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1. Two motivating examples

1.1. SL2(C) generated by two groups of shear mappings

It is well known that every matrix g in the group SL2(C) of complex 2 × 2-matrices 
with determinant 1 can be written as a product of matrices of the following forms:

x1(a) =
[
1 a
0 1

]
and x2(a) =

[
1 0
a 1

]
for a ∈ C,

which represent shears along the x-axis and along the y-axis, respectively. Let Xi :=
{xi(a) | a ∈ C}, an additive one-parameter subgroup of SL2(C).

This paper concerns the variety of all factorisations of a target matrix g as a prod-
uct of matrices in the Xi, in a prescribed order, where repetitions are allowed. Since 
dim SL2(C) = 3, we need at least three factors to reach all elements of SL2(C). For 
a, b, c ∈ C we compute

x1(a)x2(b)x1(c) =
[
1 + ab a + c + abc

b 1 + bc

]
=:

[
x y
z w

]
(1)

We can recover a, b, c as rational functions in x, y, z, u:

b = z, c = (w − 1)/z, and a = (x− 1)/z.

This implies, first, that the image of the multiplication map μ121 : X1 × X2 × X1 →
SL2(C) is three-dimensional, hence dense in SL2(C); and second, that any matrix g ∈
SL2(C) with g21 �= 0 has precisely one pre-image. Matrices with g21 = 0 and g11, g22 not 
both 1 are not in the image of the multiplication map. Summarising, the multiplication 
map is dominant (has dense image) and birational (has generic fibres of cardinality 1); 
but it is not surjective.

This can be remedied by adding another factor: the multiplication map μ1212 : X1 ×
X2×X1×X2 → SL2(C) is surjective, since an arbitrary element of SL2(C) can be right-
multiplied by some element x2(−a) from X−1

2 = X2—which corresponds to subtracting 
a times the second column from the first—to make sure that the entry at position (2, 1)
becomes nonzero, so that the product is in imμ121.

However, the map μ1212 has another undesirable feature: certain fibres are not irre-
ducible. For instance, the solution set to the system of equations

x1(a)x2(b)x1(c)x2(d) =
[
1 + ab + ad + cd + abcd a + c + abc

b + d + bcd 1 + bc

]
= I

is the union of the two lines in C4 with equations b = d = a +c = 0 and c = a = b +d = 0. 
When designing a system where the control parameters a, b, c, d should vary with the 
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target matrix g, it is desirable that pre-images of irreducible varieties are irreducible 
themselves.

As we will see later in §4.1, the multiplication map μ12121 still has his undesirable 
behaviour, but the multiplication map μ121212 and those for longer words do not: for 
those, the pre-image of any irreducible variety is irreducible. Note that the order of the 
factors is important here; e.g., since X1 ·X1 = X1, the image of μ111222 is the same as 
that of μ12, and only two-dimensional.

Our goal is to show that this behaviour is quite typical for collections of subvarieties 
(Xa)a∈A of a matrix group G: under suitable conditions, for sufficiently long and suf-
ficiently complicated words w over the index set A, the corresponding multiplication 
map μw has the property that the pre-image of any irreducible variety is irreducible. It 
follows, for instance, that any irreducible curve worth of matrices g can be lifted to an 
irreducible curve worth of factorisations.

1.2. The ULU-decomposition

Let L, U ⊆ GLn(C) be the groups of invertible lower-triangular matrices and of 
upper-triangular matrices with 1’s on the diagonal, respectively. By the classical LU-
decomposition, the multiplication map

L× U → GLn(C)

is an isomorphism of varieties with the open subset of GLn(C) where all leading principal 
subdeterminants are nonzero. To reach all invertible matrices, one usually adds a factor 
from the finite group of permutations matrices. Here, instead, we add another factor U , 
and will prove the following fact.

Proposition 1. The multiplication map

μ : U × L× U → GLn(C)

is surjective, and, moreover, the preimage μ−1(X) of every irreducible variety X ⊆
GLn(C) is irreducible.

Observe that the variety on the left-hand side has dimension

n2 +
(
n

2

)
< 1.5 · dim GLn(C).

This is not a coincidence; see Theorem 8.
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Organisation

The structure of this paper is as follows. In Section 2 we introduce the general setting 
and state our main results, Theorem 7 and Theorem 8. We also formulate a useful 
application, Proposition 6, about lifting curves of matrices to curves of factorisations. 
In Section 3 we prove Theorem 7, Proposition 1, and various intermediate results of 
independent interest. Finally, Section 4 contains the worked-out example of SL2(C); an 
example with symplectic groups discussed in [2]; and a proof of Theorem 8.

2. Introduction and results

Let G be a complex algebraic group and let (Xa)a∈A be a collection of irreducible 
subvarieties of G, each containing the unit element 1 ∈ G. Without loss of generality [1, 
Proposition I.1.10], G is a closed subgroup of some GLn(C) defined by the vanishing of 
some polynomial equations in the n2 matrix entries. But we will not need this concrete 
realisation of G as a matrix group.

Denote by A∗ the set of finite sequences (words) over the index set A. Each w =
w1 . . . wl ∈ A∗ gives rise to a multiplication map

μw : Xw := Xw1 × · · · ×Xwl
→ G, (x1, . . . , xl) �→ x1 · · ·xl.

Assume that for all a ∈ A there exists some b ∈ A such that (Xa)−1 = Xb, and that the 
(Xa)a∈G together generate G as a group.

Definition 2. A word w is called dominant/surjective/birational if the map μw has the 
corresponding property. The word w is called irreducible if of all irreducible, closed 
subsets Y ⊆ G the pre-image μ−1

w (Y ) is irreducible in Xw.

In this definition, μw and w are called birational if for g in an open dense subset of G
the pre-image in Xw consists of a single point.

By [1, Proposition I.2.2], surjective words exist; in particular, since the Xa are ir-
reducible, our assumptions imply that G is a connected algebraic group (for algebraic 
groups, this is equivalent to being irreducible [1, Proposition I.1.2]).

Throughout the text, except where stated otherwise, topological terms will refer to the 
Zariski topology, where the closed sets in G are defined by regular functions (restrictions 
of polynomials in the concrete model of G as a closed subgroup of GLn(C)). However, 
the image of μw is constructible by Chevalley’s theorem [1, Corollary AG11.10.2], and 
therefore its closure in the Zariski topology is the same as its closure in the Euclidean 
topology. In particular, μw is dominant in the Zariski topology if and only if it is dominant 
in the Euclidean topology.

There is one notable exception to the rule that topological terms refer to the Zariski 
topology, which we state now:
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Definition 3. A word w is called open if the map μw is open in the Euclidean topology.

If μw is open in the Euclidean topology, and if U is a Zariski-open subset of Xw, then 
μw(U) is Zariski-constructible and Euclidean-open, and therefore Zariski-open. Hence 
μw is also open in the Zariski topology, and therefore, since G is irreducible in the 
Zariski topology, dominant. But in our proofs we will really use the Euclidean notion of 
openness: the image of any open ball is open.

We have the following implications for a word w ∈ A∗ and its map μw:

For the implication irreducible ⇒ surjective we observe that the pre-image of any point 
under μw must be irreducible, hence in particular nonempty. Indeed, irreducible varieties, 
like connected topological spaces, are by definition nonempty.

Example 4. For the subgroups X1, X2 of SL2(C) in §1.1, the word 12 is not dominant, 
and the word 121 is dominant and birational. The map μ121 is locally open around 
points (x1(a), x2(b), x1(c)) ∈ X121 where b �= 0, as there its derivative has full rank 3; 
this is immediate from (1). But it is not open around the remaining points; e.g., no 
neighbourhood of (x1(0), x2(0), x1(0)) is mapped onto a neighbourhood of I—indeed, no 
open neighbourhood of I is in the image of μ121. So 121 is not open. As we have seen, the 
word (1, 2, 1, 2) is surjective but not irreducible. It is open; see §4.1, where also longer 
words are discussed.

We now introduce the key notion in this paper.

Definition 5. We say that the collection (Xa)a∈A has the irreducible control property if 
there exists a word u such that each word containing u as a consecutive sub-word is 
irreducible.

For the one-parameter subgroups X1, X2 of SL2(C) from §1.1, the word 121212 has 
the property required of u in the definition; see §4.1. So (Xi)i=1,2 has the irreducible 
control property.

We use the term “control” because we can think, for each word w ∈ A∗, of the 
arguments of μw : Xw → G as parameters that we have control over and that we want to 
tune so as to obtain a target element g ∈ G. The irreducible control property is clearly 
desirable: it tells us that for words w = w1 . . . wl containing u, the solution set to the 
system of equations
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x1 · · ·xl ∈ Y on the control parameters xi ∈ Xwi
, i = 1, . . . , l

is irreducible. Here is one possible application.

Proposition 6. Let w be an irreducible word, g �= g′ elements of G, and C an irreducible 
curve in G passing through g and g′. Moreover, let x, x′ ∈ Xw be such that μw(x) = g

and μw(x′) = g′. Then there exists an irreducible curve D in Xw passing through x and 
x′ that via μw maps dominantly into C.

Proof. By irreducibility of w, Z := μ−1
w (C) is irreducible. Any two points in an irre-

ducible variety are connected by some irreducible curve (see, e.g., [4, page 56]), hence 
x, x′ ∈ Z are connected by an irreducible curve D ⊆ Z. Since the image of D contains 
two points of C, μw maps D dominantly into C. �

We can now state our main theorems.

Theorem 7. Let (Xa)a∈A be a collection of irreducible subvarieties of an algebraic group 
G, each containing the neutral element 1 ∈ G. Assume that 

⋃
a∈A Xa generates G as a 

group and that for each a ∈ A there exists some b ∈ A with X−1
a = Xb. Suppose that for 

some word u = u1 . . . ul ∈ A∗ the multiplication map

μu : Xu := Xu1 × · · · ×Xul
→ G, (x1, . . . , xl) �→ x1 · · ·xl

is birational. Then there exists a natural number k such that for each word w ∈ A∗

containing k consecutive copies of u any irreducible Y ⊆ G has an irreducible pre-image 
μ−1
w (Y ) ⊆ Xw. In particular, the collection (Xa)a∈A satisfies the irreducible control 

property.

Theorem 8. Every connected algebraic group G has a collection (Xa)a∈A of connected, 
one-dimensional subgroups with the irreducible control property. Indeed, there exist n :=
dimG such one-parameter subgroups X1, . . . , Xn and a word u of length < 1.5 · dimG

(= if G is the trivial group) such that each word containing u as a consecutive sub-word 
is irreducible.

Remark 9. Theorem 8 can be interpreted as follows: if we want to use one-parameter 
subgroups in designing a multiplicative system that can reach all elements of the group 
G, then for dimension reasons we need at least n of these groups to reach all elements of 
G. At the cost of choosing (less than) 1.5 times as many, we can ensure that irreducible 
varieties lift to irreducible factorisation varieties. For GLn(C), the ULU-decomposition 
from Section 1.2 is of this form, if we write U and L as suitable products of one-parameter 
groups.

We do not know if the factor 1.5 is optimal—it is conceivable, for instance, that for a 
different choice of one-parameter subgroups of G, a word of length n suffices.
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Remark 10. We will only use classical facts from the huge literature on matrix decompo-
sitions, such as the LU decomposition and its generalisation, the Bruhat decomposition. 
Nevertheless, we would like to point out one recent paper that, although it concerns 
matrix decompositions of a different nature from ours, uses techniques from algebraic 
groups similar to our techniques: in [6], it is proved that every matrix is a product of 
Toeplitz matrices and also a product of Hankel matrices, and a bound on the number 
of factors is given. It would be interesting to see whether the factorisation spaces are 
also irreducible. A complicating factor there is that the matrices are not required to be 
invertible, like they are here.

3. Proofs

In this section, we prove Theorem 7 and Proposition 1. We retain the notation from 
Section 2.

Lemma 11. If a word u is dominant/surjective/open, then any word w containing u as 
a consecutive sub-word has the same property.

Proof. Since 1 ∈ Xa for each a ∈ A, we have imμw ⊇ imμu, so dominance or surjectivity 
of u implies that of w (here we do not even need that the letters of u appear at consecutive 
positions in w). For openness, write w as a concatenation w1uw2 and let (x, y, z) ∈
Xw1 ×Xu ×Xw2 = Xw. Let U be an open neighbourhood of (x, y, z) in the Euclidean 
topology. The intersection of U with {x} ×Xw1 ×{z} is of the form {x} × V ×{z} with 
V ⊆ Xw2 open in the Euclidean topology. By openness of u, μu(V ) contains an open 
neighbourhood O of μu(y) in the Euclidean topology. But then μw1(x) ·O · μw2(z) is an 
open neighbourhood of μw(x, y, z) contained in μw(U). �

In our examples in Section 4, the Xa will be connected subgroups of G. By the 
following lemma, we may then restrict to words without consecutive repeated letters.

Lemma 12. Suppose that each Xa is a closed, connected subgroup of G. Let w ∈ A∗ and 
let u ∈ A∗ be obtained from w by replacing every run of consecutive copies of any letter 
b by a single b. Then w ∈ A∗ is dominant/surjective/open/irreducible if and only if u
has the corresponding property.

Proof. It suffices to prove the result when w = w1bbw2 and u = w1bw2. Since Xb·Xb = Xb

we have imμw = imμu and hence w is dominant/surjective iff u is. Furthermore, consider 
the multiplication map

ϕ : Xw = Xw1 ×Xb ×Xb ×Xw2 → Xw1 ×Xb ×Xw2 = Xu, (x, s, s′, z) �→ (x, ss′, z).

We have μw = μu ◦ ϕ and ϕ is open, so if u is open, then so is w. On the other 
hand, for any Euclidean-open O ⊆ Xu we have μu(O) = μw(ϕ−1(O)), so if w is open, 
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then so is u. Now let Y ⊆ G be irreducible. Then μ−1
u (Y ) = ϕ(μ−1

w (Y )), so if w is 
irreducible, then so is u. Conversely, μ−1

w (Y ) is the image of Xb × μ−1
u (Y ) under the 

map ((s), (x, s′, z)) �→ (x, s′s, s−1, z), so since Xb is irreducible, if u is irreducible, then 
so is w. �
Lemma 13. Dominant and surjective words exist.

This is well known; we recall the argument from [1, Proposition I.2.2].

Proof. Let w be a word such that H := imμw has maximal dimension. Then XaH ⊆ H

for all a ∈ A and since 
⋃

a∈A Xa is closed under inversion and generates G we have 
H = G. Hence w is dominant. By Chevalley’s theorem, imμw contains an open, dense 
subset U of G. Then for each g ∈ G the set U ∩ U−1g is nonempty, so that there exist 
h, h′ ∈ U with hh′ = g. So UU = G and therefore the concatenation ww is surjective. �

As remarked before, any irreducible word is also surjective. But unlike surjective 
words, irreducible words need not exist; see the following example.

Example 14. Let G = (C∗)2 and let X1 = {(t, t2) | t ∈ C∗} and X2 = {(t2, t) | t ∈ C∗}. 
Since X1 and X2 are subgroups, by Lemma 12 we may restrict our attention to words 
in which the letters 1, 2 alternate. For definiteness, consider w = 1212. Then μw is the 
homomorphism of tori

μw : X1 ×X2 ×X1 ×X2 ∼= (C∗)4 → (C∗)2, (t1, t2, t3, t4) �→ (t1t22t3t24, t21t2t23t4).

Here the last map is the monomial map whose exponent vectors are the rows of the 
2 × 4-matrix

[
1 2 1 2
2 1 2 1

]

Let b1, b2 ∈ Z4 be the rows of this matrix. The fact that b1, b2 do not span a saturated 
lattice—e.g. b1/3 + b2/3 ∈ Z4—implies that kerμw = μ−1

w (1, 1) is not irreducible (it 
has 3 irreducible components). Hence w is not irreducible. The same applies to longer
words. ♣

An important difference between Example 14 (where the irreducible control property 
does not hold) and the example of SL2(C) in §4.1 (where it does hold) is the existence 
of birational words in the latter case and the non-existence of birational words in the 
former case. This explains the condition in Theorem 7.

We now set out to prove the existence of open words. A well-known sufficient condition 
for a map to be open is that its derivative is surjective at every point. This requirement 
will be too restrictive for our purposes. For instance, in the example of SL2(C) from §1.1, 
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for any word w = w1 . . . wl that contains both letters 1, 2 at least once, the derivative at 
(xw1(0), . . . , xwl

(0)) = (I, . . . , I) of the multiplication map has rank 2 rather than 3: its 
image is spanned by all matrices in the Lie algebra sl2 with zeroes on the diagonal.

We will show, however, that the set of such bad points is small enough in a suitable 
sense. To this end, for any word u ∈ A∗, we define

Ju := {x ∈ Xu | dxμu is not surjective};

here dxμu is the derivative TxXu → Tμu(x)G at x of the map μu. If u is not dominant, 
then Ju is all of Xu; otherwise, dim Ju ≤ dimXu − 1.

Lemma 15. For any two words u, w ∈ A∗ we have Juw ⊆ Ju × Jw. In particular, writ-
ing un for the concatenation of n copies of a dominant word u, we have dim Jun ≤
n(dimXu − 1).

Proof. For (x, y) ∈ Xu ×Xw = Xuw we have

im d(x,y)μuw ⊇ μu(x) · (im dyμw) + (im dxμu) · μw(y) (in Tμu(x)μw(y)G),

so if the left-hand side has dimension less than dimG, then also dxμu, dyμw have rank 
less than dimG. The last statement follows from dim Ju ≤ dimXu − 1. �
Proposition 16. Open words exist. More specifically, if u is a dominant word, then 
udimG+1 is open.

Proof. Let u be a dominant word and set d := dimXu. For a positive integer n consider 
w := un. Fix a point x ∈ Xw and consider an irreducible component F � x of the fibre 
μ−1
w (μw(x)). Now dimF ≥ nd − dimG by properties of fibre dimension [5, §8], while 

dim Jw ≤ n(d − 1) by Lemma 15. Hence if n > dimG, then F is not contained in Jw. 
Hence any open ball B around x (in the Euclidean topology) contains a y ∈ F \Jw. Since 
dyμw is surjective, μw maps an open ball in B around y onto an open neighbourhood 
(in the Euclidean topology) of μw(y) = μw(x). Hence μw is open in the Euclidean 
topology. �
Proposition 17. If w is an open word and u is a birational word, then for any s, t ∈ A∗

the concatenation swut is irreducible.

Proof. Let Y ⊆ G be an irreducible, closed subset, and set F := μ−1
swut(Y ). We will show 

that F is irreducible.
There exists an open, dense subset O of Xu such that μu restricts to an isomor-

phism from O to an open, dense subset P of G. Let ϕ : P → O be the inverse of that 
isomorphism.
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If μswut maps (xs, xw, xu, xt) ∈ Xswut to y ∈ Y , then

μu(xu) = μw(xw)−1μs(xs)−1yμt(xt)−1

and therefore, if xu ∈ O, then we have

xu = ϕ(μw(xw)−1μs(xs)−1yμt(xt)−1).

Let Q be the open subset of Xs ×Xw ×Xt × Y defined by

Q := {(xs, xw, xt, y) | μw(xw)−1μs(xs)−1yμt(xt)−1 ∈ P}.

Since w is open and a fortiori dominant, Q is nonempty, hence dense in Xs×Xw×Xt×Y , 
hence irreducible. Define the morphism ψ : Q → F by

ψ(xs, xw, xt, y) = (xs, xw, ϕ(μw(xw)−1μs(xs)−1yμt(xt)−1), xt).

The image of ψ is an irreducible subset of F that contains all points (xs, xw, xu, xt) ∈ F

for which xu lies in O. We claim that F = imψ, so that F is, indeed, irreducible.
For this it suffices to prove that for any (zs, zw, zu, zt) ∈ F and any open neigh-

bourhood Ω of (zs, zw, zu, zt) in Xswut there exists a point (xs, xw, xu, xt) ∈ F ∩ Ω
with xu ∈ O. We can in fact take xs := zs and xt := zt and only vary zw and 
zu. Indeed, the neighbourhood Ω contains {zs} × Bw × Bu × {zt} for small balls Bw

and Bu around zw ∈ Xw and zu ∈ Xu, respectively. As w is open, μw(Bw) contains 
an open ball B′

w around μw(zw) ∈ G. If we take any xu in Bu sufficiently close to 
zu, then μw(zw)μu(zu)μu(xu)−1 ∈ B′

w and hence there exists an xw ∈ Bw such that 
μw(xw)μu(xu) = μw(zw)μu(zu). Since O is dense in Xu, we may take such an xu ∈ O∩Bu

and have thus found a point (zs, xw, xu, zt) ∈ F ∩ Ω with xu ∈ O. �
Proposition 17 and Example 14 suggest the following question, posed to us by a 

referee.

Question 18. Suppose that (Xa)a∈A is a collection of one-parameter subgroups of a con-
nected algebraic group G. Let w be an irreducible word. Is any word that contains w as 
a consecutive sub-word irreducible?

We expect the answer to be no in general, but do not know of any counterexamples.

Proof of Theorem 7. By assumption, a birational word u ∈ A∗ exists. By Proposition 16, 
an open word w ∈ A∗ exists; indeed, some concatenation of un of copies of u is open. By 
Proposition 17, any word in A∗ containing un+1 as a consecutive sub-word is irreducible. 
Hence (Xa)a∈A has the irreducible control property. �
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Proof of Proposition 1. Set X1 := L and X2 := U . By the classical LU-decomposition, 
the word u := 12 is open and birational, and so is the word w := 21 (the transpose of the 
LU-decomposition is the UL-decomposition). By Proposition 17, any word containing 
wu = 2112 is irreducible. Finally, by Lemma 12, we may replace the two consecutive 1s 
by a single 1, i.e., every word containing 121 is irreducible. This proves Proposition 1. �
4. Examples

4.1. The case of SL2(C)

Recall the subgroups X1, X2 of SL2(C) from §1.1. By Lemma 12, we need only look 
at words where the letters 1, 2 alternate. In §1.1 we already saw that 121 is dominant 
and 1212 is surjective but not irreducible. In Example 4 we saw, moreover, that 121 is 
not open.

We claim that 1212 is open. By the analysis in Example 4, it is certainly locally open 
around points (x1(a), x2(b), x1(c), x2(d)) with b �= 0 or, similarly, c �= 0. Moreover, by 
acting with x1(−a) from the left and x2(−d) from the right, we see that it suffices to 
check local openness at the point where a = b = c = d = 0. Suppose, then, that we want 
to solve

x1(a)x2(b)x1(c)x2(d) =
[
1 + ab + ad + cd + abcd a(1 + bc) + c

d(1 + bc) + b 1 + bc

]
=

=
[
x y
z w

]
∈ SL2(C),

where x, w ≈ 1 and y, z ≈ 0, where ≈ stands for approximately equal. Then we can find 
small b, c such that 1 + bc = w (e.g., both equal to the same square root of w − 1), and 
after that a and d determined by a = (y − c)/(1 + bc) and d = (z − b)/(1 + bc) are also 
small. The last condition 1 + ab + ad + cd + abcd = x now follows, since the right-hand 
matrix lies in SL2(C). This shows that μ1212 is open near (x1(0), x2(0), x1(0), x2(0)), so 
1212 is an open word.

Next, 12121 inherits the surjectivity and openness from 1212 by Lemma 11, but 
is still not irreducible. For example, the fibre μ−1

12121(I) consists of all quintuples 
(ϕ1(a), ϕ2(b), ϕ1(c), ϕ2(d), ϕ1(e)) with either c = 0 = b +d = a +e or d = 0 = b = a +c +e.

Finally, we claim that 121212 and all larger alternating words are irreducible. Indeed, 
the word w = 1212 is open, the word u = 212 is birational (by an argument similar to 
that for 121), and hence swut = s1212212t is irreducible by Proposition 17 for all words 
s, t. Now apply Lemma 12 to replace 22 by 2.

4.2. On a question by Kutzschebauch

This paragraph concerns an example communicated to me by Frank Kutzschebauch; 
see [2]. Let G := Sp2n(C), the complex symplectic group preserving the symplectic form 
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〈(b, c), (d, e)〉 := beT − cdT , where b, c, d, e ∈ Cn and (b, c), (d, e) ∈ C2n are thought of as 
row vectors.

Let

X1 :=
{[

1 0
A 1

]
| AT = A

}
and X2 :=

{[
1 B
0 1

]
| BT = B

}
,

two subgroups of G isomorphic, as algebraic groups, to the vector space C(n+1
2 ).

Theorem 19. Let w be a word over {1, 2} in which 1 and 2 alternate, and assume that w
is sufficiently long. Let (b, c), (d, e) ∈ C2n. Then the closed set

{x ∈ Xw | (b, c)μw(x) = (d, e)}

is irreducible.

The following lemmas are proved by straightforward calculations.

Lemma 20. The map μ121 maps X121 birationally to the closed subset

Z :=
{[

C D
E F

]
| DT = D

}
⊆ G. �

Let S be a sufficiently general codimension-n subspace of the space of symmetric 
n × n-matrices, let T be a vector space complement of S (of dimension n) and define

X3 :=
{[

1 B
0 1

]
| B ∈ S

}
, X4 :=

{[
1 B
0 1

]
| B ∈ T

}
⊆ X2,

so that the multiplication map X3 ×X4 → X2 is an isomorphism.

Lemma 21. The map μ1213 maps X1213 birationally onto G.

In particular, by Theorem 7, the collection X1, X2, X3 has the irreducible control 
property. We now use the ingredients for that theorem to prove Theorem 19.

Proof of Theorem 19. By the previous lemma and X2 ⊇ X3, the word v := 1212 is 
dominant. Hence by Proposition 16, w := vdimG+1 is open. Hence by Lemma 21 and 
Proposition 17, any word containing w1213 is irreducible. In particular, this holds for 
any word containing w12134. Since X3 ×X4 → X2 is an isomorphism, it holds for any 
word u containing w1212 = vdimG+2.

Finally, for Y choose the set {g ∈ G | (b, c)g = (d, e)}, which is a coset of the 
irreducible stabiliser of (b, c) in G, hence irreducible. Therefore μ−1

u (Y ) is irreducible, as 
desired. �
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Remark 22. Using direct computations it is likely possible to find much shorter open 
words, so that “sufficiently long” in Theorem 19 becomes a much milder condition. 
Indeed, for n = 2 and (b, c) = (0, 0, 0, 1) and alternating words starting with 1, [2, 
Lemma 10.5] states that Theorem 19 holds for words of length at least 5 for all values 
of (d, e), while for the word 1212 certain vectors (d, e) have reducible fibres.

4.3. The case of general algebraic groups

Let G be a connected algebraic group. We will prove Theorem 8.

Proof of Theorem 8. Let R be the unipotent radical of G, and let L be a Levi com-
plement of R, i.e., a subgroup of G such that the map L × R → G is an isomorphism 
of varieties, so that G is isomorphic to a semi-direct product L � R; such a group ex-
ists by [3]. Then L is a reductive group, and admits a decomposition akin to the LU 
decomposition in GLn(C); the details are as follows.

Let B+ be a Borel subgroup of L, T a maximal torus in B+, U+ the unipotent radical 
of B+, and U− the unipotent radical of the Borel group B− opposite to B+, i.e. such that 
B− ∩B+ = T . By the Bruhat decomposition, the multiplication map U− × T ×U+ → L

is an isomorphism of varieties with an open subvariety of L by [1, Theorem IV.14.12]. 
(For L = GLn(C), this is just the LU-decomposition seen in §1.2.) In particular, this 
map is open and birational.

Consequently, also the multiplication map

U− × T × U+ ×R → G

is open and birational. Similarly, so is the map

R× U+ × T × U− → G.

Now B̃+ := T ·U+ ·R = R·U+ ·T is a subgroup of G—in fact, a Borel subgroup of G—and 
the multiplication maps T ×U+ ×R → B̃+ and R×U+ × T → B̃+ are isomorphisms of 
varieties. It follows that the multiplication maps

U− × B̃ → G and B̃ × U− → G

are both birational and open. Hence, using Proposition 17 as in the proof of Proposition 1, 
all pre-images of irreducible varieties in G under the multiplication map

U− × B̃ × B̃ × U− → G

are irreducible. Now use Lemma 12 to conclude that the multiplication map

U− × B̃ × U− → G (2)
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has the same property.
To find the one-parameter subgroups, we proceed as follows. Set l := dimU− = dimU+

and m := dimT and k := dimR.
We have T ∼= (C∗)m, and this yields m isomorphic copies Xl+1, . . . , Xl+m ⊆ T of C∗

such that the multiplication map Xl+1 × · · · ×Xl+m → T is an isomorphism of varieties 
(and even of algebraic groups).

Furthermore, for any connected unipotent algebraic group H, there exists a basis 
v1, . . . , vp of the Lie algebra h of H such that the one-parameter subgroups Hi :=
exp(Cvp) (which are algebraic subgroups!) have the property that the product map 
H1 × · · · ×Hp → H is an isomorphism of varieties.

Applying the previous paragraph to the groups U−, U+, R of dimensions l, l, k, and 
combining these with the one-parameter subgroups Xl+1, . . . , Xl+m of T , we find one-
parameter subgroups such that the composition of the multiplication maps:

(X1 × · · · ×Xl) × (Xl+1 × · · · ×Xl+m) × (Xl+m+1 × · · · ×X2l+m)×
× (X2l+m+1 × · · · ×X2l+m+k) × (X1 × · · · ×Xl) → U− × T × U+ ×R× U− → G

has the property that all preimages of irreducible varieties in G are irreducible, and 
that, indeed, all words over {1, . . . , 2l + m + k} containing the word (1, 2, . . . , 2l + m +
k, 1, 2, . . . , l) are irreducible. Finally, we observe that the word above has length

3l + m + k < (3/2)(2l + m + k) = 1.5 · dimG. �
Remark 23. The proof yields a slightly better bound than 1.5 · dimG, namely, dimG +
(dimL)/2, where L is the Levi complement of G, or even dimG + (dimL − l)/2, where 
l is the rank of G (and of L), namely, the dimension of a maximal torus. However, if 
G is restricted to the classical groups (roughly speaking, the general linear groups, the 
orthogonal groups, and the symplectic groups), so that L = G, then l is proportional to 
the square root of dimG, so that this bound is not much better than 1.5 ·dimG. It would 
be interesting to show the existence of irreducible words of shorter length, say around 
dimG.

Example 24. For SL2(C), if in addition to X1, X2 from §1.1 we take the multiplicative 
one-parameter subgroup

X3 :=
{[

t 0
0 t−1

]
| t ∈ C∗

}
,

then the proof above says that the word 2312, and all words containing it, are irreducible.
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