Mφ is bounded
in BV(Ω ).

Therefore, by [30, Theorem 3.23], Mφ is pre-compact in L1(Ω ), i.e., for every sequence (uh) in Mφ there exist
u ∈ BV(Ω ) and a subsequence (uhk ) such that uhk → u in L1(Ω ). By (3.21), Gφ,Ω is lower semicontinuous with
espect to the L1-convergence, hence we have also

Gφ,Ω (u) ≤ lim inf
k→∞

Gφ,Ω (uhk ) = J,

o that u ∈Mφ. We have proved that Mφ is compact in L1(Ω ). Now, the functional

BV(Ω ) ∋ u ↦−→ I(u) B
∫
Ω

u dL2n

s continuous in L1(Ω ), hence it admits maximum u and minimum u in Mφ: let us prove that u, u satisfy (3.41) for
ny u ∈Mφ.

Assume by contradiction there exists u ∈Mφ such that Ω ′ B {z ∈ Ω : u(z) > u(z)} has strictly positive measure.
hen, by Proposition 3.11, u ∨ u is in Mφ. Moreover∫

Ω

(u ∨ u) dL2n =

∫
Ω ′

u dL2n +

∫
Ω\Ω ′

u dL2n >

∫
Ω

u dL2n

ielding a contradiction. The fact that u ≥ u follows in a similar way. □

The following result is a Comparison Principle inspired by the results obtained in [9] for superlinear functionals
in Sobolev spaces and it can be proved exactly as in [10, Theorem 4.5].
17
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Theorem 3.13. Let Ω ⊂ R2n be a bounded open set with Lipschitz regular boundary; let φ, ψ ∈ L1(∂Ω ) be such
hat φ ≤ ψ H2n−1-a.e. on ∂Ω . Consider the functions u, u ∈Mφ and w, w ∈Mψ such that2

u ≤ u ≤ u L2n-a.e. in Ω , ∀u ∈Mφ

w ≤ w ≤ w L2n-a.e. in Ω , ∀w ∈Mψ .
(3.43)

hen
u ≤ w and u ≤ w L2n-a.e. in Ω (3.44)

nd, in particular,

u ≤ w L2n-a.e. in Ω , ∀u ∈Mφ

u ≤ w L2n-a.e. in Ω , ∀w ∈Mψ.

Upon observing that Gφ+α,Ω (u + α) = Gφ,Ω (u) ∀ u ∈ BV(Ω ), the following result can be proved exactly as
in [10, Corollary 4.6].

Corollary 3.14. Let Ω ⊂ R2n be a bounded open set with Lipschitz regular boundary and φ, ψ ∈ L∞(∂Ω ); let
u, u ∈Mφ and w,w ∈Mψ be as in (3.43). Then, for every α ∈ R, one has

u + α, u + α ∈Mφ+α

u + α ≤ u ≤ u + α L2n-a.e. in Ω , ∀u ∈Mφ+α

(3.45)

nd

∥u − w∥L∞(Ω) ≤ ∥φ − ψ∥L∞(∂Ω)

∥u − w∥L∞(Ω) ≤ ∥φ − ψ∥L∞(∂Ω).
(3.46)

n particular, the implications

u|∂Ω = φ, w|∂Ω = ψ ⇒ ∥u − w∥L∞(Ω) = ∥φ − ψ∥L∞(∂Ω),

u
|∂Ω = φ, w

|∂Ω = ψ ⇒ ∥u − w∥L∞(Ω) = ∥φ − ψ∥L∞(∂Ω).
(3.47)

old.

We recall below some notations introduced in [10], that will be useful also in the proof of the main theorem of
he present paper. Given a subset Ω ⊂ R2n, a function u :Ω → R, a vector τ ∈ R2n and ξ ∈ R we set

Ωτ B {z ∈ R2n : z + τ ∈ Ω }

uτ(z) B u(z + τ), z ∈ Ωτ

u∗τ,ξ(z) B uτ(z) + 2 ⟨τ∗, z⟩ + ξ, z ∈ Ωτ .

t is easily seen that, given Ω open and u ∈ BV(Ω ), then both uτ and u∗τ,ξ belong to BV(Ωτ). Moreover, if Ω is
ounded with Lipschitz regular boundary one has also

(u∗τ,ξ)|∂(Ωτ) = (u|∂Ω )τ + 2 ⟨τ∗, ·⟩ + ξ = (u|∂Ω )∗τ,ξ . (3.48)

emark 3.15. The family of functions u∗τ,ξ has a precise meaning from the viewpoint of Heisenberg groups
eometry. Indeed, it is a matter of computations to observe that the t-subgraph Et

u∗
τ,ξ

of u∗τ,ξ coincides with the

eft translation (−τ, ξ) · Et
u (according to the group law) of the t-subgraph Et

u of u by the element (−τ, ξ) ∈ Hn. We
ddress the interested reader to [10,11] for further informations.

2 The existence of u, u, w, w is guaranteed by Proposition 3.12.
18
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Lemma 3.16. Let Ω ⊂ R2n be a bounded open set with Lipschitz regular boundary, φ ∈ L1(∂Ω ), τ ∈ R2n and
∈ R. Then

Gφ∗
τ,ξ
,Ωτ (u

∗
τ,ξ) = Gφ,Ω (u), ∀u ∈ BV(Ω ).

roof. Using e.g. [30, Remark 3.18], we get Duτ = ℓτ#(Du), where ℓτ is the translation z ↦→ z − τ and ℓτ# denotes
he push-forward of measures via ℓτ. In particular

∇uτ = (∇u)τ = ∇u ◦ ℓ−1
τ , Dsuτ = ℓτ#(Dsu) and

dDsuτ
d|Dsuτ|

=
dDsu
d|Dsu|

◦ ℓ−1
τ

ence
Du∗τ,ξ =

(
∇u ◦ ℓ−1

τ + 2τ∗
)
L2n + ℓτ#(Dsu).

herefore

Gφ∗
τ,ξ
,Ωτ (u

∗
τ,ξ)

=

∫
Ωτ

g((∇u ◦ ℓ−1
τ ) + 2τ∗ + X∗) dL2n +

∫
Ωτ

g∞
(

dDsu
d|Dsu|

◦ ℓ−1
τ

)
d|ℓτ#(Dsu)|

+

∫
∂Ωτ

g∞((φ∗τ,ξ − (u∗τ,ξ)|∂Ωτ )νΩτ ) dH2n−1.

e now use (3.48) and the equality

2τ∗ + X∗(z) = 2(τ + z)∗ = (X∗ ◦ ℓ−1
τ )(z), ∀z ∈ R2n

o get, with a change of variable,

Gφ∗
τ,ξ
,Ωτ (u

∗
τ,ξ)

=

∫
Ωτ

|∇u + X∗| ◦ ℓ−1
τ dL2n +

∫
Ωτ

g∞
(

dDsu
d|Dsu|

◦ ℓ−1
τ

)
d|ℓτ#(Dsu)| +

∫
∂Ωτ

g∞
((
φ − u|∂Ω

)
τνΩτ

)
dH2n−1

=

∫
Ω

|∇u + X∗| dL2n +

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu| +

∫
∂Ω

g∞((φ − u|∂Ω )νΩ ) dH2n−1

=Gφ,Ω (u) . □

orollary 3.17. If the same assumptions of Lemma 3.16 hold and if u and u are as in Proposition 3.12, then
u)∗τ,ξ, (u)∗τ,ξ ∈Mφ∗

τ,ξ
and

(u)∗τ,ξ ≤ u ≤ (u)∗τ,ξ L2n-a.e. in Ωτ,∀u ∈Mφ∗
τ,ξ
.

The next proposition states that, whenever we fix an affine boundary datum L, the functional GL,Ω admits as
nique minimizer the function L itself.

roposition 3.18. Let L :R2n → R be given by L(z) B ⟨a, z⟩ + b with a ∈ R2n and b ∈ R and assume g satisfies
ssumptions (A) and (B). Then L is the unique solution of the problem

min{GL,Ω (u) : u ∈ BV(Ω )}. (3.49)

roof. We divide the proof in several steps.

tep 1. We claim there exists p :R2n → R2n such that p(z) ∈ ∂g(z) for any z ∈ R2n and with the property that∫
⟨p(X∗), σu⟩ d|Du| =

∫
u|∂Ω ⟨p(X∗), νΩ ⟩ dH2n−1, (3.50)
Ω ∂Ω
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for any u ∈ BV(Ω ). If g ∈ C2(R2n) formula (3.50) with p = ∇g follows using the Gauss–Green formula and the
act that, since div X∗ = 0, also div∇g(X∗) = 0. We claim that (3.50) holds true again with p = ∇g if g ∈ C1(R2n).
onsider the convolutions gh B ρh ∗ g where ρh is a convolution kernel, i.e. ρh ∈ C∞c (B(0, 1/h)), ρh ≥ 0 and

R2n ρh = 1. Then gh ∈ C∞(R2n) and ∇gh → ∇g uniformly on compact sets. It is now sufficient to pass to the limit
n ∫

Ω

⟨∇gh(X∗), σu⟩ d|Du| =
∫
∂Ω

u|∂Ω ⟨∇gh(X∗), νΩ ⟩ dH2n−1

sing the Dominated Convergence Theorem. Finally we prove that (3.50) holds true for any convex function
: R2n → R and for a suitable choice of p. We are going to use the Yosida approximation; see [38, Sec. IV.1]

see also [39, Theorem 2.1]) for details. Precisely, for any λ > 0 and for any z ∈ R2n let

Jλ(z) = min
y∈R2n

{
1

2λ
∥y − z∥2 + g(y)

}
,

nd
gλ(z) = g(Jλ(z)) +

1
2λ
∥z − Jλ(z)∥2

hen gλ ∈ C1,1(R2n) and for any z ∈ R2n there holds ∇ fλ(z) = Aλ(z) where Aλ is the Yosida approximation of the
aximal monotone operator A = ∂g, Aλ(z) B λ−1(z − Jλ(z)). Moreover, as λ decreases to zero, gλ increases to g,

nd for any z ∈ R2n, ∥Aλ(z)∥ → ∥∂0g(z)∥ and Aλ(z) → ∂0g(z), where ∂0g(z) denotes the element of minimal norm
f the closed convex set ∂g(z). Finally, since g has linear growth we have ∥∂0g(z)∥ ≤ c for some c > 0 and for
very z ∈ R2n. The thesis now follows by taking p :R2n → R2n defined by p(z) B ∂g0(z) and using the Dominated
onvergence Theorem to pass to the limit in∫

Ω

⟨Aλ(X∗), σu⟩ d|Du| =
∫
∂Ω

u|∂Ω ⟨Aλ(X∗), νΩ ⟩ dH2n−1

s λ→ 0, obtaining (3.50).

tep 2. We claim that for any w, z ∈ R2n we have

g∞(w) ≥ ⟨p(X∗(z)),w⟩. (3.51)

ndeed, by convexity, for any t > 0

g(tw + X∗(z))
t

≥
g(X∗(z))

t
+ ⟨p(X∗(z)),w⟩,

nd the conclusion follows letting t → ∞ and using Eq. (3.5).

tep 3. We claim that u = 0 is a solution of the problem

min{G0,Ω (u) : u ∈ BV(Ω )}.

et u ∈ BV(Ω ). Combining the convexity of g with (3.50) and (3.51) we obtain

G0,Ω (u) ≥
∫
Ω

g(X∗) dL2n +

∫
Ω

⟨p(X∗),∇u⟩ dL2n +

∫
Ω

⟨p(X∗),
dDsu
d|Dsu|

⟩ d|Dsu|

+

∫
∂Ω

g∞(−u|∂ΩνΩ ) dH2n−1

=

∫
Ω

g(X∗) dL2n +

∫
Ω

⟨p(X∗), σu⟩ d|Du| +
∫
∂Ω

g∞(−u|∂ΩνΩ ) dH2n−1

≥

∫
Ω

g(X∗) dL2n +

∫
∂Ω

u|∂Ω ⟨p(X∗), νΩ ⟩ dH2n−1 −

∫
∂Ω

u|∂Ω ⟨p(X∗), νΩ ⟩ dH2n−1

=

∫
Ω

g(X∗) dL2n

= G0,Ω (0)

(3.52)

which ends the proof of the minimality of u = 0.
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Step 4. We claim now that if Ω = BR(0) then u = 0 is the unique solution of the problem

min{G0,Ω (u) : u ∈ BV(Ω )}.

et u ∈ BV(Ω ) be another minimizer, i.e. G0,Ω (u) = G0,Ω (0) = m. By convexity we have

m ≤ G0,Ω

(u
2

)
=

∫
Ω

g
(

1
2
∇u + X∗

)
dL2n +

1
2

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu| +

1
2

∫
∂Ω

g∞(−u|∂ΩνΩ ) dH2n−1

≤
1
2

∫
Ω

g(∇u + X∗) dL2n +
1
2

∫
Ω

g(X∗) dL2n +
1
2

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu|

+
1
2

∫
∂Ω

g∞(−u|∂ΩνΩ ) dH2n−1

=
1
2

m +
1
2

m = m.

s a consequence we get

g
(
∇u + X∗

2
+

X∗

2

)
=

g(∇u + X∗) + g(X∗)
2

, L2n-a.e. on Ω .

Using assumption (A), we conclude that

∇u = λaX∗, L2n-a.e. on Ω

for some measurable function λa :Ω → R. Rewriting (3.52) and using (3.51) we then obtain

m =
∫
Ω

g (∇u + X∗) dL2n +

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu| +

∫
∂Ω

g∞(−u|∂ΩνΩ ) dH2n−1

≥

∫
Ω

g(∇u + X∗) dL2n +

∫
Ω

⟨
p(X∗),

dDsu
d|Dsu|

⟩
d|Dsu| +

∫
∂Ω

g∞(−u|∂ΩνΩ ) dH2n−1

≥

∫
Ω

g(X∗) dL2n +

∫
∂Ω

(u|∂Ω ⟨p(X∗), νΩ ⟩ + g∞(−u|∂ΩνΩ )) dH2n−1

≥

∫
Ω

g(X∗) dL2n

= m.

his means that
g∞

(
dDsu
d|Dsu|

)
=

⟨
p(X∗),

dDsu
d|Dsu|

⟩
, |Dsu|-a.e. on Ω (3.53)

nd
u|∂Ω ⟨p(X∗), νΩ ⟩ + g∞(−u|∂ΩνΩ ) = 0, H2n−1-a.e. on Ω . (3.54)

ombining assumption (B) with (3.53), we immediately deduce that

dDsu
d|Dsu|

= λs X∗

|X∗|
, |Dsu|-a.e. on Ω

or some measurable function λs :Ω → R. From (3.54) we get u|∂Ω = 0. Indeed, at any point of ∂Ω where u∂Ω > 0,
ondition (3.54) implies

g∞(−νΩ ) = ⟨p(X∗),−νΩ ⟩

hich means, thanks to assumption (B), that νΩ is parallel to X∗, and this is impossible since Ω = BR(0), namely
∗ ⊥ νΩ everywhere on ∂Ω . By means of the same argument we can also exclude u|∂Ω < 0. Therefore, we can say

hat
σu = λX∗, |Du|-a.e. on Ω
or some measurable function λ :Ω → R. Lemma 2.5 gives the conclusion.
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Step 5. Now we prove that u = 0 is the unique solution of the problem

min{G0,Ω (u) : u ∈ BV(Ω )}

or a general Ω . Indeed, let u ∈ BV(Ω ) be such that G0,Ω (u) = G0,Ω (0). Let R > 0 be such that Ω ⊂⊂ BR(0). Let
u0 : BR(0)→ R be given by

u0(z) B
{

u(z) if z ∈ Ω
0 otherwise.

Then,

G0,BR(0)(u0) =
∫
Ω

g(∇u + X∗) dL2n +

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu| +

∫
∂Ω

g∞(−u|∂ΩνΩ ) dH2n−1

+

∫
BR(0)\Ω

g(X∗) dL2n

= G0,Ω (u) + G0,BR(0)\Ω (0)

= G0,BR(0)(0),

here in the last equality we used G0,Ω (u) = G0,Ω (0). Hence, by step 3 we get u0 = 0 from which the conclusion.

Step 6. We conclude the proof proving that u = L is the unique solution of the problem

min{GL,Ω (u) : u ∈ BV(Ω )}.

et Ωa B Ω − a∗/2, u ∈ BV(Ω ) and ua :Ω → R be given by ua(z) B u(z + a∗/2) − L(z). Then ua ∈ BV(Ωa). Hence
e get, using step 2,

GL,Ω (u) =
∫
Ω

g(∇u + X∗) dL2n +

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu| +

∫
∂Ω

g∞((L − u|∂Ω )νΩ ) dH2n−1

=

∫
Ωa

g(∇ua + X∗) dL2n +

∫
Ωa

g∞
(

dDsua

d|Dsua|

)
d|Dsua| +

∫
∂Ωa

g∞(−(ua)|∂ΩνΩ ) dH2n−1

= G0,Ωa (ua) ≥ G0,Ωa (0)

=

∫
Ωa

g(X∗) dL2n =

∫
Ω

g(a + X∗) dL2n

= GL,Ω (L)

hich says that u = L is a minimizer. Uniqueness easily follows by the fact that the equality GL,Ω (u) = GL,Ω (0)
mplies, using the previous estimate, G0,Ωa (ua) = G0,Ωa (0) which in turn yields ua = 0 from step 4. In order to
onclude the proof it is sufficient to observe that ua = 0 means u = L. □

orollary 3.19. Let Ω ⊂ R2n be a bounded open set with Lipschitz boundary, φ ∈ L1(∂Ω ) and L :R2n → R be an
ffine function, i.e., L(z) = ⟨a, z⟩ + b for some a ∈ R2n, b ∈ R.

(1) Assume that φ ≤ L H2n−1-a.e. on ∂Ω . Then, for any u ∈Mφ, we have u ≤ L L2n-a.e. in Ω .
(2) Assume that φ ≥ L H2n−1-a.e. on ∂Ω . Then, for any u ∈Mφ, we have u ≥ L L2n-a.e. in Ω .

roof. Both claims follow immediately from Theorem 3.13 when we observe that the set ML consists of just one
lement that is L itself, so that, following the notations of Proposition 3.12, L = L = L. □

4. The bounded slope condition

We recall the well-known definition of a boundary datum satisfying the Bounded Slope Condition (see [16]).
We also refer to [18] for some classical results.
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W

Definition 4.1. We say that a function φ : ∂Ω → R satisfies the bounded slope condition with constant Q > 0
(Q-B.S.C. for short or simply B.S.C. when the constant Q does not play any role) if for every z0 ∈ ∂Ω , there exist
two affine functions w+z0

and w−z0
such that

w−z0
(z) ≤ φ(z) ≤ w+z0

(z) ∀z ∈ ∂Ω , (4.1)

w−z0
(z0) = φ(z0) = w+z0

(z0) (4.2)

Lip(w−z0
) ≤ Q and Lip(w+z0

) ≤ Q, (4.3)

where Lip(w) denotes the Lipschitz constant of w.
Moreover, we denote by f1 and f2 the functions defined, respectively, by f1(z) B supz0∈∂Ω

w−z0
(z) and f2(z) B

infz0∈∂Ω w+z0
(z). We underline that f1 is convex, f2 is concave and they are both Lipschitz continuous with Lipschitz

constant not greater than Q.

The following result can be proved exactly as in [10, Lemma 6.2].

Lemma 4.2. Let Ω ⊂ R2n be an open bounded set with Lipschitz regular boundary; assume that φ ∈ L1(∂Ω )
satisfies the Q-B.S.C. Then, if u ∈ BV(Ω ) is a minimizer of Gφ,Ω , the following facts hold.

(1) u|∂Ω = φ;
(2) f1 ≤ u ≤ f2 L2n-a.e. in Ω ;
(3) u is also a minimizer of GΩ in BV(Ω ).

The following fact is inspired by [10, Remark 6.4].

Remark 4.3. If Ω ′ ⊂ Ω are open bounded domains with Lipschitz regular boundary and u ∈ BV(Ω ).
Write Γ B ∂Ω ′ ∩ Ω and ∂Ω = ∆1 ∪∆2, where

∆1 B ∂Ω ∩ ∂Ω ′ and ∆2 B ∂Ω \ ∂Ω ′.

Notice that ∂Ω ′ = Γ ∪∆1. We also denote by ui, uo :Γ → R the “inner” and “outer” (with respect to Ω ′) traces of
u on Γ , i.e.,

ui B (u|∂Ω ′ ) Γ and uo B (u
|∂(Ω\Ω ′)) Γ .

e use the notation Gu,Ω ′ to denote the functional Guo,Ω ′ . Let us prove that, if u is a minimizer of Gφ,Ω with
φ = u|∂Ω , then u is also a minimizer of Gu,Ω ′ . Assume by contradiction that u is not a minimizer of Gu,Ω ′ ; then,
there exists v ∈ BV(Ω ′) such that

0 < Gu,Ω ′ (u) − Gu,Ω ′ (v)

= GΩ ′ (u) − GΩ ′ (v) +
∫
Γ

g∞((uo − ui)νΩ ′ ) dH2n−1

−

∫
Γ

g∞((uo − v|∂Ω ′ )νΩ ′ ) dH2n−1 −

∫
∆1

g∞((φ − v|∂Ω ′ )νΩ ) dH2n−1

(4.4)

where we used inequality (3.3). We would reach a contradiction if we show that the function w ∈ BV(Ω ) defined
by

w B v on Ω ′, w B u on Ω \ Ω ′

satisfies Gφ,Ω (u) − Gφ,Ω (w) > 0.
Let us compute

Gφ,Ω (u) = GΩ (u) = GΩ ′ (u) + GΩ\Ω ′ (u) +
∫
Γ

g∞
(

dDsu
d|Dsu|

)
d|Dsu|

= GΩ ′ (u) + GΩ\Ω ′ (u) +
∫

g∞((uo − ui)νΓ ) dH2n−1
Γ

23



S. Don, L. Lussardi, A. Pinamonti et al. Nonlinear Analysis 216 (2022) 112689

T

w

T

f
m
t
I

S

a

and

Gφ,Ω (w) = GΩ ′ (v) + GΩ\Ω ′ (u) +
∫
Γ

g∞
(

dDsw
d|Dsw|

)
d|Dsw| +

∫
∂Ω

g∞((φ − w|∂Ω )νΩ ) dH2n−1

= GΩ ′ (v) + GΩ\Ω ′ (u) +
∫
Γ

g∞((uo − v|∂Ω ′ )νΩ ′ ) dH2n−1 +

∫
∆1

g∞((φ − v|∂Ω )νΩ ) dH2n−1 .

herefore

Gφ,Ω (u) − Gφ,Ω (w)

=GΩ ′ (u) − GΩ ′ (v) +
∫
Γ

(
g∞((uo − ui)νΩ ′ ) − g∞((uo − v|∂Ω ′ )νΩ ′ )

)
dH2n−1

−

∫
∆1

g∞((φ − v|∂Ω ′ )νΩ ) dH2n−1 > 0,

here we used (4.4) and u|∂Ω ′ = ui.

We are now in position to prove our main result, whose proof is actually very similar to the one given in [10].

heorem 4.4. Let Ω ⊂ R2n be open, bounded and with Lipschitz regular boundary, let φ : ∂Ω → R satisfy the
Q-B.S.C. for some Q > 0 and let g :R2n → R be a convex function with linear growth satisfying conditions (A) and
(B). Then, the minimization problem

min
{
GΩ : u ∈ BV(Ω ), u|∂Ω = φ

}
(4.5)

admits a unique solution û. Moreover, û is Lipschitz continuous and Lip(û) ≤ Q = Q(Q,Ω ).

Proof. We divide the proof into several steps.
Step 1. We denote by u the (pointwise a.e.) maximum of the minimizers of Gφ,Ω in BV (see Proposition 3.12).

Lemma 4.2 implies that f1 ≤ u ≤ f2 L2n-a.e. in Ω and u = φ = f1 = f2 on ∂Ω , where f1 and f2 are defined as in
Definition 4.1; in particular, u is also a minimizer for (4.5).

Let τ ∈ R2n be such that Ω ∩ Ωτ , ∅; following the notations introduced before Lemma 3.16, we consider the
unction u∗τ,0, which we denote by u∗τ to simplify the notation. Consider the set Ω ∩ Ωτ. By Remark 4.3, u is a
inimizer of Gu,Ω∩Ωτ and, by Corollary 3.17 and Remark 4.3, u∗τ is a minimizer of Gu∗τ,Ω∩Ωτ

. Let z ∈ ∂(Ω ∩ Ωτ),
hen either z ∈ ∂Ω or z ∈ ∂Ωτ.
f z ∈ ∂Ω , then z + τ ∈ Ω and the inequality (36) in [10, Lemma 6.3 ] implies that

u(z) − Q|τ| ≤ u(z + τ) ≤ u(z) + Q|τ| . (4.6)

Otherwise, z ∈ ∂Ωτ and z = (z + τ) − τ ∈ Ω , and Lemma 4.2 implies again (4.6).
So we have proved that (4.6) holds for any z ∈ ∂(Ω ∩ Ωτ), hence

u(z) − Q|τ| + 2⟨τ∗, z⟩ ≤ u(z + τ) + 2⟨τ∗, z⟩ ≤ u(z) + Q|τ| + 2⟨τ∗, z⟩.

etting M B Q + 2 supz∈Ω |z|, one has

u(z) − M|τ| ≤ u∗τ(z) ≤ u(z) + M|τ| for any z ∈ ∂(Ω ∩ Ωτ)

nd, by Corollary 3.14,

u(z) − M|τ| ≤ u∗(z) ≤ u(z) + M|τ| for L2n-a.e. z ∈ Ω ∩ Ω .
τ τ
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This is equivalent to

u(z) − M|τ| − 2⟨τ∗, z⟩ ≤ u(z + τ) ≤ u(z) + M|τ| − 2⟨τ∗, z⟩ for L2n-a.e. z ∈ Ω ∩ Ωτ

nd, setting K B M + 2 supz∈Ω |z|,

u(z) − K|τ| ≤ u(z + τ) ≤ u(z) + K|τ| for L2n-a.e. z ∈ Ω ∩ Ωτ.

Step 2. We claim that the inequality |u(z) − u(z̄)| ≤ K|z − z̄| holds for any Lebesgue points z, z̄ of u. We define
B z̄ − z; then Ω ∩ Ωτ , ∅ and, arguing as in Step 1, we obtain

|u(z′ + τ) − u(z′)| ≤ K|τ| for L2n-a.e. z′ ∈ Ω ∩ Ωτ.

et ρ > 0 be such that B(z, ρ) ⊂ Ω ∩ Ωτ and B(z̄, ρ) ⊂ Ω ∩ Ωτ; then

|u(z) − u(z̄)| =

⏐⏐⏐⏐⏐⏐limρ→0

(?
B(z,ρ)

u(z′)dz′ −
?

B(z̄,ρ)
u(z′)dz′

)⏐⏐⏐⏐⏐⏐
≤ lim
ρ→0

?
B(z,ρ)

⏐⏐⏐u(z′) − u(z′ + τ)
⏐⏐⏐ dz′ ≤ K|z − z̄|.

Step 3. We have proved that u, the maximum of the minimizer of Gφ,Ω , has a representative that is Lipschitz
continuous on Ω , with Lipschitz constant not greater than K = Q + 4 supz∈Ω |z|. The same argument leads to prove
that u, the minimum of the minimizers of Gφ,Ω , has a representative that is Lipschitz continuous on Ω , with Lipschitz
onstant not greater than K. The uniqueness criterion in Proposition 3.4 (with p = 1) implies that u = u L2n-a.e. on
. If u is another minimizer of Gφ,Ω , we have by Proposition 3.12 that u ≤ u ≤ u L2n-a.e. on Ω . This concludes

he proof. □

. The superlinear growth case

In this section we consider the functional defined in (3.15) by

GΩ (u) B
∫
Ω

g(∇u + X∗) dL2n, u ∈ φ +W1,1
0 (Ω ) (5.1)

here φ satisfies, as in the previous sections, the Bounded Slope Condition of order Q and g has superlinear growth.
Our aim is to show that, for the functional GΩ defined in (5.1), we can get both regularity and uniqueness results

sing again the Bounded Slope Condition and arguing with the same approach that we used for the BV case.

heorem 5.1. Let g :R2n → R be a convex function satisfying condition (A) and let φ :Ω → R satisfy the Bounded
lope Condition of order Q on the boundary of Ω . Assume also that g has superlinear growth, i.e., g(ξ) ≥ ψ(|ξ|)
or a suitable ψ : [0,+∞)→ R such that

lim
t→+∞

ψ(t)
t
= +∞.

hen the functional

GΩ (u) =
∫
Ω

g(∇u + X∗) dL2n, u ∈ φ +W1,1
0 (Ω ) (5.2)

as a unique Lipschitz minimizer, i.e.: there exists u ∈ φ + W1,∞
0 (Ω ) such that GΩ (u) ≤ GΩ (v) for every

∈ φ +W1,1
0 (Ω ).

roof. The superlinearity of g and the lower semicontinuity of GΩ imply the existence of u0 ∈ φ +W1,1
0 (Ω ) such

1,1
hat GΩ (u0) ≤ GΩ (u) for every u ∈ φ +W0 (Ω ).
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In the same spirit of the previous sections, we denote by Mφ = {v ∈ φ + W1,1
0 (Ω ) : GΩ (v) ≤ GΩ (u),∀u ∈

+W1,1
0 (Ω )}. Thanks to the superlinearity of g we can argue as in the proof of Proposition 3.12 to state that there

xist two functions u, u ∈Mφ such that for every u ∈Mφ

u(x) ≤ u(x) ≤ u(x) for a.e. x ∈ Ω .

e remark that the results contained in Sections 3 and 4 can be restated replacing the space BV(Ω ) with φ+W1,1
0 (Ω ).

ll the proofs in fact can be repeated and simplified dropping both the terms where Ds appears and those that take
nto account the jumps at the boundary. Hence we can conclude that u ∈ φ +W1,∞

0 (Ω ), where K = Q + 2 maxΩ |z|.
roposition 3.4 then leads to uniqueness of minimizers. □
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