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Abstract
We prove that in arbitrary Carnot groupsG of step 2, with a splittingG = W ·L with L one-
dimensional, the intrinsic graph of a continuous function ϕ : U ⊆ W → L is C1

H-regular
precisely when ϕ satisfies, in the distributional sense, a Burgers’ type system Dϕϕ = ω,
with a continuous ω. We stress that this equivalence does not hold already in the easiest
step-3 Carnot group, namely the Engel group. We notice that our results generalize previ-
ous works by Ambrosio-Serra Cassano-Vittone and Bigolin-Serra Cassano in the setting of
Heisenberg groups. As a tool for the proof we show that a continuous distributional solution
ϕ to a Burgers’ type system Dϕϕ = ω, with ω continuous, is actually a broad solution to
Dϕϕ = ω. As a by-product of independent interest we obtain that all the continuous distri-
butional solutions to Dϕϕ = ω, with ω continuous, enjoy 1/2-little Hölder regularity along
vertical directions.
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1 Introduction

Due to the multitude of applications, sub-Riemannian geometry has attracted a lot of atten-
tion in the mathematical community in the recent years. A sub-Riemannian manifold is a
generalization of Riemannian manifold for which the metric is induced by a smooth scalar
product only defined on a sub-bundle of the tangent bundle. The infinitesimal model of
a sub-Riemannian manifold, namely the class of its Gromov-Hausdorff tangents, is repre-
sented by the class of (quotients of) Carnot groups [29, 39]. Carnot groups are connected
and simply connected Lie groups G whose Lie algebra g admits a stratification, namely a
decomposition into nontrivial complementary linear subspaces V1, . . . , Vs such that

g = V1 ⊕ · · · ⊕ Vs, [Vj , V1] = Vj+1, for j = 1, . . . , s − 1, [Vs, V1] = {0},
where [Vj , V1] denotes the subspace of g generated by the commutators [X, Y ]withX ∈ Vj

and Y ∈ V1. Carnot groups have been studied from very different point of views such
as Differential Geometry [10], subelliptic Differential Equations [7, 21, 22, 38], Complex
Analysis [40] and Neuroimaging [12].

Concerning Geometric Measure Theory in the setting of Carnot groups, one of the most
studied problems in the past twenty years is represented by the rectifiability problem for
finite perimeter sets: is it possible to cover the boundary of a finite perimeter set with a
countable union of C1-regular surfaces? The answer to this question is affirmative in the
Euclidean case and it was studied in [17, 18] via a blow-up analysis. The proof of De
Giorgi has then been adapted in the framework of step-2 Carnot groups in [24, 25] and
then generalized to the so-called Carnot groups of type � in [35], see also the recent [30].
When dealing with Carnot groups of step 3 or higher, only partial results concerning this
question are available in the literature. One of the main difficulty is represented by the
fact that it is not known in general if C1 rectifiability is equivalent to a Lipschitz-type
rectifiability. Concerning Heisenberg groups, see [41] for a Rademacher-type theorem for
intrinsic Lipschitz graphs of any codimension. Different notions of rectifiability have also
been recently investigated, see [4, 19].

The rectifiability problem represents an example that underlines the importance of a fine
understanding of intrinsic surfaces inside Carnot groups. The study of different notions of
surfaces in Carnot groups has been quite extensive in the recent years and we mention [26]
for a definition of C1 regular submanifold in the Heisenberg groups, [20, 23] for intrinsic
Lipschitz graphs and their connection to C1-hypersurfaces, [34] for a notion of transversal
submanifold and [27, 33] for a notion of C1-surface with Carnot group target, but the list is
far from being complete.

We focus our attention on codimension-one intrinsic graphs. A codimension-one intrinsic
graph � inside a Carnot group G comes with a couple of homogeneous and complementary
subgroups W and L with L one-dimensional, see Section 2, and a map ϕ : U ⊆ W → L

such that � = {x ∈ G : x = w · ϕ(w),w ∈ U}. It turns out that the regularity of the
graph � is strictly related to the regularity of ϕ and its intrinsic gradient ∇ϕϕ, see Section 2.
As a geometric pointwise approach, we just say that ϕ is intrinsically differentiable if its
graph has a homogeneous subgroup as blow-up. However, one can define some different
notions of regularity that rely on some ϕ-dependent operators D

ϕ
W whenever W ∈ Lie(W),

see Definition 2.6. If an adapted basis of the Lie algebra (X1, . . . , Xn) is fixed and is such
that L := exp(span{X1}) and W := exp(span{X2, . . . , Xn}), then Dϕ is a vector valued
operator (D

ϕ
X2

, . . . , D
ϕ
Xm

) =: (D
ϕ
2 , . . . , D

ϕ
m). The regularity of � is related to the validity

of the equation Dϕϕ = ω in an open subset U ⊆ W, for some ω : U → R
m−1, which can

be understood in different ways. We briefly present some of them here.
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Distributional sense. Since L is one-dimensional, Dϕϕ is a well-defined distribu-
tion, see the last part of Definition 2.13. Thus we could interpret Dϕϕ = ω in the
distributional sense.
Broad* sense. For every j = 2, . . . , m and every point a ∈ U , there exists a C1 integral
curve of D

ϕ
Xj

starting from a for which the Fundamental Theorem of Calculus with
derivative ω holds, see Definition 2.13.
Broad sense. For every j = 2, . . . , m and every point a ∈ U , all the integral curves of
D

ϕ
Xj

starting from a are such that the Fundamental Theorem of Calculus with derivative
ω holds, see Definition 2.13.
Approximate sense. For every a ∈ U , there exist δ > 0 and a family {ϕε ∈
C1(B(a, δ)) : ε ∈ (0, 1)} such that ϕε → ϕ and D

ϕε

j ϕε → ωj uniformly on B(a, δ) as
ε goes to zero.

When G has step 2 and L is one-dimensional, the following theorem holds, see [3, The-
orem 6.17] for a proof and [3, Theorem 1.7] for an equivalent and coordinate-independent
statement. Notice that the statement of the result below needs a choice of coordinates as
explained in Section 2.2, see also Eq. 5. We also refer the interested reader to the prelim-
inary section of [3] for the notions used in the statement below that are not treated in the
current paper, i.e., the ones in items (a), (b), (c). We stress that we are not going to use these
items in the proof of the theorems of this paper.

Theorem 1.1 ([3, Theorem 6.17]) Let G be a Carnot group of step 2 and rank m, and let
W and L be two complementary subgroups of G, with L horizontal and one-dimensional.
Let U ⊆ W be an open set, and let ϕ : U → L be a continuous function. Then the following
conditions are equivalent

(a) graph(ϕ) is a C1
H-hypersurface with tangents complemented by L;

(b) ϕ is uniformly intrinsically differentiable on U ;
(c) ϕ is intrinsically differentiable on U and its intrinsic gradient is continuous;
(d) there exists ω ∈ C(U ;Rm−1) such that, for every a ∈ U , there exist δ > 0 and a

family of functions {ϕε ∈ C1(B(a, δ)) : ε ∈ (0, 1)} such that
lim
ε→0

ϕε = ϕ, and lim
ε→0

D
ϕε

j ϕε = ωj in L∞(B(a, δ)),

for every j = 2, . . . , m;
(e) there exists ω ∈ C(U ;Rm−1) such that Dϕϕ = ω in the broad sense on U ;
(f) there exists ω ∈ C(U ;Rm−1) such that Dϕϕ = ω in the broad* sense on U .

Moreover if any of the previous holds, ω is the intrinsic gradient of ϕ.

The main result of the current paper is given by the following implication

Dϕϕ = ω in the sense of distributions ⇒ Dϕϕ = ω in the broad* sense, (1)

in every Carnot group G of step 2 and for every continuous ϕ : U ⊆ W → L, with U open,
and ω ∈ C(U ;Rm−1) with L one-dimensional, see Theorem 4.1. This result allows us to
improve Theorem 1.1 adding a seventh equivalent condition to the list above1:

(g) there exists ω ∈ C(U ;Rm−1) such that Dϕϕ = ω holds in the distributional sense on
U .

1To complete the chain of implication one also needs (a) ⇒ (g) and this follows from [3, Proposition 4.10].
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Item (g) allows us to complete the chain of implications of Theorem 1.1 in the setting of
step-2 Carnot groups generalizing the results scattered in [5, 8, 9] where the authors study
the same problem in the Heisenberg groups, and [15, 16] where partial generalizations of
the results in [5, 8, 9] are obtained in the case of step-2 Carnot groups.

The strategy of the proof of Eq. 1 goes as follows. Given a Carnot group G of step 2,
we consider the free Carnot group F with step 2 and the same rank of G, see Section 2.3
for the precise choice of identifications. We show in Proposition 3.3 that if Dϕϕ = ω in
distributional sense inside G with some continuous ω ∈ C(U ;Rm−1), then also Dψψ =
ω◦π in the distributional sense in F, where ψ := (π |LF

)−1 ◦ϕ ◦π , and π : π−1(U) ⊆ F →
U ⊆ G is the projection of F ontoG, where the notation LF is explained, e.g., in Proposition
3.3. Then, we prove Proposition 3.2 that tells us that Dψψ = ω̃ in the distributional sense
in F with ω̃ ∈ C(π−1(U);Rm−1) implies that Dψψ = ω̃ in the broad* sense, which is
exactly implication in Eq. 1 in the setting of free Carnot groups of step 2. Finally, we prove
in Proposition 3.4 that Dψψ = ω ◦ π in the broad* sense in F implies Dϕϕ = ω in the
broad* sense in G. The global strategy of lifting the problem to the free Carnot groups
resembles the one used in [3, Section 6] and [31].

The main difficulty arises in the proof of Proposition 3.2 where we have to combine the
dimensional reduction given by Lemma 3.1 and the translation invariance of Proposition
2.12 to reduce ourselves to the Burgers’ equation of the first Heisenberg group, and then
apply the arguments used for this case in [14, Eqq. (3.4) and (3.5)] and [8, Step 1, proof
of Theorem 1.2]. We point out that this argument is essentially different by the one used
in [8]. One of the reasons for this is that the distributional equation Dϕϕ = ω in arbitrary
Carnot groups of step 2 has a significantly different structure compared to the one in the
Heisenberg groups. For example, consider a Carnot group of dimension 5, step 2 and rank 3
with Lie algebra g = span{X1, X2, X3, X4, X5}, horizontal layer V1 := span{X1, X2, X3}
and where the only nonvanishing commutators are given by [X1, X2] = X4 + X5 and
[X1, X3] = X4 − X5. Define, in exponential coordinates, W := {x1 = 0} and L := {x2 =
x3 = x4 = x5 = 0}. Then, given a continuous ϕ : U ⊆ W → L on an open set U , the
operators D

ϕ
j

:= D
ϕ
Xj

for j = 2, 3 have the following form, see Eq. 12,

D
ϕ
2 = ∂2 + ϕ∂4 + ϕ∂5,

D
ϕ
3 = ∂3 + ϕ∂4 − ϕ∂5,

which show a nonlinearity in two vertical directions, instead of only one as in the Heisenberg
groups.2

We remark that Proposition 3.2 and Theorem 4.1 have also an interesting PDE point of
view which allows to see the problem independently of the Carnot group structure. Indeed,
the theorem can be read to obtain the following regularity result. Assume that the Burg-
ers’ type system Dϕϕ = ω holds in the distributional sense for a continuous map ϕ and
with the continuous datum ω. Then, from each single equation of the system, we infer the
following property: for every j = 2, . . . , m, ϕ is (uniformly) Lipschitz continuous on all
the integral curves of the operator D

ϕ
j . In addition, the Fundamental Theorem of Calculus

with derivative ω holds on some particular local family of integral curves of D
ϕ
j , namely

the broad* condition holds, and as a consequence the Fundamental Theorem of Calculus
with derivative ω holds on all integral curves of D

ϕ
j , namely also the broad condition holds,

2In this case this double nonlinearity can be removed by considering the Lie algebra automorphism such that
�(X1) = X1, �(X2) = 1

2X2 + 1
2X3, �(X3) = 1

2X2 − 1
2X3. This is basically our idea of properly lifting

step-2 Carnot groups to free Carnot groups with the same rank.
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see (f)⇒(e) of Theorem 4.2. Moreover, when we consider all the equations together, we
obtain a remarkable piece of information: ϕ is 1/2-little Hölder continuous on the vertical
coordinates, see Theorem 4.7.

We remark that Theorem 1.1 complemented with (g) is optimal in step-2 Carnot groups
for the following reason. Already in the Engel group, which is the easiest step-3 Carnot
group, we can find a continuous map ϕ that solves Dϕϕ = ω in the sense of distributions for
a constant ω whose graph is not uniformly intrinsically differentiable (UID). We however
notice that we do not know at present to what extent implication in Eq. 1 holds in Carnot
groups of higher step, see Remark 4.5.

We briefly describe the situation in which ω is less regular. In the paper [6], the authors
show that, in Heisenberg groups, Dϕϕ = ω holds in the sense of distributions for some
ω ∈ L∞(U ;Rm−1) if and only if ϕ is intrinsically Lipschitz. The validity of Eq. 1 with
ω ∈ L∞(U ;Rm−1) in the setting of step-2 Carnot groups would open to a slightly modified
version of Theorem 1.1 where ω ∈ L∞(U ;Rm−1) and (a) is replaced by

(a’) graph(ϕ) is intrinsically Lipschitz for the splitting given by W and L.

This topic is out of the aims of this paper and will be target of future investigations.
We notice here that if a generalization of the a priori estimate [37, Lemma 3.1] would

hold in any step-2 Carnot group, then, arguing as explained in [3, Remark 4.13], we could
improve Theorem 1.1 replacing (d) with

(d’) There exists ω ∈ C(U ;Rm−1) and a family of functions {ϕε ∈ C1(U) : ε ∈ (0, 1)}
such that, for every compact set K ⊆ U and every j = 2, . . . , m, one has

lim
ε→0

ϕε = ϕ and lim
ε→0

D
ϕε

j ϕε = ωj in L∞(K).

We refer the reader to [3, Remark 4.13] for a discussion of the literature and of the difference
between item (d) and item (d’). We also remark that a smooth approximation that does not
involve the intrinsic gradient holds in any Carnot group for co-horizontal intrinsic Lipschitz
graphs, see [41, Theorem 1.6].

Intrinsic surfaces of higher codimensions have been studied in the Heisenberg groups in
[11, 13]. For what concerns the approach via distributional solutions, finding a meaning of
the distributional system Dϕϕ = ω in higher codimension is still open. The main difficulty
comes from the fact that it is not known how to give meaning to mixed terms of the form
ϕi∂xϕj . This was already noticed in [28, Remark 4.3.2]. A weak formulation that goes in this

direction is collected in [36], where the authors relate zero-level sets of maps inC
1,α
H (H;R2)

with curves that satisfy certain “Level Set Differential Equations”, see [36, Theorem 5.6].

2 Preliminaries

2.1 Carnot Groups

We give a very brief introduction to Carnot groups. We refer the reader to e.g., [7, 29, 39]
for a comprehensive introduction to Carnot groups. A Carnot group G is a connected and
simply connected Lie group, whose Lie algebra g is stratified. Namely, there exist subspaces
V1, . . . , Vs of the Lie algebra g such that

g = V1 ⊕ · · · ⊕ Vs, [Vj , V1] = Vj+1 ∀j = 1, . . . , s − 1, [Vs, V1] = {0}.
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The integer s is called step of the group G, while m := dim(V1) is called rank of G. We set
n := dim(G) to be the topological dimension of G. We equivalently denote by e or 0 the
identity element of the group G.

Every Carnot group has a one-parameter family of dilations that we denote by {δλ : λ >

0} defined as the unique linear maps on g such that δλ(X) = λjX, for every X ∈ Vj . We
denote by δλ both the dilations on G and on g, with the usual identification given by the
exponential map exp : g → G which is a global diffeomorphism.

We fix a homogeneous norm ‖·‖ onG that induces a distance, namely such that ‖δλx‖ =
λ‖x‖ for every λ > 0 and x ∈ G, ‖xy‖ ≤ ‖x‖ + ‖y‖ for every x, y ∈ G, ‖x‖ = ‖x−1‖ for
every x ∈ G, and ‖x‖ = 0 if and only if x = e. The norm ‖ · ‖ induces the left-invariant
homogeneous distance according to the equality d(x, y) := ‖y−1x‖, for every x, y ∈ G.
We denote with B(a, r) the open ball of center a and radius r > 0 according to this distance.
We stress that on a Carnot group a homogeneous norm that induces a distance always exists,
and every two left-invariant homogeneous distances are bi-Lipschitz equivalent.

Definition 2.1 (Complementary subgroups) Given a Carnot group G, we say that two sub-
groups W and L are complementary subgroups in G if they are homogeneous, i.e., closed
under the action of δλ for every λ > 0, G = W · L andW ∩ L = {e}.

We say that the subgroup L is horizontal and k-dimensional if there exist linearly
independent X1, . . . , Xk ∈ V1 such that L = exp(span{X1, . . . , Xk}). Given two comple-
mentary subgroupsW and L, we denote the projection maps from G ontoW and onto L by
πW and πL, respectively. Defining gW := πWg and gL := πLg for any g ∈ G, one has

g = (πWg) · (πLg) = gW · gL. (2)

Remark 2.2 IfW and L are complementary subgroups ofG and L is one-dimensional, then
it is easy to see that L is horizontal. For the sake of clarity, we will always write L horizontal
and one-dimensional even if one-dimensional is technically sufficient. Notice also that, if
W and L are complementary subgroups and L is horizontal, then W is a normal subgroup
of G.

Definition 2.3 (Adapted basis) Denote by nj := ∑j

i=1 dim(Vi), for j = 1, . . . , s and
n0 := 0. Observe that ns = n. We say that a basis (X1, . . . , Xn) of g is adapted if the
following facts hold

• For every j = 1, . . . , s, the set {Xnj−1+1, . . . , Xnj
} is a basis for Vj .

• For any j = 1, . . . , s, the vectors Xnj−1+1, . . . , Xnj
are chosen among linear

combinations of the iterated commutators of length j − 1 of the vectors X1, . . . , Xm.

Definition 2.4 (Exponential coordinates) Let G be a Carnot group of dimension n and let
(X1, . . . , Xn) be an adapted basis of its Lie algebra. The exponential coordinates of the first
kind associated with (X1, . . . , Xn) are given by the one-to-one correspondence

R
n ↔ G

(x1, . . . , xn) ↔ exp (x1X1 + . . . + xnXn) .

It is well known that this defines a diffeomorphism from R
n to G that allows us to identify

G with R
n.
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2.2 Carnot Groups of Step 2 in Exponential Coordinates.

We here introduce Carnot groups of step 2 in exponential coordinates. We adopt as a gen-
eral reference [7, Chapter 3], but the interested reader could also read the beginning of
[3, Subsection 6.2]. In this subsection G will always be an arbitrary Carnot group of step 2.

We denote with m the rank of G and we identify G with (Rm+h, ·) by means of
exponential coordinates associated with an adapted basis (X′

1, . . . , X
′
m, Y ′

1, . . . , Y
′
h) of

the Lie algebra g. In this coordinates, we will identify any point q ∈ G with q ≡
(x1, . . . , xm, y∗

1 , . . . , y
∗
h). The group operation · between two elements q = (x, y∗) and

q ′ = (x′, (y∗)′) is given by

q · q ′ =
(

x + x′, y∗ + (y∗)′ − 1

2
〈Bx, x′〉

)

, (3)

where 〈Bx, x′〉 := (〈B(1)x, x′〉, . . . , 〈B(h)x, x′〉) and B(i) are linearly independent and
skew-symmetric matrices in R

m×m, for i = 1, . . . , h. For any i = 1, . . . , h and any j, � =
1, . . . , m, we set (B(i))j� =: (b

(i)
j� ), and we stress that 〈B(i)x, x′〉 := ∑m

j,�=1 b
(i)
j� (x′)j x�. It

is standard to observe that in these coordinates we can write

X′
j (p) = ∂xj

− 1

2

h
∑

i=1

m
∑

�=1

b
(i)
j� x� ∂y∗

i
, for j = 1, . . . , m,

Y ′
i (p) = ∂y∗

i
, for i = 1, . . . , h.

We stress that the operation in Eq. 3 is precisely the one obtained by means of the Baker-
Campbell-Hausdorff formula in exponential coordinates of the first kind associated with the
adapted basis (X′

1, . . . , X
′
m, Y ′

1, . . . , Y
′
h). We also stress that

[X′
j , X

′
�] =

h
∑

i=1

b
(i)
j� Y ′

i , and [X′
j , Y

′
i ] = 0, ∀j, � = 1, . . . , m, and ∀i = 1, . . . , h,

(4)
so that it is clear that b

(i)
j� , with i = 1, . . . , h, and 1 ≤ j, � ≤ m, are the so-called structure

coefficients.
In the sequel we denote by WG and LG two arbitrary complementary subgroups

of G with LG horizontal and one-dimensional. Up to choosing a proper adapted basis
of the Lie algebra g, we may suppose that LG = exp(span{X′

1}) and WG =
exp(span{X′

2, . . . , X
′
m, Y ′

1, . . . , Y
′
h}). Thus, by means of exponential coordinates we can

identify WG and LG with R
m+h−1 and R, respectively, as follows

LG ≡ {(x1, 0 . . . , 0) : x1 ∈ R},
WG ≡ {(0, x2, . . . , xm, y∗

1 , . . . , y
∗
h) : xi, y

∗
k ∈ R for i = 2, . . . , m; k = 1, . . . h}. (5)

2.3 Free Carnot Groups of Step 2 in Exponential Coordinates.

We here introduce free Carnot groups of step 2 in exponential coordinates. We adopt as
a general reference [7, Chapter 3], but the interested reader could also read the begin-
ning of [3, Subsection 6.1]. In this subsection F will always denote a free Carnot group of
step 2 and rank m. Recall that the topological dimension of F is m + m(m−1)

2 and denote
by (X1, . . . , Xm, Y21, . . . , Ym(m−1)) an adapted basis of the Lie algebra of F such that
[X�,Xs] = Y�s for every 1 ≤ s < � ≤ m.
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If we set n := m + m(m−1)
2 , we can identify F with R

n by means of exponential
coordinates associated with the adapted basis (X1, . . . , Xm, Y21, . . . , Ym(m−1)). In this coor-
dinates, we will identify any point q ∈ F with q ≡ (x1, . . . , xm, y21, . . . , ym(m−1)). It is
readily seen that, in such coordinates, we have

Xj = ∂xj
+ 1

2

∑

j<�≤m

x�∂y�j
− 1

2

∑

1≤�<j

x�∂yj�
, if 1 ≤ j ≤ m,

Y�s = ∂y�s
, if 1 ≤ s < � ≤ m.

(6)

Moreover, for any q = (x, y) and q ′ = (x′, y′) in F, the product q · q ′ is given by the
Baker-Campbell-Hausdorff formula, and yields

(q · q ′)j = xj + x′
j , if 1 ≤ j ≤ m,

(q · q ′)�s = y�s + y′
�s + 1

2
(x�x

′
s − x′

�xs), if 1 ≤ s < � ≤ m.

2.4 Projection from F toG.

Fix a Carnot group G of step 2 and rank m as in Section 2.2 and let F be the free Carnot
group of rank m and step 2. By definition of free Carnot groups, there exists a Lie group
surjective homomorphism π : F → G such that

π∗(X�) = X′
�, (7)

for any � = 1, . . . , m, see e.g., [31, Section 6]. We identify F and G with R
n and R

m+h,
respectively, by means of exponential coordinates as explained above and in Section 2.2
and Section 2.3. From Eq. 7, jointly with the very definition of exponential coordinates, we
notice that for any (x, y) ∈ R

n, where x ∈ R
m and y ∈ R

m(m−1)/2, there exists y∗ ∈ R
h

such that

π(x, y) = (x, y∗). (8)

Since π is a Lie group homomorphism, its differential is a Lie algebra homomorphism.
Hence, for any 1 ≤ s < � ≤ m, we have that

π∗(Y�s) = π∗([X�,Xs]) = [π∗(X�), π∗(Xs)] = [X′
�, X

′
s] =

h
∑

i=1

b
(i)
�s Y ′

i ,

where we used Eqs. 4, and 7, and the fact that for 1 ≤ s < � ≤ m one has [X�,Xs] = Y�s .
We can therefore write the following formula

π(x1, . . . , xm, y21, . . . , ym(m−1)) = (x1, . . . , xm, y∗
1 , . . . , y

∗
h), where

y∗
i = ∑

1≤s<�≤m

b
(i)
�s y�s, ∀i = 1, . . . , h. (9)

Remark 2.5 (Main identification) Given a Carnot group G of step 2 and rank m, and the
free Carnot group F of step 2 and rank m we work in the coordinates of Section 2.2
and Section 2.3. Let WG and LG be two complementary subgroups of G, with LG one-
dimensional. Up to a proper choice of an adapted basis, we can assume we are working in
a basis in which Eq. 5 holds. Thus, taking into account Eq. 8, we are in a position to lift
WG and LG to two complementary subgroups WF and LF of F such that π|LF : LF → LG

is an isomorphism and π|WF
: WF → WG is onto. In this way we have the following
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identification

LF ≡ {(x1, . . . , xm, y21, . . . , ym(m−1)) ∈ R
n : x2 = · · · = xm = y21 = · · · = ym(m−1) = 0

}

,

WF ≡ {(x1, . . . , xm, y21, . . . , ym(m−1)) ∈ R
n : x1 = 0

}

.
(10)

2.5 Projected Vector Fields in Carnot Groups of Step 2

We recall here the definition of projected vector fields [3, Definition 3.1].

Definition 2.6 (Projected vector fields) Given two complementary subgroups W and L in
a Carnot group G, and a continuous function ϕ : U ⊆ W → L defined on an open set U of
W, we define, for every W ∈ Lie(W), the continuous projected vector field D

ϕ
W , by setting

(D
ϕ
W )|w (f ) := W|w·ϕ(w)

(f ◦ πW), (11)

for all w ∈ U and all f ∈ C∞(W). When W is an element Xj of an adapted basis
(X1, . . . , Xn) we also write D

ϕ
j

:= D
ϕ
Xj

.

Let us fix G a Carnot group of step 2 and rank m along with two complementary sub-
groups WG and LG such that LG is horizontal and one-dimensional. Assume we have
chosen a basis in such a way that Eq. 5 is satisfied. Take F the free step-2 Carnot group
of rank m and introduce WF and LF as in Remark 2.5. In this subsection we work in
exponential coordinates and we use the identifications and the coordinate representations
discussed in Sections 2.2, 2.3, and Remark 2.5. We recall that from the computations in
[3, Example 3.6 & Remark 6.9] the projected vector fields relative to a continuous function
ϕ : U ⊆ WG → LG, with U open, are given by

D
ϕ
j =∂xj

−
h
∑

i=1

(

b
(i)
j1ϕ + 1

2

m
∑

k=2

xkb
(i)
jk

)

∂y∗
i
=X′

j |U −
h
∑

i=1

b
(i)
j1ϕY ′

i |U , for j = 2, . . . , m,

D
ϕ
i = ∂y∗

i
= Y ′

i |U , for i = 1, . . . , h.
(12)

In the particular case of the free Carnot group F, given V ⊆ WF an open set, and given
a continuous map ψ : V ⊆ WF → LF, the projected vector fields are given by

D
ψ
j = ∂xj

− ψ∂yj1 + 1

2

∑

j<�≤m

x�∂y�j
− 1

2

∑

1<s<j

xs∂yjs
= Xj |V − ψYj1|V , for j = 2, . . . , m,

D
ψ
�s = ∂y�s

= Y�s |V , for 1 ≤ s < � ≤ m.
(13)

Then for each j = 2, . . . , m, every integral curve γj : I → WF ≡ R
n−1 of D

ψ
j defined on

an interval I ⊆ R has vertical components y := (y�s)1≤s<�≤m : I → R
m(m−1)

2 satisfying the
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following equations

ẏj1(t) = −ψ(x2, . . . , xj−1, xj + t, xj+1, . . . , xm, y(t)),

ẏ�j (t) = 1

2
x�, if j < � ≤ m,

ẏjs(t) = −1

2
xs, if 1 < s < j,

ẏ�s(t) = 0, otherwise,

(14)

where the horizontal components of γj (0) are (0, x2, . . . , xm).

Remark 2.7 (Projection on codimension-one subgroups in Carnot groups of step 2) Notice
that, if WG and LG are complementary subgroups defined as in Eq. 5, then πWG

: G ≡
R

m+h → WG ≡ R
m+h−1 is given by

πWG
(x1, . . . , xm, y∗

1 . . . , y∗
h) =

⎛

⎝0, x2, . . . , xm, . . . , y∗
i − 1

2

m
∑

j=1

b
(i)
j1xj x1, . . .

⎞

⎠ , with i = 1, . . . , h. (15)

Indeed, it is enough to observe that, thanks to the explicit expression of the product in Eq. 3,
the following equality holds:

πWG
(x1, . . . , xm, y∗

1 , . . . , y
∗
h) · (x1, 0, . . . , 0) = (x1, . . . , xm, y∗

1 , . . . , y
∗
h).

For every q ∈ G, we define the map

Pq : WG → WG

w �→ πWG
(q · w).

(16)

Set q = (q1, . . . , qm, qm+1, . . . , qm+h) ∈ G and w = (w1 := 0, w2, . . . , wm,

wm+1, . . . , wm+h) ∈ WG. By using Eqs. 15 and 3, one has, being i = 1, . . . , h, that the
following chain of equalities holds

Pq(w) = πWG
(q · w)

=
(

0, q2 + w2, . . . , qm + wm, . . . , qm+i + wm+i + 1

2

m
∑

j=1

m
∑

�=2

b
(i)
j� qj w� − 1

2

m
∑

j=1

b
(i)
j1 (qj + wj )q1, . . .

)

=
(

0, q2 + w2, . . . , qm + wm, . . . ,

. . . , qm+i + wm+i + 1

2

m
∑

j=1

m
∑

�=2

b
(i)
j� qjw� + 1

2

m
∑

�=2

b
(i)
1� w�q1 − 1

2

m
∑

�=2

b
(i)
�1 q�q1, . . .

)

=
(

0, q2 + w2, . . . , qm + wm, . . . ,

. . . , qm+i + wm+i + 1

2

m
∑

�=2

w�

⎛

⎝

m
∑

j=1

b
(i)
j� qj + b

(i)
1� q1

⎞

⎠− 1

2

m
∑

�=2

b
(i)
�1 q�q1, . . .

)

,

(17)

where we used the fact that the first component of w is zero and that B(i) is skew-symmetric
and therefore b

(i)
11 = 0. If we see Pq as a map from R

m+h−1 to R
m+h−1, the differential of

Pq at a point w ∈ W is identified with a (m+h−1)×(m+h−1) matrix with the following
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components

(dPq)(w)ii = 1, ∀i = 1, . . . , m + h − 1,

(dPq)(w)m+i−1,�−1 =
⎛

⎝

m
∑

j=2

1

2
b

(i)
j� qj + b

(i)
1� q1

⎞

⎠ , ∀i = 1, . . . , h; � = 2, . . . , m,

(dPq)(w)j� = 0, otherwise.
(18)

In particular, det(dPq)(w) = 1 for any w ∈ W.

2.6 Invariance Properties of Projected Vector Fields

We collect here some invariance properties that we will use later on. We introduce the
operation of q-translation of a function.

Definition 2.8 (Intrinsic graph of a function) Given two complementary subgroups W and
L of a Carnot groupG, and a function ϕ : U ⊆ W → L, we define the graph of ϕ by setting

graph(ϕ) := {�(w) := w · ϕ(w) : w ∈ U} = �(U).

Definition 2.9 (Intrinsic translation of a function) Given two complementary subgroupsW
and L of a Carnot group G and a map ϕ : U ⊆ W → L, we define, for every q ∈ G,

Uq := {a ∈ W : πW(q−1 · a) ∈ U},
and ϕq : Uq ⊆ W → L by setting

ϕq(a) :=
(

πL(q−1 · a)
)−1 · ϕ

(

πW(q−1 · a)
)

. (19)

Notice that Uq = Pq(U), where Pq is defined as in Eq. 16. This easily comes from the
fact that for every q ∈ G Pq ◦ Pq−1 = IdW, see e.g., the proof of Proposition 2.12.

The following invariance properties with respect to intrinsic translations are matter of
simple computations. The complete proofs can be found in [3, Proposition 2.10] and [3,
Lemma 3.13], respectively.

Proposition 2.10 ([3, Proposition 2.10]) Let W and L be two complementary subgroups
of a Carnot group G and let ϕ : U ⊆ W → L be a function. Then, for every q ∈ G, the
following facts hold.

(a) graph(ϕq) = q · graph(ϕ);
(b) (ϕq)q−1 = ϕ;

(c) If W is normal, then Uq = qW · (qL · U · (qL)−1
)

and

ϕq(a) = qL · ϕ((qL)−1 · q−1
W

· a · qL),

for any a ∈ Uq ;
(d) If q = ϕ(a)−1 · a−1 for some a ∈ U , then

ϕq(e) = e.

Lemma 2.11 ([3, Lemma 3.13]) LetW andL be two complementary subgroups of a Carnot
group G, with L k-dimensional and horizontal and let ϕ : U ⊆ W → L be a continuous
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function defined on U open. Take W ∈ Lie(W), and let us denote Dϕ := D
ϕ
W . Let T > 0,

w ∈ W, and let γ : [0, T ] → U be a C1-regular solution of the Cauchy problem
{

γ ′(t) = Dϕ ◦ γ (t),

γ (0) = w.
(20)

Then for every q ∈ G there exists a unique C1 map γq : [0, T ] → Uq such that

πW(q−1 · γq(t)) = γ (t), ∀t ∈ [0, T ]. (21)

In addition, γq is a solution of the Cauchy problem

{

γ ′
q(t) = Dϕq ◦ γq(t),

γq(0) = qW · qL · w · (qL)−1.
(22)

Moreover the following equality holds

ϕq(γq(0))−1 · ϕq(γq(t)) = ϕ(γ (0))−1 · ϕ(γ (t)), ∀t ∈ [0, T ]. (23)

In the following proposition we prove the invariance of being a distributional solution
with respect to q-translation.

Proposition 2.12 LetW and L be two complementary subgroups of a step-2 Carnot group
G with L one-dimensional. Let � be an open set in W and let ω ∈ L1

loc(�). Let us choose
coordinates on G as explained in Section 2.2, see also Eq. 5. Assume that for some � =
2, . . . , m the map ϕ : U → L is a distributional solution of the equation D

ϕ
� ϕ = ω on U .

Then, for every q ∈ G, the map ϕq defined in Definition 2.9 is a distributional solution of

D
ϕq

� ϕq = ω ◦ Pq−1 ,

on the open set Pq(�).

Proof By item (c) of Proposition 2.10, we know that in exponential coordinates ϕq(w) =
q1+ϕ(Pq−1(w)), where Pq−1 is defined in Eq. 16. Indeed, sinceW is normal, the following
equality holds

Pq−1(w) = πW(q−1 · w) = πW((qL)−1 · (qW)−1 · w · qL · (qL)−1) = q−1 · w · qL. (24)

Moreover we claim Pq−1 = P −1
q , for all q ∈ G. Indeed, since W is normal, the following

equality holds

Pq(w) = πW(q ·w) = πW(q ·w · q−1 · qW · qL) = q ·w · q−1 · qW = q ·w · (qL)−1, (25)

and hence it is clear by comparing Eqs. 24 and 25 that Pq ◦ Pq−1 = Pq−1 ◦ Pq = IdW, for
all q ∈ G. Moreover notice that from item (c) of Proposition 2.10 and Eq. 25 we get that

Pq(�) = �q, for all q ∈ G. (26)

For every ξ ∈ C∞
c (Pq(�)), using Eq. 12 we can write the action of the distribution D

ϕq

� ϕq

on ξ , where we mean that the coordinates are w = (x2, . . . , xm, y∗
1 , . . . , y

∗
h) ∈ W, as
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follows

〈Dϕq

� ϕq, ξ 〉 =
∫

Pq(�)

⎛

⎝−ϕq

∂ξ

∂x�

+ 1

2

h
∑

i=1

b
(i)
�1 ϕ2

q

∂ξ

∂y∗
i

+ 1

2

h
∑

i=1

m
∑

j=2

xjb
(i)
�j ϕq

∂ξ

∂y∗
i

⎞

⎠ dw

=
∫

Pq(�)

(

−(q1 + ϕ ◦ Pq−1)
∂ξ

∂x�

+ 1

2

h
∑

i=1

b
(i)
�1 (q1 + ϕ ◦ Pq−1)

2 ∂ξ

∂y∗
i

)

dw

+
∫

Pq(�)

⎛

⎝

1

2

h
∑

i=1

m
∑

j=2

xjb
(i)
�j (q1 + ϕ ◦ Pq−1)

∂ξ

∂y∗
i

⎞

⎠ dw

=
∫

Pq(�)

(

−ϕ ◦ Pq−1
∂ξ

∂x�

+
h
∑

i=1

b
(i)
�1

[

1

2
(ϕ ◦ Pq−1)

2 + q1ϕ ◦ Pq−1

]

∂ξ

∂y∗
i

)

dw

+
∫

Pq(�)

⎛

⎝

1

2

h
∑

i=1

m
∑

j=2

xjb
(i)
�j (ϕ ◦ Pq−1)

∂ξ

∂y∗
i

⎞

⎠ dw,

(27)
where in the third equality we used the fact that ξ has compact support in Pq(�) and q1
does not depend on w. Taking into account that, by Remark 2.7, det(dPq) = 1 everywhere
on W, we perform in Eq. 27 the change of variable w′ = Pq−1(w). Thus, recalling that
Pq ◦ Pq−1 = IdW, and by exploiting Eq. 17, we obtain the following equality

〈Dϕq

� ϕq, ξ 〉 =
∫

�

(

−ϕ
∂ξ

∂x�

◦ Pq +
h
∑

i=1

b
(i)
�1

[

1

2
ϕ2 + q1ϕ

]

∂ξ

∂y∗
i

◦ Pq

)

dw

+
∫

�

⎛

⎝

1

2

h
∑

i=1

m
∑

j=2

(xj + qj )b
(i)
�j ϕ

∂ξ

∂y∗
i

◦ Pq

⎞

⎠ dw.

(28)

We can now use Eq. 18 to compute the derivatives of ξ ◦ Pq as follows

∂

∂x�

(ξ ◦ Pq) = ∂ξ

∂x�

◦ Pq +
h
∑

i=1

⎛

⎝

m
∑

j=2

1

2
b

(i)
j� qj + b

(i)
1� q1

⎞

⎠

∂ξ

∂y∗
i

◦ Pq, ∀� = 2, . . . , m,

∂

∂y∗
i

(ξ ◦ Pq) = ∂ξ

∂y∗
i

◦ Pq, ∀i = 1, . . . , h.

(29)

By using Eqs. 29 into 28 we get

〈Dϕq

� ϕq, ξ〉 =
∫

�

−ϕ

⎛

⎝

∂(ξ ◦ Pq)

∂x�

−
h
∑

i=1

⎛

⎝

m
∑

j=2

1

2
b

(i)
j� qj + b

(i)
1� q1

⎞

⎠

∂(ξ ◦ Pq)

∂y∗
i

⎞

⎠ dw

+
∫

�

h
∑

i=1

⎛

⎝b
(i)
�1

[

1

2
ϕ2 + q1ϕ

]

+ 1

2

m
∑

j=2

(xj + qj )b
(i)
�j ϕ

⎞

⎠

∂(ξ ◦ Pq)

∂y∗
i

dw

=
∫

�

⎛

⎝−ϕ
∂(ξ ◦ Pq)

∂x�

+ 1

2

h
∑

i=1

b
(i)
�1 ϕ2 ∂(ξ ◦ Pq)

∂y∗
i

+ 1

2

h
∑

i=1

m
∑

j=2

xj b
(i)
�j ϕ

∂(ξ ◦ Pq)

∂y∗
i

⎞

⎠ dw

= 〈Dϕ
� ϕ, ξ ◦ Pq 〉,
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where, in order to write the second equality, we used that the matrices B are skew-
symmetric. Now, exploiting the last identity, the assumption and the fact that for every
ξ ∈ C∞

c (Pq(�)) we have ξ ◦ Pq ∈ C∞
c (�), we conclude

〈Dϕq

� ϕq, ξ 〉 = 〈Dϕ
� ϕ, ξ ◦ Pq〉 =

∫

�

ω(ξ ◦ Pq) dw =
∫

Pq(�)

(ω ◦ Pq−1)ξ dw,

where in the last equality we changed the variables and exploited the fact that det(dP(q)) =
1. By the arbitrariness of ξ ∈ C∞

c (Pq(�)), the proof is complete.

2.7 Broad, Broad* and Distributional Solutions of Dϕϕ = ω

We recall the following definition as a particular case of [3, Section 3.4, Definition 3.24].
For discussions about the dependence of the definition of broad* regularity on the cho-
sen adapted basis, that is not important for this paper, we refer the interested reader to
[3, Remark 3.26 & Remark 4.4].

Definition 2.13 (Broad*, broad and distributional solutions) Let W and L be complemen-
tary subgroups of a Carnot group G, with L one-dimensional. Let U ⊆ W be open and
let ϕ : U → L be a continuous function. Consider an adapted basis (X1, . . . , Xn) of the
Lie algebra of G such that L = exp(span{X1}) and W = exp(span{X2, . . . , Xn}). Let
ω := (

ωj

)

j=2,...,m : U → R
m−1 be a continuous function. Up to identifying L with R by

means of exponential coordinates, we say that ϕ ∈ C(U) is a broad* solution of Dϕϕ = ω

in U if for every a0 ∈ U there exist 0 < δ2 < δ1 such that B(a0, δ1) ∩ W ⊆ U and there
exist m − 1 maps E

ϕ
j : (B(a0, δ2) ∩ W) × [−δ2, δ2] → B(a0, δ1) ∩ W for j = 2, . . . , m,

satisfying the following two properties.

(a) For every a ∈ B(a0, δ2) ∩ W and every j = 2, . . . , m, the map E
ϕ
j (a) := E

ϕ
j (a, ·) is

C1-regular and it is a solution of the Cauchy problem
{

γ̇ = D
ϕ
j ◦ γ,

γ (0) = a,

in the interval [−δ2, δ2], where the vector field D
ϕ
j

:= D
ϕ
Xj

is defined in Eq. 11.

(b) For every a ∈ B(a0, δ2)∩W, for every t ∈ [−δ2, δ2], and every j = 2, . . . , m one has

ϕ(E
ϕ
j (a, t)) − ϕ(a) =

∫ t

0
ωj (E

ϕ
j (a, s)) ds.

Moreover, we say that Dϕϕ = ω in the broad sense on U if for every W ∈ Lie(W) ∩ V1
and every γ : I → U integral curve of D

ϕ
W , it holds that

d

ds |s=t

(ϕ ◦ γ )(s) = 〈ω(γ (t)),W 〉, ∀t ∈ I,

where 〈ω, W 〉 is the standard scalar product on R
m−1 in exponential coordinates.

Finally, let us notice that, for every j = 2, . . . m, D
ϕ
j is a continuous vector field with

coefficients that might depend polinomially on ϕ and on some of the coordinates, see
Section 2.5 for the case in whichG is of step 2, that is the only one treated in this paper, and
[3, Proposition 3.9] for the general case. We say that Dϕϕ = ω holds in the distributional
sense on U if for every j = 2, . . . , m one has D

ϕ
j ϕ = ωj in the distributional sense. Notice
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that the distribution (D
ϕ
j )ϕ is well defined since the coefficients of D

ϕ
j just contain polyno-

mial terms in ϕ and terms depending on the coordinates. The interested reader could read
[3, Item (a) of Proposition 4.10]. For the aims of this paper, we stress that when we write
ϕ∂xϕ for a continuous ϕ we mean the distribution 1/2∂x(ϕ

2).

3 Reduction of theMain Theorems to Free Carnot Groups of Step 2

In this section we analyze the link between distributional and broad* solutions to Dϕϕ =
ω with a continuous datum ω. We first show that a distributional solution of Dϕϕ = ω

with a continuous datum ω is a broad* solution inside free Carnot groups F of step 2,
see Proposition 3.2 (b). In this proof, a crucial role is played by the particular structure of
the projected vector fields inside free Carnot groups of step 2, which produces Burgers’
type operators in higher dimensions, see Eq. 13. Indeed, combining the invariance result in
Proposition 2.12 and the dimensional reduction of Lemma 3.1, we can reduce ourselves to
deal with the Burgers’ distributional equation with continuous datum on the first Heisenberg
group H

1, and then exploit the arguments used by Dafermos in [14] and by Bigolin and
Serra Cassano in [8].

Secondly, by the fact that we can write the explicit expression of the projection π from
F to a Carnot group G of step 2 of the same rank, we prove that being a distributional
solution to Dϕϕ = ω on G lifts to F, see Proposition 3.3. Finally, Proposition 3.4 states
that the notion of broad* solution is preserved by π , i.e., a broad* solution on F becomes
a broad* solution on G. The resulting strategy resembles the one used in [31]. The forth-
coming lemma is a variation of the Fundamental Theorem of Calculus of Variations, i.e., du
Bois-Reymond’s lemma. We provide the complete proof of the forthcoming lemma for the
reader’s convenience.

Lemma 3.1 Let n1, n2, k ∈ N and let � be an open set in R
n1+n2+k . Let f0, f1, . . . , fn1 ∈

C(�) and assume that, for every ϕ ∈ C∞
c (�), one has

∫∫∫

(

f0(x, y, z)ϕ(x, y, z) +
n1
∑

i=1

fi(x, y, z)
∂ϕ

∂xi

(x, y, z)

)

dx dy dz = 0,

where (x, y, z) ∈ R
n1 × R

n2 × R
k . Then, for every z0 ∈ R

k such that �0 := {(x, y) ∈
R

n1 × R
n2 : (x, y, z0) ∈ �} is nonempty, and any ϕ̂ ∈ C∞

c (�0), one has

∫∫

(

f0(x, y, z0)ϕ̂(x, y) +
n1
∑

i=1

fi(x, y, z0)
∂ϕ̂

∂xi

(x, y)

)

dx dy = 0.

Proof By translation invariance, we can assume without loss of generality that z0 = 0. Up
to iterate the argument k times, we can also assume without loss of generality that k = 1.
Let ϕ̂ := ϕ̂(x, y) be such that supt(ϕ̂) � �0. Choose ε0 > 0 small enough and consider, for
any ε ∈ (0, ε0], the map ϕε(x, y, z) := 1

2ε ϕε
0(z)ϕ̂(x, y) with supt(ϕε

0) ⊆ [−ε − ε2, ε + ε2],
ϕε
0 ≥ 0 and ϕε

0 = 1 on [−ε, ε], and such that supt(ϕ̂) × supt(ϕε0
0 ) � �. Then, by the

hypothesis and Fubini’s Theorem we may write

1

2ε

∫ ε+ε2

−ε−ε2
ϕε
0(z)

(

∫∫

(

f0(x, y, z)ϕ̂(x, y) +
n1
∑

i=1

fi(x, y, z)
∂ϕ̂

∂xi

(x, y)

)

dx dy

)

dz = 0.

(30)



G. Antonelli et al.

Notice that the function

F(z) :=
∫∫

(

f0(x, y, z)ϕ̂(x, y) +
n1
∑

i=1

fi(x, y, z)
∂ϕ̂

∂xi

(x, y)

)

dx dy,

is continuous on [−ε0 − ε20, ε0 + ε20]. We can then decompose the left-hand side of Eq. 30
in the following way

1

2ε

∫ ε+ε2

−ε−ε2
ϕε
0(z)F (z) dz = 1

2ε

∫ ε

−ε

F (z) dz + 1

2ε

∫

[−ε−ε2,ε+ε2]\[−ε,ε]
ϕε
0(z)F (z) dz. (31)

Since ϕε
0 ≤ 1, we have

∣

∣

∣

∣

1

2ε

∫

[−ε−ε2,ε+ε2]\[−ε,ε]
ϕε
0(z)F (z) dz

∣

∣

∣

∣

≤ M
ε2

ε
= Mε,

where M is the maximum of |F | in [−ε0 − ε20, ε0 + ε20]. Letting ε → 0 in Eq. 31, the thesis
follows by means of the continuity of F at 0.

Proposition 3.2 Let F be the free Carnot group of step 2, rankm and topological dimension
n, and let W and L be two complementary subgroups of F such that L is one-dimensional.
Let � be an open subset ofW and ψ : � → L be a continuous function. Choose an adapted
basis and exponential coordinates on F as in Section 2.3, see also Eq. 10. Assume there
exists ω ∈ C(�;Rm−1) such that Dψψ = ω holds in the distributional sense on �. Then,
the following facts hold.

(a) For every j = 2, . . . , m and for every integral curve γ : [0, T ] → � of Dψ
j , the map

ψ ◦ γ : [0, T ] → L is Lipschitz and the Lipschitz constant only depends on j and ω.
(b) Dψψ = ω holds in the broad* sense on �.

Proof Preliminary dimensional reduction. Fix j = 2, . . . , m. Assume 0 ∈ �, ψ(0) = 0
and D

ψ
j ψ = ωj in the sense of distributions on �. Taking Eq. 13 into account, this amounts

to saying that

∫

⎛

⎝−ψ∂xj
ϕ + ψ2

2
∂yj1ϕ − 1

2

∑

j<�≤m

x�ψ∂y�j
ϕ + 1

2

∑

1<s<j

xsψ∂yjs
ϕ

⎞

⎠ dL n−1 =
∫

ϕωj dL
n−1,

(32)

for every ϕ ∈ C∞
c (�). Since ψ and ω are continuous, we are in a position to apply Lemma

3.1 to the variables z = (x2, . . . , xj−1, xj+1, . . . , xm) at x0
2 = · · · = x0

j−1 = x0
j+1 =

· · · = x0
m = 0. More precisely n1 is the number of variables that are differentiated, namely

{xj , yj1, y�j , yjs : j < � ≤ m, 1 < s < j}, k = m − 2 and n2 is the number of remaining
variables. Equation 32 then becomes
∫ (

−ψ(0, . . . , 0, xj , 0, . . . , 0, y)∂xj
ϕ(xj , y) + ψ2

2
(0, . . . , 0, xj , 0, . . . , 0, y)∂yj1ϕ(xj , y)

)

dxj dy

=
∫

ωj (0, . . . , 0, xj , 0, . . . , 0, y)ϕ(xj , y) dxj dy, (33)

for any ϕ ∈ C∞
c (˜�), where ˜� := {(xj , y) ∈ R × R

m(m−1)/2 : (0, . . . , 0, xj , 0 . . . , 0, y) ∈
�}. Let us apply again Lemma 3.1 with n1 = 2 being the number of variables along which
the test ϕ is differentiated in Eq. 33, namely xj and yj1, n2 = 0, and k being the number of
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the remaining variables ys� with � < s ≤ m and (s, �) �= (j, 1). We apply the Lemma 3.1
at values y0

s� = 0 and we get
∫ (

−̂ψ(xj , yj1)∂xj
ϕ(xj , yj1) + ̂ψ2

2
(xj , yj1)∂yj1ϕ(xj , yj1)

)

dxj dyj1

=
∫

ω̂j (xj , yj1)ϕ(xj , yj1) dxj dyj1, (34)

for every ϕ ∈ C∞
c (̂�) with ̂� := {(xj , yj1) ∈ R

2 : (0, . . . , 0, xj , 0, . . . , 0, yj1, 0, . . . , 0) ∈
�}, where

̂ψ(xj , yj1) := ψ(0, . . . , 0, xj , 0, . . . , 0, yj1, 0, . . . , 0),

ω̂j (xj , yj1) := ωj (0, . . . , 0, xj , 0, . . . , 0, yj1, 0, . . . , 0).
(35)

Observe that the dimensional reduction shown above can be performed in the same way to
the distributional equation Dψq ψq = ω ◦ Pq−1 in the set Pq(�), where for any w ∈ � we
have set q = (w · ψ(w))−1 and the map ψq is defined in Definition 2.9. Indeed in this case,
if w ∈ �, then by item (c) of Proposition 2.10 we have 0 ∈ Pq(�) and, thanks to item (d)
of Proposition 2.10, ψq(0) = 0.

(a) It is sufficient to show that, for any 2 ≤ j ≤ m, there exists a constant C > 0 such
that

|ψ(γ (T )) − ψ(γ (0))| ≤ CT,

whenever γ : [0, T ] → � is an integral curve of D
ψ
j with γ (0) = w, where w is any point

in �.
Fix 2 ≤ j ≤ m. We first assume 0 ∈ � with ψ(0) = 0 and we consider an integral curve

γ : [0, T ] → � of D
ψ
j such that γ (0) = 0.

Taking Eqs. 13 and 14 into account, we can explicitly write all the components of γ (t)

as follows:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

γj (t) = t,

γj1(t) = −∫ t

0
̂ψ(τ, γj1(τ )) dτ,

γi(t) = 0, ∀i = 1, . . . , m, i �= j,

γ�s(t) = 0, ∀(�, s) with 1 ≤ s < � ≤ m and (�, s) �= (j, 1),

where ̂ψ is defined in Eq. 35. We can thus define γ̂ : [0, T ] → R
2 by letting γ̂ (t) :=

(t, γj1(t)). By the same choice of test functions given in [14, Equations (2.5) and (2.6)],
from Eq. 34 we can derive

∫ γj1(T )

γj1(T )−ε

̂ψ(T , x) dx −
∫ 0

−ε

̂ψ(0, x) dx −
∫ T

0

∫ γj1(t)

γj1(t)−ε

ω̂j (t, x) dx dt

= −1

2

∫ T

0

(

̂ψ(t, γj1(t) − ε) − ̂ψ(t, γj1(t))
)2

dt,

(36)

for every sufficiently small ε > 0, see [14, Equation (3.4)] with the choice g = ω̂j , u = ̂ψ ,
σ = 0, τ = T , ξ = γj1 and the change of sign of the right hand side with respect to the
reference comes by the fact that in our case f (u) = − 1

2u
2 instead of f (u) = 1

2u
2. Since

the right hand side of Eq. 36 is negative, we can write
∫ γj1(T )

γj1(T )−ε

̂ψ(T , x) dx −
∫ 0

−ε

̂ψ(0, x) dx≤
∫ T

0

∫ γj1(t)

γj1(t)−ε

ω̂j (t, x) dx dt ≤ ε‖ωj‖L∞(�)T .
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Dividing both sides by ε and letting ε → 0, by the continuity of ψ we get

̂ψ(T , γj1(T )) − ̂ψ(0, 0) ≤ ‖ωj‖L∞(�)T . (37)

Similarly, by mimicking [14, Equation (3.5)] we can write for every sufficiently small ε > 0
the equation

∫ γj1(T )+ε

γj1(T )

̂ψ(T , x) dx −
∫ ε

0

̂ψ(0, x) dx −
∫ T

0

∫ γj1(t)+ε

γj1(t)

ω̂j (t, x) dx dt

= 1

2

∫ T

0

(

̂ψ(t, γj1(t) + ε) − ̂ψ(t, γj1(t))
)2

dt .

Noticing that the right hand side is positive one gets
∫ γj1(T )+ε

γj1(T )

̂ψ(T , x) dx −
∫ ε

0

̂ψ(0, x) dx≥
∫ T

0

∫ γj1(t)+ε

γj1(t)

ω̂j (t, x) dx dt ≥ −ε‖ωj‖L∞(�)T .

Dividing both sides by ε and letting ε → 0 we get

̂ψ(T , γj1(T )) − ̂ψ(0, 0) ≥ −‖ωj‖L∞(�)T . (38)

Combining Eqs. 37 and 38 we finally obtain

|̂ψ(T , γj1(T ))−̂ψ(0, 0)| = |̂ψ(γ̂ (T ))−̂ψ(γ̂ (0))| = |ψ◦γ (T )−ψ◦γ (0)| ≤ ‖ωj‖L∞(�)T ,

for any integral curve γ : [0, T ] → � of D
ψ
j with γ (0) = 0.

For the general case, assume w ∈ � and let γ : [0, T ] → � be an integral curve of D
ψ
j

with γ (0) = w. Setting q := (w · ψ(w))−1, by Lemma 2.11 and in particular Eq. 23, there

exists an integral curve γq : [0, T ] → Pq(�) of D
ψq

j such that γq(0) = 0 and

ψq(γq(t)) − ψq(γq(0)) = ψ(γ (t)) − ψ(γ (0)), ∀t ∈ [0, T ]. (39)

We also know by Proposition 2.1 that D
ψq

j ψq = ωj ◦ Pq−1 in the distributional sense in
Pq(�). Since w ∈ �, then 0 ∈ Pq(�) and ψq(0) = 0, see items (c) and (d) of Proposition
2.10. We can therefore run the same argument used in the preliminary dimensional reduction
and the first part of (a) to ψq , Pq(�), γq and ωj ◦ Pq−1 , to get that

|ψq ◦ γq(T ) − ψq ◦ γq(0)| ≤ ‖ωj ◦ Pq−1‖L∞(Pq (�))T .

The proof of (a) is complete if we use Eq. 39 and we observe that the Lipschitz constant is
uniform by the fact that

‖ωj‖L∞(�) = ‖ωj ◦ Pq−1‖L∞(Pq (�)).

(b) Fix a0 ∈ �, 2 ≤ j ≤ m and let δ1 > 0 be such that B(a0, 2δ1) ∩ W ⊆ �. Up to
reducing δ1, recalling the explicit expression of Pq in Eq. 16, we can assume that for every
w ∈ B(a0, δ1) ∩W one has B(0, 2δ1) ∩W ⊆ Pq(�) where, as before, q := (w · ψ(w))−1.

Let w ∈ B(a0, δ1) ∩ W. From the fact that D
ψ
j ψ = ωj in the distributional sense on

�, we conclude that D
ψq

j ψq = ωj ◦ Pq−1 in the distributional sense on Pq(�), where

q := (w · ψ(w))−1, see Proposition 2.12. Moreover 0 ∈ Pq(�) and ψq(0) = 0, see
items (c) and (d) of Proposition 2.10. Thus from the preliminary result on the reduction

of dimension, see Eq. 34 and Eq. 35, we conclude that D
̂ψq

j
̂ψq = ̂ωj ◦ Pq−1 holds in the

distributional sense on P̂q(�). Here we recall that by D
̂ψq

j we mean the classical Burgers’

operator ∂j −̂ψq∂j1 on the open subset P̂q(�) of R2 := {(xj , yj1) : xj , yj1 ∈ R}.
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Then we exploit this information and the argument in [8, Step 1 of proof of Theorem 1.2]
to find 0 < δ2 < δ1 and a C1-smooth integral curve γ̂ : [−δ2, δ2] → B(0, δ1) ∩ P̂q(�) of

D
̂ψq

j such that γ̂ (0) = 0 and

̂ψq(γ̂ (t)) −̂ψq(γ̂ (0)) =
∫ t

0
( ̂ωj ◦ Pq−1) (γ̂ (s)) ds, ∀t ∈ [−δ2, δ2]. (40)

Moreover, by the same argument used in [8, Step 1 of proof of Theorem 1.2], we can choose
δ2 := min{δ1/4, δ1/(2Mq)}, where Mq := sup

B(0,2δ1)∩P̂q (�)
|̂ψq |. In particular, if w ∈

B(a0, δ1)∩W and δ1 is small enough, Mq has a uniform bound depending on the supremum
of ψ in some a priori fixed neighborhood of a0, since ψq is explicit in terms of q, see item
(c) of Proposition 2.10. As a consequence, up to eventually reducing and fixing δ1, δ2 has
a positive lower bound independent of q = (w · ψ(w))−1, when we allow w to run in
B(a0, δ1) ∩ W. We still denote this lower bound with δ2.

Recalling Eq. 14 and the first part of the proof of item (a), we can write γ̂ (t) = (t, γj1(t))

for some γj1 : [−δ2, δ2] → R. For any w ∈ B(a0, δ1) ∩ W we can hence define a w-
dependent γ : [−δ2, δ2] → B(0, δ1) ∩ W ⊆ Pq(�) by letting

γ (t) := (0, . . . , 0, t, 0, . . . , 0, γj1(t), 0, . . . , 0), ∀t ∈ [−δ2, δ2]. (41)

Then, since γ (0) = 0, from the particular expression of D
ψq

j , see Eqs. 13 and 14, and by

the fact that γ̂ is an integral curve of D
̂ψq

j , we get that γ is an integral curve of D
ψq

j , and
from Eqs. 41, 40, and Eq. 35 the following equality holds

ψq(γ (t)) − ψq(γ (0)) =
∫ t

0
(ωj ◦ Pq−1)(γ (s)) ds, ∀t ∈ [−δ2, δ2].

Thanks to Lemma 2.11 and to item (b) of Proposition 2.10, we can translate the integral
curve γ to an integral curve γq−1 : [−δ2, δ2] → � of D

ψ
j with γq−1(0) = w, such that,

exploiting Eq. 23, the following equality holds

ψq(γ (t))−ψq(γ (0)) = ψ(γq−1(t))−ψ(γq−1(0)) =
∫ t

0
ωj (γq−1(s)) ds, ∀t ∈ [−δ2, δ2],

where the last equality is true since Pq−1 ◦ γ = γq−1 , see Eq. 21 and Eq. 16. Thus we have
shown that if we fix a0 ∈ �, j = 2, . . . , m, and δ1 sufficiently small, we can find δ2

such that for every w ∈ B(a0, δ1) there exists an integral curve γ : [−δ2, δ2] → � of
D

ψ
j such that γ (0) = w and

ψ(γ (t)) − ψ(γ (0)) =
∫ t

0
ωj (γ (s)) ds, ∀t ∈ [−δ2, δ2].

By the continuity of ψ this suffices to conclude that Dψψ = ω in the broad* sense on �,
see Definition 2.13.

Proposition 3.3 LetG be a Carnot group of step 2, rank m and topological dimension m+
h, and let WG and LG be two complementary subgroups of G, with LG one-dimensional.
Let F be the free Carnot group of step 2, and rank m and topological dimension n, and
choose coordinates on G and F as explained in Remark 2.5. Denote with WF and LF the
complementary subgroups of F with LF one-dimensional such that π(WF) = WG and
π|LF := LF→LG, see Eq. 10. Let U be an open set inWG and denote by V ⊆ WF the open
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set defined by V := π−1(U). Let ϕ : U → LG be a continuous map and let ψ : V → LF

be the map defined as

ψ := (π|LF )−1 ◦ ϕ ◦ π|V .

Assume there exists ω ∈ C(U ;Rm−1) such that Dϕϕ = ω holds in the distributional sense
on U .

Then, ψ is a distributional solution to Dψψ = ω ◦ π on V .

Proof Fix j = 2, . . . , m. Let us identify any element in WG with (x∗, y∗) where x∗ ∈
R

m−1 and y∗ ∈ R
h, and let us identify any element inWF with (x, y) where x ∈ R

m−1 and
y ∈ R

m(m−1)/2. Then, taking Eq. 12 into account, we have that

∫

U

(

−ϕ
∂ξ

∂x∗
j

+ 1

2

h
∑

i=1

b
(i)
j1ϕ

2 ∂ξ

∂y∗
i

+ 1

2

h
∑

i=1

m
∑

�=2

x∗
� b

(i)
j� ϕ

∂ξ

∂y∗
i

)

dx∗ dy∗ =
∫

U

ωj ξ dx
∗ dy∗,

(42)
for every ξ ∈ C∞

c (U). Hence, by exploiting Eq. 13, we would like to show that

〈Dψ
j ψ,˜ξ 〉 :=

∫

V

⎛

⎝−ψ
∂˜ξ

∂xj

+ 1

2
ψ2 ∂˜ξ

∂yj1
− 1

2

∑

j<�≤m

x�ψ
∂˜ξ

∂y�j

+ 1

2

∑

1<s<j

xsψ
∂˜ξ

∂yjs

⎞

⎠ dx dy

=
∫

V

(ωj ◦ π)˜ξ dx dy,

(43)
for every˜ξ ∈ C∞

c (V ). We consider the change of variables in WF ≡ R
n−1 given by

(

x∗
2 , . . . , x

∗
m, y∗

1 , . . . , y
∗
h, ŷ∗

h+1, . . . , ŷ
∗
m(m−1)

2

)�
:= M

(

x2, . . . , xm, y21, . . . , ym(m−1)
)�

,

M being a matrix of order n − 1 defined as

M :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Im−1 0 . . . 0
0 b

(1)
21 . . . b

(1)
m(m−1)

...
...

. . .
...

... b
(h)
21 . . . b

(h)
m(m−1)

0 ˜M

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (44)

where Im−1 is the identity matrix of order m − 1 and ˜M is a (
m(m−1)

2 − h) × m(m−1)
2 matrix

such that M is invertible. We denote the elements of ˜M by b
(i)
�s with 1 ≤ s < � ≤ m

and i = h + 1, . . . , m(m−1)
2 . Such a matrix ˜M exists thanks to the fact that the matrices

B(1), . . . ,B(h) as in Eq. 3 are linearly independent and then the matrix
⎛

⎜

⎜

⎝

b
(1)
21 . . . b

(1)
m(m−1)

...
. . .

...
b

(h)
21 . . . b

(h)
m(m−1)

⎞

⎟

⎟

⎠

,



Distributional Solutions of Burgers’ type Equations for Intrinsic Graphs...

has maximum rank equal to h. Denote for shortness x∗ := (x∗
2 , . . . , x

∗
m),

y∗ := (y∗
1 , . . . , y

∗
h) and ŷ∗ := (ŷ∗

h+1, . . . , ŷ
∗
m(m−1)

2

). By Eq. 9 we get that, for every

(0, x2, . . . , xm, y21, . . . , ym(m−1)) ∈ V , the following equality holds

ψ(x2, . . . , xm, y21, . . . , ym(m−1)) = ϕ

⎛

⎝x2, . . . , xm,
∑

1≤s<�≤m

b
(1)
�s y�s , . . . ,

∑

1≤s<�≤m

b
(h)
�s y�s

⎞

⎠

= ϕ
(

x∗, y∗) .

Given˜ξ ∈ C∞
c (V ), we define ξ(x∗, y∗, ŷ∗) := ˜ξ ◦ M−1(x∗, y∗, ŷ∗)� ∈ C∞

c (M(V )), and
then, by using the chain rule in order to write the partial derivatives of˜ξ with respect to ξ ,
we can write

〈Dψ
j ψ,˜ξ 〉 =

∫

dŷ∗
∫ (

−ϕ
∂ξ

∂x∗
j

+ 1

2
ϕ2

h
∑

i=1

b
(i)
j1

∂ξ

∂y∗
i

− 1

2

∑

j<�≤m

h
∑

i=1

b
(i)
�j x∗

� ϕ
∂ξ

∂y∗
i

+ 1

2

∑

1<s<j

h
∑

i=1

b
(i)
js x∗

s ϕ
∂ξ

∂y∗
i

)

1

|det(M)| dx
∗ dy∗

+
∫

m(m−1)
2
∑

i=h+1

⎛

⎝

1

2
ϕ2b

(i)
j1 − 1

2

∑

j<�≤m

b
(i)
�j x∗

� ϕ + 1

2

∑

1<s<j

b
(i)
js x∗

s ϕ

⎞

⎠

∂ξ

∂ŷ∗
i

1

|det(M)| dx
∗ dy∗ dŷ∗

=
∫

dŷ∗
∫

(

−ϕ
∂ξ

∂x∗
j

+ 1

2
ϕ2

h
∑

i=1

b
(i)
j1

∂ξ

∂y∗
i

+ 1

2

m
∑

k=2

h
∑

i=1

b
(i)
jk x∗

k ϕ
∂ξ

∂y∗
i

)

1

|det(M)| dx
∗ dy∗,

(45)

where 1/|det(M)| is the determinant of the change of variables; we stress that in the last
equality we used the fact that B(i) is a skew-symmetric matrix for every i = 1, . . . , h, and

∫

m(m−1)
2
∑

i=h+1

⎛

⎝

1

2
ϕ2b

(i)
j1 − 1

2

∑

j<�≤m

b
(i)
�j x∗

� ϕ + 1

2

∑

1<s<j

b
(i)
js x∗

s ϕ

⎞

⎠

∂ξ

∂ŷ∗
i

1

|det(M)| dx
∗ dy∗ dŷ∗

=:
∫

m(m−1)
2
∑

i=h+1

Ai(x
∗, y∗) ∂ξ

∂ŷ∗
i

1

|det(M)| dx
∗ dy∗ dŷ∗ = 0,

because ξ ∈ C∞
c (M(V )), together with the use of Fubini’s Theorem and the fact that the

terms of Ai(x
∗, y∗) only depend on the variables x∗ and y∗.

Since, by construction, the projection of M(V ) onto the variables (x∗, y∗) is precisely
π(V ) = U , we get that ξ(·, ŷ∗

0 ) ∈ C∞
c (U) for every ŷ∗

0 ∈ R
m(m−1)/2−h, and thus by using

Eq. 42 and Fubini’s Theorem, we get

〈Dψ
j ψ,˜ξ〉 =

∫

dŷ∗
∫

ωj ξ
1

|det(M)| dx
∗ dy∗ =

∫

ωj ξ
1

|det(M)| dx
∗ dy∗ dŷ∗.

Finally, if we consider the reversed change of variables (x2, . . . , xm, y21, . . . , ym(m−1))
� =

M−1(x∗, y∗, ŷ∗)� where M−1 is the inverse matrix of M , see Eq. 44, and recalling Eq. 9,
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it follows

〈Dψ
j ψ,˜ξ 〉 =

∫

ωj

⎛

⎝x,
∑

1≤s<�≤m

b
(1)
�s y�s, . . . ,

∑

1≤s<�≤m

b
(h)
�s y�s

⎞

⎠˜ξ(x, y)
|det(M)|
|det(M)| dx dy.

=
∫

(ωj ◦ π)(x, y)˜ξ(x, y) dx dy,

(46)
for every˜ξ ∈ C∞

c (V ), where |det(M)| is the determinant of the change of variables. Hence
Eq. 43 holds and the proof is complete.

Proposition 3.4 LetG be a Carnot group of step 2, rankm and topological dimensionm+h

and let WG and LG be two complementary subgroups of G, with LG one-dimensional. Let
F be the free Carnot group of step 2, rank m and topological dimension n, and choose coor-
dinates on G and F as explained in Remark 2.5. Denote by WF and LF the complementary
subgroups of F with LF one-dimensional such that π(WF) = WG and π|LF := LF→LG,
see Eq. 10. Let U be an open set in WG and denote with V ⊆ WF the open set defined
by V := π−1(U). Let ϕ : U → LG be a continuous map and let ψ : V → LF be the map
defined as

ψ := (π|LF )−1 ◦ ϕ ◦ π|V .

Assume there exists ω ∈ C(U ;Rm−1) such that Dψψ = ω ◦ π holds in the broad* sense
on V . Then, ϕ is a broad* solution to Dϕϕ = ω on U .

Proof In order to give the proof of the statement we first show the following intermediate
result: for every j = 2, . . . , m, every point q := (0, x2, . . . , xm, y21, . . . , ym(m−1)) ∈ V ,

and every integral curve γ : [0, T ] → V ofDψ
j starting from q we have that π◦γ : [0, T ] →

U is an integral curve of D
ϕ
j starting from π(q) =: (0, x2, . . . , xm, y∗

1 , . . . , y
∗
h), see Eq. 8.

Moreover we stress that from Eq. 9 we have y∗
i =∑1≤s<�≤m b

(i)
�s y�s , for all i = 1, . . . , h.

Take an integral curve γ : [0, T ] → U of D
ψ
j starting from q. Then, the vertical compo-

nents of γ satisfy the system of ODEs in Eq. 14, while the horizontal components stay the
same apart from the j -th component for which γj (t) = xj + t for every t ∈ [0, T ]. From
the explicit expression of the projection in Eqs. 8 and 9, we can write the vertical compo-
nents of π ◦ γ as a linear combination of the vertical components of γ , while the horizontal
components stay the same. Then, exploiting the ODEs in Eq. 14, taking the derivatives of
those linear expressions, and by using the definition of ψ in terms of ϕ in the statement, one
simply obtains that π ◦ γ : [0, T ] → U is an integral curve of D

ϕ
j starting from π(q). We

omit the simple computations since they are similiar to the ones already done before.
In order to conclude, notice that, from the relation between ψ and ϕ in the statement, we

obtain the following equivalence

ϕ(π ◦ γ (t)) − ϕ(π ◦ γ (0)) =
∫ t

0
ωj (π ◦ γ (s)) ds ⇔ ψ(γ (t)) − ψ(γ (0)) =

∫ t

0
(ωj ◦ π)(γ (s)) ds, (47)

for every integral curve γ : [0, T ] → V of D
ψ
j , with j = 2, . . . , m, and every t ∈ [0, T ].

Thus, from the previous observation on the projection of the integral curves and the equiva-
lence in Eq. 47, we get the thesis by taking into account that the definition of broad* solution
in Definition 2.13 is local.
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4 Main Theorems

We are ready to prove the main theorem of this paper, by making use of the invariance results
proved in Section 3. We stress that the following theorem is the converse of [3, Corollary
6.15].

Theorem 4.1 Let G be a Carnot group of step 2 and rank m, and let W and L be two
complementary subgroups of G, with L horizontal and one-dimensional. Let U ⊆ W be
an open set, and let ϕ : U → L be a continuous function. Choose coordinates on G as
explained in Section 2.2, see also Eq. 5. Assume there exists ω ∈ C(U ;Rm−1) such that
Dϕϕ = ω holds in the distributional sense on U . Then Dϕϕ = ω holds in the broad* sense
on U .

Proof It directly follows by joining together Proposition 3.3, Proposition 3.2, and Proposi-
tion 3.4.

By making use of the previous theorem and [3, Theorem 6.17] we obtain the following
characterization of C1

H-hypersurfaces in Carnot groups of step 2. For the notion of intrinsic
differentiabilty we refer the interested reader to [3, Definition 2.17], while for the notion of
intrinsic gradient we refer the interested reader to [3, Definition 2.20 & Remark 2.21]. For
the definition of C1

H-hypersurface we refer the interested reader to [25, Definition 1.6]. For
a detailed account on the latter notion we refer the interested reader to the introduction of
[3] and in particular to [3, Definition 2.27] for the definition of co-horizontal C1

H-regular
surfaces with complemented tangents.

Theorem 4.2 Let G be a Carnot group of step 2 and rank m, and let W and L be two
complementary subgroups of G, with L horizontal and one-dimensional. Let U ⊆ W be an
open set and let ϕ : U → L be a continuous function. Choose coordinates onG as explained
in Section 2.2, see also Eq. 5. Then the following conditions are equivalent:

(a) graph(ϕ) is a C1
H-hypersurface with tangents complemented by L;

(b) ϕ is uniformly intrinsically differentiable on U ;
(c) ϕ is intrinsically differentiable on U and its intrinsic gradient is continuous;
(d) there exists ω ∈ C(U ;Rm−1) such that, for every a ∈ U , there exist δ > 0 and a

family of functions {ϕε ∈ C1(B(a, δ)) : ε ∈ (0, 1)} such that
lim
ε→0

ϕε = ϕ and lim
ε→0

D
ϕε

j ϕε = ωj in L∞(B(a, δ)),

for every j = 2, . . . , m;
(e) there exists ω ∈ C(U ;Rm−1) such that Dϕϕ = ω holds in the broad sense on U ;
(f) there exists ω ∈ C(U ;Rm−1) such that Dϕϕ = ω holds in the broad* sense on U ;
(g) there exists ω ∈ C(U ;Rm−1) such that Dϕϕ = ω holds in the distributional sense on

U .

Moreover, if any of the previous holds, ω is the intrinsic gradient of ϕ.

Proof The equivalence between (a),(b),(c),(d),(e), and (f) follows form [3, Theorem 6.17].
The implication (g)⇒(f) follows from Theorem 4.1, where Theorem 4.1 is the one in the
paper. The implication (b)⇒(g) follows from [3, Item (c) of Proposition 4.10].
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Remark 4.3 (Intrinsic normal and area formula) We stress that if any of the hypotheses in
Theorem 4.2 is satisfied, we can write the intrinsic normal to graph(ϕ) and an area formula
for graph(ϕ) explicitly in terms of the intrinsic gradient ω, see [3, Item (d) of Proposition
4.10 and Remark 4.11].

Remark 4.4 (Approximation of a distributional solution to Dϕϕ = ω) The approximating
sequence in item (d) of Theorem 4.2 is a priori dependent on the point a ∈ U we choose.
This happens because in order to obtain [3, Theorem 6.17], from which Theorem 4.2 fol-
lows, we use [3, Item (b) of Proposition 4.10], in which the approximating sequence is
constructed in a way that is a priori dependent on the point a ∈ U . Nevertheless the upgrade
of such approximation from a local one on balls to an approximation on arbitrary compact
sets, with a sequence of functions that is not dependent on the compact set itself, is very
likely to be true in the setting of Carnot groups of step 2 by exploiting the same technique
explained in [3, Remark 4.13] and based on [37]. Since this topic does not fit in this paper
we will not treat it here, and it will subject of further investigations.

Remark 4.5 (Counterexample to Theorem 4.2 on the Engel group) Consider the
Engel group E, i.e., the Carnot group whose Lie algebra e admits an adapted basis
(X1, X2, X3, X4) such that

e := span{X1, X2} ⊕ span{X3} ⊕ span{X4},
where [X1, X2] = X3, and [X1, X3] = X4. We identify E with R

4 by means of expo-
nential coordinates, and we define the couple of homogeneous complementary subgroups
W := {x1 = 0}, and L := {x2 = x3 = x4 = 0} in such coordinates. Then, by explicit
computations that can be found in [28, Section 4.4.1], we get that, for a continuous function
ϕ : U ⊆ W → L, with U open, the projected vector fields onW are

D
ϕ
X2

= ∂x2 + ϕ∂x3 + ϕ2

2
∂x4 , D

ϕ
X3

= ∂x3 + ϕ∂x4 , D
ϕ
X4

= ∂x4 . (48)

Thus, if we consider the function ϕ(0, x2, x3, x4) := x
1/3
4 on W, we get that D

ϕ
X2

ϕ =
1
6∂x4(ϕ

3) = 1
6 in the distributional sense on W. On the other hand ϕ : W → L is not

uniformly intrinsically differentiable, since it is not 1/3-little Hölder continuous along the
coordinate x4, see Definition 4.6, while for a function to be uniformly intrinsically differen-
tiable this is a necessary condition, see [3, Example 5.3] and [3, (a)⇒(c) of Theorem 4.17].
Then we conclude that the chain of equivalences of Theorem 4.2 cannot be extended already
in the easiest step-3 Carnot group.

Nevertheless we do not know whether Theorem 4.1 holds in some cases beyond the
setting of step-2 Carnot groups. In particular we do not know whether Theorem 4.1 holds
in the Engel group with the splitting previously discussed. Interesting develpoments in the
direction of studying whether distributional solutions to Burgers’ type equations with non-
convex fluxes are also broad solutions are given in [2] and [1].

We conclude with the following Hölder property that happens to be a consequence of ϕ

being a distributional solution to Dϕϕ = ω with a continuous datum ω. For the purpose, we
here recall the definition of little Hölder continuity.

Definition 4.6 (little Hölder functions, [32]) Let U ⊆ R
n be an open set. We denote by

hα(U ;Rk) the set of all α-little Hölder continuous functions of order 0 < α < 1, i.e., the
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set of maps ϕ ∈ C(U ;Rk) satisfying

lim
r→0

(

sup

{ |ϕ(b′) − ϕ(b)|
|b′ − b|α : b, b′ ∈ U , 0 < |b′ − b| < r

})

= 0. (49)

Theorem 4.7 Let G be a Carnot group of step 2 and rank m, and let W and L be two
complementary subgroups of G, with L horizontal and one-dimensional. Let U ⊆ W be an
open set and let ϕ : U → L be a continuous function. Choose coordinates onG as explained
in Section 2.2, see also Eq. 5. If one of the items of Theorem 4.2 holds, then ϕ is 1/2-little
Hölder continuous along the vertical coordinates on every open subset U ′ � U .

Proof It is a consequence of Theorem 4.2 and [3, Remark 3.23 & Theorem 6.12].
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