Effective perspiration is essential to uphold the stability of zero-gap MEA-based cathodes used in CO2 electrolysers.

Hu, Huifang; Kong, Ying; Liu, Menglong; Kolivoška, Viliam; Rudnev, Alexander V; Hou, Yuhui; Erni, Rolf; Vesztergom, Soma; Broekmann, Peter (2023). Effective perspiration is essential to uphold the stability of zero-gap MEA-based cathodes used in CO2 electrolysers. Journal of materials chemistry. A, 11(10), pp. 5083-5094. Royal Society of Chemistry 10.1039/d2ta06965b

[img]
Preview
Text
d2ta06965b.pdf - Published Version
Available under License Creative Commons: Attribution-Noncommercial (CC-BY-NC).

Download (6MB) | Preview

The application of gas diffusion electrodes (GDEs) for the electrochemical reduction of CO2 to value-added products creates the possibility of achieving current densities of a few hundred mA cm-2. To achieve stable operation at such high reaction rates remains, however, a challenging task, due to the flooding of the GDE. In order to mitigate flooding in a zero-gap membrane-electrode assembly (MEA) configuration, paths for effective electrolyte perspiration inside the GDE structure have to be kept open during the electrolysis process. Here we demonstrate that apart from the operational parameters of the electrolysis and the structural properties of the supporting gas diffusion layers, also the chemical composition of the applied catalyst inks can play a decisive role in the electrolyte management of GDEs used for CO2 electroreduction. In particular, the presence of excess amounts of polymeric capping agents (used to stabilize the catalyst nanoparticles) can lead to a blockage of micropores, which hinders perspiration and initiates the flooding of the microporous layer. Here we use a novel ICP-MS analysis-based approach to quantitatively monitor the amount of perspired electrolyte that exits a GDE-based CO2 electrolyser, and we show a direct correlation between the break-down of effective perspiration and the appearance of flooding-the latter ultimately leading to a loss of electrolyser stability. We recommend the use of an ultracentrifugation-based approach by which catalyst inks containing no excess amount of polymeric capping agents can be formulated. Using these inks, the stability of electrolyses can be ensured for much longer times.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Department of Chemistry, Biochemistry and Pharmaceutical Sciences (DCBP)

UniBE Contributor:

Hu, Huifang, Kong, Ying, Liu, Menglong, Rudnev, Alexander, Hou, Yuhui, Vesztergom, Soma, Broekmann, Peter

Subjects:

500 Science > 570 Life sciences; biology
500 Science > 540 Chemistry

ISSN:

2050-7488

Publisher:

Royal Society of Chemistry

Language:

English

Submitter:

Pubmed Import

Date Deposited:

14 Mar 2023 10:15

Last Modified:

14 Mar 2023 23:27

Publisher DOI:

10.1039/d2ta06965b

PubMed ID:

36911161

BORIS DOI:

10.48350/180003

URI:

https://boris.unibe.ch/id/eprint/180003

Actions (login required)

Edit item Edit item
Provide Feedback