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ABSTRACT
We prove that any Lie subgroup G (with finitely many connected
components) of an infinite-dimensional topological group G which
is an amalgamated product of two closed subgroups can be conju-
gated to one factor. We apply this result to classify Lie group actions
on Danielewski surfaces by elements of the overshear group (up to
conjugation).
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1. Introduction

The motivation of this paper is the study of holomorphic automorphisms of Danielewski
surfaces. These are affine algebraic surfaces defined by an equation Dp := {xy − p(z) =
0} in C3, where p ∈ C[z] is a polynomial with simple zeros. These surfaces are inten-
sively studied in affine algebraic geometry, and their algebraic automorphism group has
been determined by Makar-Limanov [1, 2]. More results on algebraic automorphisms of
Danielewski surfaces can be found in Refs. [3–7].

From the holomorphic point of view, their study began in the paper of Kaliman and
Kutzschebauch [8] who proved that they have the density and volume density property,
important features of the so called Andersén–Lempert theory. For definitions and an
overview over Andersén–Lempert theory, we refer to Ref. [9].

Another important study in the borderland between affine algebraic geometry and com-
plex analysis is the classification of complete algebraic vector fields onDanielewski surfaces
by Leuenberger [10]. In fact we explain in Remark 4.1 how to use his results together
with our Classification Theorem 1.3 to find holomorphic automorphisms of Danielewski
surfaces which are not contained in the overshear group.

In Ref. [11], we define the notion of an overshear and shear on Danielewski surfaces as
follows:
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2 F. KUTZSCHEBAUCH AND A. LIND

Definition 1.1: A mapping Of ,g : Dp → Dp of the form

Of ,g(x, y, z) =
(
x, y + 1

x

(
p(z exf (x) + xg(x)) − p(z)

)
, z exf (x) + xg(x)

)

(or with the role of first and second coordinates exchanged, IOf ,gI) is called an overshear
map, where f , g : C → C are holomorphic functions (and the involution I ofDp is themap
interchanging x and y). When f ≡ 0, we say that Sg := O0,g is a shear map on Dp.

These mappings are automorphisms of Dp. The maps of the form Of ,g form a group,
which we call O1. It can be equivalently described as the subgroup of Aut(Dp), leav-
ing the function x invariant. It is therefore a closed subgroup of Aut(Dp) (endowed with
compact-open topology). Analogously, the maps IOf ,gI form a group, the closed subgroup
of Aut(Dp) leaving y invariant, which we call O2.

Themain result of Ref. [11] says that the group generated by overshears, i.e. byO1 andO2
(we call it the overshear groupOS(Dp)), is dense (with respect to the compact-open topol-
ogy) in the component of the identity of the holomorphic automorphism group Aut(DP)

of Dp. This fact generalizes the classical results of Andersén and Lempert [12] from Cn. It
is worth to be mentioned at this point that Dp for p of degree 1 is isomorphic to C2.

In Ref. [13], the authors together with Andrist proved a structure result of the overshear
group.

Theorem 1.2 (Theorem 5.1 in Ref. [13]): Let Dp be a Danielewski surface and assume that
deg(p) ≥ 4, then the overshear group,OS(Dp), is a free amalgamated product of O1 and O2.

The main result of our paper is a classification result for Lie group actions on
Danielewski surfaces by elements of the overshear group.

Theorem 1.3: Let Dp be a Danielewski surface and assume that deg(p) ≥ 4. Let a real con-
nected Lie group G act on Dp by automorphisms in OS(Dp). Then G is abelian, isomorphic
to the additive group (Rn,+) and is conjugated (in OS(Dp)) to a subgroup of O1.

The exact formulas for such actions are described in Corollary 3.3.
For the overshear group of C2 (instead of Danielewski surfaces), many results in the

same spirit have been proven by Ahern and Rudin [14] for G finite cyclic group, by
Kutzschebauch and Kraft [15] for compact G and for one-parameter subgroups in the the-
sis of Andersén [16] by de Fabritiis [17], Ahern and Forstnerič [18] and Ahern et al. [19].
For Danielewski surfaces, our result is the first of that kind. The proof relies on our second
main result, which seems to be of independent interest.

Theorem 1.4: Let G be a topological group which is a free amalgamated product O ∗O∩L L
of two closed subgroups O, L. Furthermore, let G be a Lie group with finitely many connected
components and ϕ : G → G be a continuous group homomorphisms. Then ϕ(G) is conjugate
to a subgroup of O or L.

The outline of this paper is the following. In Section 2, we prove Theorem 1.4. In
Section 3, we prove Theorem 1.3. In Section 4, we apply Theorem 1.2 to give new examples
of holomorphic automorphisms of Dp not contained in the overshear group OS(Dp).
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2. Lie subgroups of a free amalgamated product

The aim of this section is to prove the following theorem. For the notion of amalgamated
product, we refer the reader to Ref. [20].

Theorem 2.1: Let G be a topological group which is a free amalgamated product O ∗O∩L L
of two closed subgroups O, L. Furthermore, let G be a Lie group with finitely many connected
components and ϕ : G → G be a continuous group homomorphism. Then ϕ(G) is conjugate
to a subgroup of O or L.

We need the following facts:

Proposition 2.2: Every element of a free amalgamated product O ∗O∩L L is conjugate either
to an element of O or L or to a cyclically reduced element. Every cyclically reduced element is
of infinite order.

Proof: See Proposition 2 in Section 1.3 in Ref. [20]. �

Lemma 2.3: A subgroup H of a free amalgamated product O ∗O∩L L is conjugate to a
subgroup of O or L if and only if H is of bounded length.

Proof: This is a direct consequence of Proposition 2.2. �

Lemma 2.4: Let g1 and g2 be two commuting elements of O ∗O∩L L with lengths ≥ 1, then
l(g1) and l(g2) are both even or both odd.

Proof: Assume that g1 = a1 · · · am and g2 = b1 · · · bn are two commuting elements.
Assume, for a contradiction, that l(g1) is even and l(g2) is odd. Since g1 has even length,
the first and last element of the chain a1, . . . , am have to alter between O and L. Similarly,
the first and last element of the chain g2s has to be contained in either O or L.

Assume first that a1 ∈ O and am ∈ L and that b1, bn ∈ O. Then, since am and b1 alter
between L and O, l(g1g2) = m + n. The assumption that g1 and g2 are commuting yields
that the corresponding length of g2 · g1 has to be the same as the length of g1 · g2. Clearly,

b1 · · · bn · a1 · · · am = b1 · · · bn−1 · c · a2 · · · am,
where c = bn · a1 ∈ O. Hence, l(g2g1) = m + n − 1 < m + n = l(g1g2), which contra-
dicts our assumption.

If we assume that a1 ∈ O and am ∈ L and that b1, bn ∈ L, a similar contradiction is
obtained. In fact, l(g1g2) = m + n − 1 < m + n = l(g2g1).

Similar calculations are obtained if a1 ∈ L and am ∈ O, where we have to consider both
of the cases b1, bn ∈ L and b1, bn ∈ O. �

Lemma 2.5: If an element g of a free amalgamated product O ∗O∩L L has roots of arbitrary
order, then it is conjugate to an element in O or to an element in L.

Proof: Assume that g is not conjugate to an element in O or to an element in L. Then,
by Proposition 2.2, g is conjugate to a cyclically reduced element, say h−1gh, which has
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even length ≥ 2 by definition of a cyclically reduced element. For each n>0, we have that
h−1gh = h−1(g1/n)nh, since g as roots of arbitrary order.Hence, h−1g1/nh is not an element
of O or L, since it equals h−1gh. Furthermore,

h−1(g1/n)nh · h−1gh = h−1(g1/n)ngh = h−1ggh =
= h−1g(g1/n)nh = h−1gh · h−1(g1/n)nh.

We conclude that h−1gh and h−1g1/nh commute. Whence, Lemma 2.4 implies that
h−1g1/nh has even length (since h−1gh has even length) and is thus cyclically reduced.
Hence,

l(h−1gh) = l(h−1(g1/n)nh) = |n|l(h−1g1/nh) ≥ |n|,
for all n>0, contradicting the fact that all elements of O ∗O∩L L have finite length. �

First let us establish Theorem 2.1 in the case of a one-parameter subgroup:

Proposition2.6: LetG be a topological groupwhich is a free amalgamated productO ∗O∩L L
of two closed subgroups O and L. Let ϕ : R → G be a continuous one-parameter subgroup.
Then, ϕ(R) is conjugate to a subgroup of O or L.

Proof: Since ϕ is a group homomorphism, we know that ϕ(1) and ϕ(
√
2) have roots of all

orders. Hence, we can use Lemma 2.5 to conjugate both elements to O or L. Consider the
dense subgroup H = {m + n

√
2 : m, n ∈ Z} of R. Since

l(ϕ(m + n
√
2)) = l(ϕ(m)ϕ(n

√
2)) ≤ l(ϕ(1)mϕ(

√
2)n),

we conclude that ϕ(H) have bounded length. Therefore, Lemma 2.3 implies that ϕ(H) is
conjugate to O or L. Let c ∈ O ∗O∩L L be an element such that cϕ(H)c−1 is contained in O
or L. Finally, as O and L are closed, we get that

cϕ(H)c−1 = cϕ(R)c−1 ⊆ cϕ(H)c−1

is contained in O or L. �

The key ingredient in the Proof of Theorem 1.4 will rely on the following result which
seems to be of independent interest. In the language of Ref. [21], this means that every Lie
group G is uniformly finitely generated by one-parameter subgroups.

Proposition 2.7: For any connected real Lie group G, there are finitely many elements Vi ∈
Lie(G), i = 1, 2, . . . ,N, for which the product map of the one-parameter subgroups

�V1,V2,...,VN : RN → G

defined by

(t1, t2, . . . , tN) �→ exp(t1V1) exp(t2V2) · · · exp(tNVN)

is surjective.
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Proof: By Levi-Malcev decomposition [22] and Iwasawa decomposition [23], we canwrite

G = S · R = K · A · N · R,

where S is semisimple, R is solvable, A is abelian, N is nilpotent and K is compact.
If we can prove the claim of the proposition for each of the factors in the above

decomposition, we will be done.
For abelian groups, the fact holds trivially.
Case 1: K a compact connected Lie group: Take any basis (k1, . . . , kn) of the Lie algebra

Lie(K). Then the product map �k1,k2,...,kn : R
n → K is a submersion at the unit element.

Thus its image contains an open neighborhood U of the unit element. Since the powers of
a neighborhood U of the unit element in any connected Lie group cover the whole group,
for a compact Lie group K there is a finite number m such that Um = K. This means that
for our purpose �m

k1,k2,...,kn : R
nm → K is surjective.

Case 2: Consider N, a nilpotent connected Lie group. Then N ∼= Ñ/� for the universal
covering Ñ and� a normal discrete subgroup of Ñ. Since the exponentialmap for Ñ factors
over π : Ñ → N, it is enough to prove the claim for simply connected N.

Then, the following fact (due to Malcev [24]) is true: If N is simply connected
then for a certain (Malcev) basis (V1, . . . ,Vn) of Lie(N), the map (t1, t2, . . . , tn) �→
exp t1V1 + t2V2 + · · · + tnVn is a diffeomorphism.We will now prove the claim by induc-
tion of the length of the lower central series of Lie(N). For length 1, the group is abelian
and the fact holds trivially. Let g = exp(t1V1 + t2V2 + · · · tnVn). By repeated use of
Lemma 2.8, we write

g = exp(t1V1) exp(t2V2 + · · · + tnVn) expK1

= exp(t1V1) exp(t2V2) exp(t3V3 + · · · + tnVn) expK2 expK1

= exp(t1V1) exp(t2V2) . . . exp(tnVn) expKn . . . expK2 expK1 (1)

with Ki ∈ [Lie(N), Lie(N)].
Since [Lie(N), Lie(N)] has shorter length of lower central series, by the induction

hypothesis, each of the factors expKi is a product of one-parameter subgroup. This proves
the claim.

Case 3: R is solvable: Let R′ denote the commutator subgroup of R. Then R′ is nilpotent
and A := R/R′ is abelian. If x ∈ R is any element, we can per definition write its image x̄
in A as x̄ = exp(t1A1) · · · exp(tnAn) for some Ai:s in Lie(A) which form a basis. Let π :
Lie(R) → Lie(A) denote the quotient map and let Ãi ∈ Lie(R) be elements with π(Ãi) =
Ai. Thus we get x = exp(t1Ã1) · · · exp(tnÃn)g for some g ∈ R′. Since R′ is nilpotent this
reduces our problem to case 2. �

Lemma 2.8: For a nilpotent Lie group G with Lie algebra g = Lie(G) and x, y ∈ g, there is
K(x, y) ∈ [g, g] with

exp(x + y) = exp(x) exp(y) exp(K(x, y)).

Proof: The key fact is the Baker–Campbell–Hausdorff formula proven by Dynkin [25]. In
the nilpotent case, it says that it is a finite sum of iterated Lie brackets Z(x, y) (number of
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iterations of brackets bounded by the lower central series of g) such that for all x, y ∈ g

exp(x) exp(y) = expZ(x, y).

Moreover, Z(x, y) = x + y + [x, y] + higher brackets. Now

exp(x + y) = exp(x) exp(y) exp(−Z(x, y) exp(x + y))

= exp(x) exp(y) exp(Z(−Z(x, y), x + y)). (2)

Setting K(x, y) := Z(−Z(x, y), x + y)) finishes the proof, since the terms without bracket
cancel, i.e. K(x, y) ∈ [g, g]. �

Now we are ready to prove the main result of this section.

Proof of Theorem 1.4.: Let G0 denote a connected component of G containing the iden-
tity. By Proposition 2.7, there are finitely many one-parameter subgroups Ri such that the
productmapR1 × R2 × · · · × RN → G0 is surjective. By Proposition 2.6 and Lemma 2.3,
the elements of each of the ϕ(Ri) have bounded length, say a(i). Thus the length of the
elements in ϕ(G0) is bounded by

∑N
i=1 a(i). As G has only finitely many connected com-

ponents, the lengths of elements of ϕ(G) are bounded. The assertion now follows from
Lemma 2.3. �

3. Classification of Lie group actions by overshears

In this section, we prove Theorem 1.3 from the introduction. We assume deg(p) ≥ 4 and
use Theorem 1.2 from the introduction stating that OS(Dp) is a free amalgamated product
O1 ∗ O2, where O1 is generated by Ox

f ,g and O2 is generated by IOx
f ,gI. By Theorem 2.1, we

can conjugate any Lie group G with finitely many components acting continuously on Dp
by elements of OS(Dp) into O1 or O2. Without loss of generality, we can assume that we
can conjugate any connected Lie subgroup G of OS(Dp), in particular any one-parameter
subgroup, to O1. Now we have reduced our problem to classify Lie subgroups of O1. We
start with one-parameter subgroups.

We recall the definitions of overshear fields and shear fields from Ref. [11].

(V1) OFxf ,g := p′(z)(zf (x) + g(x)) ∂
∂y + x(zf (x) + g(x)) ∂

∂z
(V2) SFxf := p′(z)f (x) ∂

∂y + xf (x) ∂
∂z

where f, g are entire functions on C. In the special case, f ≡ 0 then OFxf ,g is the shear
field SFxg .

The set of overshear fields is a Lie algebra which consists of complete vector fields only.
The formula for the bracket is given by Equation (4).

Any one-parameter subgroup of Aut(Dp) which is contained in the overshear groupO1
is the flow of an overshear field. Let us prove this. The connection between a vector field
V(x, y, z) and the flow ϕ(x, y, z, t) is given by the ODE
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d
dt

∣∣∣∣
t=t0

ϕ(x, y, z, t) = V(ϕ(x, y, z, t0)), ϕ(x, y, z, 0) = (x, y, z). (3)

Since any action of a real Lie group on a complex space by holomorphic automorphisms is
real analytic [26, 1.6], we canwrite the flowϕ(x, y, z, t) = (x, . . . , z exp(xf (t, x)) + xg(t, x))
contained in O1 as (

x, . . . , z exp

(
x

∞∑
i=0

fi(x)ti
)

+ x
∞∑
i=0

gi(x)ti
)

for entire functions fi and gi. Using Equation (3) for t0 = 0 leads to V(x, y, z, t) =
p′(z)(zf0(x) + g1(x)) ∂

∂y + {xf1(x) exp(xf0(x))z + xg1(x)}∂/∂z, an overshear field.
Calculating the commutator, we find that for any f, g, h and k, entire functions on C, we

have

[OFxf ,g ,OF
x
h,k] = x · SFgh−kf . (4)

In particular, shear fields commute and

[SFxh,OF
x
f ,g] = x · SFxfh = xf (x) · SFxh. (5)

Proposition 3.1: Let f, g and h be fixed holomorphic functions with f , h �≡ 0. Then the Lie
algebra Lie(OFxf ,g , SF

x
h) generated by OF

x
f ,g and SF

x
h is of infinite dimension.

Proof: By expression (5) and the fact that shear fields commute, we get that

Lie(OFxf ,g , SF
x
h) = span{OFxf ,g , SFxnf nh; n = 0, 1, 2 . . .}.

Assume that the Lie algebra is of finite dimension. This means that there is an n and there
are constants a0, . . . , an, b such that

bOFxf ,g +
n∑
j=0

ajxjf j(x)SFxh = xn+1f n+1(x)SFxh.

It follows that b = 0, whence we get a functional equation of the form

n∑
j=0

ajyj(x) = yn+1(x),

where y is holomorphic and has a zero at x = 0. This is impossible for non-zero functions
y, since the right-hand side has a higher order of vanishing at x = 0 than the left-hand
side. �

Proposition 3.2: Let g be a Lie algebra contained inOS1 and suppose that dim(g) < +∞.
Then g is abelian.
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Proof: Assume that g is not abelian. Let �1,�2 ∈ g be two non-commuting vector fields.
As explained above, they are overshear fields and since they do not commute, their
bracket [�1,�2] is by Equation (4) a nontrivial shear field. Now the result follows from
Proposition 3.1. �

Proof of Theorem 1.3.: As explained in the beginning of the section, the action of G on
Dp by overshears can be conjugated into O1. The action of G by elements of O1 gives rise
to a Lie algebra homomorphism of Lie(G) into the Lie algebra of vector fields onDp fixing
the variable x. This Lie algebra is exactly the set of overshear vector fields OFxf ,g (which
consists of complete fields only). By Proposition 3.2, the finite dimensional Lie algebra
Lie(G) has to be abelian. Since all one-parameter subgroups of G give rise to an overshear
vector field, they are isomorphic to (R,+) (not S1). Thus G is isomorphic to the additive
groupRn generated by the flows ofn linear independent commuting overshear vector fields
OFxfi,gi , i = 1, 2, . . . , n which commute. By formula (4), this is equivalent to figj − fjgi = 0
∀ i, j. An equivalent way of expressing this is that the meromorphic functions hi := gi/fi
are the same for all i or that all fi are identically zero. �

Corollary 3.3: Suppose deg(p) ≥ 4. Every one-parameter subgroup of OS(Dp) is conjugate
by elements of OS(Dp) to the flow of an overshear field OFxf ,g which in turn is given by the
formula

(x, y, z, t) �→
(
x, y + p

(
exf (x)tz + (g(x)/f (x))(exf (x)t − 1)

)− p(z)
x

, exf (x)tz

+g(x)
f (x)

(exf (x)t − 1)
)
.

Here the expression (eab − 1)/a for a = 0 is interpreted as the limit of this expression for
a → 0, i.e. as b.

Remark 3.1: It is directly seen from Theorem 1.3 that any action of a real Lie group G on
Dp extends to a holomorphic action of the universal complexification GC, which in our
case has just the additive group Cn as connected component. This is a general fact proven
by the first author in Ref. [27].

4. Examples of automorphisms ofDp not contained in OS(Dp)

In Ref. [13], it is shown that the overshear group is a proper subset of the automorphism
group. In fact, using Nevanlinna theory, it is shown that the hyperbolic mapping

(x, y, z) �→ (x ez, y e−z, z)

is not contained in the overshear group. This is analogous to the result by Andersén [28],
who showed that the automorphism of C2 defined by

(x, y) �→ (x exy, y e−xy)

is not finite compositions of shears. Hence, the shear group is a proper subgroup of the
group of volume-preserving automorphisms. For another proof of this fact, see also Ref.
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[15]. Note that our Classification Theorem 1.3 immediately implies that the elements of
the C∗-action λ �→ (λx, λ−1y, z) cannot all be contained in OS(Dp), since there are no
S1-actions in OS(Dp).

We will present yet another way of finding an automorphism of a Danielewski surface
which is not a composition of overshears.

Theorem4.1: Assume that deg(p) ≥ 4. Then, the overshear groupOS(Dp) is a proper subset
of the component of the identity of Authol(Dp).

Proof: We look at complete algebraic vector fields on Danielewski surfaces. These are
algebraic vectorfields which are globally integrable, however their flow maps are merely
holomorphic maps. As shown in Ref. [29], there is always a C- or a C∗-fibration adapted
to these vector fields. That is, there is a map π : Dp → C such that the flow of the com-
plete field θ maps fibers of π to fibers of π . These maps π have general fiber C or C∗. In
case of at least two exceptional fibers, the vector field θ has to preserve each fiber, i.e. it is
tangential to the fibers of π . For example, the overshear fields in OS1 have adapted fibra-
tion π0 : (x, y, z) �→ x. They are tangential to this C-fibration, the fibers outside x = 0 are
parametrized by z ∈ C via z �→ (x, p(z)/x, z). The exceptional fiber is π−1

0 (0) consisting
of deg(p) copies of C, one for each zero zi of the polynomial p and parametrized by y ∈ C

via y �→ (0, y, zi). A typical example of a field with adapted C∗-fibration is the hyperbolic
field x(∂/∂x) − y(∂/∂y)with adapted fibration (x, y, z) �→ z. There are deg(p) exceptional
fibers at the zeros of the polynomial p, each of them isomorphic to the cross of axis xy = 0.
The same C∗-fibration is adapted to the field f (z)(x(∂/∂x) − y(∂/∂y)) for a nontrivial
polynomial f.

Now take any complete algebraic vector field θ with an adapted C∗-fibration (and thus
generic orbits C∗). Assume that the flow maps (or time-t maps) ϕt ∈ Authol(Dp) of θ are
all contained in the overshear group OS(Dp). Then by Theorem 1.3, this one-parameter
subgroup t �→ ϕt can be conjugated intoO1. This wouldmean that the one-parameter sub-
group would be conjugate to a one-parameter subgroup of an overshear field OFxf ,g (since
these are all complete fields respecting the fibration x). This would imply that the generic
orbit of the overshear field is C∗, which is equivalent to f �= 0. However, the generic orbits
of these fields OFf ,g (isomorphic to C∗) are not closed in Dp, they contain a fixed point
in their closure. Thus our assumption that all ϕt are contained in OS(Dp) leads to a con-
tradiction. In particular, we have shown that for any non-zero entire function f , there is a
t ∈ R such that the time t-map of the hyperbolic field given by

(x, y, z) �→ (x ef (z)t , y e−f (z)t , z)

is not contained in OS(Dp). �

Remark 4.1: More examples of complete algebraic vector fields on Dp with adapted C∗-
fibration can be found in the work of Leuenberger [10] who up to automorphism classifies
all complete algebraic vector fields on Danielewski surfaces. Interesting examples (whose
flow maps are not algebraic) are fields whose adapted C∗-fibration is given by (x, y, z) �→
xm(xl(z + a) + Q(x))n for coprime numbers m, n ∈ N, a ∈ C and 0 ≤ l < deg(Q). The
exact formula for these fields can be found in the Main Theorem of loc.cit.
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Remark 4.2: Without specifying a concrete automorphism which is not in the group gen-
erated by overshears, Andersén and Lempert use an abstract Baire category argument
in Ref. [12] to show that the group generated by overshears in Cn is a proper subgroup
of the group of holomorphic automorphisms Authol(Cn) of Cn. We do believe that such a
proof could work in the case of Danielewski surfaces as well.
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