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Abstract
We introduce the new concepts of pseudo numerical range for operator functions and
families of sesquilinear forms as well as the pseudo block numerical range for n×n
operator matrix functions. While these notions are new even in the bounded case,
we cover operator polynomials with unbounded coefficients, unbounded holomor-
phic form families of type (a) and associated operator families of type (B). Our main
results include spectral inclusion properties of pseudo numerical ranges and pseudo
block numerical ranges. For diagonally dominant and off-diagonally dominant opera-
tormatrices they allow us to prove spectral enclosures in terms of the pseudo numerical
ranges of Schur complements that no longer require dominance order 0 and not even
<1.As an application, we establish a new type of spectral bounds for linearly damped
wave equations with possibly unbounded and/or singular damping.

Keywords Numerical range · Spectrum · Resolvent estimate · Operator function ·
Operator polynomial · Damped wave equation

1 Introduction

Spectral problemsdepending non-linearly on the eigenvalue parameter arise frequently
in applications, see e.g.the comprehensive collection in [2] or themonograph [21]. The
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dependence ranges from quadratic in problems originating in second order Cauchy
problems such as damped wave equations, see e.g. [13, 15], to rational as in electro-
magnetic problems with frequency dependent materials such as photonic crystals, see
e.g. [9], [1]. In addition, if energy dissipation is present due to damping or lossy mate-
rials, then the values of the corresponding operator functions need not be selfadjoint.

While for operator functions T (λ), λ∈�⊆C, with unbounded operator values in
a Hilbert space H the notion of numerical range W (T ) exists,

W (T ) :={λ∈� : 0∈W (T (λ))}
= {λ∈� : ∃ f ∈dom T (λ), f �=0, (T (λ) f , f )=0}, (1.1)

a spectral inclusion result σap(T )⊆ W (T ) ∩ � for the approximate point spectrum
is lacking. Even in the case of bounded values T (λ), spectral inclusion only holds
under a certain condition that is not easy to verify. Moreover, spectral inclusion results
are even lacking for the most important case of quadratic operator polynomials with
unbounded coefficients, one of the most relevant cases for applications.

In the present paper we fill these gaps. To this end, we introduce the novel concept
of pseudo numerical range of operator functions T (λ), λ ∈�⊆C, with unbounded
values,

W�(T ):=
⋂

ε>0

Wε(T ), Wε(T ):=
⋃

B∈L(H)
‖B‖<ε

W (T + B), ε > 0,

and analogously for families of unbounded quadratic forms t(λ), λ∈�⊆C. The sets
Wε(T ), ε > 0, can be shown to have the equivalent form

Wε(T ) = {λ ∈ � : ∃ f ∈ dom T (λ), ‖ f ‖ = 1, |(T (λ) f , f )| < ε} ;

hence they coincide with the so-called ε-pseudo numerical range first considered
in [10]. As a consequence, the pseudo numerical range W�(T ) can equivalently be
described as

W�(T )={
λ∈� : 0∈W (T (λ))

}=:W�,0(T ). (1.2)

One could be tempted to think that the condition 0∈W (T (λ)) inW�,0(T ) is equivalent
to λ /∈W (T ), but this is neither true for operator functions with bounded values, as
already noted in [31], nor for non-monic linear operator pencils for which the set
W�,0(T ) was used recently in [3].

One of the crucial properties of the pseudo numerical range is that, without any
assumptions on the operator family,

σap(T ) ⊆ W�(T ),

see Theorem 3.1, and that the norm of the resolvent of T can be estimated by
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∥∥∥T (λ)−1
∥∥∥ ≤ ε−1, λ ∈ ρ(T )\Wε(T ) ⊆ ρ(T )\W�(T ).

Not only from the analytical point of view, but also from a computational perspective,
the pseudo numerical range seems to be more convenient since it is much easier to
determine whether a number is small rather than zero.

Like the numerical range of an operator function, but in contrast to the numerical
range or essential numerical range of an operator [4, 12, 17], the pseudo numerical
range need not be convex. An exception is the trivial case of a monic linear operator
pencil T (λ)= A−λI , λ∈C, where the pseudo numerical range is simply the closure of
the numerical range, W�(T )=W (T )=W (A). In general, we only have the obvious
enclosure W (T ) ⊆ W�(T ). Neither the interiors nor the closures in � of W�(T ) and
W (T ) need to coincide and there is also no inclusion either way between W�(T ) or
its closureW�(T )∩� in� and the closureW (T )∩� ofW (T ) in�; we give various
counter-examples to illustrate these effects.

In our first main result we use the pseudo numerical range of holomorphic form
families t(λ), λ ∈ �, of type (a) to prove the spectral inclusion for the associated
holomorphic operator functions T (λ), λ ∈ �, of type (B) of m-sectorial operators
T (λ). More precisely, we show that if there exist k ∈ N0, μ ∈ � and a coreD of t(μ)

with

0 /∈ W
(
t(k)(μ)

∣∣D
)
, (1.3)

then σ(T ) ⊆ W�(t) = W (t)∩� and, if in addition, the operator family T has constant
domain, then

σ(T )⊆ W�(T ) = W (T ) ∩�, (1.4)

see Theorem 3.3. Note that, due to (1.2), condition (1.3) for k=0, i.e. 0 /∈ W
(
t(μ)

∣∣D
)

for some μ ∈ C, is equivalent to W�(T ) �= �.
For operator polynomials T (λ) = ∑n

k=0 λk Ak with domain dom T (λ) =⋂n
k=0 dom Ak , λ ∈ C, we prove that, if 0 /∈ W (An), then

σap(T ) ⊆ W�(T ) ⊆ W (T ) ∩�,

see Proposition 2.7. The inclusion (1.4) follows if, in addition, σ(T (λ))⊆W (T (λ)),
λ∈C, which is a weaker condition than m-sectoriality of all T (λ).

The second new concept we introduce in this paper is the pseudo block numerical
rangeof operator functionsL(λ),λ ∈ �, that possess an operatormatrix representation
with respect to a decomposition H = H1 ⊕ · · · ⊕ Hn , n ∈ N, of the given Hilbert
space H. This means that

L(λ) = (
Li j (λ)

)n
i, j=1, domL(λ) =

n⊕

j=1

n⋂

i=1
dom Li j (λ),

with operator functions Li j (λ), λ∈�, of densely defined and closable linear operators
fromH j toHi , i , j = 1, . . . , n.
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Extending earlier concepts we first define the block numerical range of L as

Wn(L):=
⋃

( fi )∈domL(λ)
‖ fi‖=1

σp
(L(λ)( fi )

)
, L(λ)( fi ):=

(Li j (λ) f j , fi
)∈C

n×n;

for bounded valuesL(λ) see [23] and [28] for n = 2, for unbounded operator matrices
L(λ)=A− λIH see [24]. Then we introduce the pseudo block numerical range of L
as

Wn
�(L):=

⋂

ε>0

Wn
ε (L), Wn

ε (L):=
⋃

B∈L(H)
‖B‖<ε

Wn(L+ B), ε > 0.

For n=1 both block numerical range and pseudo block numerical range coincide
with the numerical range and pseudo numerical range of L, respectively. For n > 1,
the trivial inclusion Wn(L) ⊆ Wn

�(L) and the characterisation (1.1), i.e.

Wn(L) = {
λ ∈ � : 0 ∈ Wn(L(λ))

}
, n ∈ N,

and a resolvent norm estimate
∥∥∥L(λ)−1

∥∥∥≤ε−1, λ∈ρ(L)\Wn
ε (L) ⊆ρ(L)\Wn

�(L), n∈N,

see Theorem 4.10 for both, continue to hold, but otherwise not much carries over from
the case n = 1. The first difference is that, for the simplest case L(λ) = A − λIH,
λ ∈ C, we may have Wn

�(L) �= Wn(L) for n> 1, see Example 4.5.
More importantly, for n > 1 the relation (1.2) need not hold for the pseudo block

numerical range; here we only have the inclusion

Wn
�(L) ⊇

{
λ∈� : 0 ∈ Wn(L(λ))

}
=:Wn

�,0(L), n ∈ N,

see Proposition 4.4. Therein we also assess two other candidates Wn
�,i (L) =⋂

ε>0 W
n
ε,i (L), i = 1, 2, for the pseudo block numerical range for which Wn

ε,1(L) is
defined by the scalar condition detL(λ)( fi ) <ε andWn

ε,2(L) by restricting to diagonal
perturbations B ∈ L(H) with ‖B‖ < ε. In fact, we show that

Wn(L) ⊆ Wn
�,1(L) ⊆ Wn

�,0(L) ⊆ Wn
�,2(L) ⊆ Wn

�(L), (1.5)

and that, like the pseudo numerical range, the pseudo block numerical range Wn
�(L)

has the spectral inclusion property, i.e.

σap(T ) ⊆ Wn
�(L) ⊆ W�(T ), n ∈ N,

but, in general, none of the subsets ofWn
�(L) in (1.5) is large enough to contain σap(T ),

see Example 4.5.
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Our second main result concerns the most important case n = 2, the so-called
quadratic numerical range and pseudo quadratic numerical range. Here we prove a
novel type of spectral inclusion for diagonally dominant and off-diagonally dominant
L(λ)= (Li j (λ))2i, j=1 in terms of the pseudo numerical ranges of the Schur comple-
ments S1, S2 and, further, the pseudo quadratic numerical range of L,

σap(L)\(σ (L11) ∪ σ(L22)) ⊆ W�(S1) ∪W�(S2) ⊆ W 2
�(L),

see Theorem 5.1, where S1(λ)= L11(λ)−L12(λ)L22(λ)−1L21(λ), λ ∈ ρ(L22), and
similarly for S2 with the indices 1 and 2 reversed. For symmetric and anti-symmetric
corners, i.e. L21(λ) ⊆ ±L12(λ)∗, λ∈�, we even show that

σap(L)⊆W�(S1) ∪W�(L22),

if L11(λ) is accretive, ∓L22(λ) is m-sectorial and dom L22(λ) ⊆ dom L12(λ), see
Theorem 5.3/Corollary 5.4, and similarly for the Schur complement S2.

As an interesting consequence, we are able to establish spectral separation and
inclusion theorems for unbounded 2×2 operator matrices A = (Ai j )

2
i, j=1 with ’sep-

arated’ diagonal entries; here ’separated’ means that the numerical ranges of A11
and A22 lie in half-planes and/or sectors in the right and left half-plane C+ and C−,
respectively, separated by a vertical strip S:={z ∈ C : δ < Re z < α} with δ < 0 < α

around iR. More precisely, without any bounds on the order of diagonal dominance
or off-diagonal dominance we show that, if ϕ, ψ ∈[0, π

2 ] are the semi-angles of A11
and A22 and τ :=max{ϕ,ψ}, then

σap(A) ⊆ (−τ ∪τ )\S=:, τ :={z∈C : | arg z| ≤ τ },

and σ(A) ⊆  if ρ(A) ∩ (C\) �= ∅, see Theorem 6.1. This result is a great step
ahead compared to the earlier result [27, Thm. 5.2] where the dominance order had
to be restricted to 0.

Moreover, even to ensure the condition ρ(A)∩ (C\) �=∅ for the enclosure of the
entire spectrum σ(A) in Theorem 6.1, we do not have to restrict the dominance order
as usual for perturbation arguments. Our new weak conditions involve only products
of the columnwise relative bounds δ1 in the first and δ2 in the second column, see
Proposition 6.5; in particular, either δ1=0 or δ2=0 guarantees ρ(A) ∩ (C\) �=∅ in
Theorem 6.1 and hence σap(A)⊆.

As an application of our results, we consider abstract quadratic operator polyno-
mials T (λ), λ ∈C, induced by forms t(λ)= t0+2λa+λ2 with dom t(λ) = dom t0,
λ ∈ C, as they arise e.g. from linearly damped wave equations

utt (x, t)+ 2a(x)ut (x, t) = (�x − q(x)) u(x, t), x ∈ R
d , t > 0, (1.6)

where the non-negative potential q and damping a may be singular and/or unbounded,
cf. [11, 13–15] where also accretive damping was considered, and for which it is well-
known that the spectrum is symmetric with respect to R and confined to the closed
left half-plane.



78 Page 6 of 45 B. Gerhat, C. Tretter

Here we use a finely tuned assumption on the ’unboundedness’ of a with respect
to t0, namely p-subordinacy for p∈[0, 1), comp. [20, §5.1] or [29, Sect. 3] for the
operator case. More precisely, if t0≥κ0≥0, a≥α0≥0 with dom t0⊆dom a and there
exist p∈[0, 1) and Cp >0 with

a[ f ] ≤ Cp
(
t0[ f ]

)p( ‖ f ‖2 )1−p
, f ∈ dom t0,

we use the enclosure σ(T ) ⊆ W�(T ) = W�(t) = W (t) to prove that the non-real
spectrum of T satisfies the bounds

σ(T )\R⊆
{
z∈C : |z| ≥ √

κ0, Re z ≤ −α0,

|Im z|2≥max
{
0,C

− 1
p

p |Re z| 1p−|Re z|2 }}

and the real spectrum σ(T ) ∩ R ⊂ [−∞, 0] is either empty or it is confined to one
bounded interval, to one unbounded interval or to the disjoint union of a bounded and
an unbounded interval , see Theorem 7.1 and Figure 2. Moreover, we describe both
the thresholds for the transitions between these cases and the enclosures for σ(T )∩R

precisely in terms of p, Cp, κ and κ0. As a concrete example, we consider the damped
wave equation (1.6) with

a(x)≤
n∑

j=1

∣∣x−x j
∣∣−t+u(x)+v(x), v(x)≤c1q(x)r+ c2 for almost all x ∈R

d ,

where n∈N0, x j ∈R
d for j=1, . . . , n, u∈ Ls(Rd)with s> d

2 , v∈ L1
loc(R

d), t ∈[0, 2),
c1, c2 ≥ 0 and r ∈ [0, 1). For the special case q(x)= |x |2, a(x)= |x |k , x ∈R

d , with
k∈[0, 2), the new spectral enclosure in Theorem 7.1 yields

σ(T )\R ⊆
{
z∈C : Re z≤0, |z|≥√d, | Im z|≥

√
max{0, |Re z|2k−|Re z|2}

}

and, with t0 = max
{(
k(2− k)

)− 1
k−1 , d

}
,

σ(T ) ∩ R

⎧
⎪⎪⎨

⎪⎪⎩

= ∅ if k∈[0, 1),
⊆ (−∞,−√d] if k = 1,

⊆
(
−∞,−√t0

k+
√
tk0−t0

]
if k∈(1, 2).

The paper is organised as follows. In Sect. 2 we introduce the pseudo numerical
range of operator functions and form functions and study the relation of W�(T ) and
W (T ) ∩ �. In Sect. 3 we establish spectral inclusion results in terms of the pseudo
numerical range. In Sect. 4 we define the block numerical range Wn(L) and pseudo
block numerical range Wn

�(L) of unbounded n× n operator matrix functions L,
investigate the differences to the special case n = 1 of the pseudo numerical range
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W 1
�(L) = W�(L) and prove corresponding spectral inclusion theorems. In Sect. 5

we establish new enclosures of the approximate point spectrum of 2× 2 operator
matrix functions by means of the pseudo numerical ranges of their Schur comple-
ments. In Sect. 6 we apply them to prove spectral bounds for diagonally dominant and
off-diagonally dominant operator matrices with symmetric or anti-symmetric corners
without restriction on the dominance order. Finally, in Sect. 7, we apply our results
to linearly damped wave equations with possibly unbounded and/or singular damping
and potential.

Throughout this paper,H andHi , i=1, . . . , n, denoteHilbert spaces, L(H) denotes
the space of bounded linear operators on H and �⊆C is a domain.

2 The Pseudo Numerical Range of Operator Functions
and Form Functions

In this section, we introduce the new notion of pseudo numerical range for opera-
tor functions {T (λ) : λ ∈ �} and form functions {t(λ) : λ ∈ �}, respectively, briefly
denoted by T and t if no confusion about � can arise. While the values T (λ) and t(λ)

may be bounded/unbounded linear operators and sesquilinear forms in a Hilbert space
H, the notion of pseudo numerical range is new also in the bounded case.

The numerical range of T and t, respectively, are defined as

W (T )={λ∈� :0∈W (T (λ))} ={λ∈� :∃ f ∈dom T (λ), f �=0, (T (λ) f , f )=0} ,
W (t)={λ∈� :0∈W (t(λ))}={λ∈� :∃ f ∈dom t(λ), f �=0, t(λ)[ f ]=0} ,

comp. [20, §26]. In the simplest case of a monic linear operator polynomial T (λ) =
T0 − λIH, λ ∈ C, this notion coincides with the numerical range W (T0) of the linear
operator T0, and analogously for forms; note that the latter is also denoted by �(T0),
e.g. in [17, Sect. V.3.2].

The following new concept of pseudo numerical range employs the notion of ε-
pseudo numerical range Wε(T ), ε > 0, introduced in [10, Def. 4.1]; the equivalent
original definition therein, see (2.1) below, was designed to obtain computable enclo-
sures for spectra of rational operator functions.

Definition 2.1 We introduce the pseudo numerical range of an operator function T
and a form function t, respectively, as

W�(T ):=
⋂

ε>0

Wε(T ), W�(t):=
⋂

ε>0

Wε(t),

where

Wε(T ):=
⋃

B∈L(H),‖B‖<ε

W (T + B), Wε(t):=
⋃

‖b‖<ε

W (t + b), ε > 0;

here ‖b‖ = sup‖ f ‖=‖g‖=1 |b[ f , g]| for a bounded sesquilinear form b inH.
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Clearly, for monic linear operator polynomials T (λ) = A−λIH, λ ∈ C, the pseudo
numerical range is nothing but the closure of the classical numerical range W (A) of
the linear operator A, and analogously for forms.

The pseudo numerical range of operator or form functions, is, like their numerical
ranges, in general neither convex nor connected, and, even for families of bounded
operators or forms, it may be unbounded.

Remark 2.2 (i) The following enclosures may be proper, see Example 3.2,

W (T ) ⊆ W�(T ), W (t) ⊆ W�(t).

(ii) In general, the pseudo numerical range need neither be open nor closed in �

equipped with the relative topology, see Examples 3.2 (i) and 2.9, respectively.
(iii) Neither the closures nor the interiors with respect to the relative topology on �

of the pseudo numerical range and the numerical range need to coincide, see
Example 3.2 (i) and (ii).

The following alternative characterisation of the pseudo numerical range will be
frequently used in the sequel.

Proposition 2.3 For every ε > 0,

Wε(T ) = {λ ∈ � : ∃ f ∈ dom T (λ), ‖ f ‖ = 1, |(T (λ) f , f )| < ε} ,
Wε(t) = {λ ∈ � : ∃ f ∈ dom t(λ), ‖ f ‖ = 1, |t(λ)[ f ]| < ε} , (2.1)

and, consequently,

W�(T )=
{
λ∈� : 0∈W (T (λ))

}
, W�(t)=

{
λ∈� : 0∈W (t(λ))

}
. (2.2)

Proof We show the claim for Wε(T ); then the claim for W�(T ) is obvious by
Definition 2.1. The proof for Wε(t) and W�(t) is analogous.

Let ε > 0 be arbitrary and λ ∈ Wε(T ). There exists a bounded operator B in H
with ‖B‖ < ε such that λ ∈ W (T + B), i.e.

(T (λ) f , f ) = −(B f , f ), f ∈ dom T (λ), ‖ f ‖ = 1.

Hence, clearly, |(T (λ) f , f )| ≤ ‖B‖ < ε, thus λ is an element of the right hand side
of (2.1).

Conversely, let λ ∈ � such that there exists f ∈ dom T (λ), ‖ f ‖ = 1, with
|(T (λ) f , f )| < ε. Setting B:= − (T (λ) f , f ) I , this gives λ ∈ W (T + B) and
‖B‖ = |(T (λ) f , f )| < ε, hence λ ∈ Wε(T ). ��

The following properties of the pseudo numerical range with respect to closures,
form representations and Friedrichs extensions are immediate consequences of its
alternative description (2.2).

Here an operator A or a forma is called sectorial if its numerical range lies in a sector
{z∈C : | arg(z− γ )|≤ϑ} for some γ∈R and ϑ∈[0, π

2 ), see [17, Sect. V.3.10, VI.1.2];
if, in addition, ρ(A) ∩ {z ∈ C : | arg(z − γ )| > ϑ} �= ∅, then A is called m-sectorial.
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Corollary 2.4 (i) If the family T or t, respectively, consists of closable operators or
forms (and T or t denotes the family of closures), then

W�(T ) = W�(T ), W�(t) = W�(t).

(ii) If the family t consists of densely defined closed sectorial forms and T denotes the
family of associated m-sectorial operators, then

W�(t) = W�(T ).

(iii) If the family T consists of densely defined sectorial operators and TF denotes the
family of corresponding Friedrichs extensions then

W�(T ) = W�(TF ).

Proof (i) The equalities follow from Proposition 2.3 and from the fact thatW (T (λ)) =
W (T (λ)) and W (t(λ)) = W (t(λ)) for λ ∈ �, see [17, Prob. V.3.7, Thm. VI.1.18].

(ii) The equality follows from Proposition 2.3 and the identityW (t(λ)) = W (T (λ))

for λ ∈ �, see [17, Cor. VI.2.3].
(iii) The claim is a consequence of (i) and (ii). ��
The alternative characterisation (2.2) might suggest that there is a relation between

the pseudo numerical range W�(T ) and the closure W (T ) ∩ � of the numerical
range W (T ) in �. However, in general, there is no inclusion either way between
them, see e.g. Example 3.2 where W�(T ) � W (T ) ∩ � and Example 2.9 where
W (T ) ∩� � W�(T ).

In fact, it was already noted in [31, Prop. 2.9], for continuous functions of bounded
operators and for the more general case of block numerical ranges, that, for λ ∈ �,

λ ∈ W (T ) �⇒ 0 ∈ W (T (λ));

the converse holds only under additional assumptions. More precisely, for families of
bounded linear operators however, the following is known.

Theorem 2.5 [31, Prop. 2.9, Prop. 2.12, Thm. 2.14]

(i) If T is a (norm-)continuous family of bounded linear operators, then

W (T ) ∩� ⊆ W�(T ).

(ii) If T is a holomorphic family of bounded linear operators and there exist k ∈ N0
and μ ∈ � with

0 /∈ W (T (k)(μ)),

then

σ(T ) ⊆ W (T ) ∩� = W�(T ). (2.3)
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The following simple example from [31, Ex. 2.11], which is easily adapted
to the unbounded case, shows that condition (2.3) is essential for the equality
W (T ) ∩� = W�(T ) and for the spectral inclusion σ(T ) ⊆ W (T ) ∩�.

Example 2.6 Let f : � → C be holomorphic, f �≡ 0, A a bounded or unbounded
linear operator in H with 0 ∈ σ(A), 0 ∈ W (A)\W (A) and consider

T (λ) := f (λ)A, dom T (λ):= dom A, λ ∈ �.

Then (2.3) is violated because, for any k ∈ N0 and μ ∈ �, we have T (k)(μ) =
f (k)(μ)Awith dom T (k)(λ) = dom A, λ ∈ �, and so 0∈W (T (k)(μ)) since 0∈W (A).
Further, it is easy to see that

σ(T ) = �, W (T ) = W (T ) ∩� = {z ∈ � : f (z) = 0} �= �, W�(T ) = �.

Thus neitherW (T )∩� = W�(T ) nor the spectral inclusion σ(T ) ⊆ W (T )∩� hold,
while σ(T ) = W�(T ).

In the sequel we generalise Theorem 2.5 (i) and (ii) to families of unbounded
operators and/or forms, including operator polynomials and sectorial families with
constant form domain. In the remaining part of this section, we study the relation
between W�(T ) and W (T )∩�; results containing spectral enclosures may be found
in Sect. 3.

Proposition 2.7 Let T be an operator polynomial inH of degree n ∈ N with (possibly
unbounded) coefficients Ak : H ⊇ dom Ak → H, i.e.

T (λ):=
n∑

k=0
λk Ak, dom T (λ):=

n⋂

k=0
dom Ak, λ ∈ C.

If 0 /∈ W (An), then

W�(T ) ⊆ W (T ) ∩�,

and analogously for form polynomials.

Proof Let λ0 ∈ W�(T ). By Proposition 2.3, there is a sequence { fm}m ⊆ dom T (λ0)

with ‖ fm‖ = 1, m ∈ N, and (T (λ0) fm, fm) → 0 for m →∞. Since 0 /∈ W (An) by
assumption, the complex polynomial

pm(λ):=(T (λ) fm, fm) =
n∑

k=0
(Ak fm, fm)λk, λ ∈ C,
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has degree n for eachm ∈ N. Let λm1 , . . . , λmn ∈ C denote its zeros. Then λmj ∈ W (T ),
j = 1, . . . , n, and pm admits the factorisation

pm(λ) = (An fm, fm)

n∏

j=1
(λ− λmj ), λ ∈ C, m ∈ N.

Since pm(λ0) → 0 for m → ∞ and 0 /∈ W (An), there exists j0 ∈ {1, . . . , n} with
λmj0 → λ0, m →∞, thus λ0 ∈ W (T ) and λ0 ∈ W�(T ) ⊆ �. ��

Next we generalise Theorem 2.5 (i) to families of sectorial forms with constant
domain which satisfy a natural continuity assumption, see [17, Thm. VI.3.6]. This
assumption is met, in particular, by holomorphic form families of type (a) and associ-
ated operator families of type (B).

Recall that a family t of densely defined closed sectorial sesquilinear forms inH is
called holomorphic of type (a) if its domain is constant and the mapping λ �→ t(λ)[ f ]
is holomorphic for every f ∈ Dt:=dom t(λ). The associated family T of m-sectorial
operators is called holomorphic of type (B), see [17, Sect. VII.4.2] and also [30].
Sufficient conditions on form families to be holomorphic of type (a) can be found in
[17, §VII.4].

Theorem 2.8 Let t be a family of sectorial sesquilinear forms in H with constant
domain Dt:= dom t(λ), λ ∈ �. Assume that for each λ0 ∈ �, there exist r , C > 0
and w : Br (λ0) → [0,∞), limλ→λ0 w(λ) = 0, such that

|t(λ0)[ f ] − t(λ)[ f ]| ≤ w(λ)
(
|Re t(λ0)[ f ]| + C ‖ f ‖2

)
(2.4)

for all λ ∈ Br (λ0) and f ∈ Dt. Then

W (t) ∩� ⊆ W�(t).

In particular, if t is a holomorphic form family of type (a) with associated holomorphic
operator family T of type (B) in H, then

W (T ) ∩� ⊆ W�(T ), W (t) ∩� ⊆ W�(t). (2.5)

Proof Let λ0 ∈ W (t). Then there exist {λn}n ⊆ � and { fn}n ⊆ Dt with ‖ fn‖ = 1,
t(λn)[ fn] = 0, n ∈ N, and λn → λ0, n →∞. We show that t(λ0)[ fn]→0 for n→∞
which, in view of (2.2), implies λ0∈W�(t). By (2.4),

|t(λ0)[ fn]| = |t(λ0)[ fn] − t(λn)[ fn]| ≤ w(λn) (|Re t(λ0)[ fn]| + C) , n ∈ N.

Since |Re t(λ0)[ fn]| ≤ |t(λ0)[ fn]| and w(λn) → 0, n → ∞, we obtain that, for
n ∈ N sufficiently large,

|t(λ0)[ fn]| ≤ C
w(λn)

1− w(λn)
−→ 0, n →∞.
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Now suppose that t and T are holomorphic families of type (a) and (B), respectively.
We only need to show the second inclusion, the first one then follows from W (T ) ⊆
W (t) andCorollary 2.4 (ii). The second inclusion follows fromwhatwe already proved
since for holomorphic form families of type (a), after a possible shift t+c where c>0
is sufficiently large to ensure Re t(λ0)≥1, [17, Eqn. VII.(4.7)] shows that assumption
(2.4) is satisfied. ��

Theorem2.5 (i) does not extend to analytic families of sectorial linear operatorswith
non-constant form domains, as the following example inspired by [17, Ex. VII.1.4]
illustrates.

Example 2.9 Let H = L2(0, 1). The family T (λ), λ ∈ C, given by

T (λ) f := − f ′′ − λ f ,

dom T (λ):=
{
f ∈ H2(0, 1) : f (0) = 0, λ f ′(1) = f (1)

}
,

is a holomorphic family of m-sectorial operators, but not holomorphic of type (B).
Below we will show that

0 ∈ W (T ) ⊆ W�(T ), 0 /∈ W�(T );

note that, since �=C, this implies that the conclusion of Theorem 2.5 (i) does not
hold and that W�(T ) is not closed in C. Indeed, it is not difficult to check that the
forms associated to T (λ), λ ∈ C,

t(0)[ f ] = ‖ f ′‖2, t(λ)[ f ] = ‖ f ′‖2 − λ ‖ f ‖2 − 1

λ
| f (1)|2, λ ∈C\{0},

are densely defined, closed and sectorial, but have λ-depending domain dom t(0)=
H1
0 (0, 1) and dom t(λ)={

f ∈ H1(0, 1) : f (0) = 0
}
for λ ∈C\{0}. The holomorphy

of the family follows from the holomorphy of the integral kernel, i.e. the Green’s
function, of (T (λ)− μ)−1, which, for λ ∈ C and μ ∈ ρ(T (λ)) �= ∅, is given by

G(x, y;μ, λ) = sin(
√

μ+λx)(sin(
√

μ+λ(1−y))−λ
√

μ+λ cos(
√

μ+λ(1−y)))√
μ+λ(sin

√
μ+λ− λ

√
μ+λ cos

√
μ+λ)

for 0 ≤ x ≤ y ≤ 1 and G(x, y;μ, λ) = G(y, x;μ, λ) for 0 ≤ y ≤ x ≤ 1,
cf. [17, Ex. V.4.14, VII.1.5, VII.1.11] where the family T (λ)+λ, λ ∈ C, was studied.

For fixed λ ∈ C, the spectrum of T (λ) is given by the singularities of the integral
kernel G(·, ·;μ, λ),

σ(T (λ))\{−λ}=σp(T (λ))\{−λ}={
μ∈C\{−λ} : λ√μ+λ = tan

√
μ+λ

}
.

For λ ∈ (0,∞) the operator T (λ) is self-adjoint and unbounded from above,
and for λ ∈ (0, 1) it has an eigenvalue μλ ∈ σp(T (λ)) ⊆ W (T (λ)) of the form
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μλ = −λ − κ2
λ < 0 where κλ is the unique positive solution of tanh κ = λκ . Thus

0 ∈ W (T (λ)) for λ ∈ (0, 1) due to the convexity of W (T (λ)), which proves (0, 1) ⊆
W (T ) ⊆ W�(T ) and thus 0 ∈ W (T ) . On the other hand, 0 /∈ W (T (0)) = [π2,∞)

and so Proposition 2.3 implies 0 /∈ W�(T ).

3 Spectral Enclosure via Pseudo Numerical Range

In this section we derive spectral enclosures for families of unbounded linear operators
T (λ),λ ∈ �, using the pseudo numerical rangeW�(T ). The latter is tailored to enclose
the approximate point spectrum.

The spectrum and resolvent set of an operator family T (λ), λ ∈ �, respectively,
are defined as

σ(T ) := {λ ∈ � : 0 ∈ σ(T (λ))} ⊆ �, ρ(T ) := �\σ(T ),

and analogously for the various subsets of the spectrum. In addition to the approximate
point spectrum

σap(T ):= {λ ∈ � : ∃ { fn}n ⊆ dom T (λ), ‖ fn‖ = 1, T (λ) fn → 0, n →∞} ,

we introduce the ε-approximate point spectrum, see [22] for the operator case,

σap,ε(T ):= {λ ∈ � : ∃ f ∈ dom T (λ), ‖ f ‖ = 1, ‖T (λ) f ‖ < ε} . (3.1)

The latter is a subset of the ε-pseudo spectrum

σε(T ) := σap,ε(T ) ∪ σ(T ),

which was defined for operator functions with unbounded closed values in
[8, Sect. 9.2, (9.9)], comp. also [7].

Clearly, for monic linear polynomials T (λ) = A−λIH, λ ∈ C, these notions
coincide with the spectrum, resolvent set, approximate point spectrum, ε-approximate
point spectrum and ε-pseudo spectrum of the linear operator A.

Proposition 3.1 For any operator family T (λ), λ ∈ �, and every ε > 0, we have
σap,ε(T ) ⊆ Wε(T ),

∥∥∥T (λ)−1
∥∥∥ ≤ 1

ε
, λ ∈ ρ(T )\Wε(T ),

and hence

σap(T ) ⊆ W�(T ).
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If σ(T (λ)) ⊆ W (T (λ)) for all λ ∈ �, then

σ(T ) ⊆ W�(T ).

Proof The claims follow easily from (3.1) and Definition 2.1 together with Cauchy-
Schwarz’ inequality and (2.1) in Proposition 2.3. ��

The following simple examples illustrate some properties of the set W�(T ) versus
W (T ) ∩�, in particular, in view of spectral enclosures.

Example 3.2 (i) Let A > 0 be self-adjoint in H with 0 ∈ σ(A). Then, for the non-
holomorphic family T (λ)= A+|sin λ|, λ∈� := C, it is easy to see that

W�(T ) = σ(T ) = {kπ : k ∈ Z} � W (T ) ∩� = ∅;

notice that this implies W�(T ) ∩ � �= W (T ) ∩ �, i.e. the closures of W�(T )

and W (T ) in � do not coincide.
(ii) Let A be bounded inH with ReW (A) > 0, 0 ∈ σ(A) and 0 /∈ W (A). Consider

the holomorphic family of bounded operators inH⊕H

T (λ) =
(

λA 0
0 λLog(λ+ 1)IH

)
, λ ∈ � := C\(−∞,−1];

here Log : C\(−∞, 0] → {z ∈ C : Im z ∈ (−π, π ]} denotes the principal value
of the complex logarithm.
This family does not satisfy condition (2.3) in Theorem 2.5 since 0 ∈ W (A) by
assumption. It is not difficult to show that

W�(T ) = σ(T ) = C\(−∞,−1] � W (T ) ∩� ⊆ B1(−1)\[−2,−1].

In fact, the claims for W�(T ) are obvious. If λ∈W (T ), then λ∈C\(−∞,−1]
and there exists x=( f , g)t∈H⊕H, ( f , g)t �= (0, 0)t , with

(
T (λ)x, x

) = λ
(
(A f , f )+ (ln |λ+ 1| + i arg(λ+ 1))(g, g)

) = 0

or, equivalently, noting that λ �= 0 implies g �= 0 as 0 /∈ W (A),

λ = 0 ∨
(
|λ+1|=exp

(
−Re(A f , f )

(g, g)

)
∧ arg(λ+1)=− Im(A f , f )

(g, g)

)
.

Hence, since ReW (A) > 0,

W (T )\{0}⊆{
z∈C\(−∞,−1] : |z+1| ∈ (0, 1)

} ⊆ B1(−1)\(−2,−1].

Moreover, for arbitrary h ∈ H, h �= 0,

(
T

(
exp

(
− (Ah, h)

(h, h)

)
− 1

)(
h

h

)
,

(
h

h

))
= 0.
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This shows that {exp(−z)− 1 : z ∈ W (A)} ⊆ W (T ) and since exp is entire
and non-constant, W (A)◦ �= ∅ implies that W (T )◦ �= ∅ by the open mapping
theorem for holomorphic functions. So in this caseW�(T )◦ �= W (T )◦ and both
are non-empty.

W�(T )◦=C\(−∞,−1], ∅ �= W (T )◦ ⊆ B1(−1)\(−2,−1].

In the following, we generalise the spectral enclosure for bounded holomorphic
families in Theorem 2.5 (ii) to holomorphic form families t of type (a) and associated
operator families of type (B), i.e. t(λ) is sectorial with vertex γ (λ) ∈R, semi-angle
ϑ(λ)∈[0, π

2 ) and λ-independent domain dom t(λ)=Dt. Here, for k ∈ N0, we denote
the k-th derivative of t by

t(k)(λ)[ f ]:=(t(·)[ f ])(k)(λ), f ∈ dom t(k)(λ):=Dt = dom t(λ), λ ∈ �;

note that t(k)(λ) need not be closable or sectorial if k > 0.

Theorem 3.3 Let t be a holomorphic form family of type (a) with associated holomor-
phic operator family T of type (B) inH. If there exist k ∈ N0, μ ∈ � and a core D of
t(μ) with

0 /∈ W
(
t(k)(μ)

∣∣D
)
, (3.2)

then

σ(T ) ⊆ W�(t) = W (t) ∩�.

If, in addition, the operator family T has constant domain, then

σ(T )⊆ W�(T ) = W (T ) ∩�.

Remark 3.4 (i) Since t(λ) is densely defined, closed and sectorial for all λ ∈ �,
condition (3.2) for k = 0 has the two equivalent forms

0 /∈ W
(
t(μ)

∣∣D
) ⇐⇒ 0 /∈ W (T (μ));

hence, by Proposition 2.3 a sufficient condition for (3.2) is

W�(T ) �= �.

(ii) For operator polynomials T , which are holomorphic and have constant domain
by definition, see Proposition 2.7, no sectoriality assumption is needed for the
enclosure

σap(T ) ⊆ W�(T ) ⊆ W (T ) ∩�.
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By Propositions 2.7 and 3.1, the above holds under the mere assumption that
0 /∈ W (An) where An is the leading coefficient of T ; note that then (3.2) holds
with k = n and arbitrary μ ∈ C. This generalises the classical result [20, Thm.
26.7] for bounded operator polynomials; see also [31, Prop. 3.3] for the block
numerical range.

(iii) In general, neither the assumption on holomorphy nor condition (3.2) in Theorem
3.3 can be omitted, see Examples 2.6 and 3.2.

Proof of Theorem 3.3 First we show that if condition (3.2) holds for some core D of
t(μ), it also holds for D replaced by Dt = dom t(λ), λ ∈ �. For k= 0, this follows
from the properties of a core, see [17, Thm. VI.1.18]. For k > 0, without loss of
generality, we may assume that Re t(μ) ≥ 1. From the proof of [17, Eqn. VII.(4.7)],
it is easy to see that the second inequality therein holds for t(k), i.e. there exists a
constant Cμ > 0 such that

∣∣t(k)(μ)[ f , g]∣∣ ≤ Cμ |t(μ)[ f ]| 12 |t(μ)[g]| 12 , f , g ∈ Dt. (3.3)

To prove the claim stated at the beginning assume, to the contrary, that 0 ∈ W (t(k)(μ)),
i.e. that there exists a sequence { fn}n ⊆ Dt, ‖ fn‖ = 1, n ∈ N, with t(k)(μ)[ fn]→ 0
as n→∞. By the core property of D for t[μ] and by [17, Thm. VI.1.12], for fixed
n ∈ N, there exists { fn,m}m ⊆ D with

fn,m→ fn, t(μ)[ fn,m− fn]→0, t(μ)[ fn,m]→ t(μ)[ fn], m→∞. (3.4)

Applying (3.3), we can estimate

∣∣t(k)(μ)[ fn,m]−t(k)(μ)[ fn]
∣∣≤ ∣∣t(k)(μ)[ fn,m, fn,m− fn]

∣∣+∣∣t(k)(μ)[ fn− fn,m, fn]
∣∣

≤Cμ

∣∣t(μ)[ fn,m− fn]
∣∣ 12 ( ∣∣t(μ)[ fn,m]

∣∣ 12+|t(μ)[ fn]| 12
)
.

Since ‖ fn‖ = 1, n ∈ N, it follows from (3.4) and the above inequality that there
exists mn ≥ n such that

∥∥ fn,mn

∥∥ ≥ 1

2
,

∣∣∣t(k)(μ)[ fn,mn ]
∣∣∣ <

∣∣∣t(k)(μ)[ fn]
∣∣∣+ 1

n
.

In view of t(k)(μ)[ fn] → 0, n →∞, this implies the required claim

0 ∈ W
(
t(k)(μ)

∣∣D
)
.

This completes the proof that (3.2) holds with Dt instead of D.
By Corollary 2.4 (ii), we have W�(t) = W�(T ) ⊆ �. Thus, due to (2.5), for the

claimed equalities between pseudo numerical and numerical ranges it is sufficient to
show W�(t) ⊆ W (t) and W�(t) ⊆ W (T ), respectively.
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Let λ0 ∈ W�(t) = W�(T ). Then 0 ∈ W (T (λ0)) by Proposition 2.3 and hence
there exists { fn}n⊆dom T (λ0)⊆Dt with ‖ fn‖=1, n ∈ N, such that

(T (λ0) fn, fn) = t(λ0)[ fn] → 0, n →∞. (3.5)

Define a sequence of holomorphic functions

ϕn(λ):=t(λ)[ fn], λ ∈ �, n ∈ N.

Let K ⊆ � be an arbitrary compact subset and let c > 0 be such thatRe(t+c)(λ0) ≥ 1.
By [17, Eqn. VII.(4.7)], there exists bK > 0 with

|(t + c)(λ)[ f ]| ≤ bK |(t + c)(λ0)[ f ]|, λ ∈ K , f ∈ Dt.

Using this, ‖ fn‖ = 1 and (3.5), we find that, for all λ ∈ K ,

|ϕn(λ)| ≤ bK |(t + c)(λ0)[ fn]| + c ≤ bK sup
n∈N

|t(λ0)[ fn]| + (bK + 1)c < ∞.

Consequently, {ϕn}n is uniformly bounded on compact subsets of�. ByMontel’s The-
orem, see e.g. [5, §VII.2], there exists a subsequence {ϕn j } j ⊆ {ϕn}n that converges
locally uniformly to a holomorphic function ϕ. Now assumption (3.2) withDt, which
we proved to hold in the first step, implies

ϕ(k)(μ) = dk

dλk
lim
j→∞ϕn j (λ)

∣∣∣∣
λ=μ

= lim
j→∞ϕ(k)

n j
(μ) = lim

j→∞ t(k)(μ)[ fn j ] �= 0

and thus ϕ �≡ 0. By (3.5), we further conclude that ϕ(λ0) = 0. Then, by Hurwitz’
Theorem, see e.g. [5, §VII.2], there exists a sequence {λ j } j ⊆ � with λ j → λ0 for
j →∞ and

0 = ϕn j (λ j ) = t(λ j )[ fn j ], j ∈ N.

Hence, λ j ∈ W (t) for all j ∈ N and so λ0 ∈ W (t) ∩�, as required.
Now assume that the operator family T has constant domain. Then, in the above

construction, we have fn j ∈ dom T (λ0) = dom T (λ j ) for every j ∈ N. It follows

that λ j ∈ W (T ), j ∈ N, and thus λ0 ∈ W (T ) ∩�.
The enclosures of the spectrum follow from Proposition 3.1 and from the fact that

σ(T (λ)) ⊆ W (T (λ)) since T (λ) is m-sectorial for all λ ∈ �. ��
As forms are the natural objects regarding numerical ranges, it is not surprising

that the inclusion W�(T ) ⊆ W (T ) ∩� in Theorem 3.3 might cease to hold for more
general analytic operator families where the connection to a family of forms is lost.
Nevertheless, using an analogous idea as in the proof of Theorem 3.3, one can prove
the corresponding inclusion for the approximate spectrum.
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Recall that an operator family T inH is called holomorphic of type (A) if it consists
of closed operators with constant domain and for each f ∈ DT := dom T (λ), the
mapping λ �→ T (λ) f is holomorphic on �. Here, for k ∈ N0, the k-th derivative of
T is defined as

T (k)(λ) f :=(T (·) f )(k)(λ), f ∈ dom T (k)(λ):=DT , λ ∈ �.

Theorem 3.5 Let T be a holomorphic family of type (A) in H. If there exist k ∈ N0,
μ ∈ � and a core D of T (μ) with

0 /∈ W
(
T (k)(μ)

∣∣D
)
, (3.6)

then

σap(T ) ⊆ W (T ) ∩�.

Proof In the same way as in the proof of Theorem 3.3, using the analogue of [17,
Eqn.VII.(2.3)] for the k-th derivative of T andCauchy-Schwarz’ inequality, one shows
that (3.6) holds with DT =dom T (λ), λ∈�, instead of D.

We proceed similarly as in the proof of Theorem 3.3. Let λ0 ∈ σap(T ). There exists
a sequence { fn}n ⊆ DT with ‖ fn‖ = 1, n ∈ N, and T (λ0) fn → 0 as n →∞. Define
a sequence of holomorphic functions

ϕn(λ):= (T (λ) fn, fn) , λ ∈ �, n ∈ N.

Analogously to the proof of Theorem 3.3, one uses Cauchy-Schwarz’ inequality, equa-
tion [17, Eqn. VII.(2.2)], limn→∞ T (λ0) fn = 0 and (3.6) with DT in order to show
uniform boundedness of {ϕn}n on compacta, extract a locally uniformly converging
subsequence with limit ϕ �≡ 0 and infer ϕ(λ0) = 0. One then obtains λ0 ∈ W (T )∩�

in the same way as in Theorem 3.3. ��
Remark 3.6 Theorems 3.3 and 3.5 generalise the classical result [20, Thm. III. 26.6]
for bounded holomorphic families (which follows from Theorem 2.5 (ii)).

Like for the numerical range of unbounded operators, cf. [17, Sct. V.3.2], additional
conditions are needed for enclosing not only the approximate point spectrum, but the
entire spectrum σ(T ) in W�(T ).

Remark 3.7 Let T be a family of closed operators in H and let T be continuous in
the generalised sense. If σap(T ) ⊆ � ⊆ � and all connected components of �\�
contain a point in the resolvent set of T , then σ(T ) ⊆ �. In particular, if all connected
components of �\W�(T ) have non-empty intersection with ρ(T ), then

σ(T ) ⊆ W�(T ).

This follows from the fact that the index of T (λ) is locally constant on the set of regular
points, see [17, Thm. IV.5.17].



Pseudo Numerical Ranges and Spectral Enclosures Page 19 of 45 78

4 Pseudo Block Numerical Ranges of Operator Matrix Functions
and Spectral Enclosures

In this section we introduce the pseudo block numerical range of n×n operator matrix
functions for which the entries may have unbounded operator values. While we study
its basic properties for n ≥ 2, we study the most important case n = 2 in greater
detail.

We suppose that with respect to a fixed decomposition H = H1 ⊕ · · · ⊕Hn with
n ∈ N, a family L = {L(λ) : λ ∈ �} of densely defined linear operators in H admits
a matrix representation

L(λ) = (
Li j (λ)

)n
i, j=1 : H ⊇ domL(λ) → H;

here Li j are families of densely defined and closable linear operators fromH j toHi ,
i , j = 1, . . . , n, and domL(λ) = D1(λ)⊕ · · · ⊕Dn(λ),

D j (λ):=
n⋂

i=1
dom Li j (λ), j = 1, . . . , n.

The following definition generalises, and unites, several earlier concepts: the block
numerical range of n × n operator matrix families whose entries have bounded linear
operator values, see [23], the block numerical range of unbounded n × n operator
matrices, see [24], and in the special case n = 2, the quadratic numerical range for
bounded analytic operator matrix families and unbounded operator matrices, see [28]
and [19], [27], respectively. Further, we introduce the new concept of pseudo block
numerical range.

Definition 4.1 (i) We define the block numerical range of L (with respect to the
decomposition H = H1 ⊕ · · · ⊕Hn) as

Wn(L):={λ ∈ � : ∃ f ∈domL(λ) ∩ Sn 0∈σ(L(λ) f )}

where Sn :={ f = ( fi )ni=1 ∈H : ‖ fi‖ = 1, i = 1, . . . , n} and, for f = ( fi )ni=1 ∈
domL(λ) ∩ Sn with λ∈�,

L(λ) f :=
(Li j (λ) f j , fi

) ∈ C
n×n .

(ii) We introduce the pseudo block numerical range of L as

Wn
�(L):=

⋂

ε>0

Wn
ε (L), Wn

ε (L):=
⋃

B∈L(H),‖B‖<ε

Wn(L+ B), ε > 0.

Note that, indeed, if L(λ)=A−λIH, λ∈C, with an (unbounded) operator matrix
A in H, then domL(λ)=domA is constant for λ∈C and Wn(L) coincides with the
block numerical range Wn(A) first introduced in [24] and, for n= 2, in [27]. While
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the pseudo numerical range also satisfies W�(L)=W (L) = W (A) this is no longer
true for the pseudo block numerical range when n > 1; in fact, Example 4.5 below
shows that W 2

�(L) �= W 2(L) = W 2(A) is possible.

Remark 4.2 It is not difficult to see that, for the block numerical range and the pseudo
block numerical range of general operator matrix families,

λ ∈ Wn(L) ⇐⇒ 0 ∈ Wn(L(λ)) (4.1)

and Wn(L)⊆Wn
�(L). If domL(λ)=:DL, λ∈�, is constant, we can also write

Wn(L):=
⋃

f ∈DL∩Sn

σ
(L f

)
.

There are several other possible ways to define the pseudo block numerical range. In
the following we show that, in general, they inevitably fail to contain the approximate
point spectrum of an operator matrix family.

Definition 4.3 Define

Wn
�,0(L):=

{
λ∈� : 0 ∈ Wn(L(λ))

}
, Wn

�,i (L):=
⋂

ε>0

Wn
ε,i (L), i=1, 2,

where, for ε > 0,

Wn
ε,1(L):={

λ ∈ � : ∃ f ∈ domL(λ) ∩ Sn,
∣∣det(L(λ) f )

∣∣ < ε
}
,

Wn
ε,2(L):=

⋃

Bi∈L(Hi ),‖Bi‖<ε

Wn(L+ diag(B1, . . . , Bn)
)
.

While for the pseudo numerical range, analogous concepts as in Definition 4.3
coincide by Proposition 2.3, this is not true for the pseudo block numerical range.
Here, in general, we only have the following inclusions.

Proposition 4.4 The pseudo block numerical range Wn
�(L) satisfies

Wn(L) ⊆ Wn
�,1(L) ⊆ Wn

�,0(L) ⊆ Wn
�,2(L) ⊆ Wn

�(L). (4.2)

Proof We consider the case n = 2; the proofs for n > 2 are analogous. The leftmost
and rightmost inclusions are trivial by definition. For the remaining inclusions, it is
sufficient to show that, for every ε > 0,

W 2
ε,1(L) ⊆

{
λ ∈ � : 0 ∈ B√ε(W

2(L(λ)))
}
⊆ W 2√

ε,2(L). (4.3)

Then the respective claims follow by taking the intersection over all ε > 0.
Let ε > 0 and λ ∈ W 2

ε,1(L). Then there exists f ∈ domL(λ) ∩ S2 with

σ(L(λ) f ) = {λ1, λ2} ⊆ W 2(L(λ)), |λ1| |λ2| =
∣∣detL(λ) f

∣∣ < ε.
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Now the first inclusion in (4.3) follows from

dist(0,W 2(L(λ))) ≤ min{|λ1| , |λ2|} <
√

ε.

For the second inclusion, let λ∈� with dist(0,W 2(L(λ))) <
√

ε, i.e. there exists
μ∈C, |μ|<√ε, with μ∈W 2(L(λ)) or, equivalently, 0∈W 2(L(λ)−μIH). By (4.1),
the latter is in turn equivalent to

λ ∈ W 2(L− μIH) ⊆ W 2√
ε,2(L). ��

Clearly, in the simplest case L(λ) = A − λIH, λ ∈ C, with an n × n operator
matrix A inH we have

Wn
�,0(L) = Wn(L) = Wn(A);

this shows that Wn
�,0(L) fails to enclose the spectrum of L whenever Wn(A) does.

The following example shows that, already in this simple case, in fact none of
the subsets Wn

�,1(L) ⊆ Wn
�,0(L) ⊆ Wn

�,2(L) of the pseudo block numerical range
Wn

�(L), see (4.2), is large enough to contain the approximate point spectrum σap(L).

Example 4.5 Let H=�2(N)⊕ �2(N) and L(λ)=A− λIH, λ ∈ C, with

A:=
(
0 diag(m2−1 : m∈N)

0 0

)
, domA:=�2(N) ⊕ dom diag(m2−1 : m∈N),

where diag(m2 − 1 : m ∈ N) is the unbounded maximal multiplication operator in
�2(N) with domain

dom diag(m2−1 : m∈N) := {{xm}m ∈ �2(N) : {(m2−1)xm}m ∈ �2(N)
}
.

Clearly, W 2(L) = W 2(A) = {0}. We will now show that

{0}= W 2
�,1(L)=W 2

�,0(L)=W 2
�,2(L) �= W 2

�(L)=σap(L)=C.

By the definition of W 2
�,2(L) and since W 2

ε,2(L) ⊆ Bε(0), ε > 0, it follows that

W 2
�,2(L) = {0} which, together with (4.2), proves the first three equalities. To prove

the two equalities on the right, and hence the claimed inequality, let λ∈C be arbitrary.
If λ=0, then λ ∈ W 2

�(L) by (4.3). If λ �=0, we define the bounded operator matrices

Bk :=
(
− diag( λ

m δmk : m∈N) 0

− diag( λ2

m2 δmk : m∈N) diag( λ
m δmk : m∈N)

)
, k ∈ N,

where δmk denotes the Kronecker delta. Then ‖Bk‖ → 0 as k → ∞ and a straight-
forward calculation shows that

(A− λIH) fk=Bk fk, fk:= f̃k
‖ f̃k‖

∈ domA, f̃k=
( k(k+1)

λ ek
ek

)
, k ∈ N.
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On the one hand, for arbitrary ε > 0, this implies that there exists N ∈ N such that
‖BN‖ < ε and 0 ∈ σp(A− λIH − BN ) = σp(L(λ)− BN ), whence

λ ∈ σp(L− BN ) ⊆ W 2(L− BN ) ⊆ W 2
ε (L)

and thus λ ∈ W 2
�(L) by intersection over all ε > 0. On the other hand, λ ∈ σap(L)

since the normalised sequence { fk}k ⊆ domL(λ) satisfies

‖(A− λ) fk‖ = ‖Bk fk‖ ≤ ‖Bk‖ → 0, k →∞.

With one exception, we now focus on the most important case n=2 for which the
notation

L(λ):=
(
A(λ) B(λ)

C(λ) D(λ)

)
inH = H1 ⊕H2,

domL(λ):=( dom A(λ) ∩ domC(λ)
)⊕ (

dom B(λ) ∩ dom D(λ)
)
,

(4.4)

is more customary. We establish various inclusions between the (pseudo) quadratic
numerical range W 2

(�)(L) and the (pseudo) numerical ranges of the diagonal operator

functions A, D, as well as betweenW 2
(�)(L) and the (pseudo) numerical ranges of the

Schur complements of L.
Proposition 4.6 (i) The quadratic numerical range and the pseudo quadratic numer-

ical range satisfy

W 2(L) ⊆ W (L), W 2
�(L) ⊆ W�(L).

(ii) Let �1 := {λ ∈ � : D1(λ) = dom A(λ)} and suppose dimH2 > 1. Then

W (A) ∩�1 ⊆ W 2(L), W�(A) ∩�1 ⊆ W 2
�,2(L) ⊆ W 2

�(L);

if D1(λ)=dom A(λ) for all λ∈W (A) or λ∈W�(A), respectively, then

W (A) ⊆ W 2(L), W�(A) ⊆ W 2
�,2(L) ⊆ W 2

�(L).

(iii) Let �2 :={λ∈� : D2(λ)=dom D(λ)} and suppose dimH1 > 1. Then

W (D) ∩�2 ⊆ W 2(L), W�(D) ∩�2 ⊆ W 2
�,2(L) ⊆ W 2

�(L);

if D2(λ)=dom D(λ) for all λ∈W (D) or λ∈W�(D), respectively, then

W (D) ⊆ W 2(L), W�(D) ⊆ W 2
�,2(L) ⊆ W 2

�(L).

Proof The claims for the quadratic numerical range are consequences of (4.1) and of
the corresponding statements [27, Prop. 3.2, 3.3 (i),(ii)] for operator matrices. So it
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remains to prove the claims (i) and (ii) for the pseudo quadratic numerical range; the
proof of claim (iii) is completely analogous.

(i) The inclusion for the quadratic numerical range in (i) applied to L+B with
‖B‖< ε yields W 2

ε (L)⊆ Wε(L) for any ε > 0. The claim for the pseudo quadratic
numerical range follows if we take the intersection over all ε>0.

(ii) Let λ∈Wε(A) ∩�1 with ε>0 arbitrary. Then there exists a bounded operator
Bε in H1 with ‖Bε‖<ε and λ∈W (A + Bε). Since dom(A(λ)+ Bε) = dom A(λ) ⊆
domC(λ), the inclusion for the quadratic numerical range in (ii) applied to L +
diag(Bε, 0H2) shows that

λ ∈ W 2(L+ diag(Bε, 0H2)) ⊆ W 2
ε,2(L) ⊆ W 2

ε (L).

By intersecting over all ε > 0, we obtain λ ∈ W 2
�,2(L) ⊆ W 2

�(L). The second claim
is obvious from the first one since then �1 ⊆ W�(A). ��

Both qualitative and quantitative behaviour of operator matrices are closely linked
to the properties of their so-called Schur complements, see e.g. [27]; the same is true
for operator matrix functions, see e.g. [28] for the case of bounded operator values.

Definition 4.7 The Schur complements of the 2 × 2 operator matrix family L =
{L(λ) : λ ∈ �} inH = H1 ⊕H2 as in (4.4) are the families

S1(λ):=A(λ)− B(λ)D(λ)−1C(λ), λ ∈ ρ(D),

S2(λ):=D(λ)− C(λ)A(λ)−1B(λ), λ ∈ ρ(A),

of linear operators in H1 and H2, respectively, with domains

dom S1(λ):=
{
f ∈ D1(λ) : D(λ)−1C(λ) f ∈ dom B(λ)

}
, λ ∈ ρ(D),

dom S2(λ):=
{
f ∈ D2(λ) : A(λ)−1B(λ) f ∈ domC(λ)

}
, λ ∈ ρ(A).

The following inclusions between the numerical ranges and pseudo numerical
ranges of the Schur complements S1, S2 and the quadratic numerical range and pseudo
quadratic numerical range, respectively, of L hold.

Proposition 4.8 The numerical ranges and pseudo numerical ranges of the Schur
complements satisfy

W (S1) ∪W (S2) ⊆ W 2(L), W�(S1) ∪W�(S2) ⊆ W 2
�,2(L) ⊆ W 2

�(L).

Proof The first claim follows from (4.1) and the corresponding statement
[26, Thm. 2.5.8] for unbounded operator matrices.

Using the first claim, the second claim can be proven in a similar way as the claim
for the pseudo numerical range in Proposition 4.6 (ii). ��
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The following spectral enclosure properties of the blocknumerical range andpseudo
block numerical range hold for operator matrix functions. They generalise results for
the case of bounded operator values from [31], see also [28] for n = 2, as well as the
results for the operator function case, i.e. n = 1, in Proposition 3.1.

Proposition 4.9 Let L be a family of operator matrices. Then

σp(L) ⊆ Wn(L) ⊆ Wn
�(L).

Proof The proof of the first inclusion is analogous to the bounded case, see
[31, Thm. 2.14] or [28, Thm. 3.1] for n = 2; the second inclusion is obvious, see
Remark 4.2. ��

Theorem 4.10 Let L be a family of operator matrices in H = H1 ⊕ · · · ⊕ Hn. For
every ε>0,

σap,ε(L) ⊆ Wn
ε (L),

∥∥∥L(λ)−1
∥∥∥ ≤ 1

ε
, λ ∈ ρ(L)\Wn

ε (L), (4.5)

and hence

σap(L) ⊆ Wn
�(L);

if, for all λ ∈ �, σ(L(λ)) ⊆ Wn(L(λ)), then

σ(L) ⊆ Wn
�,0(L) ⊆ Wn

�(L).

Proof First let λ ∈ σap,ε(L). Then there exists fε ∈ domL(λ), ‖ fε‖ = 1, with
‖L(λ) fε‖<ε. The linear operator inH given by

B f :=
{
L(λ)μ fε if f = μ fε ∈ span fε,

0 if f ⊥ fε,

is bounded with ‖B‖ = ‖L(λ) fε‖< ε and (L(λ)−B) fε = 0, i.e. λ ∈ σp(L−B). By
Proposition 4.9 and since ‖B‖<ε, we conclude that λ∈Wn(L−B)⊆Wn

ε (L), which
proves the first claim.

The resolvent estimate in (4.5) follows from the first claim and from the definition
of σap,ε(L), cf. the proof of Proposition 3.1.

Taking the intersection over all ε > 0 in the first claim, we obtain the inclusion
σap(L) ⊆ Wn

�(L).
Finally, the assumption that σ(L(λ))⊆Wn(L(λ)) for all λ∈� implies that σ(L) ⊆

Wn
�,0(L), see Definition 4.3. Now the second inequality in the last claim follows from

the inclusion Wn
�,0(L)⊆Wn

�(L) by Proposition 4.4. ��
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5 Spectral Enclosures by Pseudo Numerical Ranges
of Schur Complements

In this section we establish a new enclosure of the approximate point spectrum of an
operator matrix family L by means of the pseudo numerical ranges of the associated
Schur complements and hence, by Proposition 4.8, in W 2

�,2(L) and in the pseudo

quadratic numerical range W 2
�(L). Compared to earlier work, we no longer need

restrictive dominance assumptions.

Theorem 5.1 Suppose that L is a family of 2 × 2 operator matrices as in (4.4). If
λ ∈ σap(L)\(σ (A) ∪ σ(D)) is such that one of the conditions

(i) C(λ) is A(λ)-bounded and B(λ) is D(λ)-bounded;
(ii) A(λ) is C(λ)-bounded, D(λ) is B(λ)-bounded and bothC(λ) and B(λ) are bound-

edly invertible;

is satisfied, then λ ∈ σap(S1)∪σap(S2). If for all λ ∈ ρ(A)∩ρ(D) one of the conditions
(i) or (ii) is satisfied, then

σap(L)\(σ (A) ∪ σ(D)) ⊆ σap(S1) ∪ σap(S2)

⊆ W�(S1) ∪W�(S2) ⊆ W 2
�,2(L) ⊆ W 2

�(L).
(5.1)

Proof Let λ ∈ σap(L). Then there exists a sequence {(un, vn)}n ⊆ domL(λ) with
‖un‖2 + ‖vn‖2 = 1, n ∈ N, and

A(λ)un + B(λ)vn=:hn → 0, n →∞, (5.2)

C(λ)un + D(λ)vn=:kn → 0, n →∞. (5.3)

The normalisation implies that lim infn→∞ ‖un‖ > 0 or lim infn→∞ ‖vn‖ > 0. Let
lim infn→∞ ‖un‖> 0, without loss of generality infn∈N ‖un‖> 0. We show that, if
λ ∈ ρ(D), then λ∈σap(S1); if lim infn→∞ ‖vn‖>0, an analogous proof yields that,
if λ ∈ ρ(A), then λ∈σap(S2).

First we assume that λ satisfies (i). Since λ ∈ ρ(D), (5.3) implies that

vn = D(λ)−1kn − D(λ)−1C(λ)un, n ∈ N.

Inserting this into (5.2) and using dom D(λ) ⊆ dom B(λ), we conclude that

S1(λ)un + B(λ)D(λ)−1kn = hn → 0, n →∞. (5.4)

Due to (i) B(λ)D(λ)−1 is bounded and hence B(λ)D(λ)−1kn → 0, n → ∞. Then
(5.4) yields that S1(λ)un → 0, n →∞. Because infn∈N ‖un‖ > 0, we can set

fn := un
‖un‖ ∈ D1(λ) = dom S1(λ), n ∈ N,

and obtain that S1(λ) fn → 0 for n →∞, which proves λ ∈ σap(S1).
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Now assume that λ satisfies (ii). Since C(λ) is invertible, (5.3) shows that

un = C(λ)−1kn − C(λ)−1D(λ)vn=:C(λ)−1kn − wn, n ∈ N, (5.5)

where wn :=C(λ)−1D(λ)vn ∈ dom S1(λ) for n ∈ N since

wn ∈ D1(λ) = domC(λ), D(λ)−1C(λ)wn = vn ∈ D2(λ) = dom B(λ).

Inserting (5.5) into (5.2) and using domC(λ) ⊆ dom A(λ), we obtain that

A(λ)C(λ)−1kn − S1(λ)wn = hn → 0, n →∞. (5.6)

Since C(λ)−1 is bounded, we have C(λ)−1kn → 0, n→∞. Thus infn∈N ‖un‖ > 0
and (5.5) show that, without loss of generality, we can assume that infn∈N ‖wn‖ > 0.
Set

gn := wn

‖wn‖ ∈ dom S1(λ), n ∈ N.

By (ii) A(λ)C(λ)−1 is bounded and so A(λ)C(λ)−1kn→0, n→∞. Now (5.6) yields
S1(λ)wn→0 and thus S1(λ)gn→0, n→∞, which proves λ∈σap(S1).

Finally, the first inclusion in (5.1) is obvious from what was already shown; the
second inclusion in (5.1) follows from Proposition 3.1 and the last two inclusions from
Proposition 4.8. ��
Remark 5.2 If, under the assumptions of Theorem 5.1, the Schur complements S1 and
S2 satisfy the assumptions of Theorem 3.3 or 3.5 on every connected component of
ρ(D) and ρ(A), respectively, then

σap(L)\(σ (A) ∪ σ(D)) ⊆ W (S1) ∪W (S2) ⊆ W 2(L),

see Proposition 4.8 for the second inclusion.

For operator matrix families Lwith off-diagonal entries that are symmetric or anti-
symmetric to each other, we now establish conditions ensuring that the approximate
point spectrum of L is contained in the union of the approximate point spectrum of
one Schur complement and the pseudo numerical range of the corresponding diagonal
entry, i.e. S1 and D or S2 and A.

Theorem 5.3 Let L be an operator matrix family as in (4.4).

(i) If λ∈σap(L)\σ(D) is such that C(λ)⊆±B(λ)∗, A(λ) is accretive,∓D(λ) sectorial
with vertex 0 and B(λ) is D(λ)-bounded, then λ ∈ σap(S1) ∪ W�(D). If these
conditions hold for all λ∈ρ(D), then

σap(L)\σ(D)⊆σap(S1)∪W�(D)⊆W�(S1) ∪W�(D); (5.7)
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if dimH1 > 1, then

σap(L)\σ(D) ⊆ W 2
�,2(L)⊆W 2

�(L). (5.8)

(ii) If λ ∈ σap(L)\σ(A) is such that C(λ)⊆±B(λ)∗, A(λ) is sectorial with vertex 0,
∓D(λ) accretive and C(λ) is A(λ)-bounded, then λ∈σap(S2) ∪ W�(A). If these
conditions hold for all λ∈ρ(A), then

σap(L)\σ(A)⊆σap(S2)∪W�(A)⊆W�(S2) ∪W�(A);

if dimH2 > 1, then

σap(L)\σ(A) ⊆ W 2
�,2(L)⊆W 2

�(L).

Note that here we do not assume that the entries of L are holomorphic. In the next
section Theorem 5.3 will be applied with B(λ) = eiω(λ) B and C(λ) = e−iω(λ) C ,
where C ⊆ B∗ are constant and ω is real-valued, see the proof of Theorem 6.1.

The following corollary is immediate from Theorem 5.3 due to Proposition 4.6 and
Proposition 4.8.

Corollary 5.4 Under the assumptions of Theorem 5.3, if in (i) additionally σ(D) ⊆
W�(D), then

σap(L)⊆σap(S1)∪W�(D)⊆W�(S1) ∪W�(D)⊆W 2
�,2(L)⊆W 2

�(L),

and if in (ii) additionally σ(A)⊆W�(A), then

σap(L)⊆σap(S2)∪W�(A)⊆W�(S2) ∪W�(A)⊆W 2
�,2(L)⊆W 2

�(L).

Proof of Theorem 5.3. We only prove (i); the proof of (ii) is analogous. Let λ ∈
σap(L)\σ(D). In the same way as at the beginning of the proof of Theorem 5.1 we
conclude that if lim infn→∞ ‖un‖>0, then λ∈σap(S1). It remains to be shown that in
the case lim infn→∞ ‖vn‖> 0, without loss of generality infn∈N ‖vn‖> 0, it follows
that λ∈W�(D).

Taking the scalar product with un in (5.2) and with vn in (5.3), respectively, we
conclude that

(A(λ)un, un)+ (B(λ)vn, un) = (hn, un), n ∈ N, (5.9)

±(un, B(λ)vn)+ (D(λ)vn, vn) = (kn, vn), n ∈ N. (5.10)

By subtracting from (5.9), or adding to (5.9), the complex conjugate of (5.10), we
deduce that

(A(λ)un, un)∓(D(λ)vn, vn) = (hn, un)∓(kn, vn) → 0, n →∞.
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Taking real parts and using the accretivity of A(λ) and ∓D(λ), we obtain

0 ≤ Re(∓D(λ)vn, vn) ≤ Re(A(λ)un, un)∓Re(D(λ)vn, vn) → 0, n →∞.

Since∓D(λ) is sectorialwith vertex 0 by assumption, this implies (∓D(λ)vn, vn)→ 0
and hence (D(λ)vn, vn) → 0, n → ∞, which proves that λ ∈ W�(D) by
Proposition 2.3.

Finally, the first inclusion in (5.7) is obvious from what was already proved; the
second inclusion in (5.7) follows from Proposition 3.1. The last claim in (5.8) is then
a consequence of Propositions 4.6 (iii) and 4.8. ��
Remark 5.5 (i) Sufficient conditions for the inclusions σ(A)⊆W�(A) or σ(D)⊆

W�(D), respectively, may be found e.g. in Theorem 3.3 or Proposition 3.1.
(ii) An analogue of Remark 5.2 also holds for Theorem 5.3; the details of all possible

combinations of assumptions and corresponding inclusions are left to the reader.

6 Application to Structured Operator Matrices

In this section, we apply the results of the previous section to prove new spectral enclo-
sures and resolvent estimates for non-selfadjoint operator matrix functions exhibiting
a certain dichotomy.

More precisely, we consider a linear monic family L(λ) = A− λIH, λ ∈ C, with
a densely defined operator matrix

A=
(
A B
C D

)
, domA=(

dom A ∩ domC
)⊕(

dom B ∩ dom D
)

(6.1)

with C ⊆ B∗ in H=H1 ⊕H2. We assume that the entries of A are densely defined
closable linear operators acting between the respective spacesH1 and/orH2, and that
A, −D are accretive or even sectorial with vertex 0. This means that their numerical
ranges lie in closed sectors ω with semi-axis R+ and semi-angle ω = π/2 or ω ∈
[0, π/2), respectively, given by

ω:= {z ∈ C : |arg z| ≤ ω} , ω ∈ [0, π/2];

here arg : C → (−π, π ] is the argument of a complex number with arg 0 = 0.
The next theorem no longer requires bounds on the dominance orders among the

entries in the columns of A, in contrast to earlier results in [27, Thm. 5.2] where the
relative bounds had to be 0.

Theorem 6.1 LetA be an operator matrix as in (6.1) with C ⊆ B∗. Assume that there
exist α, δ ∈ R and semi-angles ϕ,ψ ∈ [0, π/2] with

ReW (D) ≤ δ < 0 < α ≤ ReW (A), W (A) ⊆ ϕ, W (D) ⊆ −ψ. (6.2)

Suppose further that one of the following holds:
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Im

Re

ϕψ

δ α

∂ΣD

∂ΣA

W (D)

W (A)

Fig. 1 The set  (green) enclosing σap(A), see (6.3) ; inside the sets A:=ϕ\S (bounded by red line)
enclosing W (A) (red, dashed) and D:=−ψ\S (bounded by blue line ) enclosing W (D) (blue, dashed),
separated by S:={z∈C : Re z∈(δ, α)}, see (6.2) (color figure online)

(i) A, −D are m-accretive, C is A-bounded, B is D-bounded,
(ii) A,−D are m-accretive, A is C-bounded, D is B-bounded and B, C are bound-

edly invertible,
(iii) −D is m-sectorial with vertex 0, i.e. ψ <π/2, and B is D-bounded,
(iv) A is m-sectorial with vertex 0, i.e. ϕ<π/2, and C is A-bounded.

Then, with τ :=max{ϕ,ψ},

σap(A) ⊆ (−τ ∪τ ) ∩ {z ∈ C : Re z /∈ (δ, α)}=:; (6.3)

if, in addition, ρ(A) ∩ c �= ∅, then σ(A) ⊆ . Figure 1 illustrates the enclosure
(6.3) of σp(A) in terms of the numerical ranges of the diagonal elements A and D in
(6.2).

The proof of Theorem 6.1 relies on Theorems 5.1 and 5.3, and on the following
enclosures for the pseudo numerical ranges of the Schur complements.

Lemma 6.2 Let A be as in (6.1) with C⊆ B∗ and let λ ∈ C.

(i) Suppose A,−D are uniformly accretive,

ReW (D) ≤ δ < 0 < α ≤ ReW (A). (6.4)

If Re λ ∈ (δ, α), then

λ ∈ ρ(D) �⇒ ReW (S1(λ)) ≥ α − Re λ > 0,

λ ∈ ρ(A) �⇒ ReW (S2(λ)) ≤ δ − Re λ < 0.

(ii) Suppose A,−D are sectorial with vertex 0,

W (A) ⊆ ϕ, W (D) ⊆ −ψ
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with ϕ,ψ ∈[0, π/2) and let τ:=max{ϕ,ψ}. If arg λ∈(τ, π − τ), then

λ ∈ ρ(D) �⇒ arg(W (S1(λ))+ λ) ∈ [− arg λ, τ ],
λ ∈ ρ(A) �⇒ arg(W (S2(λ))+ λ) ∈ (−π,− arg λ] ∪ [π − τ, π ];

if arg λ∈(−π + τ,−τ), then

λ ∈ ρ(D) �⇒ arg(W (S1(λ))+ λ) ∈ [−τ,− arg λ],
λ ∈ ρ(A) �⇒ arg(W (S2(λ))+ λ) ∈ (−π,−π + τ ] ∪ [− arg λ, π ].

Proof We show the claims for S1, the proofs for S2 are analogous. It is easy to see that
it suffices to prove the claimed non-strict inequalities for W (S1(λ)). Let λ ∈ ρ(D),
f ∈ dom S1(λ) ⊆ dom A∩dom B∗ with ‖ f ‖ = 1, and set g:=(D−λ)−1B∗ f . Then

(S1(λ) f , f ) = (A f , f )− λ− (Dg, g)+ λ ‖g‖2 . (6.5)

(i) If Re λ ∈ (δ, α), then (6.5) and (6.4) show that

Re(S1(λ) f , f ) ≥ α − Re λ+ (−δ + Re λ) ‖g‖2 ≥ α − Re λ > 0.

(ii) We consider arg λ ∈ (τ, π−τ), the case arg λ ∈ (−π+τ,−τ) can be shown
analogously. By assumption, |arg(A f , f )|≤ϕ≤τ , |arg (−Dg, g)|≤ψ≤τ . Together
with arg(λ ‖g‖2) = − arg λ∈(−π+τ,−τ), it follows from (6.5) that

arg
(
(S1(λ) f , f )+λ

)=arg
(
(A f , f )+(−Dg, g)+λ ‖g‖2 ) ∈ [− arg λ, τ ]. ��

Proof of Theorem 6.1 First we use Lemma 6.2 to show that if A or−D are m-accretive,
respectively, then

W�(S2) ⊆  or W9(S1) ⊆ 6. (6.6)

We prove the claim for S1 by taking complements; the proof for S2 is analogous. To
this end, let λ ∈ c ⊆ ρ(D). Then Re λ ∈ (δ, α) or |arg λ| ∈ (τ, π − τ); note that the
latter case only occurs if both A and −D are sectorial with vertex 0, i.e. if τ < π/2.
If Re λ ∈ (δ, α), Lemma 6.2 (i) implies 0 /∈ W (S1(λ)), i.e. λ /∈ W�(S1) by (2.2). In
the same way, if |arg λ| ∈ (τ, π − τ), then λ /∈ W�(S1) follows from Lemma 6.2 (ii);
indeed, otherwise we would have 0 ∈ W (S1(λ)) and hence, e.g. if arg λ ∈ (τ, π − τ),

arg(0+ λ) = arg λ ∈ [− arg λ, τ ] ∩ (τ, π − τ) = ∅,

and analogously for arg λ ∈ (−π + τ,−τ). This completes the proof of (6.6).
We show that assumptions (i) or (iii) imply (6.3); the proof when assumptions (ii)

or (iv) hold is analogous.
Assume first that (i) holds and let λ ∈ σap(A). If λ ∈ σ(A) ∪ σ(D) ⊆ , there is

nothing to show. If λ /∈ σ(A)∪ σ(D), then Theorem 5.1 (i) shows that λ ∈ W�(S1)∪
W�(S2) and we conclude λ ∈  from (6.6).
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Nowassume that (iii) is satisfied. Then−D ism-sectorial with vertex 0 and σ(D) ⊆
W (D) ⊆ . In order to prove (6.3), we show σap(A)∩c = ∅. To this end, it suffices
to prove that

σap(A) ∩c ⊆ W�(S1) ∪W�(D − ·IH2); (6.7)

here, in the sequel, wewrite D−·IH2 for the operator family D−λIH2 , λ ∈ C. Indeed,
if (6.7) holds, thenW�(D−·IH2) = W (D) ⊆  and (6.6) yield that σap(A)∩c ⊆ 

and hence the claim.
For the proof of (6.7), we will use Theorem 5.3 (i). To this end, for λ ∈ c, we

define a rotation angle

ω(λ):=
{
0, Re λ ∈ (δ, α),

sgn(arg λ)
∣∣π
2 − | arg λ|∣∣, Re λ /∈ (δ, α) ∧ | arg λ| ∈ (τ, π − τ);

note that the second case only occurs if A is sectorial with vertex 0, i.e. if τ < π/2,
and that then λ �= 0 and |ω(λ)| ∈ (0, π/2−τ). Define a rotated operator matrix family
L̃ by

L̃(λ):=diag (
eiω(λ) IH1, e

−iω(λ) IH2

)
(A− λIH), dom L̃(λ):=domA, λ∈c.

Since, for fixed λ∈c, the operator matrix diag(eiω(λ) IH1, e
−iω(λ) IH2) is bounded

and boundedly invertible (even unitary), it is straightforward to show that

λ ∈ σap(A) ⇐⇒ 0 ∈ σap(L̃(λ)),

which implies σap(L̃) = σap(A) ∩ c. Moreover, the angle ω(λ) is chosen such that
eiω(λ)(A − λIH1) is accretive, − e−iω(λ)(D − λIH2) is sectorial with vertex 0 and
e−iω(λ) C ⊆ eiω(λ) B∗ for every λ ∈ c. In fact, if Re λ ∈ (δ, α), this is obvious.
If Re λ /∈ (δ, α) and | arg λ| ∈ (τ, π − τ), then ϕ < π/2 and |ω(λ)| < π/2 − τ

as mentioned above. From ReW (A) ≥ α > 0 and W (A) ⊆ ϕ , it thus follows that
eiω(λ) A is uniformly accretive and sectorial with vertex 0 and, since Re(eiω(λ) λ) ≤ 0 ,
the claim for eiω(λ)(A−λIH1) holds. The proof for− e−iω(λ)(D−λIH2) is analogous.

Thus L̃ satisfies the assumptions of Theorem5.3 (i) and, becauseσ(e−iω(D−·IH2))= σ(D) ∩c = ∅, (5.7) therein yields that

σap(A) ∩c = σap(L̃) ⊆ W�(S̃1) ∪W�(e−iω(D − ·IH2)),

where S̃1 is the first Schur complement of L̃. Now the claim (6.7) follows from the
above inclusion and from the fact that, since eiω(λ) �=0,

0∈W (S̃1(λ)) ⇐⇒ 0∈W (eiω(λ) S1(λ))=eiω(λ) W (S1(λ)) ⇐⇒ 0∈W (S1(λ))

for λ∈c, and analogously for the family e−iω(D − ·IH2). This completes the proof
that (i) and (iii) imply (6.3).
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Finally, if ρ(A)∩c �= ∅, thenA is closed and σ(A)⊆ follows from σap(A) ⊆
, see (6.3), and from the stability of Fredholm index, see [17, Thm. IV.5.17]. ��

In Proposition 6.5 below, we derive sufficient conditions for ρ(A) ∩ c �= ∅ in
Theorem 6.1 for diagonally dominant and off-diagonally dominant operator matrices.
For the latter, we use a result of [6], while for the former we employ the following
lemma, inspired by an estimate in [17, Prob. V.3.31] for accretive operators.

Lemma 6.3 Let the linear operator T inH bem-sectorial with vertex 0 orm-accretive,
i.e. there existsω∈ [0, π/2) orω = π/2, respectively, with σ(T )⊆W (T )⊆ω. Then

∥∥∥T (T−λ)−1
∥∥∥≤ 1

mT (arg λ)
:=

⎧
⎨

⎩

1

sin(|arg λ|−ω)
, |arg λ|∈(ω, ω+ π

2 ),

1, |arg λ|∈[ω+ π
2 , π ],

λ /∈ω.

Proof Let λ /∈ ω and ε ∈ (0, |λ|) be arbitrary. Then λ ∈ ρ(T ), −ε ∈ ρ(T ), λ �= −ε

and we can write

T (T − λ)−1 = (T + ε)(T + ε − (λ+ ε))−1 − ε(T − λ)−1,

= −(λ+ ε)−1
(
(T + ε)−1 − (λ+ ε)−1

)−1 − ε(T − λ)−1. (6.8)

Since ε > 0, it is easy to see that T + ε is m-accretive or m-sectorial with semi-angle
ω and vertex 0, and hence so is (T + ε)−1, cf. [17, Prob. .3.31] for the m-accretive
case. Thus, by [17, Thm. .3.2] and (6.8), we can estimate

∥∥∥T (T − λ)−1
∥∥∥ ≤ |λ+ ε|−1

dist
(
(λ+ ε)−1, ω

) + ε

dist (λ, ω)
.

The claim now follows by taking the limit ε → 0 and using the estimate

dist
(
λ−1, ω

)
≥

⎧
⎪⎨

⎪⎩

sin(|arg λ| − ω)

|λ| , |arg λ| ∈ (
ω,ω + π

2

)
,

1

|λ| , |arg λ| ∈ [
ω + π

2 , π
]
,

(6.9)

cf. [16, Thm. 2.2]. ��
Remark 6.4 The inequality in Lemma 6.3 is optimal, equality is achieved e.g. for
normal operators with spectrum on the boundary of ω.

Proposition 6.5 Suppose that, under the assumptions of Theorem 6.1, we strengthen
assumptions (i) and (ii) to

(i′) A,−D are m-sectorial with vertex 0, i.e. ϕ,ψ <π/2 in (6.2), C is A-bounded with
relative bound δA and B is D-bounded with relative bound δD such that

δAδD < sin(θ0 − ϕ) sin(θ0 + ψ) =: Mθ0 ∈ (0, 1]
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where

θ0 :=
{
max

{
π
2 + ϕ−ψ

2 , τ
}
, ϕ ≤ ψ,

min
{

π
2 + ϕ−ψ

2 , π−τ
}
, ψ < ϕ;

(ii′) A, −D are m-accretive, C = B∗, A is C-bounded with relative bound δC , D is
B-bounded with relative bound δB with

δBδC < 1,

B, C are boundedly invertible, and the relative boundedness constants aC , aB≥0,
bC , bB≥0 in

‖Ax‖2 ≤ a2C‖x‖2 + b2C‖Cx‖2, x ∈ domC,

‖Dy‖2 ≤ a2B‖y‖2 + b2B‖By‖2, y ∈ dom B,

satisfy

√
a2C‖B−1‖2 + b2C

√
a2B‖B−1‖2 + b2B < 1.

Then ρ(A) ∩c �= ∅ and hence

σ(A) ⊆ (−τ ∪τ ) ∩ {z ∈ C : Re z /∈ (δ, α)} = .

Proof By Theorem 6.1, it suffices to show ρ(A) ∩c �= ∅.
Suppose that (i′) holds and let λ=r eiθ with r >0, θ ∈(τ, π−τ) to be chosen later.

Then λ∈ρ(A) ∩ ρ(D). Since 1
Mθ0

δAδD <1, there exists ε>0 so that

1

Mθ0 − ε
(δA + ε)(δD + ε) < 1. (6.10)

Due to the relative boundedness assumption on C , there exist aA, bA > 0, bA ∈
[δA, δA + ε) such that

∥∥∥C(A − λ)−1
∥∥∥ ≤ aA

∥∥∥(A − λ)−1
∥∥∥+ bA

∥∥∥A(A − λ)−1
∥∥∥ . (6.11)

Since A is m-sectorial with semi-angle ϕ and vertex 0, we have the estimate

∥∥∥(A − λ)−1
∥∥∥ ≤ 1

dist(λ,W (A))
≤ 1

rmA(θ)
, (6.12)

with mA(θ) defined as in Lemma 6.3, see [17, Thm. V.3.2] or (6.9). Consequently,
by (6.11), (6.12) and Lemma 6.3, we obtain

∥∥∥C(A − λ)−1
∥∥∥ ≤ aA

rmA(θ)
+ bA

mA(θ)
.
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Similarly, since−D is m-sectorial with semi-angle ψ and vertex 0, and using Lemma
6.3 as well as (6.9) and | arg(−λ)| = π − θ , we conclude that there exist aD , bD > 0,
bD ∈ [δD, δD + ε) with

∥∥∥B(D − λ)−1
∥∥∥ ≤ aD

rm−D(π − θ)
+ bD

m−D(π − θ)

with m−D(π − θ) defined as in Lemma 6.3 and hence

‖C(A − λ)−1B(D − λ)−1‖≤ bAbD
Mθ

( aA
rbA

+1
)( aD

rbD
+1

)
. (6.13)

Here the function

[ϕ, π − ψ] → [0, 1], θ �→ Mθ :=mA(θ)m−D(π − θ),

is continuous, monotonically increasing for θ ≤ θ̃0 := π
2 + ϕ−ψ

2 ∈ [ϕ, π − ψ]
and decreasing for θ ≥ θ̃0. Hence, the restriction of θ �→ Mθ to [τ, π − τ ] attains
its maximum at θ0 and we can choose δ > 0 such that Mθ0 − ε < Mθ for θ ∈
(θ0 − δ, θ0 + δ) ∩ (τ, π − τ). Now we fix such a θ . Using (6.13) and (6.10), we
conclude that there exists r > 0 so large that

‖C(A − λ)−1B(D − λ)−1‖≤ (δA + ε)(δD + ε)

Mθ0−ε

( aA
rbA

+1
)( aD

rbD
+1

)
<1.

This implies 1∈ρ(C(A−λ)−1B(D−λ)−1)and thus λ∈ρ(A) by [26, Cor. 2.3.5].
Suppose that (ii′) is satisfied. By the assumptions on B, C , the operator S:=S1

is selfadjoint and has a spectral gap (−‖B−1‖−1, ‖B−1‖−1) around 0. Then
[6, Thm. 4.7] with βT = 1/

∥∥B−1
∥∥ therein implies that iR ⊆ ρ(A). ��

7 Application to DampedWave Equations in R
d

with Unbounded Damping

In this section we use the results obtained in Sect. 3 to derive new spectral enclo-
sures for linearly damped wave equations with non-negative possibly singular and/or
unbounded damping a and potential q.

Our result covers a new class of unbounded dampings which are p-subordinate to
−�+ q, a notion going back to [18, §.7.1], [20, §5.1], cf. [29, Sect. 3].

Theorem 7.1 Let t be a quadratic pencil of sesquilinear forms given by

t(λ):=t0 + 2λa + λ2, dom t(λ):= dom t0, λ ∈ C,

where t0 and a are densely defined sesquilinear forms in H such that t0 is closed,
t0 ≥ κ0 ≥ 0, a ≥ α0 ≥ 0 and dom t0 ⊆ dom a. Suppose that there exist κ ≤ κ0 and
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p ∈ (0, 1) such that a is p-form-subordinate with respect to t0 − κ ≥ 0, i.e. there is
Cp > 0 with

a[ f ] ≤ Cp
(
(t0 − κ)[ f ])p( ‖ f ‖2 )1−p

, f ∈ dom t0. (7.1)

Then the family t is holomorphic of type (a). If T denotes the associated holomorphic
family of type (B), then

σ(T ) ⊆ W�(T ) ⊆ {
z∈C : Re z ≤ 0

}

and the following more precise spectral enclosures hold:

(i) The non-real spectrum of T is contained in

σ(T )\R ⊆ W�(T )\R ⊆
{
z∈C : Re z ≤ −α0, |z| ≥ √

κ0,

|Im z|≥
√
max

{
0,C

− 1
p

p |Re z| 1p−|Re z|2+κ
}}
;

(ii) if p< 1
2 or if p= 1

2 and C 1
2
< 1 or if p = 1

2 and C 1
2
= 1 and κ > 0, the real

spectrum of T satisfies either

σ(T ) ∩ R = ∅ or σ(T ) ∩ R ⊆ [s−, s+],

if p> 1
2 or if p= 1

2 and C 1
2
> 1 or if p = 1

2 and C 1
2
= 1 and κ ≤ 0, the real

spectrum of T satisfies either

σ(T ) ∩ R ⊆ (−∞, r+] ∪ [s−, s+] or σ(T ) ∩ R ⊆ (−∞, s+],

where∞ < r+ < s−≤s+≤0 depend on p, Cp, κ0 and κ;
(iii) if κ = 0 and p < 1

2 , then

σ(T ) ∩ R = ∅ if (C2
p)

1
1−2p <κ0,

σ (T ) ∩ R ⊆
[
−Cpt

p
0 −

√
C p

p t
2p
0 −t0,−Cpκ

p
0 +

√
C2

pκ
2p
0 −κ0

)]
if (C2

p)
1

1−2p ≥κ0,

where t0 := max
{(
4C2

p p(1− p)
)− 1

2p−1, κ0
}
;

(iv) if κ = 0 and p = 1
2 , then

σ(T ) ∩ R = ∅ if C 1
2
<1 and κ0>0,

σ (T ) ∩ R ⊆ {0} if C 1
2
<1 and κ0=0,

σ (T ) ∩ R ⊆
(
−∞,−

(
C 1

2
−

√
C2

1
2
−1

)
κ

1
2
0

]
if C 1

2
≥1;
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Fig. 2 Enclosures for σ(T )\R in Theorem7.1 (i) (blue solid regions) and for σ(T )∩R in Theorem7.1 (ii)-(v)
(red intervals in R in (a), (c), empty in (b)) (color figure online)

(v) if κ = 0 and p > 1
2 , then

σ(T ) ∩ R ⊆
(
−∞,−Cpt

p
0 +

√
C2

pt
2p
0 −t0

]
if κ0 > 0,

σ (T ) ∩ R ⊆
(
−∞,−Cpt

p
0 +

√
C2

pt
2p
0 −t0

]
∪ {0} if κ0 = 0,

where t0 := max
{(
4C2

p p(1−p)
)− 1

2p−1, κ0
}
. Figure 2 shows the different shapes

of the enclosing regions in Theorem 7.1 depending on the parameters.

Remark 7.2 If (7.1) holds with p = 0, then a is bounded and ‖a‖ ≤ Cp = C0. In this
case, the spectrum of T lies in a strip to the left of the imaginary axis; more precisely,
the non-real spectrum of T satisfies

σ(T )\R ⊆ {
z ∈ C : −C0 ≤ Re z ≤ −α0, |z| ≥ √

κ0
}
,

while the real spectrum satisfies

σ(T ) ∩ R

{= ∅ if C2
0 < κ0,

⊆ [−C0 −
√
C2
0 − κ0,−C0 +

√
C2
0 − κ0] if C2

0 ≥ κ0;

notice that the latter corresponds to Theorem 7.1 (iii) with p = 0.

Proof of Theorem 7.1 Clearly, t is holomorphic. For arbitrary ε > 0, applying Young’s
inequality to (7.1), we obtain

a[ f ] ≤
(

ε

p

)p(
(t0 − κ)[ f ])p

( p

ε

)p
Cp

( ‖ f ‖2 )1−p

≤ ε
(
(t0 − κ)[ f ])+ (1− p)

( p

ε

) p
1−p

C
1

1−p
p ‖ f ‖2
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for all f ∈ dom t0, i.e. a is t0-bounded with relative bound 0. Hence, for each λ ∈ C,
the form t(λ) is densely defined, sectorial and closed, see e.g. [17, Thm. VI.1.33].
This shows that t is a holomorphic family of type (a). Since all enclosing sets in
Theorem 7.1 are closed and

σ(T ) ⊆ W�(T ) = W�(t) = W (t)

by Theorem 3.3 with k = 2 and μ ∈ C arbitrary, it suffices to show that W (t)\R and
W (t) ∩ R satisfy the claimed enclosures.

Let λ0 ∈ W (t), i.e. there exists f ∈ dom t0, ‖ f ‖ = 1, with t(λ0)[ f ] = 0. Taking
real and imaginary part in this equation, we conclude that

t0[ f ] + 2Re λ0 a[ f ] + (Re λ0)
2 − (Im λ0)

2 = 0, (7.2)

2 Im λ0 a[ f ] + 2Re λ0 Im λ0 = 0. (7.3)

First assume that λ0∈W (t)\R. Dividing (7.3) by 2 Im λ0 ( �= 0) and inserting this into
(7.2), we find

Re λ0 = −a[ f ] ≤ −α0 ≤ 0,

|λ0|2 = (Im λ0)
2 + (Re λ0)

2 = t0[ f ] ≥ κ0.

Using these relations and assumption (7.1), we can further estimate

(Im λ0)
2 = t0[ f ] − |Re λ0|2 ≥ max{0,C− 1

p
p |Re λ0|

1
p − |Re λ0|2 + κ},

and hence λ0∈ W (t)\R satisfies all three claimed inequalities in (i).
Now assume that λ0 ∈W (t) ∩ R. Then a[ f ]2−t0[ f ] ≥ 0 and thus, in particular,

a[ f ] ≥max{α0,
√

κ0}. Moreover, since Im λ0 = 0, equality (7.3) trivially holds and
(7.2) implies

λ0 = −a[ f ] ±
√
a[ f ]2 − t0[ f ] ≤ 0 (7.4)

because t0≥0. This, together with a≥α0 and assumption (7.1), yields that

max
{
α2
0, κ0

} ≤ max{α2
0, t0[ f ]} ≤ a[ f ]2 ≤ C2

p

(
(t0 − κ)[ f ])2p. (7.5)

If we define

d(x) := C
− 1

p
p x

1
2p −x+κ, x ∈[0,∞), D≤0 :=

{
x ∈[κ0,∞) : d(x) ≤ 0

}
,

then it is easy to see that t0[ f ]∈D≤0;
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in particular, D≤0 = ∅ implies W (t) ∩ R = ∅. An elementary analysis shows that
d is either identically zero, has no zero, one simple zero or two (possibly coinciding)
zeros on [0,∞), which we denote by x+ and x− ≤ x+, respectively, if they exist. Then

p <
1

2
or p = 1

2
,C 1

2
< 1 or p = 1

2
,C 1

2
= 1, κ > 0

�⇒ D≤0=∅ or D≤0 is bounded, D≤0=[κ0, x+] or D≤0=[x−, x+], (7.6)

p >
1

2
or p = 1

2
,C 1

2
> 1 or p = 1

2
,C 1

2
= 1, κ ≤ 0

�⇒ D≤0 �=∅ is unbounded,D≤0=[κ0,∞) or D≤0=[x+,∞)

or D≤0=[κ0, x−]∪[x+,∞). (7.7)

Which case prevails for fixed p∈[0, 1) can be characterised by means of inequalities
involving the constants κ0, κ and Cp. For estimating λ0 in (7.4) while respecting the
restrictions in (7.5), we consider the functions

f±(s, t) := −s ±
√
s2−t, s∈[α0,∞), t ∈[κ0,∞), t≤s2≤C2

p(t − κ)2p.

It is easy to check that f+ is monotonically increasing in s and monotonically decreas-
ing in t , while f− is monotonically decreasing in s and monotonically increasing in t
and hence, since s ≤ Cp(t − κ)p,

f+(s, t) ≤ f+(Cp(t − κ)p, t)=:g+(t),

f−(s, t) ≥ f−(Cp(t − κ)p, t)=:g−(t).
(7.8)

Now we distinguish the two qualitatively different cases (7.6) and (7.7). To obtain
the claimed enclosures for W (t) ∩ R, we use (7.5), (7.4) and (7.8) to conclude that
g−(t) ≤ λ0 ≤ g+(t) for some t ∈ D≤0.
If (7.6) holds, there are the following two possibilities:
(1) If d has no zeros on [0,∞) or if d has at least one zero and x+<κ0, then D≤0 = ∅
and thus

W (t) ∩ R = ∅.

(2) If d has at least one zero x+ and x+ ≥ κ0, then D≤0 is one bounded interval and

W (t)∩ R ⊆[
s−, s+

]
, s−:=min

t∈D≤0
g−(t), s+:=max

t∈D≤0
g+(t);

here if d has only one zero x+ or if d has two zeros x± and x− < κ0, then D≤0 =
[κ0, x+] and if d has two zeros and x− ≥ κ0, then D≤0 = [x−, x+].
If (7.7) holds, there are the following two possibilities:
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(3) If d has two zeros x± on [0,∞) and x−≥κ0, then D≤0=[κ0, x−] ∪ [x+,∞) and
we obtain

W (t) ∩ R⊆(−∞, r+
]∪[

s−, s+
]
, r+:= max

t∈[x+,∞)
g+(t), s+:= max

t∈[κ0,x−]
g+(t),

s−:= min
t∈[κ0,x−]

g−(t);

here g+ attains a maximum on [x+,∞) since g+(t) tends to −∞ as t → ∞, and
analogously in the next case.
(4) If d has either at most one zero x+ or two zeros x± on [0,∞) and x− < κ0, then
D≤0 = [max{κ0, x+},∞) and we conclude that

W (t) ∩ R ⊆ (−∞, s+
]
, s+:= max

t∈[max{κ0,x+},∞)
g+(t).

This proves claim (ii).
Claim (iv) for κ=0 and p= 1

2 follows from cases (1), (2) and (4) above if we note
that then d(x) = (C−2

1
2
−1)x , x ∈[0,∞), is either identically zero or has the only zero

x+=0 and, for case (4), g+(t)=−t 12 (C 1
2
+

√
C2

1
2
−1

)
is montonically decreasing so

that s+ = g+(κ0).
Finally, if κ = 0 and p �= 1

2 , the function d has the two zeros x− = 0 and

x+=(C2
p)

1
1−2p on [0,∞), and the respective bounds r+, s± above can be determined

explicitly to deduce claims (iii) and (v). More precisely, claim (iii) follows from cases
(1) and (2) if we note that, in (2), D≤0 = [κ0, x+], g+ is monotonically decreasing on

[0, x+] and g− attains its minimum on [0, x+] at t =
(
4C2

p p(1−p)
)− 1

2p−1 . Claim (v)
follows from cases (4) if κ0 > 0 and (3) if κ0 = 0; note that, for κ=0, case (3) where
p> 1/2 can only occur if κ0= 0. In both cases, we use that g+ attains its maximum

on [x+,∞) at t = (
4C2

p p(1− p)
)− 1

2p−1 . ��

Remark 7.3 If (7.1) holdswith κ ≤ κ0 and p ∈ [0, 1), then it holds for every q ∈ (p, 1)
with κ1 ≤ κ such that κ1 < κ0.

Indeed, then t0−κ≤ t0−κ1 and t0−κ1≥κ0−κ1>0 which implies that (‖ f ‖2)q−p≤
(κ0−κ1)

p−q((t0−κ1)[ f ]
)q−p, f ∈ dom t0. Hence (7.1) holds with q, κ1 and Cq =

Cp(κ0−κ1)
p−q .

Remark 7.4 As a special case of Theorem 7.1 we obtain the enclosure for the non-real
spectrum proved in [15, Thm. .2, Part 5] (where the damping was only assumed to
be accretive) and we considerably improve the enclosure for the real spectrum therein
since we obtain that the latter is, in fact, empty. The assumption in [15, Thm. 3.2, Part
5] is that

ν := sup
f ∈dom t0\{0}

2a[ f ]
t0[ f ]1/2‖ f ‖ ∈ (0, 2). (7.9)
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The parameters a0, β and ν in [15, (5) and p. 3] correspond to the following special
choices in Theorem 7.1 and assumption (7.1):

p = 1

2
, C 1

2
= ν

2
, κ = 0, κ0 = a20 > 0, α0 = β

2
.

Under the assumption (7.9) made in [15, Thm. 3.2, Part ], Theorem 7.1 (i) yields the
spectral enclosure

σ(T )\R ⊆
{
z∈ C : Re z≤−β

2
, |z|≥a0, |Im z|≥

√
4

ν2
−1 |Re z|

}
.

This enclosure is the same as in [15, Thm. 3.2, Part ]. However, since ν <2 is equivalent
to C 1

2
<1, the enclosure σ(T ) ∩ R ⊆ (−∞,− a0

ν
− 4a0

ν3
] in [15, Thm. 3.2, Part 5] is

considerably improved by Theorem 7.1 (iv) to

σ(T ) ∩ R = ∅.

Remark 7.5 In the second case in Theorem 7.1 (ii), i.e. if p > 1
2 or p = 1

2 , C 1
2

> 1

or p= 1
2 , C 1

2
= 1, κ ≤ 0, the set W (t) ∩ (−∞, 0] used to enclose the spectrum can,

indeed, be unbounded if so is t0.
In fact, if W (t0) = [κ0,∞), we can choose a = Cp(t0 − κ)p. Then there exist

fn ∈ dom t0, ‖ fn‖ = 1, with t0[ fn] ≥ n for n ∈ N. The conditions on p, Cp and κ

ensure, comp. (7.7), that C2
p(t0[ fn] − κ)2p − t0[ fn] ≥ 0 for sufficiently large n ∈N

and thus

W (t) ∩ (−∞, 0]  λ0=−t0[ fn]p−
√
t0[ fn]2p−t0[ fn] ≤ −t0[ fn]p ≤ −n p →−∞,

and hence inf (W (t) ∩ (−∞, 0]) = −∞.

In the next example we apply Theorem 7.1 to linearly damped wave equations with
possibly unbounded and/or singular damping.

Example 7.6 Let H = L2(Rd) with d ≥ 3 and a, q ∈ L1
loc(R

d), a �= 0 and a, q ≥ 0

almost everywhere. If dom a
1
2 and dom q

1
2 denote the maximal domains of the multi-

plication operators a
1
2 and q

1
2 in L2(Rd), respectively, we define the quadratic forms

a and t0 in L2(Rd) by

a[ f ]:=
∫

Rd
a | f |2 dx, dom a:= dom a

1
2 ,

t0[ f ]:=
∫

Rd
|∇ f |2 dx +

∫

Rd
q | f |2 dx, dom t0:=H1(Rd) ∩ dom q

1
2 .
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Suppose that, for almost all x ∈ R
d ,

a(x) ≤
n∑

j=1

∣∣x − x j
∣∣−t + u(x)+ v(x), v(x) ≤ c1q(x)r + c2, (7.10)

where u ∈ Ls(Rd) with s > d/2, v ∈ L1
loc(R

d), t ∈ [0, 2), n ∈ N0, x j ∈ R
d for

j = 1, . . . , n, c1, c2 ≥ 0 and r ∈ [0, 1). Then a, t0 are closed, a, t0 ≥ 0 and, without
further assumptions, we only know that α0 ≥ 0, κ0 ≥ 0 in Theorem 7.1. In order to
verify (7.1), let f ∈ dom t0 with ‖ f ‖ = 1. By Hölder’s and Hardy’s inequality, for
1 ≤ j ≤ n,

∫

Rd

∣∣x−x j
∣∣−t | f |2 dx ≤

(∫

Rd

∣∣x−x j
∣∣−2 | f |2 dx

) t
2 ≤ 2t

(d − 2)t
‖∇ f ‖t . (7.11)

Further, by Gagliardo-Nirenberg-Sobolev’s inequality, there exists a constant Gd>0
depending only on the dimension d such that

‖ f ‖L2∗ (Rd ) ≤ Gd ‖∇ f ‖ , f ∈ H1(Rd), 2∗:= 2d

d − 2
,

where 2∗>2 is the critical Sobolev exponent for the embedding H1(Rd) ↪→ L2∗(Rd).
Since d/s∈(0, 2), we can use Hölder’s inequality with three terms to estimate

∫

Rd
u| f |2dx ≤ ‖u‖Ls (Rd )

(∫

Rd
| f | ds 2s

d−2 dx

) d−2
2s

(∫

Rd
| f |

(
2− d

s

)
2s

2s−d dx

) 2s−d
2s

.

This inequality, together with the relations

d

s

2s

d − 2
= 2∗, d − 2

2s
= d

2∗s
,

(
2− d

s

)
2s

2s − d
= 2,

and ‖ f ‖ = 1, yields that

∫

Rd
u| f |2dx ≤ ‖u‖Ls (Rd ) ‖ f ‖

d
s

L2∗ (Rd )
≤ ‖u‖Ls (Rd ) G

d
s
d ‖∇ f ‖ d

s . (7.12)

Next the bound on v in (7.10) with r ∈ [0, 1), Hölder’s inequality with 1/r ∈ (1,∞],
1/(1− r) ∈ [1,∞) and ‖ f ‖ = 1 give

∫

Rd
v| f |2dx ≤ c1

∫

Rd
qr | f |2 dx + c2 ≤ c1

(∫

Rd
q | f |2 dx

)r

+ c2. (7.13)
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Combining the inequalities (7.11), (7.12) and (7.13), we arrive at

a[ f ]≤ n2t

(d−2)t
‖∇ f ‖t+‖u‖Ls (Rd ) G

d
s
d ‖∇ f ‖ d

s +c1

(∫

Rd
q | f |2 dx

)r
+c2

=: α1(‖∇ f ‖2) t
2+α2(‖∇ f ‖2) d

2s +α3

(∫

Rd
q | f |2 dx

)r

+α4.

(7.14)

In order to further bound (7.14), we estimate α1x
p1
1 +α2x

p2
2 +α3x

p3
3 +α4 with xi ≥0,

pi ∈[0, 1), i=1, 2, 3, and αi ≥0, i=1, 2, 3, 4; note that x1= x2 = ‖∇ f ‖2 in (7.14).
If we set p:=max{p1, p2, p3} and maximise δ(x):=x pi−x p, x ∈ [0, 1], i=1, 2, 3, we
find that

x pi
i ≤ x p

i +δi , δi :=
⎧
⎨

⎩
0 if pi = p,

p−pi
p

(
pi
p

) pi
p−pi if pi < p,

i = 1, 2, 3. (7.15)

If max{α1, α2, α3} �= 0, then

γp:=α1(1+δ1)+α2(1+δ2)+α3(1+δ3)+α4 �= 0. (7.16)

If we use (7.15), the concavity of x �→ x p on [0,∞) and x1= x2, we obtain

α1x
p1
1 +α2x

p2
2 +α3x

p3
3 +α4 ≤ α1(x

p
1 +δ1)+α2(x

p
2 +δ2)+α3(x

p
3 +δ3)+α4

= γp

(α1

γp
x p
1+

α2

γp
x p
2 +

α3

γp
x p
3+

α1δ1 + α2δ2+α3δ3 + α4

γp

)

≤ γp

(α1

γp
x1+ α2

γp
x2 + α3

γp
x3+ α1δ1 + α2δ2+α3δ3 + α4

γp

)p

= γ
1−p
p

(
(α1 + α2)x1+α3x3 + α1δ1 + α2δ2+α3δ3 + α4

)p

≤ γ
1−p
p max{α1 + α2, α3}p

(
x1+x3+ α1δ1 + α2δ2+α3δ3 + α4

max{α1 + α2, α3}
)p

.

If max{n, ‖u‖Ls (Rd ) , c1} �= 0, we can apply this estimate to (7.14) with p1 = t/2,
p2 = d/(2s), p3 = r , δi , i = 1, 2, 3, as in (7.15) to obtain that dom t0 ⊆ dom a and
assumption (7.1) holds with the parameters

p=max
{ t

2
,
d

2s
, r

}
, Cp=γ

1−p
p max

{ n2t

(d−2)t
+ ‖u‖Ls (Rd ) G

d
s
d , c1

}p
,

κ=−n2tδ1 + (d − 2)t (‖u‖Ls (Rd ) G
d
s
d δ2 + c1δ3 + c2)

max{n2t+(d−2)t ‖u‖Ls (Rd ) G
d
s
d , (d − 2)t c1}

,

(7.17)

where, according to (7.16),

γp = n2t

(d − 2)t
(1+δ1)+‖u‖Ls (Rd ) G

d
s
d (1+δ2)+c1(1+δ3)+c2.
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If max{n, ‖u‖Ls (Rd ) , c1}=0, i.e. n = 0, u ≡ 0 and c1 = 0, then the damping a = v is
bounded, our assumption a �= 0 implies c2 > 0 and (7.1) trivially holds with p = 0,
C0 = c2 = ‖a‖∞ and κ ≤ d = κ0 arbitrary.

The constants in (7.17) in the general case max{n, ‖u‖Ls (Rd ) , c1} �= 0 simplify
substantially if either n=0, u≡0 or v≡0. If e.g. two of n, u or v vanish, the constants
p, Cp and κ , which may be read off from (7.11), (7.12) or (7.13), are also obtained as
special cases of (7.17). For instance,

p = t

2
, C t

2
= n2t

(d − 2)t
, κ = 0 if n �= 0, u ≡ 0andv ≡ 0,

p = d

2s
, C d

2s
= ‖u‖Ls (Rd ) G

d
s
d , κ = 0 if n = 0, u �≡ 0andv ≡ 0,

p = r , Cr = (c1+c2)
1−r cr1, κ = −c2

c1
if n = 0, u ≡ 0andv �≡ 0, c1>0;

in (7.17) these are the 3 cases δ1 = 0 with c1 = c2 = r = 0 and s sufficiently large
such that d/(2s) < r , δ2 = 0 with t = c1 = c2 = r = 0, and δ3 = 0 with t = 0 and
s sufficiently large, respectively. The cases where only one of n, u or v vanishes are
similar and are left to the reader.

As a special case, we consider

a(x) = |x |k with k ∈ [0, 2), q(x) = |x |2 , x ∈ R
d .

Here α0=0 andwe can choose κ0 > 0 as the ground energy of the harmonic oscillator,
cf. [25, Sect. III.12], i.e.

κ0 = inf
f ∈dom t0

t0[ f ]
‖ f ‖2 =

t0[ f0]
‖ f0‖2

= d,

where f0(x) = exp(− |x |2/2), x ∈ R
d , is the (non-normalised) ground state of the

harmonic oscillator. Moreover, in this special case a satisfies (7.10) with

n=0, t=0, u ≡ 0, v ≡ a, r = k

2
, c1 = 1, c2 = 0,

and by what was shown above, condition (7.1) holds with

p = k

2
, Cp = 1, κ = 0.

Hence the results in Theorem 7.1 (iii), (iv) and (v) yield that

σ(T )\R ⊆
{
z∈C : Re z≤0, |z|≥√d, | Im z|≥

√
max{0, |Re z|2k−|Re z|2}

}
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and

σ(T ) ∩ R

⎧
⎪⎪⎨

⎪⎪⎩

= ∅ if k ∈ [0, 1),
⊆ (−∞,−√d] if k = 1,

⊆
(
−∞,−√t0

k+
√
tk0−t0

]
if k ∈ (1, 2),

where in the latter case t0 = max
{(
k(2− k)

)− 1
k−1 , d

}
.
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