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A B S T R A C T

NASA’s Double Asteroid Redirection Test (DART) mission will impact its target asteroid, Dimorphos, at an
oblique angle that will not be known prior to the impact. We computed iSALE-3D simulations of DART-
like impacts on asteroid surfaces at different impact angles and found that the vertical momentum transfer
efficiency, 𝛽, is similar for different impact angles, however, the imparted momentum is reduced as the impact
angle decreases. It is expected that the momentum imparted from a 45◦ impact is reduced by up to 50%
compared to a vertical impact. The direction of the ejected momentum is not normal to the surface, however
it is observed to ‘straighten up’ with crater growth. iSALE-2D simulations of vertical impacts provide context
for the iSALE-3D simulation results and show that the ejection angle varies with both target properties and
with crater growth. While the ejection angle is relatively insensitive to the target porosity, it varies by up
to 30◦ with target coefficient of internal friction. The simulation results presented in this paper can help
constrain target properties from the DART crater ejecta cone, which will be imaged by the LICIACube. The
results presented here represent the basis for an empirical scaling relationship for oblique impacts and can
be used as a framework to determine an analytical approximation of the vertical component of the ejecta
momentum, 𝛽 − 1, given known target properties.
1. Introduction

NASA’s Double Asteroid Redirection Test (DART) will be the first
mission to test a controlled deflection of a Near-Earth binary aster-
oid (Cheng et al., 2016; Michel et al., 2016), by impacting the smaller
component of the 65803 Didymos asteroid system, Dimorphos. The
impact will thereby alter the binary orbit period by an amount de-
tectable from Earth (Cheng et al., 2018). ESA’s Hera mission (Cheng
et al., 2018; Michel et al., 2018) will arrive at Dimorphos several
years after the DART impact, rendezvous with the asteroid system and
perform detailed characterisation of Dimorphos and the DART impact
outcome. Hera will perform the detailed characterisation of Didymos
and Dimorphos, as well as measure the volume and morphology of
the DART impact crater and the post-impact dynamical state of the
Didymos system.

In a high-velocity, head-on impact between a spacecraft and an
asteroid, the change in momentum of the asteroid, 𝛥𝑃 , can be amplified
by the momentum of crater ejecta that exceeds the asteroid’s escape
velocity. The total momentum change to the asteroid divided by the
impactor momentum is a measure of deflection efficiency, commonly
defined as 𝛽 = 𝛥𝑃∕(𝑚𝑈 ), where 𝑚𝑈 is the impactor momentum. 𝛽 = 1
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implies that the crater ejecta makes a negligible contribution to the
total momentum change, while 𝛽 > 2 means that the momentum con-
tribution from the crater ejecta is larger than the momentum imparted
by the impactor directly. The amount by which crater ejecta enhances
asteroid deflection—that is, the momentum of the crater ejecta that
escapes the gravitational attraction of the target body divided by the
impactor momentum (𝛽 − 1)—has been found to vary significantly
depending on the target asteroid’s properties, composition and struc-
ture (e.g., Jutzi and Michel, 2014; Stickle et al., 2015; Syal et al., 2016;
Raducan et al., 2019; Raducan et al., 2020). These numerical studies
have considered DART as a vertical impact, however, in reality, the
DART spacecraft will likely impact Dimorphos’ surface at an oblique
angle (Cheng et al., 2018). The exact impact angle will depend on both
the spacecraft’s incoming trajectory (Atchison et al., 2016) and on the
local slope of the target at the impact point. The spacecraft’s trajectory
will be computed to some degree of accuracy, while the DART will
provide an estimate of the surface tilt conditions, and characterise the
geology near the impact point (Rivkin et al., 2021).

Even though it is not yet well understood how 𝛽−1 is affected by the
impact angle, it is expected that any departure from a vertical impact
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will reduce the deflection efficiency. This trend was seen previously
in laboratory experiments (e.g., Yanagisawa and Hasegawa, 2000),
however the effects of impact angle on momentum transfer are yet
to be fully quantified. Several laboratory experiments have measured
the ejection angle and ejection velocities of ejecta produced by oblique
impacts (Anderson et al., 2003; Anderson et al., 2004), however such
studies are difficult to conduct in laboratory and only limited data is
available. The effect of impact angle on ejecta mass–velocity-launch
position distributions, and its interplay with target properties, has not
been systematically investigated, as this requires much more compu-
tationally demanding fully three-dimensional calculations. Numerical
simulations can be used to quantify the effects of various target proper-
ties and various impact conditions on the cratering process (e.g., Prieur
et al., 2017; Luther et al., 2018; Raducan et al., 2019) and inform
empirical scaling laws. For example, Raducan et al. (2019) showed
that empirical scaling relationships for vertical impacts (Housen and
Holsapple, 2011) can be used to accurately predict momentum transfer,
however equivalent scaling relationships for oblique impacts do not
exists.

In this work we simulated the DART experiment as an oblique
impact at four different impact angles in three dimensions. We use
our simulation results to determine the net momentum transfer of the
DART impact for one possible set of asteroid target properties. Our
simulation results are also used to determine the radial and azimuthal
variation in ejection velocity and angle for different impact angles.
Together with vertical simulation results of the radial variation in
ejection velocity and angle, as a function of different target properties,
these data allow us to develop a framework for integrating the effect
of impact angle into existing crater ejecta scaling relationships and for
estimating the deflection efficiency of an oblique impact, given known
target properties and impact conditions.

2. Scaling of crater size and ejecta mass–velocity distribution from
vertical impacts

Crater and ejecta scaling relationships are widely used to extrap-
olate the results of impact experiments at laboratory-scale to pre-
dict the outcome of planetary-scale events. The most widely used of
these relationships are derived by approximating the impact as a point
source (Holsapple and Schmidt, 1987). This section is intended to give
an overview of the current scaling laws developed for vertical impact
and their limitations. In the Holsapple and Schmidt (1987) crater
scaling formulation, any outcome of an impact, such as crater size or
mass–velocity distribution of the crater ejecta, is related to impactor
and target properties (e.g., impactor mass, speed, target cohesion,
porosity) through a so-called coupling parameter 𝐶 ∼ 𝑎𝛿𝜈𝑈𝜇 that
epresents the impactor’s influence on the cratering process in a single
easure (Housen et al., 1983; Housen and Holsapple, 2011). In this

xpression, 𝑎 is the impactor radius, 𝛿 is the impactor density, 𝑈 is
he impactor speed and 𝜈 and 𝜇 are constants. The density scaling
xponent 𝜈 is often assumed to be independent of material properties,
ith a value of ≈ 0.4 (Schmidt, 1980; Housen and Holsapple, 2003).
n the other hand, the velocity scaling exponent 𝜇 depends on the

arget material properties (e.g., Schmidt and Housen, 1987; Housen
nd Holsapple, 2011; Prieur et al., 2017; Raducan et al., 2019) and
akes values between the theoretical limits of 𝜇 = 1/3 if the coupling
arameter scales with the momentum of the impactor, and 𝜇 = 2/3 if
he coupling parameter scales with the impact energy (Holsapple and
chmidt, 1987). For example, applying the coupling parameter concept
o crater size, the crater radius, 𝑅, normalised by the cube root of the
arget density, 𝜌, and impactor mass, 𝑚, can be expressed in terms of
he 𝜋-group dimensionless parameters 𝜋2 = 𝑔𝑎

𝑈2 , 𝜋3 = 𝑌
𝜌𝑈2 and 𝜋4 = 𝜌

𝛿 ,
where 𝑔 is the target gravity and 𝑌 is a measure of target strength. If
crater growth is halted principally by the target strength, then crater
formation is said to occur in the ‘strength’ regime. In this case, crater
2

radius is independent of 𝜋2 and the scaling relationship takes the form:

( 𝜌
𝑚

)1∕3
= 𝐻2

(

𝑌
𝜌𝑈2

)−𝜇∕2
(𝜌
𝛿

)(1−3𝜈)∕3
(strength). (1)

where 𝐻2 is a scaling constant. For large craters or weak materials,
where crater growth is controlled principally by the target gravity,
crater radius is instead independent of 𝜋3 and the scaling relationship
takes the alternative form:

𝑅
( 𝜌
𝑚

)1∕3
= 𝐻1

(

𝑔𝑎
𝑈2

)− 𝜇
2+𝜇 (𝜌

𝛿

)
2+𝜇−6𝜈
3(2+𝜇) (gravity). (2)

where 𝐻1 is a scaling constant.
Eqs. (1)–(2) apply to vertical impacts only.
Previous numerical studies and laboratory experiments of oblique

impacts suggest that crater volume and crater diameter decrease with
decreasing impact angle, in a manner that is approximately consistent
with the idea that only the vertical component of the impact velocity
(𝑈 sin(𝜃)) contributes to the growth of the crater in an oblique im-
pact (Chapman and McKinnon, 1986; Elbeshausen et al., 2009; Davison
et al., 2011).

Using the same coupling parameter concept and point-source ap-
proximation, Housen and Holsapple (2011) developed a number of
power-law scaling equations that relate properties of ejecta to the
initial vertical impact conditions. In one such relationship, the speed
of ejecta, 𝑣, is expressed as a function of ejecta launch position, 𝑟, as
well as impactor and target properties (Housen et al., 1983; Housen
and Holsapple, 2011):

𝑣(𝑟)
𝑈

= 𝐶1

[ 𝑟
𝑎

(𝜌
𝛿

)𝜈]− 1
𝜇
(

1 − 𝑟
𝑛2𝑅

)𝑝
, (3)

where 𝐶1 and 𝑝 are material dependent fitting constants. The relation-
hip is also invalid for very fast ejecta, where 𝑟 < 𝑛1𝑎 and 𝑛1 ≈ 1.2.
o extend the relationship closer to the impact point, Raducan et al.
2019) proposed an additional empirical term,

(

1 − 𝑟
𝑛1𝑎

)𝑞
, that includes

the fast ejecta behaviour:

𝑣(𝑟)
𝑈

= 𝐶1

[ 𝑟
𝑎

(𝜌
𝛿

)𝜈]− 1
𝜇
(

1 − 𝑟
𝑛2𝑅

)𝑝 (

1 − 𝑟
𝑛1𝑎

)𝑞
, (4)

where 𝑞 is a target and material dependent constant. Raducan et al.
(2019) found that for spherical aluminium projectiles at moderate
velocities (𝑈 ≈ 7 km/s), the constant 𝑞 takes values close to 0.2.
However, further studies are needed to determine the influence of
target and projectile properties on 𝑞.

The ejection speed decreases as the launch distance 𝑟 increases.
Housen and Holsapple (2011) defined the mass ejected at speeds larger
than 𝑣, 𝑀(> 𝑣), as the mass of material 𝑀(< 𝑟) launched at distances
rom within 𝑟:
𝑀(< 𝑟)
𝑚

= 3𝑘
4𝜋

𝜌
𝛿

[

( 𝑟
𝑎

)3
− 𝑛31

]

. (5)

where 𝑘 is a material fitting constant.
As with crater size scaling, no definitive extension to these ejecta

scaling relationships exists for oblique impacts. Here we present some
preliminary steps towards such an extension, based on our oblique
impact simulation results.

3. Numerical model

To model the DART impact into possible asteroid surfaces we used
the iSALE shock physics code (Wünnemann et al., 2006) in two and
three dimensions. The iSALE shock physics code is a multi-material,
multi-rheology extension of the SALE (Simplified Arbitrary Lagrangian
Eulerian) hydrocode (Amsden et al., 1980) that was specifically de-
signed for simulating impact processes and is similar to the older SALEB
hydrocode (Ivanov and Artemieva, 2002; Ivanov et al., 1997). iSALE-

3D (Elbeshausen et al., 2009; Elbeshausen and Wünnemann, 2011)



Icarus 374 (2022) 114793S.D. Raducan et al.
Table 1
Material model parameters for impact simulations into Dimorphos analogues. For all simulated materials we used the thermal
parameters from Ivanov et al. (2010).

Description Impactor iSALE-2D target iSALE-3D target

Material Aluminium Basalt Basalt
Impact angle (◦) – 90 90/60/45/30
Impact speed (km/s) – 7 7

Equation of state Tillotsona Tillotsonb Tillotsonb

Strength model von Mises LUNDc,d LUNDc,d

Poisson ratioc, 𝜈 0.33 0.25 0.25

Thermal parameters
Melting temperature, T𝑚 (K) 933 1360 1360
T𝑓𝑟𝑎𝑐 1.2 0.7 0.7
A𝑠𝑖𝑚𝑜𝑛 (GPa) 6.0 4.5 4.5
C𝑠𝑖𝑚𝑜𝑛 5.00 2.11 2.11

LUND strength parametersc,d

Damage strength at zero pressure, Y0 (kPa) – 10 10
Strength at infinite pressure, Yinf (GPa) – 1 1
Internal friction coefficient (damaged), 𝑓 – 0.2–1.2 0.6

Porosity model parameters (𝜖 − 𝛼)e

Initial porosity, 𝜙0 60% 10%–50% 20%
Initial distension, 𝛼0 2.7 1.1–2.0 1.67
Distension at transition to power-law, 𝛼𝑥 1.00 1.00 1.00
Elastic volumetric strain threshold, 𝜖𝑒0 0.00 −1.88 × 10−6 −1.88 × 10−6

Exponential compaction rate, 𝜅 0.9 0.88–0.98 0.90

aTillotson (1962);
bBenz and Asphaug (1999);
cLundborg (1967);
dCollins et al. (2004);

eWünnemann et al. (2006).
Fig. 1. Mass–velocity-launch position distribution of ejecta from iSALE-2D simulations at 40 cppr and 5 cppr, compared with ejecta distribution from iSALE-3D at 5 cppr.
uses a 3D solution algorithm very similar to the SALE-2D solver, as
described by Hirt et al. (1974). The development history of iSALE-3D is
described in Elbeshausen et al. (2009). Both codes share the same mate-
rial modelling routines, including strength models suitable for impacts
into geologic targets (Collins et al., 2004) and a porosity compaction
model (Wünnemann et al., 2006). The crater sizes produced by iSALE-
3D simulations of oblique impacts into aluminium targets agree well
with laboratory experiments (Davison et al., 2011), while the ejection
velocities and angles of ejecta produced by vertical impacts are in good
agreement with data from laboratory impacts into sand (Luther et al.,
2018; Raducan et al., 2019).
3

Here we aim to quantify the effect of impact angle on impact
momentum transfer and ejecta mass and velocity distributions. Since
full 3D simulations are very computationally expensive we performed a
relatively small number of oblique impact simulations into targets with
constant properties, for which we varied the impact angle. The iSALE-
3D simulations employed Cartesian coordinates (𝑥−𝑦−𝑧), for which the
computational domain was modelled as a half-space, with a symmetry
plane along the horizontal component of the projectile velocity, in the
𝑥 − 𝑧 plane. To ensure that the computational domain is large enough
to avoid domain boundary shock wave reflections, we used extension
zones with proportionally increasing cell size, as described in Davison
et al. (2011).
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Fig. 2. Plan view of crater and ejecta curtain evolution of the DART impact at (a) 90, (b) 60, (c) 45 and (d) 30 degrees angles, captured at four different times: 0.02 s, 0.10 s,
0.40 s and 1.00 s. The impact direction is right to left.
To get additional insight into the effects of key material properties
on ejection angles we also revisited the Raducan et al. (2019) 2D
simulations results. Raducan et al. (2019) studied the effects of material
properties (cohesion, porosity and coefficient of internal friction) on
ejection velocity and ejected mass in analog DART impacts. Here we
re-analyse these results to quantify the dependence of ejection angle
as a function of radius on target properties. The iSALE-2D simulations
had an axially symmetric geometry and used regridding, as described
in Raducan et al. (2019). In iSALE, the material is represented as
a continuum and therefore, macro-porosities and pre-existing flaws
within the target are not resolved. Moreover, our model assumes that
the target has a homogeneous structure, while in reality Dimorphos is
most likely a rubble-pile (Walsh, 2018).

All the numerical simulations presented here used a ≈620 kg spheri-
cal aluminium projectile, impacting a porous, basaltic regolith target at
7 km/s. As in Raducan et al. (2019), the impactor was modelled using
the Tillotson equation of state for aluminium (Tillotson, 1962) and a
simple von Mises strength model.

The porous basaltic target model used here is considered to be a
good approximation of the compositional structure of most asteroids.
It comprises a Tillotson equation of state for basalt (Tillotson, 1962;
Benz and Asphaug, 1999) to describe the volumetric response of the
solid of the target. The porosity compaction behaviour of the target
material was described using the 𝜖−𝛼 model (Wünnemann et al., 2006;
Collins et al., 2011). The 𝜖−𝛼 input parameters were chosen so that the
target crush-curve is consistent with shock wave and Hugoniot data for
regolith-like materials (Ahrens and Cole, 1974; Raducan et al., 2020).
The target’s shear strength was modelled using a simple pressure-
dependent strength model typical of geologic materials (Lundborg,
1967; Collins et al., 2004), with a damaged strength at zero pressure,
𝑌0 = 10 kPa. The impactor and target material properties are sum-
marised in Table 1 and have been described in detail in Raducan et al.
4

(2019). One limitation of our model is that iSALE uses a continuum
modelling approach, which means that the porous matrix is modelled
as a homogeneous material and it does not account for pre-existing
cracks or flaws. In reality, the DART’s target, Dimorphos, might have a
heterogeneous structure (i.e., a rubble pile).

To record the impact ejecta we followed the same approach as
in Raducan et al. (2019): Lagrangian tracer particles were placed across
the high-resolution domain and their mass, velocity vector and launch
position were then recorded at a fixed altitude, which was set to one
impactor diameter. We record each ejecta tracer particle at the time
it crosses this plane. Similar to Raducan et al. (2019), we applied a
lower velocity threshold to the ejected particles of 10 cm/s, which in
our impact scenarios is the minimum speed required to overcome the
cohesive strength of the target, and is larger than the escape velocity
of the target. In the 3D simulations, launch position and azimuth were
measured relative to the impact point.

3.1. iSALE-2D vs iSALE-3D

To verify consistency between iSALE-2D and iSALE-3D for pre-
dictions of ejected mass and momentum (i.e., that the results are
independent of model geometry) we used both codes to simulate the
same vertical impact scenario. The scenario considered was a DART
impact into a homogeneous half-space, with the cohesive strength of
the damaged material, 𝑌0 = 10 kPa, coefficient of internal friction, 𝑓 =
0.6, and initial porosity, 𝜙0 = 20%.

Fig. 1 shows the mass–velocity-launch position ejecta distributions
from three numerical simulations: two iSALE-2D runs and one iSALE-
3D run. The three-dimensional (3D) simulation was limited to a spatial
resolution of 5 cppr (3D, 5 cppr). For direct comparison, a 2D simu-
lation of the same spatial resolution was performed (2D, 5 cppr). To
assess the sensitivity of the results to the low spatial resolution of the



Icarus 374 (2022) 114793S.D. Raducan et al.
Fig. 3. Velocity launch position distribution of the ejecta from impacts at 90, 60, 45 and 30 degrees angle of incidence.
3D simulation, we also performed a 2D simulation that began with a
resolution of 40 cppr and was subsequently coarsened using regridding
to expedite the calculation without significant loss of accuracy (2D,
regrid) as adopted in previous work (Raducan et al., 2019; Raducan
et al., 2020) and the other 2D simulations presented here. Based on
previous resolution studies (Raducan et al., 2019), the lower spatial
resolution used in the 3D simulations is expected to under predict the
crater volume by about 5% and the ejected momentum by about 10%
compared to the 2D simulations with regridding.

Comparison between the 3D and 2D simulations with the same
resolution (5 cppr) demonstrates consistency between iSALE-2D and
iSALE-3D results (Fig. 1). In particular, the cumulative ejecta mass–
velocity distributions and the cumulative ejected momentum–velocity
distributions are nearly identical for the full range of ejection velocities.
When compared to the results of the high-resolution 2D simulation
where regridding was used (2D, regrid), on the other hand, the 3D
simulation results show good agreement in the cumulative mass and
launch position of the slow ejecta, but fail to capture the fastest ejecta—
known to require high spatial resolution at early times (Johnson et al.,
2014). These fast particles, although of low mass, add ≈10% to the
normalised cumulative ejected momentum in this example (Fig. 1d).
As a result, the 3D simulation results presented here will systematically
under-predict the cumulative ejected momentum.

4. Results

4.1. Influence of impact angle on net momentum transfer

Having verified the consistency between iSALE-2D and iSALE-3D
simulation results for a vertical impact, we then used iSALE-3D to
investigate the effect of impact angle on ejecta mass, velocity and angle
distributions.

Fig. 2 shows the plan view of crater and ejecta curtain evolution
following a DART impact at 90◦ (vertical), 60◦, 45◦ and 30◦ angles
of incidence to the target surface. The impact speed is the same in all
simulations (𝑈 = 7 km/s); all other impactor and target properties are
the same. The views are centred on the impact point (impactor tangent
to the surface), with impact direction from right to left. The time frames
of the oblique impacts (Fig. 2b, c, d) show a highly asymmetric ejecta
distribution at early times of the cratering process < 0.10 s, compared
to the same times in the vertical impact (Fig. 2a). The asymmetric ejecta
5

Fig. 4. Plan view of crater and ejecta curtain evolution of the DART impact at 45◦

angle of incidence, showing the direction of the impactor and the azimuthal (𝜁)
coordinates relative to the impact point (at 1 s after the impact).

curtain becomes more symmetric as the crater grows towards its final
size.

The asymmetry in the ejecta is also illustrated by the velocity-
launch position distribution of the ejected particles from the oblique
impacts at 60, 45 and 30 degrees angle of incidence (Fig. 3). In all
cases, the launch speed of the ejecta, 𝑣, was normalised by the impact
speed, 𝑈 , and plotted as a function of launch position, 𝑟 (relative to the
impact point), normalised by the impactor radius, 𝑎. The ejecta from the
oblique impacts displays higher speeds in the downrange direction, and
lower speeds in the uprange direction. This is consistent with previous
laboratory-scale oblique impact experiments (Schultz, 1999; Anderson
et al., 2003) and DART impact models (Stickle et al., 2015).

Following a similar approach to Anderson et al. (2004) to better
understand how the ejecta velocity and ejection angle vary with az-
imuth around the impact point, we split the ejecta velocity distribution
into azimuthal sections, between 𝜁 = 0◦, which represents the uprange
direction (−𝑥) and 𝜁 = 180◦, which represents the downrange direction
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Fig. 5. Ejecta vertical velocity — launch position distribution from vertical and oblique impacts (𝜃 = 90◦, 60◦, 45◦, 30◦) at azimuth between 𝜁 = 0 and 𝜁 = 90◦.
(+𝑥). Fig. 4 shows the surface topography of the DART impact at
45◦ impact angle and a diagram of the locations of the impact point,
symmetry axis and the azimuth angles.

Unlike in the vertical impacts, in oblique impacts the centre of the
crater is not stationary, but instead moves from the impact point to-
wards the downrange direction as the crater grows. When determining
the normalised radial launch position of the ejecta, 𝑟∕𝑎, the origin
was defined as the impact point, rather than the centre of the final
crater. When the data from all azimuths is aggregated, this convention
causes a larger spread in launch distance for a given ejection velocity
compared to the 90◦ impact, and must be accounted for in the ejecta
analysis. It also implies that the outermost launch position, which
defines the approximate edge of the crater, varies with azimuth, even
6

if the crater has a circular planform. An alternative approach of scaling
the ejecta was proposed by Hermalyn and Schultz (2011). However,
for the purpose of the analysis described in our work, we chose the
launch position approach, even with the added difficulty of the moving
centre of the crater. Future work on oblique impacts might consider this
alternative scaling.

Figs. 5 and 6 show the vertical component of the ejecta velocity
normalised by the impact velocity, 𝑣𝑧∕𝑈𝑧, as a function of radial
distance, normalised by the impactor size 𝑟∕𝑎 and divided into 5◦

azimuthal segments, for four different impact angles. Here we analyse
the vertical component of the ejection velocity as it is most relevant for
momentum transfer. In the cross-range direction, at azimuths of about
90◦, ejection velocity vs launch position is approximately independent



Icarus 374 (2022) 114793S.D. Raducan et al.
Fig. 6. Ejecta vertical velocity — launch position distribution from vertical and oblique impacts (𝜃 = 90◦, 60◦, 45◦, 30◦) at azimuth between 𝜁 = 90 and 𝜁 = 180◦.
of impact angle; however, ejection velocity vs launch position differs
systematically with impact angle as azimuth approaches 0◦ (uprange)
or 180◦ (downrange). In all cases, the middle part of the ejection
velocity vs launch position trend is well approximated by a power-law.

Figs. 7 and 8 show the ejection angle as a function of radial distance,
normalised by the impactor size 𝑟∕𝑎 and divided into 5◦ azimuthal
segments, for four different impact angles. For azimuthal segments
between 𝜁 = 0◦ and 𝜁 = 90◦, the material is ejected at similar ejection
angles, regardless of the impact angle (Fig. 7). However, between 𝜁 =
90◦ and 𝜁 = 180◦, the ejection angle decreases with increasing azimuth.
At the same time, impacts with lower impact angles, 𝜃, launch material
out of the crater at lower ejection angles than in the vertical, 𝜃 = 90◦

case. For the four different impact angles, the ejection angle converges
7

as it approaches the final crater rim. At the crater rim, our ability to
detect the ejection angle is limited. Here, the spread of the ejection
angle at the crater rim is attributed to the tracer particles that are
recorded as ejected, but do not behave as ballistic ejecta and may
still be affected by the material strength effects. While in these plots
we include these tracer particles for completeness, they are not well
constrained. However, these tracer particles have very low velocities
(below our set threshold) and do not affect the analysis presented in
this paper, in the later sections.

The asymmetry of the ejecta can have important implications for
momentum transfer. The net momentum of the target after the impact
is the vector sum of the impactor momentum and the net ejected mo-
mentum vectors. Fig. 9 shows the direction of the momentum vectors
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Fig. 7. Ejection angle — launch position distribution from vertical and oblique impacts (𝜃 = 90◦, 60◦, 45◦, 30◦) at azimuth between 𝜁 = 0 and 𝜁 = 90◦.
for the vertical (𝜃 = 90◦) and oblique impacts (𝜃 = 60◦, 45◦ and
30◦). The projectile imparts an initial momentum along the impact
direction, 𝐏𝐢 = 𝑚𝐔, where 𝑚 is the projectile mass and 𝐔 is the impact
velocity vector. As most of the ejecta momentum is carried away in
the downrange direction, the momentum imparted to the target by this
ejecta, 𝐏𝐞𝐣, is mostly in the uprange direction. We define 𝜓𝑚 as the angle
of the imparted ejecta momentum vector 𝐏𝐞𝐣 relative to the vertical.
The vector sum of the impactor momentum vector and the imparted
ejecta momentum vector is the target momentum, 𝐏𝐭 = 𝐏𝐢 + 𝐏𝐞𝐣. In the
three oblique impact scenarios simulated here, the direction of 𝐏𝐭 , here
defined by the angle 𝜓𝑡, is between the vertical and the downrange
direction.
8

Fig. 10 shows the direction of the momentum imparted by the
ejecta, 𝜓𝑚, (Fig. 10a) and the direction of the total momentum, 𝜓𝑡
(Fig. 10b), as a function of time, for the different impact angles.

As the crater grows towards its final diameter, the uprange di-
rection of the ejecta momentum becomes more perpendicular to the
surface. The direction of the net momentum imparted on the target also
changes, from the downrange direction, towards the vertical direction.
In the scenarios shown here, for impacts into a 10 kPa target, the
direction of the net momentum vector at the end of the crater growth
is 𝜓𝑚 ≈ −18◦ for the 60◦ impact, 𝜓𝑚 ≈ −30◦ for the 45◦ impact and
𝜓 ≈ −45◦ for the 30◦ impact.
𝑚
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Fig. 8. Ejection angle — launch position distribution from vertical and oblique impacts (𝜃 = 90◦, 60◦, 45◦, 30◦) at azimuth between 𝜁 = 90 and 𝜁 = 180◦.
In the simulations presented here crater growth is halted by the
target strength before the ejected momentum direction becomes ver-
tical. However, it is expected that with increasing cratering efficiency
(e.g., decreasing strength), the ejecta momentum will make a larger
contribution towards the total momentum vector (e.g., the ejecta mo-
mentum magnitude will dominate over the impactor momentum mag-
nitude). At the same time, as the cratering efficiency increases, impacts
at the same impact angle will become increasingly symmetric and
both the ejected and total momentum vectors will be closer to the
vertical, 𝜓𝑡 ≈ 𝜓𝑚 ≈ 0◦. To test this, more numerical simulations of
oblique impacts into targets with lower strength are needed, however
due to the increased cratering efficiency, such simulations are very
computationally expensive.
9

4.2. The effects of target properties on the ejection angle

Raducan et al. (2019) quantified the effects of target porosity and
target coefficient of internal friction on the launch speed of crater
ejecta in vertical impacts but the corresponding ejection angles were
not reported. Here we present ejection angle results from the same suite
of simulations to provide context for our 3D simulation results and to
inform analytical approximations of ejecta plume evolution.

Figs. 11(a) and (c) show ejection velocity, normalised by the impact
velocity, 𝑣∕𝑈 , and ejection angle, respectively, as a function of nor-
malised radial distance from the impact point, 𝑟∕𝑎, for vertical impacts
into targets with fixed cohesion, 𝑌0 = 10 kPa, and fixed coefficient of
internal friction, 𝑓 = 0.6. For these targets the initial porosity, 𝜙 , was
0
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Fig. 9. Crater profiles showing the direction of the momentum vectors at the end of crater growth. The impactor momentum is the momentum imparted directly from the impactor,
the momentum enhancement is imparted by the ejected particles (makes an angle 𝜓𝑚 relative to the vertical) and the target momentum is the net momentum of the target, after
the impact (makes an angle 𝜓𝑡 relative to the vertical). The impact direction is right to left.
Fig. 10. Direction of the (a) ejecta momentum and (b) total momentum from vertical, 90◦, and oblique, 60◦, 45◦ and 30◦, angle of incidence. The direction is measured anticlockwise
from the negative 𝑥-axis (downrange, 0◦) to the positive 𝑥-axis (uprange, 180◦).
varied between 10% and 50%. Increasing the target porosity has the
effect of reducing the launch speed and ejection angle of the material
ejected close to the impact point.

Figs. 11(b) and (d) show normalised ejection velocity and ejection
angle as a function of normalised radial distance for impacts into
10 kPa, 20% porous targets, for which the coefficient of internal
friction, 𝑓 , was varied between 0.2 and 1.2. Increasing the target coef-
ficient of internal friction has the effect of reducing the launch speed
of the material ejected close to the crater rim and the ejection angle.
The ejecta velocity-launch position distribution from both parameter
studies is discussed in more detail in Raducan et al. (2019).

It is often assumed that the ejection angle of individual ejecta parti-
cles is approximately 45◦ to the target surface, independent of launch
position. However this assumption does not always hold and the mean
ejection angle can vary significantly with time and launch distance,
depending on the physical characteristics of the target material, such as
porosity or internal friction coefficient (e.g., Cintala et al., 1999; Hoerth
et al., 2013; Gulde et al., 2018; Luther et al., 2018).
10
Fig. 11(c) shows that fast ejecta is launched at steeper ejection
angles when target porosity is lower. However, the ejection angle
converges at radial distances larger than 4𝑎 such that the ejection angle
of slower ejecta is relatively insensitive to target porosity.

Fig. 11(d) shows that ejection angle decreases with launch position,
by up to 20◦. At the same time, the average ejection angle decreases
with increasing coefficient of internal friction, from about 60◦ for 𝑓 =
0.2, to about 30◦ for 𝑓 = 1.2. Similar ejection angle trends have been
observed from laboratory impact experiments into pumice (𝑓 ≈ 0.8)
and quartz sand (𝑓 ≈ 0.5–0.6) (Hermalyn and Schultz, 2014), as well as
from numerical models of vertical impacts in the gravity regime (Luther
et al., 2018).

Our study only considered impacts into homogeneous targets, how-
ever inhomogeneities within the target can also affect the ejection
angle (e.g., Ormö et al., 2021).



Icarus 374 (2022) 114793S.D. Raducan et al.
Fig. 11. (a, b) Velocity — launch position distribution of ejecta from impacts into a 10 kPa target, with varying porosity, 𝜙0 and varying coefficient of friction, 𝑓 . (a) represents
the ejecta velocity distribution for impacts with 𝑌0 = 10 kPa, 𝑓 = 0.6 and 𝜙0 between 10 and 50%. (b) represents the ejecta velocity distribution for impacts with 𝑌0 = 10 kPa,
𝜙0 = 20% and 𝑓 between 0.2 and 1.2. (c, d) Ejection angle — launch position distribution of ejecta from impacts into a 10 kPa target, with varying 𝜙0 (c) and varying 𝑓 (d).
5. Discussion

5.1. Towards an ejecta scaling relationship for oblique impacts

Ejecta scaling relationships are useful to determine the ejecta mass–
velocity distribution and momentum transfer for vertical impacts sce-
narios other than the ones considered here. However, most planetary
impacts are oblique and the existing scaling relationships (Housen
and Holsapple, 2011) only apply to vertical impacts. Therefore, the
current point-source scaling theory needs to be extended and adapted
to oblique impacts.

Previous attempts at determining the ejecta distribution from
oblique impacts empirically include the studies by Anderson et al.
(2003), Anderson et al. (2004) and Richardson et al. (2007). Anderson
et al. (2003) conducted impact experiments of ≈ 6 mm diameter
aluminium spheres into medium-grained sand, at 90◦ and 30◦ impact
angles and an impact velocity of 1 km/s. From each impact experiment
they recorded the ejection velocities, angles, and positions of the ejecta
expelled at one moment during the first half of the crater growth. They
observed that in the oblique impact cases, the velocity distribution of
the ejected particles varies with azimuth from the impact point relative
to the trajectory direction. They defined the ratio between the down-
range and the uprange ejection velocities (DR/UR) as a measure of the
asymmetry in the ejecta curtain. At early times, they recorded a 40%
increase in the ejection velocity from the uprange to the downrange
sides of the crater. At later times, about when the crater radius reached
about half of the final radius, the difference between the velocities in
the uprange and in the downrange sides of the craters decreased to
about 20%. Anderson et al. (2004) ran additional impact experiments
at 45◦ impact angles and tried to use the Maxwell Z-Model to predict
the ejection velocities and ejection angles. One major difficulty with
deriving a scaling law using this approach was the assumption that
there is a single, stationary point source.

The work in this section attempts to develop an ejecta scaling
relationship for oblique impacts, based on numerical simulation data.
The three-dimensional simulations of the DART impact into a 10 kPa,
11
20% porous target, at vertical, 60◦, 45◦ and 30◦ impact angles pre-
sented above are used here to provide information about the ejecta
distribution as a function of impact angle.

Fitting Eq. (3) through the ejection velocity-launch position distri-
butions shown in Figs. 5 and 6 (where U is the vertical component
of the impact velocity, 𝑈𝑧), allows us to determine 𝜇 and 𝐶1 for
each azimuth and impact angle investigated. Various forms have been
proposed to account for the decay ejecta velocity close to the crater
rim (Maxwell, 1977; Austin et al., 1981; Yamamoto et al., 2009).
However, here we adopt the commonly used empirical approximation
from Housen and Holsapple (2011). The azimuthal radius, 𝑅𝜁 , which
here is defined as the distance between the impact point and the crater
rim for each azimuthal segment can also be determined. Similarly, the
constant 𝑘 can be found by fitting Eq. (5) to the cumulative ejected
mass-launch position data.

Fig. 12 shows the best fit constants 𝜇 (Fig. 12a), 𝐶1 (Fig. 12b),
𝑘 (Fig. 12c) and 𝑅𝜁 (Fig. 12d) as a function of azimuth, 𝜁 , for the
four different impact angles. The constants were normalised by the
average 𝜇, 𝐶1, 𝑘 and 𝑅 constants found for the 𝜃 = 90◦ impact scenario.
All four constants, 𝜇, 𝐶1, 𝑘 and 𝑅𝜁 , vary as periodic functions of
impact angle and azimuth around the impact point. In this work, simple
trigonometric functions are fit through these distributions as a function
of azimuth for each impact angle.

The coupling parameter velocity exponent, 𝜇(𝜁, 𝜃), can be approxi-
mated by

𝜇(𝜁, 𝜃) ≈ 𝜇 ×
[

1 + 1
2
cos(𝜁 ) cos(𝜃)

]

, (6)

where 𝜇 is the velocity exponent in the vertical impact scenario. The
constant 𝐶1(𝜁, 𝜃) varies as an exponential of cosine

𝐶1(𝜁, 𝜃) ≈ 𝐶1 × exp [−5 cos(𝜁 ) cos(𝜃)], (7)

where 𝐶1 is the constant derived for the vertical impact scenario.

𝑘(𝜁, 𝜃) ≈ 𝑘 × exp [−0.02 cos(𝜁 ) cos(𝜃)], (8)

𝑛𝜁
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Fig. 12. Constants (a) 𝜇, (b) 𝐶1, (c) 𝑘 and (d) 𝑅, normalised by the average value in the 90◦ impact scenario, as a function of azimuth around the crater (centred at the impact
point).
Fig. 13. Average ejection velocity from ≈ 1 km/s oblique 30◦ impacts into sand
conducted in laboratory by Anderson et al. (2003), as a function of azimuth around the
crater, at these different times: 𝑡 = 5, 10 and 80 ms. The error bars were calculated as
1𝜎 (Richardson et al., 2007). Our semi-analytical approximation of the ejection velocity
from Eqs. (6)–(7) and Eq. (4) was plotted for comparison.

where 𝑘 is the constant derived for the vertical impact scenario and 𝑛𝜁
is the number of azimuthal segments considered.

𝑅(𝜁, 𝜃) ≈ 𝑅 ×
[

1 −
(90 − 𝜃)
100

×
cos(𝜁 )

2

]

, (9)

where 𝑅 is the crater radius in the vertical impact scenario. These
trigonometric functions were plotted in Fig. 12.

5.2. Comparison of the oblique impact ejecta scaling relationship with
laboratory experiments

Eqs. (6)–(9), can be used together with Eqs. (3)–(5) to determine
the ejection velocity as a function of launch position and azimuth for
an oblique impact, given known scaling constants (𝜇, 𝐶1, 𝑘, 𝑅). Here
we present a methodology for using these equations to approximate the
distribution of ejection velocities from an oblique impact, at fixed times
during crater growth, using only information that can be derived from
an equivalent vertical impact. To test our methodology, we used the
experimental ejection velocity data recorded at several different radial
distances from the impact point for laboratory-scale impacts into sand
at a speed of ≈ 1 km/s and at impact angles of both 30◦ and 90◦ to the
horizontal (Anderson et al., 2003).

The first step is to derive the scaling constants 𝜇 and 𝐶1 from
ejection velocity data for a vertical impact into the same target material
12
Fig. 14. Ejection velocity vs radial distance distribution of ejecta from ≈ 1 km/s
vertical impacts (Anderson et al., 2003).

and otherwise similar impactor parameters to the oblique impacts in
question. The vertical impact experiments of Anderson et al. (2003)
are presented in the form of 𝑣∕(𝑔𝑅)1∕2 versus 𝑥∕𝑅, where 𝑣 is ejection
speed, 𝑅 is the apparent crater radius and 𝑥 is the launch position.
Ejection velocity and radial distance were therefore converted into
𝑣∕𝑈 and 𝑥∕𝑎 values using an apparent crater radius of 𝑅 = 8.1 cm
(see Housen and Holsapple, 2011 for details), where 𝑎 = 3.175 mm
(Fig. 14). By fitting Eq. (3) to the rescaled experimental data, we
derived 𝜇 = 0.38, 𝐶1 = 1.23.

The next step is to substitute these derived constants into Eqs. (6)–
(7), which can then be substituted into Eq. (4). Here we used 𝜈 = 0.4,
𝑛1 = 1, 𝑛2 = 1.2, 𝑝 = 0.3, as derived by Housen and Holsapple (2011)
for impacts into sand, and 𝑞 = 0.2 (Raducan et al., 2019). In these ex-
periments, the crater radius was measured as 𝑅 = 8.1 cm (Housen and
Holsapple, 2011), however the crater radius can also be approximated
from Eq. (1) (or Eq. (2) for the strength regime).

Fig. 13 shows the average ejection velocity as a function of azimuth,
as measured by Anderson et al. (2003), at 5, 10 and 80 ms after impact.
For comparison, our analytical approximation of the ejection velocity
(Eq. (4)) from a 30◦ impact as a function of azimuth, 𝜁 , is plotted as a
continuous line. To convert from radial launch position to ejection time,
we follow the approach of Richardson et al. (2007): at 5 ms, 𝑥∕𝑎 ≈ 0.2;
at 30 ms, 𝑥∕𝑎 ≈ 0.3; at 80 ms, 𝑥∕𝑎 ≈ 0.5.
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Our semi-analytical model of ejection velocities shows a gener-
ally good agreement with the experimental data. The match is least
impressive at late times, close to the crater rim. The laboratory exper-
iments presented here have a much higher cratering efficiency than
the numerical simulations used to derive the trigonometric functions
used here, which might be the source of the discrepancy. Therefore,
for cratering events with much larger cratering efficiencies than our
simulations one should apply caution when using our approach to
approximate the velocity distribution of the slow ejecta from oblique
impacts. More laboratory experiments aimed at analysing the crater
ejecta from oblique impacts would greatly improve our understanding
of ejecta formation and would help to further validate our model.

5.3. Semi-analytical approximation for the momentum enhancement from
oblique impacts

The efficiency of impact momentum transfer is often expressed in
terms of a factor 𝛽, which for a vertical impact is simply the ratio of
the momentum transferred to the target 𝑀𝛥𝑣 (where 𝑀 is the target
mass and 𝛥𝑣 is the velocity change) divided by the impactor momentum
𝑚𝑈 . More generally, the conservation of momentum can be defined as:

𝑀𝜟𝐯 = 𝑚𝐔 + 𝑚(𝛽 − 1)(�̂� ⋅ 𝐔)�̂� + 𝑚(𝛾 − 1)(�̂� ⋅ 𝐔)�̂� (10)

where �̂� and �̂� are the inward surface normal, and downrange directed
surface tangent unit vectors, respectively. In our simulations of impacts
into a flat target, with the impact trajectory in the 𝑥-𝑧 plane, the
inward surface normal vector is in the negative vertical direction −𝑧
and the downrange surface tangent vector is −𝑥. The first term on the
right-hand side is the momentum imparted directly by the impactor
𝐏𝐢; the second term is the component of the momentum imparted by
the escaping ejecta that acts normal to the surface; the third term is
the component of the momentum imparted by the escaping ejecta that
acts parallel to the surface, positive in the downrange direction. If the
net momentum imparted to the target by the escaping ejecta can be
assumed to act along the surface normal vector (i.e., 𝜓𝑚 = 0) then
the third term can be neglected (Feldhacker et al., 2017; Cheng et al.,
2020). However, for the scenarios simulated here |𝜓𝑚| > 0 and so we
retain the full expression.

According to Eq. (10), the definition of 𝛽 (and 𝛾) can be expressed
in terms of the normal (and tangential) components of the momentum
transfer and incident moment:

𝛽 = 𝑀 �̂� ⋅ 𝜟𝐯
𝑚�̂� ⋅ 𝐔

=
𝑀𝛥𝑣 cos𝜓𝑡
𝑚𝑈 sin 𝜃

, (11)

𝛾 = 𝑀 �̂� ⋅ 𝜟𝐯
𝑚�̂� ⋅ 𝐔

=
𝑀𝛥𝑣 sin𝜓𝑡
𝑚𝑈 cos 𝜃

. (12)

Alternatively, 𝛽 and 𝛾 can be expressed in terms of the normal and
tangential components of the net ejecta momentum 𝐏𝐞𝐣:

𝛽 − 1 =
�̂� ⋅ 𝐏𝐞𝐣

𝑚�̂� ⋅ 𝐔
=

𝑃𝑒𝑗 cos𝜓𝑚
𝑚𝑈 sin 𝜃

, (13)

𝛾 − 1 =
�̂� ⋅ 𝐏𝐞𝐣

𝑚�̂� ⋅ 𝐔
=

𝑃𝑒𝑗 sin𝜓𝑚
𝑚𝑈 cos 𝜃

. (14)

ence, 𝛽 and 𝛾 are related by:

𝛾 − 1) = (𝛽 − 1) tan 𝜃 tan𝜓𝑚 (15)

or 𝜃 < 90 and |𝜓𝑚| < 90. Note that for vertical impacts 𝛾 = 1 and
𝛾−1) = 0 if the net ejecta momentum is directed exactly normal to the
arget (𝜓𝑚 = 0).

For a vertical impact (𝜃 = 90, 𝜓𝑚 = 0), Cheng et al. (2016) showed
hat the vertical momentum carried away by the ejecta from a vertical
mpact, 𝛽 − 1, can be found from integrating the differential mass, 𝑑𝑀
from Eq. (5)), within the radial distance range from 𝑛1 to 𝑛2𝑅∕𝑎

𝑒𝑗 =
9𝑘𝑚 𝜌

𝑛2𝑅
𝑎
𝑤2𝑣𝑧𝑑𝑤, (16)
13

4𝜋 𝛿 ∫𝑛1 v
here 𝑤 = 𝑟∕𝑎 and 𝑣𝑧 is the vertical component of the ejection velocity.
he vertical momentum carried away by the ejecta, 𝛽 − 1 is then:

− 1 =
𝑃𝑒𝑗
𝑚𝑈

= 9𝑘
4𝜋

𝜌
𝛿 ∫

𝑛2𝑅
𝑎

𝑛1
𝑤2 𝑣𝑧

𝑈
𝑑𝑤. (17)

To generalise this approach for oblique impacts, we define the
vertical ejecta momentum, 𝛽 −1, as the sum of the vertical momentum
calculated for each azimuth wedge:

𝛽 − 1 =
�̂� ⋅ 𝐏𝐞𝐣

𝑚�̂� ⋅ 𝐔
=

𝑃𝑒𝑗 cos𝜓𝑚
𝑚𝑈 sin 𝜃

≈ 2 ×
𝑛𝜁
∑

𝑖=1

9𝑘𝜁
4𝜋

𝜌
𝛿 ∫

𝑛1𝑎

𝑅𝜁

𝑣𝑧(𝑤)
𝑈𝑧

𝑤2𝑑𝑤 (18)

where 𝑤 = 𝑟∕𝑎, 𝑘𝜁 = 𝑘∕𝑛𝜁 and 𝑛𝜁 is the number of azimuthal wedges
between 𝜁 = 0 (uprange) and 𝜁 = 180 (downrange). To evaluate
the integral requires that we substitute the power-law approximation
of Eq. (3) with parameters appropriate for each azimuthal wedge
into Eq. (18), noting that the relevant normalised ejection velocity
component is 𝑣𝑧∕𝑈𝑧. In this case, the momentum enhancement can be
approximated by

𝛽 − 1 ≈ 2 ×
𝑛𝜁
∑

𝑖=1

9𝑘(𝜁𝑖, 𝜃)
4𝜋 sin 𝜃

𝜌
𝛿 ∫

𝑛2𝑅(𝜁𝑖 ,𝜃)
𝑎

𝑛1

[

𝐶1(𝜁𝑖, 𝜃)
[

(𝑤)
(𝜌
𝛿

)𝜈]−1∕𝜇(𝜁𝑖 ,𝜃)
]

𝑤2𝑑𝑤.

(19)

To calculate 𝛽 − 1 for a given set of constants, Eq. (19) must be solved
numerically.

Eq. (19) provides a framework for estimating 𝛽 − 1 for an impact
with known impactor (𝑚, 𝑈 , 𝛿, 𝜃) and target parameters (𝜌). It requires
knowledge of the azimuthal and angle dependence of the ejecta distri-
bution parameters 𝑘(𝜁, 𝜃), 𝐶1(𝜁, 𝜃) and 𝜇(𝜁, 𝜃) as well as the azimuthal
nd angle dependence of the crater rim radius, relative to the impact
oint 𝑅(𝜁, 𝜃). With knowledge of the ejecta imparted momentum vector
ngle to the vertical, 𝜓𝑚, 𝛾 − 1 can be determined from 𝛽 − 1 using
q. (15).

Eqs. (6)–(9) approximate these relationships for impacts similar to
hose simulated here and may be more broadly applicable given the
romising comparison with experimental data. However, the required
alues of these parameters can also be determined for each azimuth and
mpact angle from individual simulation results. To measure the error
n each level of approximation, we compare the total integrated vertical
jected momentum for each impact angle, as determined by summing
he contribution of each ejected tracer particle, with two estimates of
he total ejected momentum. In Table 2 the total vertical momentum
f the ejecta as derived from summing the contribution of each ejected
racer particle from each simulation is defined as ‘Measured 𝛽 − 1’.

The first estimate of the ejecta vertical momentum (‘Best-fit 𝛽 − 1’
in Table 2) comes from using Eq. (19) and individual analytical best-fit
constants (𝜇, 𝐶1, 𝑘 and 𝑅𝜁 ) for each azimuth as shown in Fig. 12. The
second estimate (‘Analytical 𝛽 −1’ in Table 2) was obtained from using
Eq. (19) and the analytical expressions for: 𝜇(𝜁, 𝜃) (Eq. (6)), 𝐶1(𝜁, 𝜃)
(Eq. (7)), 𝑘(𝜁, 𝜃) (Eq. (8)) and 𝑅(𝜁, 𝜃) (Eq. (9)). Raducan et al. (2019)
etermined that for a vertical impact into a 1 kPa, 20% porous target
he fitting constants are 𝜇 ≈ 0.42, 𝐶1 ≈ 1.1 and 𝑘 ≈ 0.4. Here we used
q. (19) to find an analytical approximation of 𝛽 − 1 for this set of
caling constants. Our comparison between the three different measures
f 𝛽 − 1 show that both estimates are within 2% of the ‘measured’
− 1 for a 90◦ impact and within 20% for a 30◦ impact. Due to the

arger spread in the values determined for 𝜇 and 𝐶1 for the 30◦ impact
cenario, compared to the less oblique impacts, the ‘Best-fit 𝛽 − 1’ and
he ‘Analytical 𝛽−1’ at this impact angle are less constrained and show
arger errors. Future studies are needed to further constrain the ejecta
ehaviour at very oblique angles (< 45◦) and reduce these errors.

For the impact scenarios studied here, the vertical efficiency of the
omentum transfer seems to be almost constant, with less than 4%

ariation between 𝛽 − 1 at 90◦ and 𝛽 − 1 at 30◦ impact angle.
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Fig. 15. 𝛽 sin 𝜃 ≈𝑀𝛥𝑣∕𝑚𝑈 trends found using Eq. (19), for oblique impacts into a 20% porous and a 50% porous target.
Table 2
Normal ejecta momentum, 𝛽−1, and tangential ejecta momentum, 𝛾−1, measured from
the Lagrangian tracers, compared with 𝛽 − 1 calculated from the best-fit constants and
calculated using the newly derived analytical approximations (Eq. (19)).

Impact angle

90◦ 60◦ 45◦ 30◦

Measured 𝛽 − 1 1.32 1.36 1.33 1.24
Direction ejecta momentum, 𝜓𝑚 0.03◦ −18.00◦ −29.57◦ −44.79◦

Direction total momentum, 𝜓𝑡 0.02◦ 7.42◦ 13.09◦ 24.13◦

Measured 𝛾 − 1 0.00 −0.38 −0.53 −0.61
Best-fit 𝛽 − 1 1.24 1.35 1.37 1.02
Analytical 𝛽 − 1 1.34 1.37 1.34 1.26

5.4. Implications for the DART and Hera missions

The change in momentum caused by the DART impact will be
inferred from the circular Keplerian motion of the Didymos system
(Cheng et al., 2020) and therefore only the momentum transfer in
the direction of the target’s orbital velocity will be measured by the
DART mission (Rivkin et al., 2021). In an ideal scenario, the DART
impactor would strike Dimorphos both perpendicular to its surface
(vertical incidence; 𝜃 = 90) and in the direction of its orbital velocity. In
this case, the deflection velocity would uniquely define the deflection
efficiency 𝛽. The more likely scenario is that the DART impactor will
strike at an oblique angle to the target surface 𝜃 < 90 and at a small
angle to the orbital velocity direction. In this case, 𝛽 can only be
approximately determined from the observed deflection velocity. More
precise determination of 𝛽 will require 3D numerical simulations of the
DART impact, like those presented here, to determine the net ejected
momentum offset angle 𝜃𝑚 or vector 𝝐 (Rivkin et al., 2021).

In any realistic DART impact scenario, however, the component of
the deflection velocity parallel to the surface normal will dominate the
deflection velocity. Our simulation results provide a straightforward
way to estimate the magnitude of the momentum change in the surface
normal direction relative to the magnitude of the impact momentum,
which can be defined from Eq. (11) as 𝑀𝛥𝑣∕𝑚𝑈 = 𝛽 sin 𝜃∕ cos𝜓𝑡. For
the moderately oblique impact scenarios considered here, this vertical
deflection efficiency can be reasonably approximated as 𝑀𝛥𝑣∕𝑚𝑈 ≈
𝛽 sin 𝜃 as cos𝜓𝑡 ≈ 1 in all cases (Table 2).

As determined by previous studies, the efficiency of the vertical mo-
mentum transfer produced by the DART impact, 𝛽 sin 𝜃, is very sensitive
to the target properties and impact conditions (Jutzi and Michel, 2014;
Stickle et al., 2015; Syal et al., 2016; Raducan et al., 2019; Raducan
et al., 2020). Moreover, a number of target property configurations
(e.g., different target cohesion-porosity-impact angle combinations) can
result in the same deflection (Raducan et al., 2020). Therefore an
observed 𝛥𝑣 can be interpreted in different ways depending on the
14
target and impact properties, which will not be known before the
arrival of the Hera mission.

Having demonstrated that the analytical expressions derived here
give reasonable approximations of 𝛽 − 1, which are within 20% of the
numerical data, the same methodology can then be used to extrapolate
the 𝛽 values for impacts into targets with cohesions and porosities
different to those used in the oblique impact simulations presented
here. Substituting the 𝜇, 𝐶1 and 𝑘 constants for DART-like vertical
impacts into asteroid targets with various cohesions, porosities and
internal friction coefficients derived from two-dimensional vertical im-
pact simulations (Raducan et al., 2019) into Eq. (19), 𝛽 sin 𝜃 can be
estimated for a range of target cohesions and fixed porosity. The crater
radius, 𝑅, was calculated using Eq. (2).

Fig. 15 shows the analytical 𝛽 sin 𝜃 (≈ 𝑀𝛥𝑣∕𝑚𝑈) estimates for
impacts at vertical, 60◦, 45◦ and 30◦, into targets with a cohesion
between 1 Pa and 1 MPa and a fixed porosity of 20% (Fig. 15a) and
50% (Fig. 15b). This analytical approximation shows that for a 100 Pa,
20% porous target, a 30◦ impact angle would reduce 𝑀𝛥𝑣∕𝑚𝑈 by up
to 50%. This is approximately equivalent to the effect of increasing
cohesion by a factor of 100. On the other hand, for a 100 Pa, 50%
porous target, a 30◦ impact angle would reduce 𝑀𝛥𝑣∕𝑚𝑈 by about
30%, equivalent to a 10 times increase in cohesion. Further impact
simulations at oblique angles into targets with a range of cohesions
and porosities will verify and extend the limits of applicability of these
scaling relationships and quantify any associated errors.

The semi-analytical model presented in this work and shown in
Fig. 15 provides a framework to determine the expected 𝛽 − 1 values
from an oblique impact, given known target properties and impact
conditions. However this analysis can also work in reverse: from known
𝛽−1 values, one could determine the range of possible target properties
and impact conditions. In this way, the 𝛽 value calculated from the
observed change in the asteroid’s orbit can be used to determine the
range of possible target properties that would produce such deflection.
An advantage of this semi-empirical approach is that it avoids the need
for computationally expensive numerical simulations to span a very
large parameter space, especially in three-dimensions.

In addition to the momentum transfer efficiency recorded from
Earth, information about the DART crater ejecta plume will also be
available and will be provided by the LICIACube (Cheng et al., 2020).
LICIA (Light Italian Cubesat for Imaging of Asteroids) is the Italian
Space Agency (ASI) contribution to the DART mission. The CubeSat will
be carried by the DART spacecraft and will be released in the vicinity
of the Didymos system before the impact. The main aim of the CubeSat
is to take images of the ejecta plume, over a range of angle phases, at
136–163 s after the impact.

The opacity of the crater ejecta plume as a function of height above
the surface and time after the impact was shown to depend on target
properties and can be used as a proxy for approximating the target



Icarus 374 (2022) 114793S.D. Raducan et al.

h
s
t
i
p
a
o

6

o
D
g
T
i
t
s
s
i
l
r
v
i
c

n
t
t
b

a
w
T
c

p
b
t
t
e
r
a
b

A

c
a
e
S
a
8

A

o
h

R

C

M

C

M

J

S

S

R

R

A

R

Y

A

A

P

L

H

H

H

S

H

S

C

E

D

strength (Richardson et al., 2009; Holsapple and Housen, 2007; Cheng
et al., 2020). Current analytical models of the ejecta plume (Holsapple
and Housen, 2007; Cheng et al., 2020) assume that the ejected particles
are launched from the impact point at a constant angle of 45◦ to the
orizontal. However, this and previous work (Luther et al., 2018) has
hown that the ejection angle can vary by up to 30◦ depending on
he target porosity or coefficient of internal friction and with azimuth
n an oblique impact. For an accurate characterisation of the target
roperties, this variation in ejection angle will need to be taken into
ccount when comparing analytical models to impact ejecta plume
bservations.

. Conclusions

The DART mission will impact Didymos’ satellite, Dimorphos, at an
blique angle, and deflect it by an amount detectable from Earth. The
ART impact angle depends on the spacecraft’s trajectory and the tar-
et slope at the point of impact, which is not known prior to the impact.
he ejected material from oblique impacts is highly asymmetrical early

n the cratering process, and this asymmetry influences the momentum
ransfer. iSALE-3D simulations of DART-like impacts at oblique angles
how that the vertical momentum transfer efficiency (i.e., 𝛽 − 1) is
imilar for different impact angles. However, the imparted momentum
s reduced as the impact angle decreases. For a 45◦ oblique DART-
ike impact, the momentum imparted to the target is expected to be
educed by up to 70% compared to the momentum imparted from a
ertical impact. Therefore, to achieve maximum deflection efficiency,
t is desired that the DART spacecraft will hit Dimorphos at an angle as
lose to 90◦ as possible.

For the cases we simulated here, the ejected momentum is not
ormal to the surface and there is a small downrange component
o the net target momentum vector. However, the direction of the
otal momentum vector is observed to ‘straighten up’ as crater growth
ecomes more symmetric at late times.

iSALE-2D simulations of vertical impacts show that the ejection
ngle of the crater ejecta is very sensitive to target properties, especially
ith target coefficient of internal friction, and can vary by up to 30◦.
he ejection angle influences the geometry of the DART crater ejecta
one, which will be imaged by the LICIACube.

The work presented here represents the first step towards an em-
irical scaling relationship for oblique impacts. This work can also
e used as a framework to determine an analytical approximation of
he vertical component of the ejecta momentum, 𝛽 − 1, given known
arget properties. While the derived model is in good agreement with
xisting laboratory experiments, iSALE-2D and iSALE-3D simulation
esults, further modelling studies are needed to determine its limits of
pplicability. Moreover, additional oblique impact experiments would
e extremely valuable to validate this ejecta model.
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