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Abstract
In a previous paper, the third author proved that finite-degree polynomial functors
over infinite fields are topologically Noetherian. In this paper, we prove that the same
holds for polynomial functors from free R-modules to finitely generated R-modules,
for any commutative ring R whose spectrum is Noetherian. As Erman–Sam–Snowden
pointed out, when applying this with R = Z to direct sums of symmetric powers, one
of their proofs of a conjecture by Stillman becomes characteristic-independent. Our
paper advertises and further develops the beautiful but not so well-known machinery
of polynomial laws. In particular, to any finitely generated R-module M we associate
a topological space, which we show is Noetherian when Spec(R) is; this is the degree-
zero case of our result on polynomial functors.

1 Introduction andmain theorem

1.1 Summary

Apolynomial functor over an infinite field K is a functor P from the category of finite-
dimensional K -vector spaces to itself such that for any two finite-dimensional vector
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spaces V ,W the map PV ,W : Hom(V ,W ) → Hom(P(V ), P(W )) is a polynomial
map. In many respects, polynomial functors behave like univariate polynomials: they
can be added (direct sums),multiplied (tensor products), and composed; they are direct
sums of unique homogeneous polynomial functors of degrees 0, 1, 2, . . .; and—for
the theory that we are about to develop quite importantly—they can be shifted by a
constant: if P is a polynomial functor andU a constant vector space, then the functor
ShU (P) that assigns to V the vector space P(U ⊕ V ) and to ϕ ∈ HomK (V ,W ) the
linear map P(idU ⊕ ϕ) is a polynomial functor. Furthermore, if P has finite degree,
which we will always require, then—much like a univariate polynomial and its shift
by a constant—ShU (P) has the same degree, and the top-degree homogeneous com-
ponents of P and ShU (P) are canonically isomorphic.

From a different perspective, polynomial functors are the ambient spaces of “GL∞-
equivariant algebraic geometry”, a research area which has seenmuch activity over the
last years. A closed subset of P is a rule X that assigns to a vector space V a Zariski-
closed subset X(V ) of P(V ) in such amanner that for eachϕ ∈ Hom(U , V ), the linear
map PU ,V (ϕ) maps X(U ) into X(V ). In earlier work [8], the third author showed that
if P has finite degree, then it is Noetherian in the sense that any descending chain of
closed subsets P ⊇ X1 ⊇ X2 ⊇ · · · eventually stabilises. This was used in work by
Erman–Sam–Snowden [11,13,14] and by Draisma–Lasoń–Leykin [9] in new proofs
of the conjecture by Stillman that the projective dimension of a homogeneous ideal
that is generated by a fixed number of forms of a fixed degree is uniformly bounded
independently of the number of variables [20, Problem 3.14]. In this context, Erman–
Sam–Snowden asked whether the Noetherianity of polynomial functors also holds
over Z; this would show that their proof of Stillman’s conjecture yields bounds that
are independent of the characteristic, just like another proof by Erman–Sam–Snowden
[11] and the original proof by Ananyan–Hochster [2].

In this paper, we settle Erman–Sam–Snowden’s question in the affirmative. Indeed,
rather thanworkingoverZ,wewillwork over a ring Rwhose spectrum isNoetherian—
this turns out to be precisely the setting where topological Noetherianity also holds
for polynomial functors.

So let R be a ring (commutative with 1). In Sect. 3 we will review the notion of
polynomial laws from an R-module M to an R-module N . In the special case where
N = R, these polynomial laws form a graded ring R[M] (see Sect. 3.2), where the
notation is chosen to resemble that for the coordinate ring of an affine variety. This
ring will be used in Sect. 4 to define a topological space AM , in such a manner that
any polynomial law ϕ : M → N yields a continuous map, also denoted ϕ, from
AM → AN . To be precise, AM is a topological space over the category DomR of R-
domains with R-algebra monomorphisms. Here a topological space over a category
C is not a single set, but a functor from C equipped with the notions of elements and
(closed) subsets, and we let all definitions related to usual topological spaces stated in
terms of their elements and (closed) subsets carry over to this setting; see Definition 28
for details.

If M is freely generated by n elements, then R[M] is the polynomial ring
R[x1, . . . , xn] and the poset of closed sets in AM is the same as that in the spec-
trum of R[M]. In general, however, we do not completely understand the relation
between AM and the spectrum of R[M] (see Remark 41), and we work with the for-
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mer rather than the latter. The following result is a topological version of Hilbert’s
basis theorem in this setting.

Proposition 1 If R has aNoetherian spectrum and M is a finitely generated R-module,
then the topological space AM over DomR is Noetherian.

Interestingly, it is not true that if R is Noetherian and M is finitely generated,
then R[M] is Noetherian (see Example 23), so “topologically Noetherian” is the most
natural setting here. A special case of the theorem (taking M free of rank 1) is that
if R has a Noetherian spectrum, then so does the polynomial ring R[x]. This special
case, a topological version of Hilbert’s basis theorem, is easy and well-known; e.g., it
also follows from [12, Theorem 1.1] with a trivial group G.

Following [22], in Sect. 5 we will recall the notion of polynomial functors from
the category fgfModR of finitely generated free R-modules to the category ModR of
R-modules. These polynomial functors form an Abelian category. The subcategory
of polynomial functors from fgfModR to the category fgModR of finitely generated,
but not necessarily free, R-modules is not an Abelian subcategory when R is not
Noetherian, but it is closed under taking quotients, and thiswill suffice for our purposes.

Given a polynomial functor P : fgfModR → fgModR, a closed subset of AP is a
rule X that assigns to each finitely generated free R-module U a closed subset X(U )

of AP(U ) such that the continuous map corresponding to the polynomial law

Hom(U , V ) × P(U ) → P(V ), (ϕ, p) �→ PU ,V (ϕ)(p)

maps the pre-image of X(U ) under the projection on P(U ) in AHom(U ,V )×P(U ) into
X(V ) (see Sect. 5.8 for details). If Y is a second such rule, then we say that X is a
subset of Y if X(U ) is a subset of Y (U ) for each U ∈ fgfModR. Our main result,
then, is the following.

Theorem 2 Let R be a commutative ring whose spectrum is a Noetherian topological
space and let P be a finite-degree polynomial functor fgfModR → fgModR. Then
every descending chain X1 ⊇ X2 ⊇ . . . of closed subsets of AP stabilises: for all
sufficiently large n we have Xn = Xn+1.

Proposition 1 is the special case of Theorem 2 where the polynomial functor has
degree 0, i.e., sends eachU to a fixedmoduleM and eachmorphism to the identity idM .
Proposition 1 will be proved first, as a base case in an inductive proof of Theorem 2.

1.2 Structure of the paper

In Sect. 2, we establish and recall certain basic results. In Sect. 3 we define polynomial
laws and the coordinate ring of a module over a ring. Section 4 is devoted to the
topological space AM . Here we prove Proposition 1, the first fundamental fact needed
for our inductive proof of Theorem 2.

Then, in Sect. 5 we recall the definition a polynomial functor P over a ring
and several of its properties. Among these is the Friedlander–Suslin lemma that
yields equivalences of Abelian categories between polynomial functors fgfModR →
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fgModR of degree ≤ d and finitely generated modules for the non-commutative R-
algebra R[End(U )]∗≤d (called the Schur algebra) for any U ∈ fgfModR of rank ≥ d.
We also prove the second fundamental fact needed for Theorem 2: if R is a domain
and P a polynomial functor from fgfModR to ModR such that Frac(R) ⊗ P is irre-
ducible, then Frac(R/p)⊗ P is irreducible for all primes p in some open dense subset
of Spec(R). This is an incarnation of the philosophy in representation theory that
irreducibility is a generic condition.

Finally, in Sect. 6 we prove Theorem 2. The global proof strategy is as follows: we
show that the induction steps in [8], where Theorem 2 is proved when R is an infinite
field, can be made global in the sense that they hold for Frac(R/p) for all p in some
open dense subset of Spec(R); and then we use Noetherian induction on Spec(R) to
deal with the remaining primes p. The details of this approach are a quite subtle and
beautiful.

The big picture is depicted in the following diagram:

Building on the notion of finitely generated R-modules, on the left we pass to poly-
nomial functors over R. Here many results carry over, such as the fact that the rank is
a semicontinuous function on Spec(R); see Proposition 54. We regard this as “linear
algebra in varying dimensions”. In the other direction, we construct the topological
space AM and enter the realm of algebraic geometry; the closed subsets generalise
affine algebraic varieties. Finally, both constructs come together in the construction
of the topological space associated to a polynomial functor P . Here we use both
results from the “linear algebra” of polynomial functors, such as Friedlander–Suslin’s
lemma, and results about the topological spaces AM , to prove that AP is Noetherian.
Furthermore, we establish the fundamental result that the dimension function of a
closed subset of AP depends on primes in Spec(R) in a constructible manner; see
Proposition 86.

1.3 A class of applications

Our original motivation for this paper is the following: let P, Q be (finite-degree)
polynomial functors from the categoryoffinitely generated freeZ-modules to itself and
let α : Q → P be a polynomial transformation; see Definition 46. Define the closed
subset X of AP as the closure of the image of α. Specifically, for a natural number
n, the pull-back along αZ

n defines a ring homomorphism Z[P(Zn)] → Z[Q(Zn)],
and X(Zn) is the closed subset of SpecZ[P(Zn)] defined by the kernel of that ring
homomorphism. Theorem 2 implies the following.

Corollary 3 There exists a uniform bound d such that for all n ∈ Z≥0 and all fields K ,
X(Kn) ⊆ K ⊗ P(Zn) is defined by polynomials of degree ≤ d.
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This corollary hasmany applications; here is one. If V is a finite-dimensional vector
space over a field K and T ∈ V ⊗ V ⊗ V is a tensor, then T is said to have slice rank
≤ r if T can be written as the sum of r terms of the form σ(v ⊗ A), where v ∈ V and
A ∈ V ⊗ V , and σ is a cyclic permutation of 1, 2, 3 permuting the tensor factors. If
K is algebraically closed, then being of slice rank ≤ r is a Zariski-closed condition
[26].

Corollary 4 Fix a natural number r . There exists a uniform bound d such that for all
algebraically closed fields K and for all n ∈ Z≥0, the variety of slice-rank-≤ r tensors
in Kn ⊗ Kn ⊗ Kn is defined by polynomials of degree ≤ d.

The same holds when the number of tensor factors is increased to any fixed number,
possibly at the expense of increasing d, and similar results hold for the set of cubic
forms of bounded q-rank [7] or for the closure of the set of degree-e forms of bounded
strength in the sense of [2].We stress, however, that “defined by” is intended in a purely
set-theoretic sense. We do not know whether the vanishing ideals of these varieties
are generated in bounded degree, even if the field K were fixed beforehand.

Proof of Corollary 4 Consider the polynomial functor P that sends a free Z-module
Z
n to Z

n ⊗ Z
n ⊗ Z

n , and the polynomial functor Q that sends Z
n to Z

n ⊕(Zn ⊗ Z
n).

For any r -tuple (σ1, . . . , σr ) of cyclic permutations of 1, 2, 3 we have a polynomial
transformation

Qr → P, ((v1, A1), . . . , (vr , Ar )) �→
r∑

i=1

σi (vi ⊗ Ai ),

whose image closure is defined in uniformly bounded degree e by Corollary 3. The
variety of slice-rank-≤ r tensors is the union of these image closures over all r -tuples
of cyclic permutations, hence defined in degree at most e · 3r , independently of the
algebraically closed field and independently of n. 
�
Remark 5 Over a field K of characteristic zero, the irreducible polynomial functors P
are precisely the Schur functors, and any polynomial functor is isomorphic to a direct
sum of Schur functors. These always admit a Z-form, i.e., a polynomial functor PZ
over Z such that K ⊗ PZ ∼= P , which moreover has the property that it maps free
Z-modules to free Z-modules [1]. The Z-form need not be unique; e.g., the Schur
functor over K that maps V to its d-th symmetric power SdV , comes both from the
functor from free Z-modules to free Z-modules that sends U to SdU and from the
functor that sends U to the sub-Z-module of U⊗d consisting of symmetric tensors.
These two functors are non-isomorphic Z-forms. In applications such as the above,
where one looks for field-independent bounds, it is important to choose the Z-form
that captures the problem of interest.

Example 6 Again over R = Z, consider the polynomial transformation α : (S2)4 →
S4 that maps a quadruple (q1, . . . , q4) of quadratic forms to q21 + · · · + q24 . Let X be
the image closure as above. If K is algebraically closed of characteristic zero, then
XK (K 4) is a hypersurface in S4(K ) of degree 38475 [3], so the degree bound from
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Corollary 3must be at least that large. On the other hand, if K is algebraically closed of
characteristic 2, then the image of α is just the linear space spanned by all degree-four
monomials that are squares, and hence only linear equations are needed to cut out this
image.

Remark 7 Over algebraically closed fields of positive characteristic, irreducible poly-
nomial functors are still parameterised by partitions, but polynomial functors are no
longer semisimple, and the Z-forms from Remark 5 do not always remain irreducible;
standard references are [6,16]. The typical example is that, in characteristic p, the
functor S p contains a subfunctor that maps V to the linear space of p-th powers of
elements of V .

1.4 Further relations to the literature

The polynomial functors that we study are often referred to as strict polynomial func-
tors in the literature; we will drop the adjective “strict”. We do not know whether the
polynomial functors over finite fields studied in [21] admit a similar theory.

Much literature on polynomial functors is primarily concerned with representa-
tion theory, whereas our emphasis is on the geometry/commutative algebra of closed
subsets in such polynomial functors.

Wewill useworkofRobyonpolynomial laws [22] andworkofTouzéonpolynomial
functors [27]—but indeed only more elementary parts of their work, such as the
generalisation of Friedlander–Suslin’s [15, Theorem 3.2] to general base rings R;
see [27, Théorème 7.2].

The paper [14] establishes finiteness results for (cone-stable andweakly upper semi-
continuous) ideal invariants in polynomial rings over a fixed field. As Erman pointed
out to us, at least part of their results carry over to arbitrary base rings with Noetherian
spectrum. In particular, Erman–Sam–Snowden establish the Noetherianity of a space
Yd that parameterises homogeneous ideals generated in degrees d = (d1, . . . , dr ).
While they work with certain limit spaces, the “functor analogue” of their Yd in our
setting would be a functor from fgfModR to the category of functors from DomR to
sets that sends a finitely generated free R-module U = Rn to the functor that maps
an R-domain D to the set of GLn(D)-orbits of ideals in R[x1, . . . , xn] generated by
homogeneous polynomials of degrees d1, . . . , dr . Then Yd admits a surjective map
from the space ASd1⊕···⊕Sdr —a functor from fgfModR to functors from DomR to
topological spaces, and one can give Yd the quotient topology. Theorem 2 implies that
Yd is then Noetherian, provided that Spec(R) is Noetherian.

Our work does not say much about Noetherianity of the coordinate rings R[AP ], let
alone about Noetherianity of finitely generated modules over them. Currently, these
much stronger results are known only when R is a field of characteristic zero and P is
either a direct sum of copies of S1 [23,24] or P = S2 or P = ∧2 [19] or P = S1⊕ S2

or P = S1 ⊕ ∧2 [25].
Like Ananyan–Hochster’s work [2], recent work by Kazhdan and Ziegler [17,18]

implies that polynomials of high strength, and high-strength sequences of polynomials,
behaveverymuch like generic polynomials or sequences. LikeCorollary3, their results
are uniform in the characteristic of the field. But the route that Kazhdan and Ziegler
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take is entirely different: first a theorem is proved over finite fields by algebraic-
combinatorial means, with uniform constants that do not depend on the finite field,
and then model theory is used to transfer the result to arbitrary algebraically closed
fields.

In [4] it is shown that in any closed subset of the polynomial functor Sd defined over
Z, the strength of polynomials over a ground field of characteristic 0 or characteristic
> d is uniformly bounded from above. While of a similar flavour as Corollary 3, that
result—in which the restriction on the characteristic cannot be removed—does not
follow from our current work. Far-reaching generalisations of [4], but only over fields
of characteristic zero, are the topic of the forthcoming preprint [5].

2 Preliminaries

2.1 Rings and algebras

Throughout the paper, all rings are commutative and with 1 and ring homomorphisms
are required to be unital. We fix a ring R, and if p is a prime ideal in R, then we write
Kp for the fraction field of the domain R/p. If R is a domain, then we write K := K(0)
for the fraction field of R.

An R-algebra is an (unless otherwise stated) commutative ring with a homo-
morphism from R into it; an R-algebra homomorphisms from an A to B is a ring
homomorphism A → B such that composition of the homomorphisms R → A → B
is the prescribed homomorphism R → B. Except where specified otherwise, ten-
sor products are over R, Hom(U , V ) is the R-module of R-module homomorphisms
from U to V , and U∗ = Hom(U , R). We use the terms R-domain and R-field for
R-algebras that, as rings, are domains and fields, respectively.

2.2 From finitely generated to freemodules

The following lemma, which we will later generalise to polynomial functors, is well-
known; we give a proof for completeness.

Lemma 8 Let R be a domain, let M be a finitely generated R-module, and let N be
a submodule of M. Then there exists a nonzero r ∈ R and elements v1, . . . , vn ∈ N
such that R[1/r ]⊗ N is a finitely generated free submodule of R[1/r ]⊗M with basis
1 ⊗ v1, . . . , 1 ⊗ vn, and such that R[1/r ] ⊗ M is the direct sum of R[1/r ] ⊗ N and
another free R[1/r ]-module.

Note that tensoring with K yields that n = dimK (K ⊗ N ).

Proof The vector space K ⊗ N is contained in the finite-dimensional vector space
K ⊗ M . Hence there exist v1, . . . , vn ∈ N such that 1 ⊗ v1, . . . , 1 ⊗ vn is a basis
of K ⊗ N , and vn+1, . . . , vm ∈ M such that 1 ⊗ vn+1, . . . , 1 ⊗ vm is a basis of a
complement of K ⊗N in K ⊗M . We claim that both statements hold with K replaced
by R[1/r ] for some nonzero r .
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To see this, extend v1, . . . , vm with vm+1, . . . , vl to a generating set of the R-module
M . Then for each j = m + 1, . . . , l we have, in K ⊗ M ,

1 ⊗ v j =
m∑

i=1

ci j ⊗ vi

for certain coefficients ci j ∈ K . This identity means that there exists a non-zero
element r ∈ R and suitable coefficients ci j ’s in R such that

1 ⊗ v j =
m∑

i=1

(c′
i j/r) ⊗ vi

holds in R[1/r ]⊗M . Hence R[1/r ]⊗M is generated by 1⊗v1, . . . , 1⊗vm , and these
elements do not have any nontrivial linear relation over R[1/r ] since their images in
K ⊗ M do not satisfy any such relation over K . It follows that R[1/r ] ⊗ M is free
with basis 1⊗ v1, . . . , 1⊗ vm . Furthermore, R[1/r ]⊗ N contains the R[1/r ]-module
spanned by 1 ⊗ v1, . . . , 1 ⊗ vn ; and conversely, if v ∈ R[1/r ] ⊗ M is an element of
R[1/r ] ⊗ N , then it cannot have a nonzero coefficient on any of the last m − n basis
elements, because in K ⊗ M the image of v is a linear combination of the first m
basis elements and the basis elements do not satisfy any linear relation there. Hence
R[1/r ] ⊗ N ⊆ R[1/r ] ⊗ M is free with basis 1 ⊗ v1, . . . , 1 ⊗ vn . 
�

3 Polynomial laws and the coordinate ring of a module

3.1 Polynomial laws

We follow [22, Chapter 1]. Let M, N be R-modules. Denote by AlgR the category of
R-algebras.

Definition 9 A polynomial law ϕ : M → N is a collection of maps

(ϕA : A ⊗ M → A ⊗ N )A∈AlgR

such that for every R-algebra homomorphism α : A → B the following diagram
commutes:

A ⊗ M
ϕA

α⊗idM

A ⊗ N

α⊗idN

B ⊗ M
ϕB

B ⊗ N .

Example 10 Suppose that M and N are the free modules R2 and R, respectively, so
that A ⊗ M and A ⊗ N are canonically identified with A2 and A. Then the collection
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(ϕA)A defined by ϕA(x, y) = xy+ y2 for x, y ∈ A is a polynomial law M → N , and
indeed one that is homogeneous of degree 2 in the sense of Definition 13 below.

More generally, the name polynomial law derives from the following fact.

Lemma 11 Consider two R-modules M and N. Suppose that M is finitely generated
and let {v1, . . . , vn} be a set of generators. Let ϕ : M → N be a polynomial law. Then
ϕ is completely determined by the element:

ι(ϕ) := ϕR[x1,...,xn ](x1 ⊗ v1 + · · · + xn ⊗ vn) ∈ R[x1, . . . , xn] ⊗ N .

This gives an injective map ι from the collection of polynomial laws from M to N to
the module R[x1, . . . , xn]⊗ N. In the case where M is free with basis v1, . . . , vn, this
injective map is a bijection.

Proof Let A be an R-algebra, let a1, . . . , an ∈ A be elements and let α : R[x1, . . . , xn]
→ A be the R-algebra homomorphism sending xi �→ ai . Then the diagram associated
toα shows thatϕA(a1⊗v1+· · ·+an⊗vn) = (α⊗idN )ι(ϕ) andhence ι is injective. IfM
is free with basis v1, . . . , vn , then ϕA(a1⊗v1+· · ·+an⊗vn) = ∑

j f j (a1, . . . , an)⊗
w j defines a polynomial law ϕ : M → N for every

∑
j f j ⊗w j ∈ R[x1, . . . , xn]⊗N .


�
Example 12 If R is an infinite field, then a polynomial law ϕ fromM = Rn to N = Rm

is in fact uniquely determined by ϕR , which is required to be a polynomial map, i.e.,
a map all of whose m coordinate functions are polynomials in the n coordinates on
M . So then the set of polynomial laws from M to N is precisely the set of polynomial
maps from the vector space M to the vector space N .

For a general ring R, we denote by A
n
R the affine scheme Spec(R[x1, . . . , xn]). The

set of polynomial laws from Rn to Rm is the set of morphismsA
n
R → A

m
R defined over

R. Of course, such a morphism need not be determined by its map ϕR : Rn → Rm ,
but it is determined by the maps ϕA : An → Am for all R-algebras A. This motivates
the definition of polynomial laws.

Definition 13 A polynomial law ϕ : M → N is homogeneous of degree d if for each
R-algebra A and all a ∈ A,m ∈ A ⊗ M , we have ϕA(am) = adϕA(m).

Writing R[x1, . . . , xn]d for the set of homogeneous polynomials of degree d, we
see that the injection from Lemma 11 maps a homogeneous polynomial law M → N
of degree d to an element of R[x1, . . . , xn]d ⊗ N .

Proposition 14 Let M1, . . . , Md , N be R-modules and let ϕ : M1 × · · · × Md → N
be a multilinear map. Then ϕ extends to a homogeneous polynomial law of degree d
(also denoted ϕ). After identifying A⊗ (M1 × · · ·× Md) ∼= A⊗ M1 × · · ·× A⊗ Md,
we have

ϕA

⎛

⎝
∑

i1

ai1 ⊗ mi1 , . . . ,
∑

id

aid ⊗ mid

⎞

⎠ =
∑

i1,...,id

ai1 · · · aid ⊗ ϕ(mi1 , . . . ,mid )

for all R-algebras A, ai1 , . . . , aid ∈ A and mi1 ∈ M1, . . . ,mid ∈ Md.
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Proof ThemapsϕA arewell-defined as themaps Ad×M1×· · ·×Md → A⊗N sending
(a1, . . . , ad ,m1, . . . ,md) �→ a1 · · · adϕ(m1 · · ·md) are multilinear. The collection
(ϕA)A is a homogeneous polynomial law of degree d and ϕR = ϕ. 
�
Remark 15 Composition of R-module homomorphisms is a bilinear map. By the
proposition, we can thus view this operation as a polynomial law.

A homogeneous polynomial law ϕ : M → N of degree 0 is the same thing as an
element of N (namely, the element ϕR(0), which equals ϕA(m) for any R-algebra A
and any elementm ∈ A⊗M); we call these polynomial laws constant. A homogeneous
polynomial law M → N of degree 1 is the extension of an R-module homomorphism
M → N as in the proposition above (namely, themapϕR : M → N , which in this case
is R-linear and uniquely determines ϕA for all A ∈ AlgR); we call these polynomial
laws linear.

The following proposition says that, in many ways, polynomial laws behave like
ordinary polynomial maps between vector spaces. For proofs we refer to [22].

Proposition 16 Let ϕ,ψ : M → N, γ : N → O be polynomial laws between R-
modules.

(1) The collection ϕ +ψ := (ϕA +ψA)A is a polynomial law M → N, homogeneous
of degree d if ϕ,ψ are.

(2) We have ϕ = ∑∞
d=0 ϕd for unique polynomial laws ϕd : M → N of degree d,

where for each R-algebra A and each m ∈ A ⊗ M we have ϕd,A(m) = 0 for all
but finitely many d’s (ϕd is called the homogeneous component of ϕ of degree d);
moreover, if M is finitely generated, then only finitely many of the ϕd are nonzero.

(3) The collection γ ◦ ϕ := (γA ◦ ϕA)A is a polynomial law M → O, homogeneous
of degree d · e if ϕ,ψ are homogeneous of degrees d, e, respectively.

(4) If N = R, then ϕ · ψ = (m �→ ϕA(m)ψA(m))A is a polynomial law M → R,
homogeneous of degree d+e ifϕ,ψ are homogeneous of degrees d, e, respectively.

Proposition 17 Let ϕ : M ⊕ M ′ → N be a polynomial law between R-modules. Then
ϕ has a unique decomposition ϕ = ∑∞

i, j=0 ϕ(i, j) such that ϕ(i, j) : M ⊕ M ′ → N is a
bihomogeneous polynomial law of degree (i, j), i.e., after identifying A⊗(M⊕M ′) ∼=
A⊗M⊕A⊗M ′, we have ϕ(i, j),A(am, bm′) = aib jϕ(i, j),A(m,m′) for all R-algebras
A, a, b ∈ A, m ∈ A⊗ M and m′ ∈ A⊗ M ′. Moreover, if ϕ is homogeneous of degree
d, then ϕ(i, j) = 0 for all i + j �= d.

Proof Suppose that such a decomposition exists and let A be an R-algebra. Then we
have

ϕA[s,t](sm, tm′) =
∑

i, j

ϕ(i, j),A[s,t](sm, tm′)

=
∑

i, j

si t jϕ(i, j),A(m,m′) ∈
∞⊕

i, j=0

si t j A ⊗ N

for all m ∈ A ⊗ M and m′ ∈ A ⊗ M ′. This shows that the ϕ(i, j) are unique. If ϕ is
homogeneous of degree d, setting s = t , we see that ϕ = ∑

i+ j=d ϕ(i, j) and hence
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ϕ(i, j) = 0 for i + j �= d. What remains to show the existence of the decomposition. In
fact, defining ϕ(i, j),A(m,m′) to be the coefficient of si t j in ϕA[s,t](sm, tm′), it is easy
to show that the ϕ(i, j) are bihomogeneous polynomial laws of degree (i, j) adding up
to ϕ. 
�

The class of R-modules, in addition to its structure of Abelian category with R-
module homomorphisms as morphisms, has the structure of a (non-Abelian) category
with polynomial laws as morphisms. Both structures will be important to us, but we
reserve the notation ModR for the category in which the morphisms are R-module
homomorphisms (i.e., homogeneous polynomial laws of degree 1).

Definition 18 (Base change). If B is an R-algebra, then the tensor product functor
ModR → ModB, which sends linear polynomial laws over R to linear polynomial
laws over B, can be extended to a functor from the category of R-modules with
polynomial laws over R to the category of B-modules with polynomial laws over B: on
objects, the functor is just M �→ B ⊗ M , and a polynomial law (ϕA)A∈AlgR : M → N
is mapped to (ϕA)A∈AlgB where, for a B-algebra A, the map ϕA is interpreted as a map
A ⊗B (B ⊗R M) ∼= A ⊗R M → A ⊗R N ∼= A ⊗B (B ⊗R N ).

3.2 The coordinate ring of amodule

Let M be a finitely generated R-module.

Definition 19 We write R[M] for the set of polynomial laws M → R and R[M]d ⊆
R[M] for the subset of homogeneous polynomial laws of degree d. The addition
and multiplication from Proposition 16, the grading from Definition 13 and the iden-
tification R[M]0 = R give R[M] = ⊕∞

d=0 R[M]d the structure of a Z≥0-graded
commutative R-algebra. We call this R-algebra the coordinate ring of M .

Remark 20 In [22, Chapitre III], various algebras associated to an R-module M are
introduced, but they are different from our R-algebra R[M]. One important difference
is that for us, the elements of M play the role of geometric objects, whereas there, the
algebras consist of elements in divided or symmetric powers of M .

As usual with coordinate rings, the association M �→ R[M] is a contravariant
functor from the category of R-modules with polynomial laws to the category of R-
algebras: a polynomial law ϕ : M → N has a pull-back map ϕ∗ : R[N ] → R[M]
sending f �→ f ◦ ϕ. If ϕ is linear, then ϕ∗ is a graded homomorphism.

If M is generated by v1, . . . , vn , then the injection ι : R[M] → R[x1, . . . , xn]
of Lemma 11 is a graded ring homomorphism. The following lemma says precisely
which subalgebra its image is.

Lemma 21 Let ψ : N → M be a surjective R-module homomorphism. Then the map
ψ∗ is a graded isomorphism from R[M] to the graded R-subalgebra of R[N ] whose
degree-d part equals

{ f ∈ R[N ]d | ∀u ∈ ker(ψ) : f ◦ tu = f }
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where tu : N → N (called translation by u) is the affine-linear polynomial law
v �→ v + u.

Proof Let g ∈ R[M]d and write f = ψ∗(g) = g ◦ψ . To see that ψ∗ is injective, note
that f A = gA ◦ (idA ⊗ ψ) for all R-algebras A. So if f A = 0, then gA = 0 as idA ⊗ ψ

is surjective. To see that the image is contained in the subalgebra, it is enough to note
that ψA = idA ⊗ ψ and tu,A(m) = m + 1⊗ u and so ψ ◦ tu = ψ as polynomial laws.
Now, let f ∈ R[N ]d be a polynomial law such that f ◦ tu = f for all u ∈ ker(ψ). It
remains to show that f = g ◦ ψ for some g ∈ R[M]d . As idA ⊗ ψ is surjective, we
set gA(m) := f A(n) for any n ∈ A ⊗ N mapping to m. To do this, we need to show
that f A(n) = f A(n′) whenever n − n′ ∈ ker(idA ⊗ ψ). Since the functor A⊗ − from
R-modules to A-modules is right-exact, we have ker(idA ⊗ ψ) = A ⊗ ker(ψ). Take
h = f ◦ ((n, n′) �→ n + n′). Then we see that

hA(n, 1 ⊗ u) = f A(n + 1 ⊗ u) = ( f ◦ tu)A(n) = f A(n) = hA(n, 0)

for all R-algebras A, n ∈ A⊗N and u ∈ ker(ψ). It follows that h(i, j),A(n, 1⊗u) = 0
whenever j > 0. And, we have h(d,0),A(n, n′) = f A(n). So

f A(n + a ⊗ u) = hA(n, a ⊗ u)

= h(d,0),A(n, a ⊗ u) +
d∑

i=1

h(d−i,i),A(b, a ⊗ u)

= f A(n) +
d∑

i=1

ai h(d−i,i),A(b, 1 ⊗ u)

= f A(n)

for all n ∈ A ⊗ N , a ∈ A and u ∈ ker(ψ). So if n − n′ ∈ ker(idA ⊗ ψ), then
f A(n) = f A(n′). This shows gA is well-defined. It is straightforward to check that
g = (gA)A is a homogeneous polynomial law of degree d. 
�
Example 22 When R is an infinite field and both M and N are finite-dimensional
vector spaces over R, R[M] is just the subring of R[N ] consisting of all polynomials
that are constant on fibres of the projection N → M .

The following example shows that, even when R is Noetherian and M is finitely
generated, R[M] need not be Noetherian.

Example 23 Let R := K [t]/(t2) where K is a field of characteristic zero, and let
M := K [t]/(t). Then M = R/(t) is an R-module generated by a single element
v := 1+(t) and R[M] is the subring of R[x] spanned by all homogeneous polynomials
f = cxd such that f (x+at) = f (x) for all a ∈ K . Now c(x+at)d = cxd+cdatxd−1

and hence we need that c ∈ (t) whenever d ≥ 1. Hence R[M] is the vector space over
K spanned by 1, t, t x, t x2, . . . with the multiplication (t i x)(t i x) = 0. Observe that
R[M] is not Noetherian, since the ideal span{t, t x, t x2, . . .} is not finitely generated.
On the other hand, the quotient R[M]red of R[M] by its ideal of nilpotent elements is
K .
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However, wewill see later that if Spec(R) is Noetherian andM is finitely generated,
then a certain topological space AM defined using R[M] is also Noetherian. In Exam-
ple 23, this is a consequence of the fact that Spec(R[M]) = Spec(K ) is Noetherian.
See also Remark 41.

Example 24 Now consider a field K of characteristic 2 and set R := K [t]/(t2). The
same computation as above shows that cxi with odd i can only be in R[M] ⊆ R[x]
if c is in (t). But for even i , cxi is in R[M] regardless of c ∈ R. Hence R[M] is the
K -vector space with basis

1, t, t x, x2, t x2, t x3, x4, t x4, . . .

and R[M]red ∼= K [x2] as a graded algebra.

If B is an R-algebra, then the base change functor from Definition 18 sends
polynomial laws M → R to polynomial laws B ⊗ M → B. This yields an R-
algebra homomorphism R[M] → B[B ⊗ M] and hence a B-algebra homomorphism
B ⊗ R[M] → B[B ⊗ M]. The following example shows that this needs not be an
isomorphism.

Example 25 Let R = Z and M = Z /2Z, generated by a single element v = 1 +
2Z. Then by Lemma 21, R[M] is the subring of R[x] spanned by all homogeneous
univariate polynomials f such that f (x + 2a) = f (x) for all a ∈ Z. Only the
constant polynomials have that property, so R[M] = R. Now take the Z-algebra
B = Z /2Z =: F2, which is a field, and B ⊗ M is the one-dimensional vector space
over that field, so B[B ⊗ M] ∼= F2[x].

However, when B is a localisation of a domain R, then the map is an isomorphism:

Proposition 26 Suppose that R is a domain. Let M be a finitely generated R-module
and let S be a multiplicative subset of R not containing 0. Set R′ := S−1R. Then

R′ ⊗ R[M] ∼= S−1R[M] ∼= R′[R′ ⊗ M] ∼= R′[S−1M].

Proof The first and last isomorphisms are standard. For the middle isomorphism, we
choose generators m1, . . . ,mn of M and embed R[M] as a graded R-subalgebra A
of R[x1, . . . , xn]. Since localisation is exact, S−1R[M] is then isomorphic to the
R′-algebra S−1A ⊆ R′[x1, . . . , xn]. On the other hand, using the generators 1 ⊗
m1, . . . , 1⊗mn , the R′-algebra R′[R′ ⊗M] also embeds as a graded R′-subalgebra B
of R′[x1, . . . , xn]. The canonical map R′ ⊗ R[M] → R′[R′ ⊗ M] translates into
an inclusion S−1A ⊆ B, so it remains to show that B ⊆ S−1A. For this, let O
be the kernel of the R-module homomorphism Rn → M given by the generators
m1, . . . ,mn . Again since localisation is exact, S−1O ∼= R′ ⊗ O is the kernel of the
corresponding R′-module homomorphism (R′)n → R′ ⊗M . Let f ∈ B and let s ∈ S
be such that g := s f ∈ R[x1, . . . , xn]. Then, since f ∈ B, one has that f ◦ tu = f for
all u ∈ S−1O ⊆ (R′)n , by Lemma 21 applied to the R′-module R′ ⊗ M . In particular,
the multiplication by s gives g ◦ tu = g over R′ for all u ∈ O ⊆ Rn . Since R is a
domain, the same holds over R and hence g ∈ A, again by Lemma 21 but now applied
to the R-module M . Hence f = s−1g ∈ S−1A, as desired. 
�
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Like in ordinary algebraic geometry, the coordinate ring of a direct sum is the tensor
product of the coordinate rings.

Proposition 27 Let M, N be finitely generated R-modules. Then

R[M ⊕ N ] ∼= R[M] ⊗ R[N ].

Proof Elements of R[M] and R[N ] induce elements of R[M ⊕ N ] via composition
with the projections M ⊕ N → M and M ⊕ N → N , respectively. The product of
such induced polynomial laws M ⊕ N → R gives a bilinear map R[M] × R[N ] →
R[M ⊕ N ]. This induces an R-linear map R[M] ⊗ R[N ] → R[M ⊕ N ], which is
in fact a homomorphism of R-algebras. Denote by R[M ⊕ N ](d,e) the R-submodule
of R[M ⊕ N ] consisting of all bihomogeneous polynomial laws of degree (d, e). It
suffices to show that R[M ⊕N ](d,e) ∼= R[M]d ⊗ R[N ]e. To see this, first suppose that
M, N are free. In this case, we get R[x1, . . . , xn, y1, . . . , ym](d,e) ∼= R[x1, . . . , xn]d⊗
R[y1, . . . , ym]e when xi , y j have degrees (1, 0), (0, 1), respectively. In general, let
ϕ : M ′ → M and ψ : N ′ → N be surjective R-linear maps from finitely generated
free R-modules. Then we see that

{ f ∈ R[M ′ ⊕ N ′](d,e) | ∀u1 ∈ ker(ϕ)∀u1 ∈ ker(ψ) : f ◦ t(u1,u2) = f }
∼= { f ∈ R[M ′]d | ∀u1 ∈ ker(ϕ) : f ◦ tu1 = f } ⊗ {g ∈ R[N ′]e | ∀u1 ∈ ker(ψ) :
g ◦ tu2 = g}

and hence R[M ⊕ N ](d,e) ∼= R[M]d ⊗ R[N ]e. 
�
Example 23 shows that the coordinate ring of a module is quite a subtle notion.

However, we will see that in the proof of our Theorem 2, by a localisation we can
always pass to a case where the module M is free. In that case, by Lemma 21, R[M]
is just a polynomial ring over R.

4 The topological space AM

4.1 The spaceAM

We now construct the topological space AM for M a finitely generated R-module. To
be precise, AM is a topological space over the category DomR of R-domains with
R-algebra monomorphisms, in the sense of the following definition.

Definition 28 Let F : C → D be a functor and suppose that the objects of D are sets
and the morphisms are maps (i.e, we have a forgetful functor Forget : D → Set). An
element of F is an element of F(C) for some C ∈ C. A subset of F is a subfunctor
of Forget ◦F , i.e., a rule X that assigns to each C ∈ C a subset X(C) ⊆ F(C) in
such a manner that FC,D(ϕ) maps X(C) into X(D) for all morphisms ϕ : C → D.
A topological space over C is a pair (F, T ) where F is a functor as above and T
is a collection of subsets of F including the subsets ∅, F that is closed under taking
arbitrary intersections and finite unions.
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Remark 29 We note that all definitions that can be stated in terms of elements and
(closed) subsets of a topological space carry over to topological spaces over C. We
also note that a topological space (F, T )gives rise to a functor fromC to the category of
topological spaces, which sendsC to the set F(C)with the collection {X(C) | X ∈ T }
of closed subsets. Clearly, not every functor from C to the category of topological
spaces arises in this manner.

Inwhat follows,we use the term“injections" to refer to R-algebramonomorphisms.

Definition 30 Define AM to be the rule assigning to each D ∈ DomR the set D ⊗ M .
A subset of AM is a rule X that assigns to each D ∈ DomR a subset X(D) of D ⊗ M
in such a manner that ι⊗ idM maps X(D) into X(E) for all injections ι : D → E . For
every subset S ⊆ R[M], the rule V(S) assigning

D �→ V(S)(D) := {m ∈ D ⊗ M | ∀ f ∈ S : fD(m) = 0}

is a subset of AM . We say that X ⊆ AM is closed if X = V(S) for some S ⊆ R[M].
This collection of closed sets makes AM into a topological space over DomR in the
sense of Definition 28.

Remark 31 If D is an R-domain, thenwe canmake D⊗M into an topological space by
defining the closed subsets to be V(S)(D) for S ⊆ R[M]; we will call this the Zariski
topology (over R) on D ⊗ M . To see that these sets are preserved under finite unions,
one usesV(S)(D)∪V(T )(D) = V(S·T )(D), which holds since D is a domain. For any
R-algebra homomorphism D → E between R-domains (not necessarily injective),
the induced map D ⊗ M → E ⊗ M sends V(S)(D) into V(S)(E). Furthermore, if
D → E is injective, then that inducedmap is continuous with respect to the topologies
on D ⊗ M and E ⊗ M . So AM induces a functor from DomR to Top and the V(S)

are closed subfunctors. In this paper, however, we will not consider closed subsets of
D ⊗ M on their own.

Remark 32 We think of AM as the “affine space” corresponding to M . Note that in
the definition of closed subsets of AM we require S to be independent of D, i.e., not
every rule assigning to D ∈ DomR a subset of the form V(S)(D) is a closed subset
of AM . To see that this is desirable, consider R = Z, M = R and let Xn be the rule
such that Xn(D) = {0} = V({x})(D) when 0 < char D ≤ n and Xn(D) = D =
V(∅)(D) otherwise. Then X1 ⊇ X2 ⊇ X3 ⊇ · · · is a descending chain of rules and
X p−1(Fp) = Fp �= {0} = X p(Fp) for every prime number p > 0.

Definition 33 (Base change). If B is an R-algebra, and D is a B-domain, then D⊗M ∼=
D⊗B (B⊗M) also carries a Zariski topology over B, coming from closed sets defined
by subsets of B[B ⊗ M]. This refines the Zariski topology on D ⊗ M over R. If X is
a closed subset of AM , then we write XB for the closed subset of AB⊗M that maps a
B-domain D to X(D).

Let X be a subset of AM . Then we define the ideal of X to be

IX := { f ∈ R[M] | ∀D ∈ DomR ∀x ∈ X(D) : fD(x) = 0}.
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As fD maps elements into a domain, we see that IX is a radical ideal of R[M]. We
define the closure of X in AM to be the closed subset X := V(IX ) of AM .

Let ϕ : M → N be a polynomial law between finitely generated R-modules. Then
the maps (ϕD)D∈DomR define a continuous map AM → AN , i.e., for every injection
ι : D → E , the diagram

AM (D)
ϕD

ι⊗idM

AN (D)

ι⊗idN

AM (E)
ϕE

AN (E)

commutes, so ϕ(X) = (D �→ ϕD(X(D))) is a subset of AN for each subset X of AM ,
and for every subset S ⊆ R[N ], the subset

ϕ−1(V(S)) = (D �→ ϕ−1
D (V(S)(D)))D

of AM is closed (as ϕ−1
D (V(S)(D)) = V(ϕ∗S)(D) holds). As usual, we have

ϕ(X) ⊆ ϕ(X)

for all subsets X of AM .
When M is free and finitely generated, we have the usual correspondence between

closed subsets and radical ideals.

Proposition 34 Let M be a finitely generated free R-module of rank n. Then the rule
sending an element x ∈ D ⊗ M of AM to qx := { f ∈ R[M] | fD(x) = 0} ∈ A

n
R :=

Spec(R[M]) is surjective and maps closed subsets of AM to closed subsets of A
n
R.

Moreover, that map from closed subsets of AM to closed subsets of A
n
R is a bijection.

In particular, we have IV(S) = rad(S) for any subset S ⊆ R[M].
Proof Note that for every R-domain D and element x ∈ D⊗M , the set qx ⊆ R[M] is
a prime ideal. Let q ⊆ R[M] = R[x1, . . . , xn] be a prime ideal. Then we have q = qx
for x = (x1+q, . . . , xn +q) ∈ (R[M]/q)⊗M . Next, let S ⊆ R[M] be a set. Then we
see that {qx | x ∈ V(S)(D), D ∈ DomR} = {q ∈ Spec(R[M]) | q ⊇ S}. So closed
subsets of AM are mapped to closed subsets of A

n
R . Clearly, every closed subset arises

from a closed subset of AM . To see that this map is injective, we note that

IV(S) =
⋂

x∈V(S)(D)
D∈DomR

qx =
⋂

q∈Spec(R[M])
q⊇S

q = rad(S) and V(S) = V(rad(S)).

Hence V(S) is uniquely determined by its associated subset of A
n
R . 
�

While we have defined closed subsets of AM by looking at all R-domains D, it
actually suffices to look at algebraic closures Kpwherep ∈ Spec(R). Forp ∈ Spec(R),
we write Kp := Frac(R/p) for the fraction field of R/p.
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Proposition 35 Let X be a subset of AM. Then

IX =
⋂

p∈Spec(R)

{
f ∈ R[M]

∣∣∣∣ fKp
∈ IX(Kp)

}
.

Proof Clearly, the inclusion ⊆ holds. Let f ∈ R[M] be such that fKp
∈ IX(Kp) for

all p ∈ Spec(R). Let D be an R-domain and let p be the kernel of the homomorphism
R → D. Then there exists a field L containing Frac(D) and Kp. By theNullstellensatz,
the fact that fKp

∈ IX(Kp) implies that fL ∈ IX(L). It follows that fD vanishes
on X(D). 
�
Corollary 36 A closed subset X of AM is uniquely determined by its values X(Kp)

where p runs over Spec(R).

Proof This follows from the previous proposition since X = V(IX ). 
�
The proof of Theorem 2 in Sect. 6 follows a divide-and-conquer strategy in which

the following two lemmas and their generalisations to closed subsets of polynomial
functors (Lemmas 64 and 65), play a crucial role.

Lemma 37 Let R be a ring with Noetherian spectrum and r an element of R. Let
p1, . . . , pk be the minimal primes of R/(r). Then two closed subsets X ,Y ⊆ AM are
equal if and only if XR[1/r ] = YR[1/r ] and XR/pi = YR/pi for all i = 1, . . . , k.

Proof Suppose that XR[1/r ] = YR[1/r ] and XR/pi = YR/pi for all i = 1, . . . , k. Let K
be an R-field and let R → K be the corresponding homomorphism. If the image of
r in K is zero, then R → K factors via R/pi for some i = 1, . . . , k and hence K is
a (R/pi )-domain. In this case, we have X(K ) = XR/pi (K ) = YR/pi (K ) = Y (K ). If
the image of r in K is nonzero, then K naturally is an R[1/r ]-field. In this case, we
have X(K ) = XR[1/r ](K ) = YR[1/r ](K ) = Y (K ). So X = Y by Corollary 36. 
�
Lemma 38 Let R ⊆ R′ be a finite extension of domains and let X ,Y ⊆ AM be closed
subsets. Then X = Y if and only if XR′ = YR′ .

Proof The extension R ⊆ R′ satisfies lying over, i.e., for every prime p ∈ Spec(R)

there is a prime q ∈ Spec(R′) with p = q∩ R. The lemma follows by Corollary 36. 
�

4.2 Noetherianity ofAM

We now prove Proposition 1. Thus let R be a ring.

Lemma 39 If Spec(R) is Noetherian, then so is Spec(R[x]).
Proof This is an application of [12, Theorem 1.1] with trivial group. 
�
Lemma 40 Assume that Spec(R) is Noetherian and set N := Rn. Then AN is Noethe-
rian, i.e., any chain X1 ⊇ X2 ⊇ · · · of closed subsets of AN stabilises eventually.
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Proof Consider the chain IX1 ⊆ IX2 ⊆ · · · of radical ideals in R[N ] ∼=
R[x1, . . . , xn]. Since the latter ring has a topological spectrum, this chain stabilises.
Since Xi = V(IXi ), so does the chain X1 ⊆ X2 ⊆ · · · . 
�
Proof of Proposition 1 Let R be a ring with Noetherian spectrum, let M be a finitely
generated R-module, and let X1 ⊇ X2 ⊇ · · · be a chain of closed subsets of AM .
Since M is finitely generated, there exists a surjective R-module homomorphism
ϕ : N := Rn → M for some n. This defines a (linear) polynomial law N → M and so
a continuous map AN → AM . Set Yi := ϕ−1(Xi ), which is the closed subset of AN

such that Yi (D) = (1⊗ ϕ)−1(Xi (D)) for all R-domains D. By Lemma 40, the chain
Y1 ⊇ Y2 ⊇ · · · stabilises, i.e., Yn = Yn+1 for all n � 0. So, since 1 ⊗ ϕ : D ⊗ N →
D ⊗ M is surjective for every R-domain D, we have Xi (D) = (1 ⊗ ϕ)(Yi (D)) for
every i and D, and therefore Xn = Xn+1 for all n � 0. 
�
Remark 41 If two ideals I and J in R[M]define the sameclosed subset inSpec(R[M]),
then they have the same radical and hence define the same closed subset in AM . But
it could possibly happen that two ideals that define the same closed subset in AM do
not define the same closed subset in Spec(R[M]). In particular, the proof above does
not show that Spec(R[M]) is a Noetherian topological space. Indeed, we don’t know
whether this is the case.

Question 42 Suppose that Spec(R) is Noetherian and let M be a finitely generated
R-module. Is Spec(R[M]) Noetherian? Is the map from radical ideals of R[M] to
closed subsets of AM a bijection?

4.3 Dimension

Proposition 43 Let R be a domain, let M be a finitely generated R-module and let X
be a closed subset of AM. Then the function

Spec(R) → Z≥−1

p �→ dimKp
(X(Kp))

is constant in some open dense subset Spec(R[1/r ]) of Spec(R).

Proof By Lemma 8, there exists a nonzero r ∈ R such that R[1/r ] ⊗ M is free. It
suffices to prove the statement for the domain R[1/r ], the R[1/r ]-module R[1/r ]⊗M
and the closed subset XR[1/r ] of AR[1/r ]⊗M . So we may assume that M is free, say
of rank m, and so X is a closed subset of A

m
R ; let I ⊆ R[x1, . . . , xm] be its van-

ishing ideal. Choose an arbitrary monomial order on monomials in x1, . . . , xm . For
each nonzero r ∈ R, let Mr be the set of leading monomials of monic polynomi-
als in R[1/r ] ⊗ I ; this is an upper ideal in the monoid of monomials. By Dickson’s
lemma, there exists an r such that Mr is inclusion-wise maximal. Choose monic
polynomials f1, . . . , fk ∈ R[1/r ][x1, . . . , xn] whose leading monomials generate
the upper ideal Mr . Then f1, . . . , fk generate the ideal R[1/r ] ⊗ I—indeed, oth-
erwise there would be some element f in the latter ideal whose leading monomial
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is not divisible by any of the leading monomials of the fi ; and letting r ′ be the
leading coefficient of f we would find that Mrr ′ strictly contains Mr , a contradic-
tion. Moreover, again by maximality of Mr , the fi satisfy Buchberger’s criterion:
every S-polynomial of them reduces to zero modulo f1, . . . , fk when working over
R[1/r ][x1, . . . , xm]. Then for each p ∈ Spec(R[1/r ]), the images of the fi generate
the ideal Kp ⊗ I = Kp ⊗R[1/r ] (R[1/r ] ⊗ I ); and still satisfy Buchberger’s crite-
rion. Hence these images form a Gröbner basis, and since the dimension of X(Kp)

can be read of from the set of leading monomials, that dimension is constant for
p ∈ Spec(R[1/r ]). 
�
Proposition 44 Let R be a domain, M a finitely generated R-module, and X a closed
subset of AM. Then there exists a nonzero r ∈ R such that the following holds: for any
f ∈ R[M], if f vanishes identically on X(K ), then f vanishes identically on X(Kp)

for all p ∈ Spec(R[1/r ]).
Proof As in the previous proof, it suffices to prove the statement in the case that M
is free of rank m. Let I ⊆ R[x1, . . . , xm] be the vanishing ideal of X . This time, for
each nonzero r ∈ R, let Mr be the set of leading monomials of monic polynomials in
R[1/r ][x1, . . . , xm] some power of which lies in R[1/r ]⊗ I . Choose r such that Mr is
maximal, and f1, . . . , fk ∈ R[1/r ][x1, . . . , xm]monic, whose powers lie in R[1/r ]⊗
I , and whose leading monomials generate the upper ideal Mr . Then the images of
f1, . . . , fk form a Gröbner basis of the radical ideal of K ⊗ I . Now assume that f ∈
R[M]vanishes identically on X(K ), and let g be the image of f in R[1/r ][x1, . . . , xm].
Then by the Nullstellensatz, some power of g reduces to zero modulo f1, . . . , fk .
But then that reduction holds modulo p for every p ∈ Spec(R[1/r ]), so g vanishes
identically on X(Kp) for all such p. 
�

5 Polynomial functors and their properties

5.1 Polynomial functors over a ring

For reasons that will become clear later, we will only be interested in polynomial
functors from the category fgfModR of finitely generated free R-modules into either
ModR or fgModR.

Definition 45 A polynomial functor P : fgfModR → ModR consists of an object
P(U ) ∈ ModR for each object U ∈ fgfModR and a polynomial law

PU ,V : Hom(U , V ) → Hom(P(U ), P(V ))

for each U , V ∈ fgfModR such that the diagram

Hom(V ,W ) ⊕ Hom(U , V ) Hom(U ,W )

Hom(P(V ), P(W )) ⊕ Hom(P(U ), P(V )) Hom(P(U ), P(W ))

−◦−

PV ,W⊕PU ,V PU ,W

−◦−

123



A. Bik et al.

commutes for every U , V ,W ∈ fgfModR. Here the bilinear horizontal polynomial
laws are given as in Remark 15. Moreover, for every U ∈ fgfModR, we require that
PU ,U (idU ) = idP(U ) and we require that P has finite degree, i.e., there is a uniform
bound d ∈ Z≥0 such that for allU , V the polynomial law PU ,V has degree at most d.

Polynomial functors fgfModR → ModR form an Abelian category PFR in which
a morphism α : Q → P is given by an R-linear map αU : Q(U ) → P(U ) for each
U ∈ fgfModR such that the diagram of polynomial laws

Hom(U , V ) Hom(Q(U ), Q(V ))

Hom(P(U ), P(V )) Hom(Q(U ), P(V ))

QU ,V

PU ,V αV ◦−
−◦αU

commutes for allU , V . Note that post-composingwithαV and pre-composingwithαU

are R-linear maps and hence, indeed, (linear) polynomial laws.
For every R-algebra A and R-modules U , V ,W , let − ◦A − be the A-bilinear

extension of the R-bilinear composition maps−◦−: Hom(V ,W )×Hom(U , V ) →
Hom(U ,W ). So (−◦A −)A is the polynomial law extending −◦−. Then the diagram
above says that

PU ,V ,A(ϕ) ◦A (1 ⊗ αU ) = (1 ⊗ αV ) ◦A QU ,V ,A(ϕ) (1)

for all R-algebras A and ϕ ∈ A ⊗ Hom(U , V ). Note that to check that the diagram
commutes, it suffices to check that this equality holds for A = R[x1, . . . , xn] and
ϕ = x1 ⊗ ϕ1 + · · · + xn ⊗ ϕn where ϕ1, . . . , ϕn is a basis of Hom(U , V ).

Recall that for all R-modules U , V , there is a natural A-linear map

A ⊗ Hom(U , V ) → HomA(A ⊗U , A ⊗ V ).

For U , V ∈ fgfModR, this map is an isomorphism. Thus an element ϕ of A ⊗
Hom(U , V ) can be thought of as an “element of Hom(U , V ) with coordinates in A”.
Viewing QU ,V ,A(ϕ), PU ,V ,A(ϕ) as maps, (1) implies that the diagram

A ⊗ Q(U ) A ⊗ P(U )

A ⊗ Q(V ) A ⊗ P(V )

αU ,A

QU ,V ,A(ϕ) PU ,V ,A(ϕ)

αV ,A

commutes; here αU ,A is the A-linear extension of αU . When A is a polynomial ring
over R, the map

A ⊗ Hom(Q(U ), P(V )) → HomA(A ⊗ Q(U ), A ⊗ P(V ))

is injective and so the reverse implication also holds. So the family (αU )U is a mor-
phism of polynomial functors if and only if the last diagram above commutes for all
A,U , Vϕ. This is closer to the definition of polynomial functors over infinite fields,
and generalises as follows.
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Definition 46 Let P, Q be polynomial functors. We define a polynomial transfor-
mation α : Q → P be a rule assigning to every U ∈ fgfModR a polynomial law
αU : Q(U ) → P(U ) such that the last diagram above commutes for all R-algebras A
and ϕ ∈ A ⊗ Hom(U , V ).

Just like polynomial laws generalise R-module homomorphisms, and the lat-
ter are precisely the linear polynomial laws, polynomial transformations generalise
morphisms of polynomial laws, and the latter are precisely the linear polynomial
transformations.

Remark 47 If R is an infinite field, then a polynomial functor

P : fgfModR → fgModR = fgfModR

is a the same thing as a functor from the category of finite-dimensional R-vector spaces
to itself such that for all U , V ∈ fgfModR the map

PU ,V : Hom(U , V ) → Hom(P(U ), P(V ))

is a polynomial map. This is the set-up in [8]. If R is a field but not necessarily infinite,
then a polynomial functor fgfModR → fgfModR is a strict polynomial functor in the
sense of Friedlander–Suslin [15].

Many of our proofs will involve passing to the case of (infinite) fields and invoking
arguments from [8]. This is facilitated by the following construction.

Definition 48 (Base change). Let B be an R-algebra and let P : fgfModR → ModR
be a polynomial functor. Then P induces a polynomial functor PB from fgfModB to
ModB as follows: first, for each finitely generated free B-module U fix a B-module
isomorphismψU : U → B⊗UR , whereUR is a free R-module of the same R-rank as
the B-rank ofU . Then, set PB(U ) := B⊗P(UR). Next, for each B-algebra A, we need
to assign to every ϕ ∈ A ⊗B HomB(U , V ) an image in A ⊗HomB(PB(U ), PB(V )).
For this, note that

A ⊗B HomB(U , V ) ∼= A ⊗B HomB(B ⊗UR, B ⊗ VR)
∼= A ⊗B (B ⊗ Hom(UR, VR))
∼= A ⊗ Hom(UR, VR),

where the isomorphism in the first step is 1A⊗B (ψV ◦−◦ψ−1
U ) and the second isomor-

phism follows from the freeness ofUR and VR . Via these isomorphisms,ϕ ismapped to
an element of A⊗Hom(UR, VR). Applying PUR ,VR ,A to this element yields an element
of A⊗Hom(P(UR), P(VR)) ∼= A⊗B (B⊗Hom(P(UR), P(VR))), and applying the
natural map B ⊗ Hom(P(UR), P(VR)) → HomB(B ⊗ P(UR), B ⊗ P(VR)) in the
second factor (which may not be an isomorphism since P(UR), P(VR) need not be
free) yields an element of A⊗BHomB(PB(U ), PB(V )). It is straightforward to check
that PB thus defined is a polynomial functor from fgfModB to ModB. A different
choice of isomorphisms ψU yields a different but isomorphic polynomial functor PB .
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Remark 49 In this construction we have made use of the fact that P is a polynomial
functor from finitely generated free R-modules to R-modules. The choice of ψU ’s
could have been avoided as follows: instead of working with fgfModR, we could have
worked with the category whose objects are finite sets and whose morphisms J → I
are given by I× J matrices with entries in R. Then PJ ,I would have been a polynomial
law from the module of I × J matrices to Hom(P(J ), P(I )). However, the set-up
we chose stresses better that we are interested in phenomena that do not depend on a
choice of basis in our free modules.

Definition 50 A polynomial functor P : fgfModR → ModR is called homogeneous
of degree d if the polynomial law PU ,V is homogeneous of degree d for each U , V ∈
fgfModR.

Every polynomial functor P : fgfModR → ModR is a direct sum P0 ⊕ · · · ⊕ Pd ,
where Pi : fgfModR → ModR is the homogeneous polynomial functor of degree i
given on objects by Pi (V ) = {v ∈ P(V ) | PV ,V ,R[t](t ⊗ idV )(v) = t i ⊗ v}; and
Pi,U ,V is the restriction of the degree-i component of the polynomial law PU ,V to
Pi (U ). Here we identify R[t]⊗Hom(P(V ), P(V )) with Hom(P(V ), R[t]⊗ P(V )).

5.2 Duality

Definition 51 Let P : fgfModR → ModR be a polynomial functor over R. Then we
obtain another polynomial functor P∗ : fgfModR → ModR by setting, for each V ∈
fgfModR, P

∗(V ) := P(V ∗)∗ = Hom(P(V ∗), R) and for each ϕ ∈ A⊗Hom(U , V ),

P∗
U ,V ,A(ϕ) := PV ∗,U∗,A(ϕ∗)∗,

where ϕ∗ is the image of ϕ under the natural isomorphism

A ⊗ Hom(U , V ) ∼= A ⊗ Hom(V ∗,U∗)

(here we use that U , V are free) and the outermost ∗ again represents a dual.

The dual functor P∗ of P has the same degree as P andwill play a role in Sect. 6.10.
To avoid having too many stars, we will there think of it as the functor that sends V ∗
to P(V )∗. If P takes values in fgfModR, then (P∗)∗ is canonically isomorphic to P .

5.3 Shifting

Let U be a finitely generated free R-module.

Definition 52 We define the shift functor ShU : fgfModR → fgfModR that sends
V �→ U ⊕ V and ϕ �→ idU ⊕ ϕ. For a polynomial functor P : fgfModR → fgModR
we set ShU (P) := P ◦ ShU , called the shift of P by U .

Lemma 53 The composition ShU (P) is again a polynomial functor fgfModR →
fgModR, the projection U ⊕ V → V yields a surjection of polynomial functors
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ShU (P) → P and inclusion the V → U ⊕ V yields a section P → ShU (P) to that
surjection. In particular, ShU (P) ∼= P ⊕ (ShU (P)/P). Furthermore, ShU (P)/P has
degree strictly smaller than the degree of P.

Proof The proof in [8, Lemma 14] (in the case where R is an infinite field) carries
over to the current more general setting. 
�

5.4 Dimension functions of polynomial functors

Let P : fgfModR → fgModR be a polynomial functor. For p ∈ Spec(R), set fp(n) :=
dimKp(Kp⊗P(Rn)). It turns out that these functions are polynomials in n, and depend
semicontinuously on p. To formalise this semicontinuity, we order polynomials inZ[x]
by f ≥ g if f (n) ≥ g(n) for all n � 0; this is the lexicographic order on coefficients.

Proposition 54 For each p ∈ Spec(R) the function fp : Z≥0 → Z≥0 is a polynomial
with integral coefficients of degree at most the degree of P. Furthermore, the map p �→
fp is upper semicontinuous on Spec(R) in a strong sense: both the sets {p | fp ≥ f }
and {p | fp > f } are closed for all f ∈ Z[x].
Proof We proceed by induction on the degree of P . If P has degree 0, then P(Rn) is a
fixed R-moduleU , and fp is the constant polynomial that maps n to dimKp(Kp ⊗U ).
In this case, if f ∈ Z[x] has positive degree, then fp > f and fp ≥ f are either both
trivially true for all p or both trivially false for p (depending on the sign of the leading
coefficient of f ), so we need only look at constant f .

In this case, the result is classical; we recall the argument. Let Rn → U be a
surjective R-module homomorphism, and let N be its kernel. Since tensoring with Kp

is right-exact, 1 ⊗ N spans the kernel of the surjection Kn
p → Kp ⊗U for each p.

The statement that dimKp(Kp⊗U ) is upper semicontinuous is therefore equivalent
to the statement that dimension of the span of 1 ⊗ N in Kn

p is lower semicontinuous.
And indeed, the locus where this dimension is less than k is defined by the vanishing
of all k × k subdeterminants of all k × n matrices (with entries in R) whose rows are
k elements of N .

For the induction step, assume that the proposition is true for all polynomial functors
of degree< d and assume that P has degree d ≥ 1. Then consider the functor ShR(P),
which by Lemma 53 is isomorphic to P ⊕ Q for Q := ShR(P)/P of degree < d.

By the induction hypothesis, the proposition holds for Q: the function gp(n) :=
dimKp(Kp ⊗ Q(Rn)) equals a polynomial with integral coefficients for all n ≥ 0, and
p �→ gp is semicontinuous. Now we have

fp(n + 1) = dimKp(Kp ⊗ P(R1 ⊕ Rn))

= dimKp(Kp ⊗ P(Rn)) + dimKp(Kp ⊗ Q(Rn)) = fp(n) + gp(n).

Thismeans that fp(n) is the unique polynomialwith (� fp)(n) := fp(n+1)− fp(n) =
gp(n) for n ≥ 0 and fp(0) = dimKp(Kp ⊗ P(0)); this fp has integral coefficients
and degree at most d.

For the semi-continuity statement, note that fp ≥ f is equivalent to either gp =
� fp > � f , or else gp ≥ � f and moreover fp(0) ≥ f (0). Both possibilities are
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closed conditions on p. Similarly, fp > f is equivalent to either gp > � f or else
gp ≥ � f and fp(0) > f (0), which, again, are closed conditions. 
�

5.5 Local freeness

We now generalise Lemma 8 to polynomial functors.

Proposition 55 Let R be a domain, P : fgfModR → fgModR a polynomial functor
and S a subobject of P in the larger category of polynomial functors fgfModR →
ModR. Then there exists a nonzero r ∈ R such that R[1/r ]⊗S(U ) and R[1/r ]⊗P(U )

are finitely generated free R[1/r ]-modules for all U ∈ fgfModR, and the latter is a
direct sum of the former and another free R[1/r ]-module.

Note that we do not claim that the complement is itself the evaluation of another
subobject; i.e., SR[1/r ] needs not be a summand of PR[1/r ] in the category of polynomial
functors over R[1/r ].
Proof Again, we proceed by induction on the degree of P . If P has degree 0, then so
does S and then the statement is just Lemma 8. Suppose that the degree of P is d > 0
and that the proposition holds for all polynomial functors of degree less than d.

By Lemma 53, for each n we have

P(Rn+1) = P(Rn) ⊕ Q(Rn)

where Q = ShR(P)/P has degree < d. Similarly, we have

S(Rn+1) = S(Rn) ⊕ N (Rn)

where N = ShR(S)/S ⊆ Q. It follows that

P(Rn) = P(0) ⊕ Q(0) ⊕ Q(R1) ⊕ · · · ⊕ Q(Rn−1) and

S(Rn) = S(0) ⊕ N (0) ⊕ N (R1) ⊕ · · · ⊕ N (Rn−1).

Now by Lemma 8 there exists a nonzero r0 such that R[1/r0]⊗ P(0) is the direct sum
of a free R[1/r0]-module and R[1/r0]⊗ S(0), which is also free. And by the induction
hypothesis there exists a nonzero r1 ∈ R such that for each m, R[1/r1] ⊗ Q(Rm) is
a direct sum of two free R[1/r1]-modules, one of which is R[1/r1] ⊗ N (Rm). Then
r := r0 · r1 does the trick for the pair P, S. 
�

5.6 The Friedlander–Suslin lemma

The Friedlander–Suslin lemma relates polynomial functors of bounded degree to rep-
resentations of certain associative algebras called Schur Algebras. To introduce these,
let U ∈ fgfModR and let d ≥ 1 be an integer. The bilinear polynomial law

− ◦ −: End(U ) × End(U ) → End(U )
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given by composition yields an algebra homomorphism

R[End(U )] → R[End(U ) × End(U )] ∼= R[End(U )] ⊗ R[End(U )]

which maps the part R[End(U )]≤d of degree ≤ d into

∑

a,b≥0
a+b≤d

R[End(U )]a ⊗ R[End(U )]b ⊆ R[End(U )]≤d ⊗ R[End(U )]≤d .

Taking the dual R-modules, we obtain a map

R[End(U )]∗≤d ⊗ R[End(U )]∗≤d → (R[End(U )]≤d ⊗ R[End(U )]≤d)
∗

→ R[End(U )]∗≤d .

We set S≤d(U ) := R[End(U )]∗≤d . The first map is, in fact, an isomorphism due
to the fact that S≤d(U ) is finitely generated and free as an R-module. Indeed, if
U is free with basis u1, . . . , un , then End(U ) is free with basis (Ei j )

n
i, j=1, where

Ei j uk = δ jkui , and R[End(U )]≤d is free with basis the monomials xα of degree ≤ d
in the coordinates xi j dual to the Ei j , and hence R[End(U )]∗≤d is freewith the dual basis

(sα)α , where α runs over all multi-indices in Z
n×n
≥0 such that |α| := ∑

i, j αi, j ≤ d.
We let − ∗ −: S≤d(U ) × S≤d(U ) → S≤d(U ) be the bilinear map associated to the
map above.

Definition 56 The R-module S≤d(U ) with the bilinear map − ∗ − is called the Schur
algebra of degree ≤ d on U , and (given a basis of U ), the basis (sα)α is called its
distinguished basis.

The Schur algebra is associative (but not commutative unless n = 1); this
follows from the associativity of composition in End(U ). Explicitly, the coeffi-
cient of sγ in the product sα ∗ sβ is computed as follows: First, expand the
composition (

∑
i j xi j Ei j ) ◦ (

∑
kl ykl Ekl), where the xi j and ykl are variables, as∑

i,l(
∑

j xi j y jl)Eil =: ∑
il zil Eil . Then expand zγ as a polynomial in the xi j and the

ykl , and take the coefficient of the monomial xα yβ .
The map End(U ) → S≤d(U ) that sends ϕ to the R-linear evaluation map

R[End(U )]≤d → R, f �→ fR(ϕ)

is an injective homomorphism of associative R-algebras, so S≤d(U )-modules M are,
in particular, representations of the R-algebra End(U ). In fact, they are precisely
the polynomial End(U )-representations of degree ≤ d, i.e., those for which the map
End(U ) → End(M) is not just a homomorphism of (noncommutative) R-algebras
but also a polynomial law making certain diagrams commute. Since we will not need
this interpretation, we skip the details.

Now suppose that P is a polynomial functor fgfModR → ModR of degree ≤
d. Then P(U ) naturally carries the structure of an S≤d(U )-module as follows: the
polynomial law
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PU ,U : End(U ) → End(P(U ))

has degree ≤ d and therefore we have

PU ,U ,R[x11,x12,...,xnn ]

⎛

⎝
n∑

i, j=1

xi j ⊗ Ei j

⎞

⎠ =
∑

|α|≤d

xα ⊗ ϕα

for certain endomorphisms ϕα ∈ End(P(U )). Now the basis element sα of S≤d(U )

acts on P(U ) via ϕα; it can be shown that this construction is independent of the choice
of basis of U .

Theorem 57 (Friedlander–Suslin lemma, [27, Théorème 7.2] and [15, Theorem3.2]).
Let U ∈ fgfModR have rank ≥ d. Then the association P �→ P(U ) is an equiva-
lence of Abelian categories from the full subcategory of PFR consisting of polynomial
functors fgfModR → ModR of degree ≤ d to the category of S≤d(U )-modules.

To conclude this section, we observe that Schur algebras behave well under base
change: if A is an R-algebra, then we have a commuting diagram (up to natural
isomorphisms):

(PFR)≤d

P �→PA

{S≤d(U )-modules}
M �→A⊗M

(PFA)≤d {(A ⊗ S≤d(U ))-modules}

where the lower horizontalmap is evaluation at A⊗U and the A-algebra A⊗S≤d(U ) is
canonically isomorphic to the Schur algebra S≤d(A⊗U ) on the free A-module A⊗U .

5.7 Irreducibility in an open subset of Spec(R)

Let R be a domain and let P : fgfModR → fgModR be a polynomial functor. As
before, for each prime p ∈ Spec(R)we set Kp := Frac(R/p); in particular, K := K(0)
is the fractionfield of R. Recall that the base change functor yields a polynomial functor
PKp over the field Kp for each p ∈ Spec(R), and also a polynomial functor PKp

over

the algebraic closure Kp of Kp. The goal of this section is to transfer certain properties
of PK to PKp for p in an open dense subset of Spec(R).

Proposition 58 Let Q be an irreducible subobject of PK in the Abelian category
of polynomial functors over K and assume that QK is still irreducible. Then there
exists a subobject Q of P in the category of polynomial functors fgfModR → ModR
such that QK = Q and QKp

is an irreducible subobject of PKp
in the Abelian

category of polynomial functors over Kp for all primes p in a dense open subset
Spec(R[1/r ]) ⊆ Spec(R).
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Remark 59 Note that we don’t require that Q is a functor into fgModR; we may not
be able to guarantee this if R is not a Noetherian ring.

In order to prove this proposition, we use the following lemma.

Lemma 60 Let A be a (not necessarily commutative) associative R-algebra and N an
A-module that is, as an R-module, finitely generated and free. Suppose that K ⊗ N is
an irreducible (K⊗A)-module. Then there exists a dense open subsetSpec(R[1/r ]) ⊆
Spec(R) such that Kp⊗N is an irreducible (Kp⊗A)-module for allp ∈ Spec(R[1/r ]).
Proof Let v1, . . . , vn be an R-basis of N . For each j ∈ [n] and each a ∈ A let
ca,i, j ∈ R be the structure constants determined by

av j =
∑

i

ca,i, jvi .

For each k = 1, . . . , n − 1, we will construct a constructible subset Zk of the Grass-
mannian GrR(k, n) over R whose set of Kp-points, for p ∈ Spec(R), is the set of
k-dimensional (Kp ⊗ A)-submodules of Kp ⊗ N . The construction is as follows: for
each J ⊆ [n] of size k consider the k × n matrix X J whose entries on the columns
labelled by J are a k × k identity matrix over R and whose other entries are variables
xi j , i ∈ [k], j ∈ [n] \ J . Recall that GrR(k, n) has an open cover of affine spaces

A
k×(n−k)
R,J over R on which the coordinates are precisely these xi j with j /∈ J . For

j ∈ J we write xi j ∈ {0, 1} for the corresponding entry of X J . Note that, for each
m = 1, . . . , k and each a ∈ A, we have

(1 ⊗ a)

⎛

⎝
n∑

j=1

xmj ⊗ v j

⎞

⎠

=
n∑

i=1

n∑

j=1

ca,i, j xmj ⊗ vi ∈ R

[
xi j

∣∣∣∣ i ∈ [k], j ∈ [n] \ J

]
⊗ N

and we define the row vector of coefficients

ya,m :=
⎛

⎝
n∑

j=1

ca,i, j xmj

⎞

⎠
n

i=1

with entries in the coordinate ring R[xi j | i ∈ [k], j ∈ [n] \ J ] of A
k×(n−k)
R,J .

Let CJ be the closed subset of A
k×(n−k)
R,J defined by the vanishing of all (k + 1) ×

(k + 1)-subdeterminants of the matrices

[
ya,m

X J

]
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for all choices of a ∈ A and m = 1, . . . , k. For each prime p ∈ Spec(R), the subset
CJ (Kp) ⊆ GrR(k, n)(Kp) parameterises the k-dimensional (Kp ⊗ A)-submodules

of Kp ⊗ N ∼= Kp
[n]

that map surjectively to Kp
J
. In particular, by the assumption

that K ⊗ N is still irreducible, the image of CJ in Spec(R) does not contain the
prime 0, for any k and any k-set J ⊆ [n]. In other words, the morphism CJ →
Spec(R) is not dominant. Set Zk := ⋃

J⊆[n],|J |=k CJ , a finite union of locally closed
subsets of the Grassmannian. Then Zk → Spec(R) is still not dominant, and neither is(⋃n−1

k=1 Zk

)
→ Spec(R). Hence there exists a nonzero r ∈ R that lies in the vanishing

ideal of the image; the open dense subset Spec(R[1/r ]) ⊆ Spec R then has the desired
property. 
�

Proof of Proposition 58 By the Friedlander–Suslin Lemma (Theorem 57) and the fact
that the Schur algebra behaves well under base change, it suffices to prove the cor-
responding statement for all d ∈ Z≥0, U := Rd , and all S≤d(U )-modules that are
finitely generated over R (which, of course, is equivalent to being finitely generated
as an S≤d(U )-module).

So let M be a finitely generated S≤d(U )-module and let N be an irreducible (K ⊗
S≤d(U ))-submodule of K⊗M that remains irreduciblewhen tensoringwith K . Define

N := {v ∈ M | 1 ⊗ v ∈ N }.

A straightforward computation shows that N is a (not necessarily finitely generated)
S≤d(U )-submodule of M .

By Lemma 8 there exist a nonzero r ∈ R and elements v1, . . . , vn ∈ N such that
R[1/r ] ⊗ N is a free R[1/r ]-module with basis 1⊗ v1, . . . , 1⊗ vn . Then Lemma 60
applied with R equal to R[1/r ] and A equal to R[1/r ] ⊗ S≤d(U ) shows that Kp ⊗ N
is an irreducible (Kp ⊗ S≤d(U ))-submodule of Kp ⊗ M for all p in some nonempty
open subset Spec R[1/(rs)] ⊆ Spec(R[1/r ]) ⊆ Spec(R). 
�

5.8 Closed subsets of polynomial functors

Closed subsets of a polynomial functors play the role of affine varieties in finite-
dimensional algebraic geometry. In this subsection, P is a fixed polynomial functor
fgfModR → fgModR of finite degree.

For any U , V ∈ fgfModR we have a sequence of polynomial laws

Hom(U , V ) × P(U )
PU ,V × id

Hom(P(U ), P(V )) × P(U )
(ϕ,p) �→ϕ(p)

P(V ),

whose composition we denote by �U ,V . We also let �U ,V : Hom(U , V ) × P(U ) →
P(U ) be the linear polynomial law given by projection. Recall that �U ,V and �U ,V

both yield continuous maps from AHom(U ,V )×P(U ) → AP(V ).
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Definition 61 We define AP to be P . A subset of AP is a rule X that assigns to each
U ∈ fgfModR a subset X(U ) of AP(U ) (see Definition 30) in such a manner that

�U ,V (�−1
U ,V (X(U ))) ⊆ X(V )

for all U , V ∈ fgfModR. The subset X ⊆ AP is closed if X(U ) is a closed subset
ofAP(U ) for allU ∈ fgfModR. The closure of X is the closed subset X ofAP assigning
X(U ) to U for all U ∈ fgfModR.

It is worth spelling out what this means. Let U , V be finitely generated free R-
modules, let D be an R-domain and let ϕ ∈ D ⊗ Hom(U , V ). Then the condition
is that PU ,V ,D(ϕ) ∈ D ⊗ Hom(P(U ), P(V )) maps X(U )(D) ⊆ D ⊗ P(U ) into
X(V )(D). In the particular case where V = U , this condition can be informally
thought of as the condition that X(U ) is preserved under the polynomial action of
End(U ). Let α : Q → P be a polynomial transformation and let X be a subset of Q.
Then α(X) = (U �→ αU (X(U ))) is a subset of P .

Definition 62 For X ⊆ AP , we define the ideal IX of X to be the rule assigning
IX(U ) ⊆ R[P(U )] toU for allU ∈ fgfModR. The rule IX is an ideal in the R-algebra
over the category fgfModR defined by U �→ R[P(U )], i.e., for all ϕ ∈ Hom(U , V )

we have IX (V ) ◦ PU ,V ,R(ϕ) ⊆ IX (U ).

Definition 63 (Base change). If X ⊆ AP is a closed subset and B is an R-algebra,
then we obtain a closed subset XB of APB by letting, for a U ∈ fgfModB, XB(U ) be
the closed subset X(UR)B of APB (U ) = AB⊗P(UR), where UR is the free R-module
such that U ∼= B ⊗UR from the definition of PB .

We will use the following lemmas very frequently in our proof of Theorem 2.

Lemma 64 Let R be a ring with Noetherian spectrum and r an element of R. Let
p1, . . . , pk be the minimal primes of R/(r). Then two closed subsets X ,Y ⊆ AP are
equal if and only if XR[1/r ] = YR[1/r ] and XR/pi = YR/pi for all i = 1, . . . , k.

Proof This follows from Lemma 37 with X(U ),Y (U ) for every U ∈ fgfModR. 
�
Lemma 65 Let R ⊆ R′ be a finite extension of domains and let X ,Y ⊆ AP be closed
subsets. Then X = Y if and only if XR′ = YR′ .

Proof This follows from Lemma 38 with X(U ),Y (U ) for every U ∈ fgfModR. 
�
Lemma 66 Let U ∈ fgfModR and g ∈ R[P(U )]. Then

Y (V )(D) = {p ∈ D ⊗ P(V ) | ∀ϕ ∈ D ⊗ Hom(V ,U ) : gD(PV ,U ,D(ϕ)(p)) = 0}

for all V ∈ fgfModR and R-domains D defines a closed subset Y ⊆ AP . The subset
Y is the biggest closed subset of AP such that g is in the ideal of Y (U ).
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Proof It is easy to check that Y (V ) is a subset of AP(V ) for all V ∈ fgfModR and that
Y is a subset of AP . We need to check that Y is a closed subset of AP , i.e., that Y (V )

is a closed subset of AP(V ) for every V ∈ fgfModR.
Let ϕ1, . . . , ϕn be a basis of Hom(V ,U ). For every R-algebra A, consider the map

gA[x1,...,xn ] ◦ PV ,U ,A[x1,...,xn ](x1 ⊗ ϕ1 + · · · + xn ⊗ ϕn)

: A[x1, . . . , xn] ⊗ P(V ) → A[x1, . . . , xn].

We have

gA[x1,...,xn ] ◦ PV ,U ,A[x1,...,xn ](x1 ⊗ ϕ1 + · · · + xn ⊗ ϕn)|A⊗P(V ) =
∑

α∈Zn≥0

xαgα,A

where gα,A : A ⊗ P(V ) → A. We get polynomial laws gα = (gα,A)A ∈ R[P(V )].
Set SV = {gα | α ∈ Z

n≥0}. We claim that Y (V ) = V(SV ). Let D be an R-domain and
take p ∈ Y (V )(D). Then, viewing p as an element of Y (V )(D[x1, . . . , xn]), we see
that

gD[x1,...,xn ](PV ,U ,D[x1,...,xn ](ϕ)(p)) = 0

for all ϕ ∈ D[x1, . . . , xn] ⊗Hom(V ,U ). Using ϕ = x1 ⊗ ϕ1 + · · · + xn ⊗ ϕn , we get
p ∈ V(SV )(D). Conversely, suppose that p ∈ V(SV )(D). Then

gD[x1,...,xn ](PV ,U ,D[x1,...,xn ](x1 ⊗ ϕ1 + · · · + xn ⊗ ϕn)(p)) = 0

Specializing the xi to elements of D, we find that

gD(PV ,U ,D(a1 ⊗ ϕ1 + · · · + an ⊗ ϕn)(p)) = 0

for all a1, . . . , an ∈ D. So p ∈ Y (V )(D). So Y (V ) = V(SV ) is indeed closed. 
�
Remark 67 It is not true in general that

Y (V )(D) = {p ∈ X(V )(D) | ∀ϕ ∈ Hom(V ,U ) : hD(P(ϕ)D(p)) = 0}.

For an example, take R = Fp, P(V ) = V and h = x p − x ∈ R[x] = R[P(R)]. Then
the right hand side above consists of all p ∈ D ⊗ V ∼= Dn such that x p = x for every
coordinate of p while the left hand side also has the requirement that (αx)p = αx for
all α ∈ E for every D-domain E . So Y (V )(D) = 0.

5.9 Gradings

Let P : fgfModR → fgModR be a polynomial functor. For each U ∈ fgfModR, the
R-algebra R[P(U )] has two natural gradings: first, the ordinary grading that each
coordinate ring R[M] of a module M has (see Definition 19); and second, a grading
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that takes into account the degrees of the homogeneous components P , as follows.
Write P = P0⊕ P1⊕· · ·⊕ Pd , so that R[P(U )] is the tensor product of the R[Pi (U )]
by Proposition 27. Then multiply the ordinary grading on R[Pi (U )] by i and use these
to define a grading on R[P(U )], called the standard grading. The standard grading has
an alternative characterisation, as follows: f ∈ R[P(U )] is homogeneous of degree
j if f A(PU ,U ,A(a ⊗ idU )(v)) = a j fA(v) for all A ∈ AlgR and all v ∈ A ⊗ P(U ).
We have

f A[t](v0 + tv1 + · · · + tdvd) =
∞∑

j=0

t j f j,A(v0 + v1 + · · · + vd)

for all A ∈ AlgR and vi ∈ A ⊗ Pi (U ) where f j is the part of f of standard degree j .

Lemma 68 For any closed subset X ⊆ AP and any U ∈ fgfModR, the ideal IX (U )

is homogeneous with respect to the standard grading.

Proof Take f ∈ IX (U ) and let D be an R-domain. Then

0 = fD[t](PU ,U ,D[t](t ⊗ idU )(v0 + v1 + · · · + vd)) = fD[t](v0 + tv1 + · · · + tdvd)

for allvi ∈ D⊗Pi (U ) such thatv0+v1+· · ·+vd ∈ X(U )(D).Hence the homogeneous
parts of f are also contained in IX (U ). 
�

6 Proof of themain theorem

In this section we prove Theorem 2. Let R be a ring whose spectrum is Noetherian
and let P : fgfModR → fgModR a polynomial functor of finite degree. We will prove
that any chain AP ⊇ X1 ⊇ X2 ⊇ · · · of closed subsets eventually stabilises.

6.1 Reduction to the case of a domain

Since Spec(R) is Noetherian, the ring R has finitely many minimal primes p1, . . . , pk .
By Lemma 64with r = 1, the sequenceAP ⊇ X1 ⊇ X2 ⊇ · · · stabilises if and only if
the sequence APR/pi

⊇ X1,R/pi ⊇ X2,R/pi ⊇ · · · stabilises for each i ∈ [k]. So from
now on we assume that R is a domain, we write Kp := Frac(R/p) for p ∈ Spec(R),
K := K(0) = Frac(R), and we let K , Kp be algebraic closures of K , Kp, respectively.

6.2 A stronger statement

We will prove the following stronger statement which clearly implies Theorem 2.

Theorem 69 Let (R, P, X) be a triple consisting of a domain R with Noetherian
spectrum, a polynomial functor P : fgfModR → fgModR of finite degree and a
closed subset X ⊆ AP . Then (R, P, X) satisfies the following conditions:
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(1) Every descending chain X = X1 ⊇ X2 ⊇ · · · of closed subsets of X eventually
stabilises.

(2) There exists a nonzero r ∈ R such that the following holds for all U ∈ fgfModR:
if f ∈ R[P(U )] vanishes identically on X(U )(K ), then f vanishes identically on
X(U )(Kp) for all primes p ∈ Spec(R[1/r ]).

Remark 70 Condition (2) of the theorem means that IXR[1/r ] is determined by IXK
.

More precisely, setting R′ = R[1/r ], for every U ∈ fgfModR′ , the ideal

IXR′ (U ) = IXR′ (U ) ⊆ R′[PR′(U )]

is the pull-back of the ideal in K [PR′(K ⊗U )] of the affine variety XR′(K ⊗U ).

The proof of Theorem 69 is a somewhat intricate induction, combining induction on
P , Noetherian induction on Spec(R) and induction on minimal degrees of functions
in the ideal of X—for details, see below.

Notation 71 For any fixed triple (R, P, X), we denote conditions (1) and (2) of The-
orem 69 by 
(R, P, X).

6.3 The induction base

If P has degree zero, then X is just a closed subset of AP(0). Here, the Noetherianity
statement is Proposition 1 and the statement about vanishing functions is Proposi-
tion 44.

6.4 The outer induction

To prove the theorem for P of positive degree,wewill show that
(R, P, X) is implied
by 
(R′, P ′, X ′) where X ′ is a closed subset of AP ′ and (R′, P ′) ranges over pairs
that have one of the following forms:

(i) (R′, P ′) = (R/p, PR/p) for some nonzero prime p of R; or
(ii) (R′, P ′) where R′ is a domain that is a finite extension of a localisation R[1/r ]

of R, deg P ′ ≤ deg P =: d, for K ′ := Frac(R′) we have P ′
K ′ � PK ′ and for the

largest e such that the homogeneous parts P ′
e,K ′ and Pe,K ′ are not isomorphic,

the former is a quotient of the latter.

In both cases, we write (R, P) → (R′, P ′). We consider the class � of all the pairs
(R, P). The reflexive and transitive closure of the relation → is a partial order on �.

Lemma 72 The partial order on � is well-founded.

Proof Suppose that we had an infinite sequence

(R0, P0) → (R1, P1) → (R2, P2) → · · ·
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of such steps. By the Friedlander–Suslin lemma, any sequence of steps of type (ii)
only must terminate (see also [8, Lemma 12]). So our sequence contains infinitely
many steps of type (i).

Each step (R, P) → (R′, P ′) induces a morphism α : Spec(R′) → Spec(R). This
morphism α has the property that for irreducible closed subsets C � D ⊆ Spec(R′),
we have α(C) � α(D). This holds trivially for steps of type (i), where the morphism
α : Spec(R/p) → Spec(R) is a closed embedding, and also for steps of type (ii) by
elementary properties of localisation and of integral extensions of rings (see, e.g., [10,
Corollary 4.18 (Incomparability)]).

Let αi : Spec(Ri ) → Spec(Ri−1) be the morphism induced by (Ri−1, Pi−1) →
(Ri , Pi ) and take βi = α1 ◦ · · · ◦ αi : Spec(Ri ) → Spec(R0). Then the maps
βi have the same incomparability property as the αi . Hence, whenever the step
(Ri−1, Pi−1) → (Ri , Pi ) is of type (i), there is the inclusion of irreducible closed
sets im αi � Spec(Ri−1) and therefore im βi � im βi−1 is a strict inclusion. This
contradicts the Noetherianity of Spec(R0). 
�

By Lemma 72 we can proceed by induction on �, namely, in proving that

(R, P, X) holds, we may assume 
(R′, P ′, X ′) whenever (R′, P ′) ← (R, P).

Lemma 73 Let r ∈ R be a nonzero element and let p1, . . . , pk be the minimal primes
of R/(r). Assume that 
(R[1/r ], PR[1/r ], XR[1/r ]) and 
(R/pi , PR/pi , XR/pi ) for
each i ∈ [k] hold. Then 
(R, P, X) holds as well.

Proof By Lemma 64, we see that condition (1) for (R, P, X) follows from
condition (1) for (R[1/r ], PR[1/r ], XR[1/r ]) together with 
(R/pi , PR/pi , XR/pi )

for each i ∈ [k]. Condition (2) for (R, P, X) follows from condition (2) for
(R[1/r ], PR[1/r ], XR[1/r ]). 
�

Combining this lemma with our induction hypothesis, we see that in order to prove

(R, P, X) it suffices to prove 
(R[1/r ], PR[1/r ], XR[1/r ]) for some r ∈ R. So we
may replace (R, P, X) by (R[1/r ], PR[1/r ], XR[1/r ]) whenever this is convenient.

6.5 Finding an irreducible factor

Now let P : fgfModR → fgModR be a fixed polynomial functor of degree d > 0
over a domain R with Noetherian spectrum. Recall that K is the fraction field of R.

Suppose first that the base change PK has degree < d. Then K ⊗ Pd(U ) = 0 for
all U ∈ fgfModR. In particular, this holds for U = Rd . So since Pd(U ) is a finitely
generated R-module, there exists a nonzero r ∈ R such that R[1/r ] ⊗ Pd(U ) = 0.
By the Friedlander–Suslin lemma (Theorem 57), we then find (Pd)R[1/r ] = 0. In this
case, we replace (R, P, X) by (R[1/r ], PR[1/r ], XR[1/r ]). By repeating this at most d
times, we may assume that the base change PK has the same degree as P .

We want a polynomial subfunctor M of the top-degree part Pd of P whose base
change with K is an irreducible polynomial subfunctor of (Pd)K . In the next lemma,
we show that such an M exists after passing from R to a suitable finite extension of
one of its localisations.
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Proposition 74 There exist a finite extension R′ of a localisation R[1/r ] of R and a
polynomial subfunctor M of the top-degree part of the polynomial functor PR′ such
that the base change MK is an irreducible polynomial subfunctor of Pd,K .

Proof The Sd(K
d
)-module Pd,K (K

d
) = K ⊗Pd(Rd) is finite-dimensional and hence

has an irreducible submodule N ′. It is finitely generated, say of dimension n > 0. Let∑
j αi j ⊗ mi j for i = 1, . . . , n be a K -basis. By the Friedlander–Suslin lemma, the

irreducible submodule N ′ corresponds to an irreducible polynomial subfunctor N
of Pd,K . The elements αi are algebraic over the fraction field K of R. Let r ∈ R
be the product of all the denominators appearing in their minimal polynomials. Then
R′ = R[1/r ][α1, . . . , αn] is a finite extension of the localisation R[1/r ] of R since
the αi are integral over R[1/r ]. Consider the submodule M ′ of the Sd(R′d)-module
Pd,R′((R′)d) generated by the elements

∑
j αi j ⊗ mi j . By the Friedlander–Suslin

lemma, M ′ corresponds to a polynomial subfunctor M of Pd,R′ whose base change
MK = N is an irreducible polynomial subfunctor of Pd,K . 
�

Let r ∈ R and R′ be as in the previous proposition. We would like to
reduce to the case where R′ = R. As before, we can replace (R, P, X) by
(R[1/r ], PR[1/r ], XR[1/r ]), so that R′ is a finite extension of R. We now prove a
version of Lemma 73 for such extensions.

Lemma 75 Assume that 
(R′, PR′ , XR′) holds. Then 
(R, P, X) holds as well.

Proof By Lemma 65, condition (1) for (R′, PR′ , XR′) implies condition (1) for
(R, P, X). Let r ′ ∈ R′ be a nonzero element as in condition (2) for (R′, PR′ , XR′), i.e.,
for everyU ∈ fgfModR′ , every f ∈ R′[PR′(U )] vanishing identically on XR′(U )(K )

also vanishes identically on XR′(U )(Kp) for every prime ideal p ∈ Spec(R′[1/r ′]).
Now (r ′) ∩ R is not the zero ideal, since r ′ is nonzero and integral over R. Pick
any nonzero r ∈ (r ′) ∩ R. We claim that condition (2) holds for (R, P, X) with this
particular r .

Indeed, let UR ∈ fgfModR and take U := R′ ⊗ UR . Let f be an element of
R[P(UR)] vanishing identically on X(UR)(K ). Then f is naturally induces an element
of R′[PR′(U )] vanishing identically on XR′(U )(K ) = X(UR)(K ). So we see that f
vanishes on XR′(U )(Kq) for each q ∈ Spec(R′[1/r ′]). Since R′ is integral over R,
for any p ∈ Spec(R) there exists an q ∈ Spec(R′) with q∩ R = p; and if, moverover,
the prime ideal p does not contain r , then the prime ideal q does not contain r ′. Hence
f vanishes identically on Kp, as desired. 
�
We replace (R, P, X) by (R′, PR′ , XR′), so that there exists a polynomial subfunc-

tor M of the top-degree part Pd of P such that the base change MK is an irreducible
polynomial subfunctor of Pd,K .

6.6 Splitting offM

Proposition 55 guarantees that after passing to a further localisation (and usingNoethe-
rian induction for the complement), we may assume that for each U ∈ fgfModR, the
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R-module P(U ) is the direct sum of a finitely generated free R-module and the (also
finitely generated free) R-module M(U ). In particular, both P and P ′ := P/M are
polynomial functors fgfModR → fgfModR.

Let π : P → P ′ be the projection morphism. For a closed subset X ⊆ AP , we
define the closed subset X ′ ⊆ AP ′ as the closure ofπ(X). Note that (R, P) → (R, P ′)
and hence 
(R, P ′, X ′) holds. In particular, we may and will replace R by a further
localisation R[1/r ] which ensures that, if f ∈ R[P ′(U )] vanishes identically on
X ′(U )(K ), then it vanishes identically on X ′(U )(Kp) for all p ∈ Spec(R).

6.7 The inner induction

We perform the same inner induction as in [8, §2.9]. Let δX ∈ {0, 1, . . . ,∞} denote
the smallest degree, in the standard grading, of a homogeneous element of R[P(U )] ∼=
R[M(U )] ⊗ R[P ′(U )] (here we use that P(U ) is the direct sum of the R-modules
M(U ) and P ′(U )), over allU ∈ fgfModR, that lies in the vanishing ideal of X(U ) but
does not lie in the vanishing ideal of the pre-image inAP(U ) of X ′(U ) ⊆ AP ′(U ). Note
that δX = 0 is, in fact, impossible, since the coordinates on R[M(U )] have positive
degree, so that a degree-0 homogeneous element of R[P(U )] that lies in the ideal of
X(U ) is an element of R[P ′(U )] that lies in the ideal of X ′(U ). At the other extreme,
δX = ∞means that X(U ) is the Cartesian product of X ′(U )withAM(U ) for allU . We
order closed subsets of AP by Y < X if either Y ′

� X ′ or else Y ′ = X ′ but δY < δX .
Note that, by the outer induction hypothesis for
(R, P ′, X ′) and since {0, 1, . . . ,∞}
is well-ordered, this order is well-founded. Hence when proving
(P, R, X), we may
assume that 
(P, R,Y ) holds for all Y < X .

First suppose that δX = ∞. Then, for all proper closed subsets Y of X , we have
Y < X and so 
(R, P,Y ) holds by the inner induction hypothesis. It follows that
condition (1) holds for (R, P, X). Condition (2) for (R, P, X) follows from condition
(2) for (R, P ′, X ′), with the same r ∈ R to be inverted. Indeed, if f ∈ R[P(U )] ∼=
R[M(U )]⊗R[P ′(U )]vanishes identically X(U )(K ) ∼= AM(U )(K )×X ′(U )(K ), then,
regarding f as a polynomial in the coordinates onM(U )with coefficients in R[P ′(U )],
those coefficients must all vanish identically on X ′(U )(K ), hence on X ′(U )(Kp) for
all p ∈ Spec(R[1/r ]).

6.8 A directional derivative

Next, suppose that 1 ≤ δX < ∞. Let f ∈ R[P(U )] ∼= R[M(U )] ⊗ R[P ′(U )]
be a homogeneous polynomial of degree δX in the standard grading, which lies in
the ideal of X(U ) but not on the preimage in AP(U ) of X ′(U ). Expanding f as
a polynomial in the coordinates on R[M(U )] with coefficients in R[P ′(U )], one
of those coefficients does not lie in the ideal of X ′(U ). Our assumptions together
with Corollary 36 guarantee that, in fact, that coefficient does not vanish identically
on X ′(U )(K ), so that f does not vanish identically on the pre-image of X ′(U )(K )

in AP(U )(K ). We then proceed as in [8, Lemma 18]. Let v1, . . . , vm be an R-basis
of M(U ) and extend this with vm+1, . . . , vn to an R-basis of P(U ), inducing an
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isomorphism R[P(U )] ∼= R[x1, . . . , xn]. The expression

fR[x1,...,xn ,y1,...,ym ,t]

⎛

⎝
n∑

i=1

xi ⊗ vi +
m∑

j=1

t y j ⊗ v j

⎞

⎠ ∈ R[x1, . . . , xn, y1, . . . , ym, t]

explicitly reads as

f (x1 + t y1, x2 + t y2, . . . , xm + t ym, xm+1, . . . , xn).

Take p = 1 if char R = 0 and p = char R otherwise. A Taylor expansion in t turns
this expression into

f (x1, . . . , xn) + t p
e ·

(
h1(x1, . . . , xn)y

pe

1 + · · · + hm(x1, . . . , xn)y
pe
m

)
+ t p

e+1 · g

for some integer e ≥ 0, polynomial g ∈ R[x1, . . . , xn, y1, . . . , ym, t] and homoge-
neous polynomials hi ∈ R[P(U )] of (standard) degree δX − ped not all vanishing
identically on X(U )(K ). Specialising the variables yi to values ai ∈ {0, 1}, we get
that

h(x1, . . . , xn) :=
m∑

i=1

a pe

i hi (x1, . . . , xn) ∈ R[P(U )]

does not vanish identically on X(U )(K ).
Let p ∈ K ⊗ P(U ) be a point in X(U )(K ) such that hK (p) �= 0. Relative to

the chosen basis of P(U ), we may write p = (α1, . . . , αn). Reasoning as before, let
r ∈ R be the product of all the denominators appearing in the minimal polynomials
of the αi over K so that R′ = R[1/r ][α1, · · · , αk] is a finite extension of R[1/r ]
containing all αi . Replacing R by R′ and using Lemma 75, we can therefore assume
that p ∈ X(U )(R) satisfies hR(p) �= 0. Further replacing R by R[1/hR(p)], we find
that hD(p) �= 0 for all R-domains D. Define Y to be the biggest closed subset of X
where h does vanish.

Lemma 76 We have

Y (V )(D) = {p ∈ X(V )(D) | ∀ϕ ∈ D ⊗ Hom(V ,U ) : hD(PV ,U ,D(ϕ)(p)) = 0}
for all V ∈ fgfModR and R-domains D.

Proof The closed subset Y is the intersection of X with the biggest closed subset ofAP

where h vanishes. So the lemma follows from Lemma 66. 
�
Let X = X1 ⊇ X2 ⊇ · · · be a sequence of closed subsets of X . Since Y < X ,

the statement 
(R, P,Y ) holds by the inner induction. In particular, the intersections
of the Xi with Y stabilise. This settles part of condition (1) of 
(R, P, X). We now
develop the theory to deal with the complement of Y . This will afterwards be used
to settle both condition (2) for 
(R, P, X) in Sect. 6.10 and complete the proof of
condition (1) in Sect. 6.11.
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6.9 Dealing with the localised shift

In [8, Lemma 25], it is proved that for all p ∈ Spec(R) and V ∈ fgfModR, the pro-
jection ShU (P) → ShU (P)/M induces a homeomorphism of ShU (X)[1/h](V )(Kp)

with a closed subset of the basic open (ShU (P)/M)[1/h](V )(Kp). This proof uses
that MKp

is irreducible, which is why we have localised so as to make this true. The

proof shows that, indeed, for each linear function x ∈ (Kp⊗M(V ))∗, the pe-th power
x pe lies in the sum of the ideal of ShU (X)[1/h](V )(Kp) in Kp[Kp⊗ P(U ⊕V )][1/h]
and the subring Kp[Kp ⊗ (P(U ⊕ V )/M(V ))]. We globalise this result as follows:
for all V ∈ fgfModR, define

N (V ) :=
{
x ∈ M(V )∗

∣∣∣∣ x
pe ∈ IShU (X)[1/h](V ) + R[P(U ⊕ V )/M(V )][1/h]

}
.

There is a slight abuse of notation here: M(V ) is a submodule of P(U⊕V ), soM(V )∗
is naturally a quotient of P(U ⊕ V )∗ rather than a submodule. But the projection
P(U ⊕ V ) → P(U ⊕ V )/M(V ) admits a section (indeed, we have arranged things
such that P(U ⊕ V ) is isomorphic to the direct sum of the free R-modules M(V ) and
P(U ⊕V )/M(V )), and any section yields a section M(V )∗ → P(U ⊕V )∗. Two such
sections differ by adding elements from (P(U ⊕ V )/M(V ))∗, which is contained in
the second term above, so N (V ) does not depend on the choice of section.

Recall from Sect. 5.2 that V ∗ �→ M(V )∗ is a polynomial functor M∗ of degree d.

Lemma 77 The association V ∗ �→ N (V ) is a polynomial subfunctor of M∗.
Proof Let A be an R-algebra and take V ,W ∈ fgfModR. Take y′ ∈ A ⊗ N (V ) and
ϕ∗ ∈ A ⊗ Hom(V ∗,W ∗) corresponding to ϕ ∈ A ⊗ Hom(W , V ). Then

A ⊗ Hom(M(W ), M(V )) ∼= A ⊗ Hom(M(V )∗, M(W )∗)
∼= HomA(A ⊗ M(V )∗, A ⊗ M(W )∗).

Denote the image of M∗
V ∗,W ∗,A(ϕ∗) = MW ,V ,A(ϕ) in HomA(A ⊗ M(V )∗, A ⊗

M(W )∗) by MW ,V ,A(ϕ)∗. We need to show that MW ,V ,A(ϕ)∗(y′) ∈ A ⊗ N (W ).
This condition is A-linear in y′, so we may assume that y′ = 1 ⊗ y with y ∈ N (V ).

Choose A = R[x1, . . . , xn] and ϕ = ∑
i xi ⊗ ϕi where the ϕi form a basis of

Hom(W , V ). Then in particular we need that

MW ,V ,R[x1,...,xn ]

(
∑

i

xi ⊗ ϕi

)∗
(1 ⊗ y) ∈ R[x1, . . . , xn] ⊗ N (W ).

Conversely, by specializing the xi to ai ∈ A for any R-algebra A, this in fact suffices.
As M is a subfunctor of P , we may here replace M by P .

Since P(V ) is free, the R-linear map

PW ,V ,R[x1,...,xn ]

(
∑

i

xi ⊗ ϕi

)∗
|P(V )∗ : P(V )∗ → R[x1, . . . , xn] ⊗ P(W )∗
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induces a homomorphism� : R[P(V )] → R[x1, . . . , xn]⊗ R[P(W )] of R-algebras.
As taking the pe-th power is additive, an element z is contained in R[x1, . . . , xn] ⊗
N (W ) if and only if z p

e
is contained in

R[x1, . . . , xn] ⊗ (IShU (X)[1/h](W ) + R[P(U ⊕ W )/M(W )][1/h]).

So we now need to show that �(y)p
e = �(y p

e
) is contained in this latter set. Since

y ∈ N (V ), we have y p
e = g1+g2 for some g1 ∈ IShU (X)[1/h](V ) and g2 ∈ R[P(U ⊕

V )/M(V )][1/h]. Now we note that �(g1) ∈ R[x1, . . . , xn] ⊗ IShU (X)[1/h](W ) as in
the proof of Lemma 66 and �(g2) ∈ R[x1, . . . , xn] ⊗ R[P(U ⊕ W )/M(W )][1/h].
So indeed

MW ,V ,R[x1,...,xn ]

(
∑

i

xi ⊗ ϕi

)∗
(1 ⊗ y) ∈ R[x1, . . . , xn] ⊗ N (W )

holds. 
�
Lemma 78 For every V ∈ fgfModR, every element of M(V )∗ has a nonzero R-
multiple in N (V ).

Proof By [8, Lemma 25], any element x of M(V )∗ has 1 ⊗ x pe ∈ K ⊗ N (V ) ⊆
K ⊗M(V )∗; in the symbol⊆we use that M(V ), and hence M(V )∗, are free. Clearing
denominators, we find that r x pe ∈ M(V )∗ for some nonzero r ∈ R. 
�
Lemma 79 There exists a nonzero r ∈ R such that R[1/r ]⊗N (V ) = R[1/r ]⊗M(V )∗
holds for all V ∈ fgfModR.

Proof Recall that the degree of the polynomial functor M is d and consider V = Rd .
By Lemma 78 and the fact thatM(V ) is finitely generated, there exists a nonzero r ∈ R
such that R[1/r ] ⊗ N (V ) = R[1/r ] ⊗ M(V )∗. The Friedlander–Suslin lemma, for
polynomial functors over R[1/r ], gives that then R[1/r ]⊗N (V ) = R[1/r ]⊗M(V )∗
for every V . 
�

We now replace R by the localisation R[1/r ] and may henceforth assume that
N (V ) = M(V )∗.

6.10 Proof of condition (2)

To establish condition (2) for (P, R, X), we will first prove an analogous statement
for the localised shift.

Lemma 80 There exists a nonzero r ∈ R such that the following holds for all V ∈
fgfModR: if g ∈ R[P(U ⊕ V )] vanishes identically on ShU (X)[1/h](V )(K ), then g
vanishes identically on ShU (X)[1/h](V )(Kp) for all primes p ∈ Spec(R[1/r ]).
Proof Assume that g ∈ R[P(U ⊕ V )] vanishes identically on ShU (X)[1/h](V )(K ).
View g as a polynomial in the coordinates xi of M(V )∗ corresponding to a basis of
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M(V ) with coefficients in R[P(U ⊕ V )/M(V )]. By the conclusion of Sect. 6.9, we
have N (V ) = M(V )∗, which means that each x pe

i is a sum of an element in R[P(U ⊕
V )/M(V )][1/h] and an element in the ideal of ShU (X)[1/h](V ).We thenfind that also
gpe = g1+g2 with g1 ∈ R[P(U⊕V )/M(V )][1/h] and g2 ∈ IShU (X)[1/h](V ). Let Z be
the closure of the projection of ShU (X)[1/h] to (ShU (P)/M)[1/h]. Since both g and
g2 vanish identically on ShU (X)[1/h](V )(K ), g1 vanishes identically on Z(V )(K ).
By the outer induction hypothesis, after a localisation that doesn’t depend on g1 or on
V , one concludes that g1 vanishes identically on Z(V )(Kp) for all p ∈ Spec(R). But
then gpe , and hence g itself, vanish identically on ShU (X)[1/h](V )(Kp). 
�

Now we can establish condition (2) of 
(R, P, X):

Proposition 81 There exists a nonzero r ∈ R such that the following holds for all
V ∈ fgfModR: if g ∈ R[P(V )] vanishes identically on X(V )(K ), then g vanishes
identically on X(V )(Kp) for all primes p ∈ Spec(R[1/r ]).
Remark 82 For each fixed V , such an r exists by Proposition 44. Taking the product
of such r ’s, the same applies to a finite number of V ’s, so we may restrict our attention
to all V of sufficiently large rank; we will do this in the proof.

Proof of Proposition 81 By the inner induction hypothesis, after replacing R by a local-
isation R[1/r ], we know that if g ∈ R[P(V )] vanishes identically on Y (V )(K ), then
it vanishes identically on Y (V )(Kp) for all p ∈ Spec(R).

For any V ∈ fgfModR and p ∈ Spec(R), define Z(V )(Kp) := X(V )(Kp) \
Y (V )(Kp). It suffices to show that with a further localisation we achieve that for any
V ∈ fgfModR, if g ∈ R[P(V )] vanishes identically on all points of Z(V )(K ), then it
vanishes identically on all points of Z(V )(Kp) for all p ∈ Spec(R). In proving this,
by Remark 82 above, we may assume that V has rank at least that of U . Hence we
may replace V by U ⊕ V .

Such a g that vanishes identically on Z(U ⊕ V )(K ) vanishes, in particular, identi-
cally on ShU (X)[1/h](V )(K ). Lemma 80 says that (after replacing R by a localisation
that does not depend on g or V ), g also vanishes identically on ShU (X)[1/h](V )(Kp)

for all p ∈ Spec R. This basic open is actually dense in Z(U ⊕ V )(Kp), as one sees
as follows: Z(U ⊕ V )(Kp) is the image of the action

GL(Kp ⊗ (U ⊕ V )) × ShU (X)[1/h](V )(Kp) → X(U ⊕ V )(Kp).

If the basic open were contained in the union of a proper subset of the irreducible
components of Z(U ⊕ V )(Kp), then, by irreducibility of GL(Kp ⊗ (U ⊕ V )), so
would the image of that action, a contradiction. Hence g then vanishes identically on
Z(V )(Kp) for all p ∈ Spec(R). 
�
Remark 83 Note that, unlike Y , the Z defined in the proof is not a subset of X in the
sense of Definition 61.

6.11 Proof of the Noetherianity of X

Finally,weprove condition (1) of
(R, P, X). Let X = X1 ⊇ X2 ⊇ · · · be a sequence
of closed subsets of X . Recall from Sect. 6.8 that the intersections of the Xi with Y
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stabilise. Now, consider again the projection ShU (P)[1/h] → (ShU (P)/M)[1/h].
We let Z ′

i be the closure of the image of ShU (Xi )[1/h] in (ShU (P)/M)[1/h]. Since
the polynomial functor (ShU (P)/M) is smaller then P , we have Noetherianity for
(ShU (P)/M)[1/h] and therefore the sequence Z ′

1 ⊇ Z ′
2 ⊇ · · · stabilises. We now

conclude from this that the sequence of ShU (Xi )[1/h]’s also stabilises.

Lemma 84 Let X ′′ ⊆ X ′ ⊆ X be closed subsets, assume ShU (X ′′)[1/h] �

ShU (X ′)[1/h] and let Z ′′ ⊆ Z ′ be the closures of their images in (ShU (P)/M)[1/h].
Then Z ′′

� Z ′.

Proof Since ShU (X ′′)[1/h] � ShU (X ′)[1/h], we have

ShU (X ′′)[1/h](V ) � ShU (X ′)[1/h](V )

for some V ∈ fgfModR . This means that IShU (X ′′)[1/h](V ) � IShU (X ′)[1/h](V ).
Let g ∈ R[P(U ⊕ V )][1/h] be an element of the former ideal that is not con-
tained in the latter. Then the same holds for gpe . By the conclusion of Sect. 6.9,
gpe is a sum of an element g1 in R[P(U ⊕ V )/M(V )][1/h] and an element g2
of IShU (X)[1/h](V ) ⊆ IShU (X ′)[1/h](V ). This means that g1 is also an element of
IShU (X ′′)[1/h](V ) not contained in IShU (X ′)[1/h](V ). Hence

IShU (X ′′)[1/h](V ) ∩ R[P(U ⊕ V )/M(V )][1/h] � IShU (X ′)[1/h](V )

∩R[P(U ⊕ V )/M(V )][1/h]

holds. The former ideal of R[P(U ⊕ V )/M(V )][1/h] equals I Z ′′(V ) and the latter
equals I Z ′(V ). So Z ′′(V ) � Z ′(V ) and hence Z ′′

� Z ′. 
�
By the lemma, the fact that the sequence of Z ′

i stabilises implies that the sequence
of ShU (Xi )[1/h]’s also stabilises. Now again, we write

Zi (V )(Kp) = Xi (V )(Kp) \ Y (V )(Kp)

for all V ∈ fgfModR and p ∈ Spec(R). We consider the descending sequence of Zi ’s.
What is left to prove for the Noetherianity of X is the following result.

Lemma 85 The sequence Z1 ⊇ Z2 ⊇ · · · stabilises.
Proof Let m be the rank of U . As in equation (∗) in [8, §2.9], we have

Zi (U ⊕ V )(Kp) = {p ∈ Xi (U ⊕ V )(Kp) | h(g(p))

�= 0 for some g ∈ GL(Kp ⊗ (U ⊕ V ))}
=

⋃

g∈GL(Kp⊗(U⊕V ))

g ShU (Xi )[1/h](V )(Kp)

for every p ∈ Spec(R). So the sequence of Zi ’s restricted to V ∈ fgfModR of rank≥ m
stabilizes. As the sequence of Xi (Rk)’s stabilizes for each k ∈ {0, . . . ,m − 1} by
Proposition 1, the unrestricted sequence of Zi ’s also stabilizes. 
�
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Since both the sequence of Xi ∩ Y ’s and Zi ’s stabilize, using Corollary 36, the
sequence of Xi ’s also stabilizes. So the closed subset X is Noetherian. This concludes
the proof of condition (1) for (R, P, X) and hence the proof of Theorem 2.

6.12 Dimension functions of closed subsets of polynomial functors

To illustrate that the proof method for Theorem 2 can be used to obtain further results
on closed subsets of polynomial functors, we establish a natural common variant of
Propositions 43 and 54. For each p ∈ Spec(R) define the function fp : Z≥0 → Z≥0
as fp(n) := dim(X(Rn)(Kp)).

Proposition 86 For each p ∈ Spec(R), fp(n) is a polynomial in n with integral
coefficients for all n � 0. Furthermore, the map that sends p to this polynomial
is constructible.

Proof (Proof sketch) Both statements follow by inductions identical to the one for
Theorem 2, using that, in the most interesting induction step, for n ≥ m := rk(U ) the
dimension of XKp

(Kp
n
) is the maximum of the dimensions of YKp

(Kp
n
) and

(ShU (X)[1/h])Kp
(Kp

n−m
).

Furthermore, for the case where XKp
is the pre-image of X ′

Kp
, we use Proposition 54,

and for the base case in the induction proof for the constructibility statement we use
Proposition 43. 
�
Example 87 Take R = Z, take P = S3, and let X be the closed subset defined as the
image closure of the polynomial transformation (S1)2 → S3, (v,w) �→ v3 + w3; see
Sect. 1.3 for similar polynomial transformations. Then XKp

(Kp
n
) has dimension 2n

for p �= (3) and dimension n for p = (3), since in the latter case the set of cubes
of linear forms is a linear subspace of the space of cubics. This is an instance of
Proposition 86.
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