The irreducible control property in matrix groups

Jan Draisma ${ }^{\text {a,b,*,1 }}$
${ }^{\text {a }}$ Mathematical Institute, University of Bern, Sidlerstrasse 5, 3012 Bern,
Switzerland
${ }^{\mathrm{b}}$ Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands

A R T I C L E I N F O

Article history:

Received 2 June 2020
Accepted 23 October 2021
Available online 27 October 2021
Submitted by L.-H. Lim

MSC:

15A23
14L35

Keywords:
Matrix factorisations
Matrix groups

Abstract

This paper concerns matrix decompositions in which the factors are restricted to lie in a closed subvariety of a matrix group. Such decompositions are of relevance in control theory: given a target matrix in the group, can it be decomposed as a product of elements in the subvarieties, in a given order? And if so, what can be said about the solution set to this problem? Can an irreducible curve of target matrices be lifted to an irreducible curve of factorisations? We show that under certain conditions, for a sufficiently long and complicated such sequence, the solution set is always irreducible, and we show that every connected matrix group has a sequence of oneparameter subgroups that satisfies these conditions, where the sequence has length less than 1.5 times the dimension of the group.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

[^0]
1. Two motivating examples

1.1. $\mathrm{SL}_{2}(\mathbb{C})$ generated by two groups of shear mappings

It is well known that every matrix g in the group $\mathrm{SL}_{2}(\mathbb{C})$ of complex 2×2-matrices with determinant 1 can be written as a product of matrices of the following forms:

$$
x_{1}(a)=\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right] \text { and } x_{2}(a)=\left[\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right] \text { for } a \in \mathbb{C}
$$

which represent shears along the x-axis and along the y-axis, respectively. Let $X_{i}:=$ $\left\{x_{i}(a) \mid a \in \mathbb{C}\right\}$, an additive one-parameter subgroup of $\mathrm{SL}_{2}(\mathbb{C})$.

This paper concerns the variety of all factorisations of a target matrix g as a product of matrices in the X_{i}, in a prescribed order, where repetitions are allowed. Since $\operatorname{dim} \mathrm{SL}_{2}(\mathbb{C})=3$, we need at least three factors to reach all elements of $\mathrm{SL}_{2}(\mathbb{C})$. For $a, b, c \in \mathbb{C}$ we compute

$$
x_{1}(a) x_{2}(b) x_{1}(c)=\left[\begin{array}{cc}
1+a b & a+c+a b c \tag{1}\\
b & 1+b c
\end{array}\right]=:\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]
$$

We can recover a, b, c as rational functions in x, y, z, u :

$$
b=z, \quad c=(w-1) / z, \text { and } a=(x-1) / z
$$

This implies, first, that the image of the multiplication map $\mu_{121}: X_{1} \times X_{2} \times X_{1} \rightarrow$ $\mathrm{SL}_{2}(\mathbb{C})$ is three-dimensional, hence dense in $\mathrm{SL}_{2}(\mathbb{C})$; and second, that any matrix $g \in$ $\mathrm{SL}_{2}(\mathbb{C})$ with $g_{21} \neq 0$ has precisely one pre-image. Matrices with $g_{21}=0$ and g_{11}, g_{22} not both 1 are not in the image of the multiplication map. Summarising, the multiplication map is dominant (has dense image) and birational (has generic fibres of cardinality 1); but it is not surjective.

This can be remedied by adding another factor: the multiplication map $\mu_{1212}: X_{1} \times$ $X_{2} \times X_{1} \times X_{2} \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ is surjective, since an arbitrary element of $\mathrm{SL}_{2}(\mathbb{C})$ can be rightmultiplied by some element $x_{2}(-a)$ from $X_{2}^{-1}=X_{2}$-which corresponds to subtracting a times the second column from the first- to make sure that the entry at position $(2,1)$ becomes nonzero, so that the product is in im μ_{121}.

However, the map μ_{1212} has another undesirable feature: certain fibres are not irreducible. For instance, the solution set to the system of equations

$$
x_{1}(a) x_{2}(b) x_{1}(c) x_{2}(d)=\left[\begin{array}{cc}
1+a b+a d+c d+a b c d & a+c+a b c \\
b+d+b c d & 1+b c
\end{array}\right]=I
$$

is the union of the two lines in \mathbb{C}^{4} with equations $b=d=a+c=0$ and $c=a=b+d=0$. When designing a system where the control parameters a, b, c, d should vary with the
target matrix g, it is desirable that pre-images of irreducible varieties are irreducible themselves.

As we will see later in $\S 4.1$, the multiplication map μ_{12121} still has his undesirable behaviour, but the multiplication map μ_{121212} and those for longer words do not: for those, the pre-image of any irreducible variety is irreducible. Note that the order of the factors is important here; e.g., since $X_{1} \cdot X_{1}=X_{1}$, the image of μ_{111222} is the same as that of μ_{12}, and only two-dimensional.

Our goal is to show that this behaviour is quite typical for collections of subvarieties $\left(X_{a}\right)_{a \in A}$ of a matrix group G : under suitable conditions, for sufficiently long and sufficiently complicated words w over the index set A, the corresponding multiplication map μ_{w} has the property that the pre-image of any irreducible variety is irreducible. It follows, for instance, that any irreducible curve worth of matrices g can be lifted to an irreducible curve worth of factorisations.

1.2. The ULU-decomposition

Let $L, U \subseteq \mathrm{GL}_{n}(\mathbb{C})$ be the groups of invertible lower-triangular matrices and of upper-triangular matrices with 1's on the diagonal, respectively. By the classical LUdecomposition, the multiplication map

$$
L \times U \rightarrow \mathrm{GL}_{n}(\mathbb{C})
$$

is an isomorphism of varieties with the open subset of $\mathrm{GL}_{n}(\mathbb{C})$ where all leading principal subdeterminants are nonzero. To reach all invertible matrices, one usually adds a factor from the finite group of permutations matrices. Here, instead, we add another factor U, and will prove the following fact.

Proposition 1. The multiplication map

$$
\mu: U \times L \times U \rightarrow \mathrm{GL}_{n}(\mathbb{C})
$$

is surjective, and, moreover, the preimage $\mu^{-1}(X)$ of every irreducible variety $X \subseteq$ $G L_{n}(\mathbb{C})$ is irreducible.

Observe that the variety on the left-hand side has dimension

$$
n^{2}+\binom{n}{2}<1.5 \cdot \operatorname{dim} \mathrm{GL}_{n}(\mathbb{C})
$$

This is not a coincidence; see Theorem 8 .

Organisation

The structure of this paper is as follows. In Section 2 we introduce the general setting and state our main results, Theorem 7 and Theorem 8. We also formulate a useful application, Proposition 6, about lifting curves of matrices to curves of factorisations. In Section 3 we prove Theorem 7, Proposition 1, and various intermediate results of independent interest. Finally, Section 4 contains the worked-out example of $\mathrm{SL}_{2}(\mathbb{C})$; an example with symplectic groups discussed in [2]; and a proof of Theorem 8.

2. Introduction and results

Let G be a complex algebraic group and let $\left(X_{a}\right)_{a \in A}$ be a collection of irreducible subvarieties of G, each containing the unit element $1 \in G$. Without loss of generality [1, Proposition I.1.10], G is a closed subgroup of some $\mathrm{GL}_{n}(\mathbb{C})$ defined by the vanishing of some polynomial equations in the n^{2} matrix entries. But we will not need this concrete realisation of G as a matrix group.

Denote by A^{*} the set of finite sequences (words) over the index set A. Each $w=$ $w_{1} \ldots w_{l} \in A^{*}$ gives rise to a multiplication map

$$
\mu_{w}: X_{w}:=X_{w_{1}} \times \cdots \times X_{w_{l}} \rightarrow G, \quad\left(x_{1}, \ldots, x_{l}\right) \mapsto x_{1} \cdots x_{l}
$$

Assume that for all $a \in A$ there exists some $b \in A$ such that $\left(X_{a}\right)^{-1}=X_{b}$, and that the $\left(X_{a}\right)_{a \in G}$ together generate G as a group.

Definition 2. A word w is called dominant/surjective/birational if the map μ_{w} has the corresponding property. The word w is called irreducible if of all irreducible, closed subsets $Y \subseteq G$ the pre-image $\mu_{w}^{-1}(Y)$ is irreducible in X_{w}.

In this definition, μ_{w} and w are called birational if for g in an open dense subset of G the pre-image in X_{w} consists of a single point.

By [1, Proposition I.2.2], surjective words exist; in particular, since the X_{a} are irreducible, our assumptions imply that G is a connected algebraic group (for algebraic groups, this is equivalent to being irreducible [1, Proposition I.1.2]).

Throughout the text, except where stated otherwise, topological terms will refer to the Zariski topology, where the closed sets in G are defined by regular functions (restrictions of polynomials in the concrete model of G as a closed subgroup of $\mathrm{GL}_{n}(\mathbb{C})$). However, the image of μ_{w} is constructible by Chevalley's theorem [1, Corollary AG11.10.2], and therefore its closure in the Zariski topology is the same as its closure in the Euclidean topology. In particular, μ_{w} is dominant in the Zariski topology if and only if it is dominant in the Euclidean topology.

There is one notable exception to the rule that topological terms refer to the Zariski topology, which we state now:

Definition 3. A word w is called open if the map μ_{w} is open in the Euclidean topology.

If μ_{w} is open in the Euclidean topology, and if U is a Zariski-open subset of X_{w}, then $\mu_{w}(U)$ is Zariski-constructible and Euclidean-open, and therefore Zariski-open. Hence μ_{w} is also open in the Zariski topology, and therefore, since G is irreducible in the Zariski topology, dominant. But in our proofs we will really use the Euclidean notion of openness: the image of any open ball is open.

We have the following implications for a word $w \in A^{*}$ and its map μ_{w} :

birational		irreducible
		\Downarrow
	open	surjective
\Downarrow	\Downarrow	U
	mina	

For the implication irreducible \Rightarrow surjective we observe that the pre-image of any point under μ_{w} must be irreducible, hence in particular nonempty. Indeed, irreducible varieties, like connected topological spaces, are by definition nonempty.

Example 4. For the subgroups X_{1}, X_{2} of $\mathrm{SL}_{2}(\mathbb{C})$ in $\S 1.1$, the word 12 is not dominant, and the word 121 is dominant and birational. The map μ_{121} is locally open around points $\left(x_{1}(a), x_{2}(b), x_{1}(c)\right) \in X_{121}$ where $b \neq 0$, as there its derivative has full rank 3 ; this is immediate from (1). But it is not open around the remaining points; e.g., no neighbourhood of $\left(x_{1}(0), x_{2}(0), x_{1}(0)\right)$ is mapped onto a neighbourhood of I-indeed, no open neighbourhood of I is in the image of μ_{121}. So 121 is not open. As we have seen, the word $(1,2,1,2)$ is surjective but not irreducible. It is open; see $\S 4.1$, where also longer words are discussed.

We now introduce the key notion in this paper.

Definition 5. We say that the collection $\left(X_{a}\right)_{a \in A}$ has the irreducible control property if there exists a word u such that each word containing u as a consecutive sub-word is irreducible.

For the one-parameter subgroups X_{1}, X_{2} of $\mathrm{SL}_{2}(\mathbb{C})$ from $\S 1.1$, the word 121212 has the property required of u in the definition; see $\S 4.1$. So $\left(X_{i}\right)_{i=1,2}$ has the irreducible control property.

We use the term "control" because we can think, for each word $w \in A^{*}$, of the arguments of $\mu_{w}: X_{w} \rightarrow G$ as parameters that we have control over and that we want to tune so as to obtain a target element $g \in G$. The irreducible control property is clearly desirable: it tells us that for words $w=w_{1} \ldots w_{l}$ containing u, the solution set to the system of equations

$$
x_{1} \cdots x_{l} \in Y \text { on the control parameters } x_{i} \in X_{w_{i}}, i=1, \ldots, l
$$

is irreducible. Here is one possible application.
Proposition 6. Let w be an irreducible word, $g \neq g^{\prime}$ elements of G, and C an irreducible curve in G passing through g and g^{\prime}. Moreover, let $x, x^{\prime} \in X_{w}$ be such that $\mu_{w}(x)=g$ and $\mu_{w}\left(x^{\prime}\right)=g^{\prime}$. Then there exists an irreducible curve D in X_{w} passing through x and x^{\prime} that via μ_{w} maps dominantly into C.

Proof. By irreducibility of $w, Z:=\mu_{w}^{-1}(C)$ is irreducible. Any two points in an irreducible variety are connected by some irreducible curve (see, e.g., [4, page 56]), hence $x, x^{\prime} \in Z$ are connected by an irreducible curve $D \subseteq Z$. Since the image of D contains two points of C, μ_{w} maps D dominantly into C.

We can now state our main theorems.
Theorem 7. Let $\left(X_{a}\right)_{a \in A}$ be a collection of irreducible subvarieties of an algebraic group G, each containing the neutral element $1 \in G$. Assume that $\bigcup_{a \in A} X_{a}$ generates G as a group and that for each $a \in A$ there exists some $b \in A$ with $X_{a}^{-1}=X_{b}$. Suppose that for some word $u=u_{1} \ldots u_{l} \in A^{*}$ the multiplication map

$$
\mu_{u}: X_{u}:=X_{u_{1}} \times \cdots \times X_{u_{l}} \rightarrow G, \quad\left(x_{1}, \ldots, x_{l}\right) \mapsto x_{1} \cdots x_{l}
$$

is birational. Then there exists a natural number k such that for each word $w \in A^{*}$ containing k consecutive copies of u any irreducible $Y \subseteq G$ has an irreducible pre-image $\mu_{w}^{-1}(Y) \subseteq X_{w}$. In particular, the collection $\left(X_{a}\right)_{a \in A}$ satisfies the irreducible control property.

Theorem 8. Every connected algebraic group G has a collection $\left(X_{a}\right)_{a \in A}$ of connected, one-dimensional subgroups with the irreducible control property. Indeed, there exist $n:=$ $\operatorname{dim} G$ such one-parameter subgroups X_{1}, \ldots, X_{n} and a word u of length $<1.5 \cdot \operatorname{dim} G$ ($=$ if G is the trivial group) such that each word containing u as a consecutive sub-word is irreducible.

Remark 9. Theorem 8 can be interpreted as follows: if we want to use one-parameter subgroups in designing a multiplicative system that can reach all elements of the group G, then for dimension reasons we need at least n of these groups to reach all elements of G. At the cost of choosing (less than) 1.5 times as many, we can ensure that irreducible varieties lift to irreducible factorisation varieties. For $\mathrm{GL}_{n}(\mathbb{C})$, the ULU-decomposition from Section 1.2 is of this form, if we write U and L as suitable products of one-parameter groups.

We do not know if the factor 1.5 is optimal - it is conceivable, for instance, that for a different choice of one-parameter subgroups of G, a word of length n suffices.

Remark 10. We will only use classical facts from the huge literature on matrix decompositions, such as the LU decomposition and its generalisation, the Bruhat decomposition. Nevertheless, we would like to point out one recent paper that, although it concerns matrix decompositions of a different nature from ours, uses techniques from algebraic groups similar to our techniques: in [6], it is proved that every matrix is a product of Toeplitz matrices and also a product of Hankel matrices, and a bound on the number of factors is given. It would be interesting to see whether the factorisation spaces are also irreducible. A complicating factor there is that the matrices are not required to be invertible, like they are here.

3. Proofs

In this section, we prove Theorem 7 and Proposition 1. We retain the notation from Section 2.

Lemma 11. If a word u is dominant/surjective/open, then any word w containing u as a consecutive sub-word has the same property.

Proof. Since $1 \in X_{a}$ for each $a \in A$, we have $\operatorname{im} \mu_{w} \supseteq \operatorname{im} \mu_{u}$, so dominance or surjectivity of u implies that of w (here we do not even need that the letters of u appear at consecutive positions in w). For openness, write w as a concatenation $w_{1} u w_{2}$ and let $(x, y, z) \in$ $X_{w_{1}} \times X_{u} \times X_{w_{2}}=X_{w}$. Let U be an open neighbourhood of (x, y, z) in the Euclidean topology. The intersection of U with $\{x\} \times X_{w_{1}} \times\{z\}$ is of the form $\{x\} \times V \times\{z\}$ with $V \subseteq X_{w_{2}}$ open in the Euclidean topology. By openness of $u, \mu_{u}(V)$ contains an open neighbourhood O of $\mu_{u}(y)$ in the Euclidean topology. But then $\mu_{w_{1}}(x) \cdot O \cdot \mu_{w_{2}}(z)$ is an open neighbourhood of $\mu_{w}(x, y, z)$ contained in $\mu_{w}(U)$.

In our examples in Section 4, the X_{a} will be connected subgroups of G. By the following lemma, we may then restrict to words without consecutive repeated letters.

Lemma 12. Suppose that each X_{a} is a closed, connected subgroup of G. Let $w \in A^{*}$ and let $u \in A^{*}$ be obtained from w by replacing every run of consecutive copies of any letter b by a single b. Then $w \in A^{*}$ is dominant/surjective/open/irreducible if and only if u has the corresponding property.

Proof. It suffices to prove the result when $w=w_{1} b b w_{2}$ and $u=w_{1} b w_{2}$. Since $X_{b} \cdot X_{b}=X_{b}$ we have $\operatorname{im} \mu_{w}=\operatorname{im} \mu_{u}$ and hence w is dominant/surjective iff u is. Furthermore, consider the multiplication map

$$
\varphi: X_{w}=X_{w_{1}} \times X_{b} \times X_{b} \times X_{w_{2}} \rightarrow X_{w_{1}} \times X_{b} \times X_{w_{2}}=X_{u}, \quad\left(x, s, s^{\prime}, z\right) \mapsto\left(x, s s^{\prime}, z\right)
$$

We have $\mu_{w}=\mu_{u} \circ \varphi$ and φ is open, so if u is open, then so is w. On the other hand, for any Euclidean-open $O \subseteq X_{u}$ we have $\mu_{u}(O)=\mu_{w}\left(\varphi^{-1}(O)\right)$, so if w is open,
then so is u. Now let $Y \subseteq G$ be irreducible. Then $\mu_{u}^{-1}(Y)=\varphi\left(\mu_{w}^{-1}(Y)\right)$, so if w is irreducible, then so is u. Conversely, $\mu_{w}^{-1}(Y)$ is the image of $X_{b} \times \mu_{u}^{-1}(Y)$ under the map $\left((s),\left(x, s^{\prime}, z\right)\right) \mapsto\left(x, s^{\prime} s, s^{-1}, z\right)$, so since X_{b} is irreducible, if u is irreducible, then so is w.

Lemma 13. Dominant and surjective words exist.
This is well known; we recall the argument from [1, Proposition I.2.2].
Proof. Let w be a word such that $H:=\overline{\operatorname{im} \mu_{w}}$ has maximal dimension. Then $X_{a} H \subseteq H$ for all $a \in A$ and since $\bigcup_{a \in A} X_{a}$ is closed under inversion and generates G we have $H=G$. Hence w is dominant. By Chevalley's theorem, im μ_{w} contains an open, dense subset U of G. Then for each $g \in G$ the set $U \cap U^{-1} g$ is nonempty, so that there exist $h, h^{\prime} \in U$ with $h h^{\prime}=g$. So $U U=G$ and therefore the concatenation $w w$ is surjective.

As remarked before, any irreducible word is also surjective. But unlike surjective words, irreducible words need not exist; see the following example.

Example 14. Let $G=\left(\mathbb{C}^{*}\right)^{2}$ and let $X_{1}=\left\{\left(t, t^{2}\right) \mid t \in \mathbb{C}^{*}\right\}$ and $X_{2}=\left\{\left(t^{2}, t\right) \mid t \in \mathbb{C}^{*}\right\}$. Since X_{1} and X_{2} are subgroups, by Lemma 12 we may restrict our attention to words in which the letters 1,2 alternate. For definiteness, consider $w=1212$. Then μ_{w} is the homomorphism of tori

$$
\mu_{w}: X_{1} \times X_{2} \times X_{1} \times X_{2} \cong\left(\mathbb{C}^{*}\right)^{4} \rightarrow\left(\mathbb{C}^{*}\right)^{2}, \quad\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \mapsto\left(t_{1} t_{2}^{2} t_{3} t_{4}^{2}, t_{1}^{2} t_{2} t_{3}^{2} t_{4}\right)
$$

Here the last map is the monomial map whose exponent vectors are the rows of the 2×4-matrix

$$
\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 1 & 2 & 1
\end{array}\right]
$$

Let $b_{1}, b_{2} \in \mathbb{Z}^{4}$ be the rows of this matrix. The fact that b_{1}, b_{2} do not span a saturated lattice e.g. $b_{1} / 3+b_{2} / 3 \in \mathbb{Z}^{4}$ —implies that $\operatorname{ker} \mu_{w}=\mu_{w}^{-1}(1,1)$ is not irreducible (it has 3 irreducible components). Hence w is not irreducible. The same applies to longer words.

An important difference between Example 14 (where the irreducible control property does not hold) and the example of $\mathrm{SL}_{2}(\mathbb{C})$ in $\S 4.1$ (where it does hold) is the existence of birational words in the latter case and the non-existence of birational words in the former case. This explains the condition in Theorem 7.

We now set out to prove the existence of open words. A well-known sufficient condition for a map to be open is that its derivative is surjective at every point. This requirement will be too restrictive for our purposes. For instance, in the example of $\mathrm{SL}_{2}(\mathbb{C})$ from $\S 1.1$,
for any word $w=w_{1} \ldots w_{l}$ that contains both letters 1,2 at least once, the derivative at $\left(x_{w_{1}}(0), \ldots, x_{w_{l}}(0)\right)=(I, \ldots, I)$ of the multiplication map has rank 2 rather than 3: its image is spanned by all matrices in the Lie algebra $\mathfrak{s l}_{2}$ with zeroes on the diagonal.

We will show, however, that the set of such bad points is small enough in a suitable sense. To this end, for any word $u \in A^{*}$, we define

$$
J_{u}:=\left\{x \in X_{u} \mid d_{x} \mu_{u} \text { is not surjective }\right\} ;
$$

here $d_{x} \mu_{u}$ is the derivative $T_{x} X_{u} \rightarrow T_{\mu_{u}(x)} G$ at x of the map μ_{u}. If u is not dominant, then J_{u} is all of X_{u}; otherwise, $\operatorname{dim} J_{u} \leq \operatorname{dim} X_{u}-1$.

Lemma 15. For any two words $u, w \in A^{*}$ we have $J_{u w} \subseteq J_{u} \times J_{w}$. In particular, writing u^{n} for the concatenation of n copies of a dominant word u, we have $\operatorname{dim} J_{u^{n}} \leq$ $n\left(\operatorname{dim} X_{u}-1\right)$.

Proof. For $(x, y) \in X_{u} \times X_{w}=X_{u w}$ we have

$$
\operatorname{im} d_{(x, y)} \mu_{u w} \supseteq \mu_{u}(x) \cdot\left(\operatorname{im} d_{y} \mu_{w}\right)+\left(\operatorname{im} d_{x} \mu_{u}\right) \cdot \mu_{w}(y) \quad\left(\operatorname{in} T_{\mu_{u}(x) \mu_{w}(y)} G\right)
$$

so if the left-hand side has dimension less than $\operatorname{dim} G$, then also $d_{x} \mu_{u}, d_{y} \mu_{w}$ have rank less than $\operatorname{dim} G$. The last statement follows from $\operatorname{dim} J_{u} \leq \operatorname{dim} X_{u}-1$.

Proposition 16. Open words exist. More specifically, if u is a dominant word, then $u^{\operatorname{dim} G+1}$ is open.

Proof. Let u be a dominant word and set $d:=\operatorname{dim} X_{u}$. For a positive integer n consider $w:=u^{n}$. Fix a point $x \in X_{w}$ and consider an irreducible component $F \ni x$ of the fibre $\mu_{w}^{-1}\left(\mu_{w}(x)\right)$. Now $\operatorname{dim} F \geq n d-\operatorname{dim} G$ by properties of fibre dimension [5, §8], while $\operatorname{dim} J_{w} \leq n(d-1)$ by Lemma 15. Hence if $n>\operatorname{dim} G$, then F is not contained in J_{w}. Hence any open ball B around x (in the Euclidean topology) contains a $y \in F \backslash J_{w}$. Since $d_{y} \mu_{w}$ is surjective, μ_{w} maps an open ball in B around y onto an open neighbourhood (in the Euclidean topology) of $\mu_{w}(y)=\mu_{w}(x)$. Hence μ_{w} is open in the Euclidean topology.

Proposition 17. If w is an open word and u is a birational word, then for any $s, t \in A^{*}$ the concatenation swut is irreducible.

Proof. Let $Y \subseteq G$ be an irreducible, closed subset, and set $F:=\mu_{s w u t}^{-1}(Y)$. We will show that F is irreducible.

There exists an open, dense subset O of X_{u} such that μ_{u} restricts to an isomorphism from O to an open, dense subset P of G. Let $\varphi: P \rightarrow O$ be the inverse of that isomorphism.

If $\mu_{\text {swut }}$ maps $\left(x_{s}, x_{w}, x_{u}, x_{t}\right) \in X_{s w u t}$ to $y \in Y$, then

$$
\mu_{u}\left(x_{u}\right)=\mu_{w}\left(x_{w}\right)^{-1} \mu_{s}\left(x_{s}\right)^{-1} y \mu_{t}\left(x_{t}\right)^{-1}
$$

and therefore, if $x_{u} \in O$, then we have

$$
x_{u}=\varphi\left(\mu_{w}\left(x_{w}\right)^{-1} \mu_{s}\left(x_{s}\right)^{-1} y \mu_{t}\left(x_{t}\right)^{-1}\right) .
$$

Let Q be the open subset of $X_{s} \times X_{w} \times X_{t} \times Y$ defined by

$$
Q:=\left\{\left(x_{s}, x_{w}, x_{t}, y\right) \mid \mu_{w}\left(x_{w}\right)^{-1} \mu_{s}\left(x_{s}\right)^{-1} y \mu_{t}\left(x_{t}\right)^{-1} \in P\right\} .
$$

Since w is open and a fortiori dominant, Q is nonempty, hence dense in $X_{s} \times X_{w} \times X_{t} \times Y$, hence irreducible. Define the morphism $\psi: Q \rightarrow F$ by

$$
\psi\left(x_{s}, x_{w}, x_{t}, y\right)=\left(x_{s}, x_{w}, \varphi\left(\mu_{w}\left(x_{w}\right)^{-1} \mu_{s}\left(x_{s}\right)^{-1} y \mu_{t}\left(x_{t}\right)^{-1}\right), x_{t}\right) .
$$

The image of ψ is an irreducible subset of F that contains all points $\left(x_{s}, x_{w}, x_{u}, x_{t}\right) \in F$ for which x_{u} lies in O. We claim that $F=\overline{\operatorname{im} \psi}$, so that F is, indeed, irreducible.

For this it suffices to prove that for any $\left(z_{s}, z_{w}, z_{u}, z_{t}\right) \in F$ and any open neighbourhood Ω of $\left(z_{s}, z_{w}, z_{u}, z_{t}\right)$ in $X_{\text {swut }}$ there exists a point $\left(x_{s}, x_{w}, x_{u}, x_{t}\right) \in F \cap \Omega$ with $x_{u} \in O$. We can in fact take $x_{s}:=z_{s}$ and $x_{t}:=z_{t}$ and only vary z_{w} and z_{u}. Indeed, the neighbourhood Ω contains $\left\{z_{s}\right\} \times B_{w} \times B_{u} \times\left\{z_{t}\right\}$ for small balls B_{w} and B_{u} around $z_{w} \in X_{w}$ and $z_{u} \in X_{u}$, respectively. As w is open, $\mu_{w}\left(B_{w}\right)$ contains an open ball B_{w}^{\prime} around $\mu_{w}\left(z_{w}\right) \in G$. If we take any x_{u} in B_{u} sufficiently close to z_{u}, then $\mu_{w}\left(z_{w}\right) \mu_{u}\left(z_{u}\right) \mu_{u}\left(x_{u}\right)^{-1} \in B_{w}^{\prime}$ and hence there exists an $x_{w} \in B_{w}$ such that $\mu_{w}\left(x_{w}\right) \mu_{u}\left(x_{u}\right)=\mu_{w}\left(z_{w}\right) \mu_{u}\left(z_{u}\right)$. Since O is dense in X_{u}, we may take such an $x_{u} \in O \cap B_{u}$ and have thus found a point $\left(z_{s}, x_{w}, x_{u}, z_{t}\right) \in F \cap \Omega$ with $x_{u} \in O$.

Proposition 17 and Example 14 suggest the following question, posed to us by a referee.

Question 18. Suppose that $\left(X_{a}\right)_{a \in A}$ is a collection of one-parameter subgroups of a connected algebraic group G. Let w be an irreducible word. Is any word that contains w as a consecutive sub-word irreducible?

We expect the answer to be no in general, but do not know of any counterexamples.

Proof of Theorem 7. By assumption, a birational word $u \in A^{*}$ exists. By Proposition 16, an open word $w \in A^{*}$ exists; indeed, some concatenation of u^{n} of copies of u is open. By Proposition 17, any word in A^{*} containing u^{n+1} as a consecutive sub-word is irreducible. Hence $\left(X_{a}\right)_{a \in A}$ has the irreducible control property.

Proof of Proposition 1. Set $X_{1}:=L$ and $X_{2}:=U$. By the classical LU-decomposition, the word $u:=12$ is open and birational, and so is the word $w:=21$ (the transpose of the LU-decomposition is the UL-decomposition). By Proposition 17, any word containing $w u=2112$ is irreducible. Finally, by Lemma 12, we may replace the two consecutive 1s by a single 1, i.e., every word containing 121 is irreducible. This proves Proposition 1.

4. Examples

4.1. The case of $\mathrm{SL}_{2}(\mathbb{C})$

Recall the subgroups X_{1}, X_{2} of $\mathrm{SL}_{2}(\mathbb{C})$ from $\S 1.1$. By Lemma 12 , we need only look at words where the letters 1,2 alternate. In $\S 1.1$ we already saw that 121 is dominant and 1212 is surjective but not irreducible. In Example 4 we saw, moreover, that 121 is not open.

We claim that 1212 is open. By the analysis in Example 4, it is certainly locally open around points $\left(x_{1}(a), x_{2}(b), x_{1}(c), x_{2}(d)\right)$ with $b \neq 0$ or, similarly, $c \neq 0$. Moreover, by acting with $x_{1}(-a)$ from the left and $x_{2}(-d)$ from the right, we see that it suffices to check local openness at the point where $a=b=c=d=0$. Suppose, then, that we want to solve

$$
\begin{aligned}
& x_{1}(a) x_{2}(b) x_{1}(c) x_{2}(d)=\left[\begin{array}{cc}
1+a b+a d+c d+a b c d & a(1+b c)+c \\
d(1+b c)+b & 1+b c
\end{array}\right]= \\
& =\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{C})
\end{aligned}
$$

where $x, w \approx 1$ and $y, z \approx 0$, where \approx stands for approximately equal. Then we can find small b, c such that $1+b c=w$ (e.g., both equal to the same square root of $w-1$), and after that a and d determined by $a=(y-c) /(1+b c)$ and $d=(z-b) /(1+b c)$ are also small. The last condition $1+a b+a d+c d+a b c d=x$ now follows, since the right-hand matrix lies in $\mathrm{SL}_{2}(\mathbb{C})$. This shows that μ_{1212} is open near $\left(x_{1}(0), x_{2}(0), x_{1}(0), x_{2}(0)\right)$, so 1212 is an open word.

Next, 12121 inherits the surjectivity and openness from 1212 by Lemma 11, but is still not irreducible. For example, the fibre $\mu_{12121}^{-1}(I)$ consists of all quintuples $\left(\varphi_{1}(a), \varphi_{2}(b), \varphi_{1}(c), \varphi_{2}(d), \varphi_{1}(e)\right)$ with either $c=0=b+d=a+e$ or $d=0=b=a+c+e$.

Finally, we claim that 121212 and all larger alternating words are irreducible. Indeed, the word $w=1212$ is open, the word $u=212$ is birational (by an argument similar to that for 121), and hence swut $=s 1212212 t$ is irreducible by Proposition 17 for all words s, t. Now apply Lemma 12 to replace 22 by 2 .

4.2. On a question by Kutzschebauch

This paragraph concerns an example communicated to me by Frank Kutzschebauch; see [2]. Let $G:=\operatorname{Sp}_{2 n}(\mathbb{C})$, the complex symplectic group preserving the symplectic form
$\langle(b, c),(d, e)\rangle:=b e^{T}-c d^{T}$, where $b, c, d, e \in \mathbb{C}^{n}$ and $(b, c),(d, e) \in \mathbb{C}^{2 n}$ are thought of as row vectors.

Let

$$
X_{1}:=\left\{\left.\left[\begin{array}{ll}
1 & 0 \\
A & 1
\end{array}\right] \right\rvert\, A^{T}=A\right\} \text { and } X_{2}:=\left\{\left.\left[\begin{array}{cc}
1 & B \\
0 & 1
\end{array}\right] \right\rvert\, B^{T}=B\right\}
$$

two subgroups of G isomorphic, as algebraic groups, to the vector space $\mathbb{C}\binom{n+1}{2}$.
Theorem 19. Let w be a word over $\{1,2\}$ in which 1 and 2 alternate, and assume that w is sufficiently long. Let $(b, c),(d, e) \in \mathbb{C}^{2 n}$. Then the closed set

$$
\left\{x \in X_{w} \mid(b, c) \mu_{w}(x)=(d, e)\right\}
$$

is irreducible.

The following lemmas are proved by straightforward calculations.
Lemma 20. The map μ_{121} maps X_{121} birationally to the closed subset

$$
Z:=\left\{\left.\left[\begin{array}{ll}
C & D \\
E & F
\end{array}\right] \right\rvert\, D^{T}=D\right\} \subseteq G .
$$

Let S be a sufficiently general codimension- n subspace of the space of symmetric $n \times n$-matrices, let T be a vector space complement of S (of dimension n) and define

$$
X_{3}:=\left\{\left.\left[\begin{array}{cc}
1 & B \\
0 & 1
\end{array}\right] \right\rvert\, B \in S\right\}, \quad X_{4}:=\left\{\left.\left[\begin{array}{cc}
1 & B \\
0 & 1
\end{array}\right] \right\rvert\, B \in T\right\} \subseteq X_{2}
$$

so that the multiplication map $X_{3} \times X_{4} \rightarrow X_{2}$ is an isomorphism.
Lemma 21. The map μ_{1213} maps X_{1213} birationally onto G.
In particular, by Theorem 7, the collection X_{1}, X_{2}, X_{3} has the irreducible control property. We now use the ingredients for that theorem to prove Theorem 19.

Proof of Theorem 19. By the previous lemma and $X_{2} \supseteq X_{3}$, the word $v:=1212$ is dominant. Hence by Proposition 16, w:= $v^{\operatorname{dim} G+1}$ is open. Hence by Lemma 21 and Proposition 17, any word containing $w 1213$ is irreducible. In particular, this holds for any word containing $w 12134$. Since $X_{3} \times X_{4} \rightarrow X_{2}$ is an isomorphism, it holds for any word u containing $w 1212=v^{\operatorname{dim} G+2}$.

Finally, for Y choose the set $\{g \in G \mid(b, c) g=(d, e)\}$, which is a coset of the irreducible stabiliser of (b, c) in G, hence irreducible. Therefore $\mu_{u}^{-1}(Y)$ is irreducible, as desired.

Remark 22. Using direct computations it is likely possible to find much shorter open words, so that "sufficiently long" in Theorem 19 becomes a much milder condition. Indeed, for $n=2$ and $(b, c)=(0,0,0,1)$ and alternating words starting with 1 , $[2$, Lemma 10.5] states that Theorem 19 holds for words of length at least 5 for all values of (d, e), while for the word 1212 certain vectors (d, e) have reducible fibres.

4.3. The case of general algebraic groups

Let G be a connected algebraic group. We will prove Theorem 8 .

Proof of Theorem 8. Let R be the unipotent radical of G, and let L be a Levi complement of R, i.e., a subgroup of G such that the map $L \times R \rightarrow G$ is an isomorphism of varieties, so that G is isomorphic to a semi-direct product $L \ltimes R$; such a group exists by [3]. Then L is a reductive group, and admits a decomposition akin to the LU decomposition in $\mathrm{GL}_{n}(\mathbb{C})$; the details are as follows.

Let B_{+}be a Borel subgroup of L, T a maximal torus in B_{+}, U_{+}the unipotent radical of B_{+}, and U_{-}the unipotent radical of the Borel group B_{-}opposite to B_{+}, i.e. such that $B_{-} \cap B_{+}=T$. By the Bruhat decomposition, the multiplication map $U_{-} \times T \times U_{+} \rightarrow L$ is an isomorphism of varieties with an open subvariety of L by [1, Theorem IV.14.12]. (For $L=\mathrm{GL}_{n}(\mathbb{C})$, this is just the LU-decomposition seen in §1.2.) In particular, this map is open and birational.

Consequently, also the multiplication map

$$
U_{-} \times T \times U_{+} \times R \rightarrow G
$$

is open and birational. Similarly, so is the map

$$
R \times U_{+} \times T \times U_{-} \rightarrow G
$$

Now $\tilde{B}_{+}:=T \cdot U_{+} \cdot R=R \cdot U_{+} \cdot T$ is a subgroup of G in fact, a Borel subgroup of G-and the multiplication maps $T \times U_{+} \times R \rightarrow \tilde{B}_{+}$and $R \times U_{+} \times T \rightarrow \tilde{B}_{+}$are isomorphisms of varieties. It follows that the multiplication maps

$$
U_{-} \times \tilde{B} \rightarrow G \text { and } \tilde{B} \times U_{-} \rightarrow G
$$

are both birational and open. Hence, using Proposition 17 as in the proof of Proposition 1, all pre-images of irreducible varieties in G under the multiplication map

$$
U_{-} \times \tilde{B} \times \tilde{B} \times U_{-} \rightarrow G
$$

are irreducible. Now use Lemma 12 to conclude that the multiplication map

$$
\begin{equation*}
U_{-} \times \tilde{B} \times U_{-} \rightarrow G \tag{2}
\end{equation*}
$$

has the same property.
To find the one-parameter subgroups, we proceed as follows. Set $l:=\operatorname{dim} U_{-}=\operatorname{dim} U_{+}$ and $m:=\operatorname{dim} T$ and $k:=\operatorname{dim} R$.

We have $T \cong\left(\mathbb{C}^{*}\right)^{m}$, and this yields m isomorphic copies $X_{l+1}, \ldots, X_{l+m} \subseteq T$ of \mathbb{C}^{*} such that the multiplication map $X_{l+1} \times \cdots \times X_{l+m} \rightarrow T$ is an isomorphism of varieties (and even of algebraic groups).

Furthermore, for any connected unipotent algebraic group H, there exists a basis v_{1}, \ldots, v_{p} of the Lie algebra \mathfrak{h} of H such that the one-parameter subgroups $H_{i}:=$ $\exp \left(\mathbb{C} v_{p}\right)$ (which are algebraic subgroups!) have the property that the product map $H_{1} \times \cdots \times H_{p} \rightarrow H$ is an isomorphism of varieties.

Applying the previous paragraph to the groups U_{-}, U_{+}, R of dimensions l, l, k, and combining these with the one-parameter subgroups X_{l+1}, \ldots, X_{l+m} of T, we find oneparameter subgroups such that the composition of the multiplication maps:

$$
\begin{aligned}
& \left(X_{1} \times \cdots \times X_{l}\right) \times\left(X_{l+1} \times \cdots \times X_{l+m}\right) \times\left(X_{l+m+1} \times \cdots \times X_{2 l+m}\right) \times \\
& \times\left(X_{2 l+m+1} \times \cdots \times X_{2 l+m+k}\right) \times\left(X_{1} \times \cdots \times X_{l}\right) \rightarrow U_{-} \times T \times U_{+} \times R \times U_{-} \rightarrow G
\end{aligned}
$$

has the property that all preimages of irreducible varieties in G are irreducible, and that, indeed, all words over $\{1, \ldots, 2 l+m+k\}$ containing the word $(1,2, \ldots, 2 l+m+$ $k, 1,2, \ldots, l)$ are irreducible. Finally, we observe that the word above has length

$$
3 l+m+k<(3 / 2)(2 l+m+k)=1.5 \cdot \operatorname{dim} G .
$$

Remark 23. The proof yields a slightly better bound than $1.5 \cdot \operatorname{dim} G$, namely, $\operatorname{dim} G+$ $(\operatorname{dim} L) / 2$, where L is the Levi complement of G, or even $\operatorname{dim} G+(\operatorname{dim} L-l) / 2$, where l is the rank of G (and of L), namely, the dimension of a maximal torus. However, if G is restricted to the classical groups (roughly speaking, the general linear groups, the orthogonal groups, and the symplectic groups), so that $L=G$, then l is proportional to the square root of $\operatorname{dim} G$, so that this bound is not much better than $1.5 \cdot \operatorname{dim} G$. It would be interesting to show the existence of irreducible words of shorter length, say around $\operatorname{dim} G$.

Example 24. For $\mathrm{SL}_{2}(\mathbb{C})$, if in addition to X_{1}, X_{2} from $\S 1.1$ we take the multiplicative one-parameter subgroup

$$
X_{3}:=\left\{\left.\left[\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right] \right\rvert\, t \in \mathbb{C}^{*}\right\}
$$

then the proof above says that the word 2312 , and all words containing it, are irreducible.

Declaration of competing interest

None declared.

References

[1] Armand Borel, Linear Algebraic Groups, 2nd enlarged ed., Springer-Verlag, New York etc., 1991.
[2] Björn Ivarsson, Frank Kutzschebauch, Erik Løw, Holomorphic factorization of mappings into $\mathrm{Sp}_{4}(\mathbb{C})$, preprint, arXiv:2005.07454, 2020.
[3] G.D. Mostow, Fully reducible subgroups of algebraic groups, Am. J. Math. 78 (1956) 200-221.
[4] David Mumford, Abelian Varieties, Vol. 5, 2nd ed. reprint, Oxford University Press, Oxford, 1985, with appendices by C.P. Ramanujam and Yuri Manin.
[5] David Mumford, The Red Book of Varieties and Schemes, Vol. 1358, Springer-Verlag, Berlin etc., 1988.
[6] Ke Ye, Lek-Heng Lim, Every matrix is a product of Toeplitz matrices, Found. Comput. Math. 16 (3) (2016) 577-598.

[^0]: * Correspondence to: Mathematical Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland. E-mail address: jan.draisma@math.unibe.ch.
 ${ }^{1}$ The author is partially supported by Vici grant 639.033.514 from the Netherlands Organisation for Scientific Research and project grant 200021_191981 from the Swiss National Science Foundation.

