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Abstract
Vertebrate lonesome kinase (VLK) is the only known secreted tyrosine kinase and responsible for the phosphorylation of a 
broad range of secretory pathway-resident and extracellular matrix proteins. However, its cell-type specific functions in vivo 
are still largely unknown. Therefore, we generated mice lacking the VLK gene (protein kinase domain containing, cytoplas-
mic (Pkdcc)) in mesenchymal cells. Most of the homozygous mice died shortly after birth, most likely as a consequence of 
their lung abnormalities and consequent respiratory failure. E18.5 embryonic lungs showed a reduction of alveolar type II 
cells, smaller bronchi, and an increased lung tissue density. Global mass spectrometry-based quantitative proteomics identi-
fied 97 proteins with significantly and at least 1.5-fold differential abundance between genotypes. Twenty-five of these had 
been assigned to the extracellular region and 15 to the mouse matrisome. Specifically, fibromodulin and matrilin-4, which 
are involved in extracellular matrix organization, were significantly more abundant in lungs from Pkdcc knockout embryos. 
These results support a role for mesenchyme-derived VLK in lung development through regulation of matrix dynamics and 
the resulting modulation of alveolar epithelial cell differentiation.
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Introduction

The secreted tyrosine kinase VLK phosphorylates a large 
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proteins [1]. Mice harboring a global knockout of the VLK 
gene (Pkdcc) die shortly after birth, indicating an essential 
function for VLK in development [2, 3]. Their phenotype 
includes skeletal abnormalities triggered by delayed ossifica-
tion, cleft palate, and lung hypoplasia, pointing to a key role 
for VLK in stromal cells [2, 3]. During bone development, 
VLK cooperates with Gli3, a component of the hedgehog 
(HH) signaling pathway, to control the kinetics of chon-
drocyte differentiation, and Pkdcc expression increased in 
the absence of HH signaling [4]. Another group reported 
that VLK negatively regulates HH signaling by promoting 
lysosomal degradation of smoothened, a key component 
of the HH signaling pathway [5]. VLK is highly abundant 
in α-granules of platelets, and upon its stimulated physi-
ological release it phosphorylates co-released substrates [1]. 
Functionally, platelet-derived VLK plays a role in platelet 
aggregation as well as in the release of dense and α-granules, 
thereby promoting thrombus formation in mice upon arte-
riole damage [6]. In the nervous system, VLK-dependent 
phosphorylation of repulsive guidance molecule b (RGMb) 
drives axonal pathfinding and enables the accurate formation 
of neuronal circuitries [7]. Our recent studies demonstrated 
that hepatocyte-derived VLK is important for the preven-
tion of perivascular fibrosis and inflammation in the liver, 
thereby revealing non-cell-autonomous activities of VLK 
in this tissue [8]. However, the specific functions of VLK in 
mesenchymal cells have not yet been determined. Therefore, 
we generated mice lacking Pkdcc in these cells. Because 
of the early postnatal lethality of the homozygous mutant 
mice, which most likely results from respiratory failure, we 
focused the analysis on late embryonic lung development.

Interestingly, development of epithelial structures, such 
as alveolar epithelial type II cell clusters and bronchi, was 
severely impaired, and the overall lung tissue appeared 
denser in Pkdcc knockout mice. Proteomics analysis 
revealed profound differences in extracellular matrix (ECM) 
proteome composition, suggesting that alterations in the 
mesenchyme-derived matrix affect lung epithelial develop-
ment in a non-cell-autonomous manner.

Materials and methods

Mouse maintenance and mouse lines

Genetically modified mice were maintained under Specific 
Pathogen Free (SPF) conditions at the ETH Zurich Phenom-
ics Center (EPIC). They were housed according to Swiss 
guidelines and received food and water ad  libitum. All 
experiments with mice had been approved by the local vet-
erinary authorities (Cantonal Veterinary Office Zurich). Pkd-
ccfl/fl [9] females were bred with Pkdccfl/+/Col1a2-Cre± [10] 
males to obtain progeny containing Pkdccfl/fl/Col1a2-Cre−/−, 

Pkdccfl/+/Col1a2-Cre−/−, Pkdccfl/+/Col1a2-Cre± and Pkdc-
cfl/fl/Col1a2-Cre± genotypes. The knockout mice were com-
pared to mice carrying the Pkdcc floxed alleles, but lacking 
Cre recombinase. PDGFRa-H2B-eGFP mice were obtained 
from The Jackson Laboratory, Bar Harbor, ME. All mice 
were in C57BL/6 genetic background and of mixed sex. The 
exact sample size used in each experiment is indicated in the 
figure legends.

Genotyping

Mouse genotyping was performed by polymerase chain reac-
tion (PCR) analysis of genomic DNA, which had been iso-
lated from tail biopsies obtained after sacrifice (embryos and 
neonates) or ear biopsies (adult mice) using the KAPA2G 
FAST Genotyping Mix (#KK5621, Roche, Rotkreuz, Swit-
zerland). The following primers were used:

Primer Sequence forward 
primer

Sequence reverse 
primer

mPkdcc CAC ACG CTC 
AAT CAT ACC 
ACA CC

GGT CAT TAG GTC 
ACA GGG TAG GG

mCol1a2-Cre TTA GCA CCA 
CGG CAG CAG 
GAG GTT 

CAG GCC AGA TCT 
CCT GTG CAG 
CAT 

mPDGFRa-eGFP CCC TTG TGG 
TCA TGC CAA 
AC

GCT TTT GCC TCC 
ATT ACA CTG G

ACG AAG TTA TTA 
GGT CCC TCG AC

Protein extraction from lung tissue for proteomics 
analysis

Lung tissue samples from mice at E18.5 were soaked in 4 M 
guanidine chloride, 250 mM HEPES pH 7.8, supplemented 
with 1 × PMSF. Samples were processed using pressure 
cycling technology (PCT) as previously described [11], 
sonicated, (3 × 10 cycles; 30 s ON, 30 s OFF) at 4 °C, and 
centrifuged for 10 min at 10,000 × g and 4 °C. The superna-
tants containing the extracted proteins were transferred to a 
new Eppendorf tube, and the buffer was adjusted to 2.5 M 
guanidinium chloride, 250 mM HEPES pH 7.8. Samples 
were stored at – 80 °C before proceeding according to the 
quantitative proteomics workflow.

Quantitative proteomics

For 8plex-TMT quantitative proteomics analysis, we applied 
protein-level labeling, following a previously described 
workflow [12]. Samples were analyzed after trypsin digest. 
The protein samples (50 μg per condition) were first dena-
tured by incubation for 15 min at  65o C. Cysteine residues 
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were reduced by adding 3.5 mM Tris (2-carboxyethyl) phos-
phine (TCEP) and incubation for 45 min at 65 oC, and then 
alkylated by adding 5 mM of chloroacetamide (CAA) for 
30 min at 65 oC. The proteins in each sample were labeled 
at a 1:4 protein: TMT (w/w) ratio with TMT reagents (TMT-
10plex labeling Kit; Thermo Fisher Scientific, Waltham, 
MA) for 1.5 h at room temperature (RT), after which the 
labeling reactions were quenched with 100 mM  NH4HCO3 
for 30 min. The labeled samples were then pooled and 
precipitated by adding seven sample volumes of ice-cold 
acetone and one sample volume of ice-cold methanol and 
incubated for 2 h at – 80 oC. The samples were centrifuged 
at 4700 × g at 4 oC for 30 min, washed with 5 ml ice-cold 
methanol, and centrifuged again. The pellet was air-dried, 
resuspended in 100 mM NaOH, and adjusted with 1 M 
HEPES, pH 7.8 to 1 mg/ml protein in 100 mM HEPES, pH 
7.8. The protein samples were digested with trypsin (Trypsin 
Gold, V5280, Promega, Madison, WI; 1:100 enzyme: pro-
tein ration (w/w)) for 16 h at 37 oC.

Desalting of unfractionated peptides

Before peptide fractionation, peptide samples were desalted 
with Sep-Pak C18 columns (Waters Corporation, Milford, 
MA). Columns were activated with 0.9 ml of 100% metha-
nol, cleaned with 0.9 ml of 80% acetonitrile (ACN), 0.1% 
formic acid (FA), and equilibrated with 3 × 0.9 ml of 3% 
ACN, 1% trifluoroacetic acid (TFA). Next, the samples were 
acidified with 1% TFA and loaded on the column. The col-
umns were washed with 3 × 0.9 ml 0.1% FA, after which the 
samples were eluted with 3 × 200 μl 80% ACN, 0.1% FA. 
The eluted peptides were dried under vacuum and stored 
at – 20 oC.

Peptide fractionation and LC–MS/MS

Peptide mixtures were fractionated using a Dionex Ulti-
Mate 3000 UHPLC (Thermo Fisher Scientific) coupled to 
an  Acclaim™ PA2 nano HPLC column (3 μm, 150 × 0.3 mm, 
Thermo Fisher Scientific). Samples were resuspended in 
5 mM  NH4HCO3, pH 10, and fractionated with the following 
gradient: 2 min 5% B; 50 min 35% B; 58 min 70% B; 65 min 
70% B; 70 min 5% B with eluent A (5 mM  NH4HCO3) and 
eluent B (100% ACN) at a flow rate of 5 μl/min. Forty-
five fractions were collected using a Dionex AFC-3000 
fraction collector in a 96 deep-well plate and subsequently 
pooled into 22 samples. The peptide fractions were ana-
lyzed on a Q Exactive HF-X mass spectrometer coupled to 
an LC Evosep One system. They were loaded onto Evotips 
(Evosep, Odense, Denmark), according to the manufac-
turer’s instructions. Briefly, the Evotips were washed with 
Solvent B (80% ACN, 0.1% FA) and centrifuged for 1 min at 
700 × g. Next, the tips were soaked for ~ 1 min in 1-propanol, 

equilibrated with Solvent A (0.1% FA), and centrifuged for 
1 min at 700 × g. The samples were loaded and centrifuged 
for 1 min at 700 × g. Subsequently, they were washed with 
Solvent A and centrifuged. Finally, 100 μl Solvent A were 
added to the Evotips to prevent them from drying before 
injecting into the mass spectrometer. After the samples were 
loaded, they were analyzed with a pre-programmed 44 min 
gradient per injection using an  Acclaim™  PepMap™ RSLC 
C18 column (2 μm, 75 μm × 150 mm, Thermo Fisher Scien-
tific) at RT. Data was recorded in data-dependent acquisition 
(DDA) mode. A precursor MS1 scan (m/z 350–2000) was 
acquired at a resolution of 120,000 with an AGC target 3e6 
and a maximum fill time of 50 ms. The 20 most abundant 
precursor ions were selected from each MS scan for a sub-
sequent higher-energy collision-induced dissociation (HCD) 
fragmentation with a normalized collision energy (NCE) of 
30%. Fragmentation was performed at resolution 45,000 
with an AGC target of 1e5 and an injection time of 96 ms, 
using a precursor isolation window of 0.7 m/z and a dynamic 
exclusion of 20 s after single isolation and fragmentation of 
a given precursor.

Data analysis and normalization

Raw files were searched by Sequest HT from Proteome Dis-
coverer 3.0 (Thermo Fisher Scientific) against the mouse 
UniProt database (sp_canonical TaxID = 10090, v2022-01-
30; 17067 sequences). The following parameters were used 
for database searches: semi-ArgC for enzyme specificity, 
allowing one missed cleavage; carbamidomethyl (C) and 
TMT6plex (K) as fixed modifications, and acetyl (N-term), 
TMT6plex (N-term), pyroQ (N-term), deamidation (NQ), 
oxidation (MP), and phosphorylation (Y) were set as vari-
able modifications: precursor mass error tolerance of 10 ppm 
and fragment mass error at 0.02 Da. Percolator was used for 
decoy control and FDR estimation (0.01 high confidence 
peptides, 0.05 medium confidence). TMT6plex-modified 
N-terminal modified and tyrosine phosphorylated pep-
tides were excluded from protein quantification, data were 
normalized to ‘Total Peptide Amount’, scaling performed 
with mode ‘On All Average’, and differential abundance 
determined with ‘Protein Abundance Based’ ‘Protein Ratio 
Calculation’ and applying Proteome Discoverer’s ‘ANOVA 
(Individual Proteins)’ setting.

Hydroxyproline analysis

Collagen content of the lung was analyzed as described pre-
viously [12, 13]. Harvested lungs were weighed, snap frozen 
and then homogenized in phosphate buffered saline (PBS). 
1 ml of the homogenate was treated with 10% trichloric 
acid (TCA), then hydrolyzed with 6 M hydrochloric acid for 
18 h at 110 oC, and the pH was adjusted to 7. The oxidation 
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process was started by 20 min incubation with 1 ml of chlo-
ramine T reagent at RT and stopped by addition of 1 ml of 
3.15 M perchloric acid. Samples were then incubated in Ehr-
lich reagent (p-dimethylaminobenzaldehyde added to meth-
yle cellusolve) for 20 min at 55–65 oC. Finally, the absorb-
ance of each sample was measured at 557 nm, and a standard 
curve was calculated using known concentrations of reagent 
grade hydroxyproline (Sigma) as described before.

Collagen cross‑link and protein analysis

Analysis of collagen and of collagen cross-links was per-
formed as reported previously [15]. Briefly, both lungs from 
two animals were pooled and treated with sodium borohy-
dride (Sigma, 25 mg  NaBH4/ml in 0.05 M  NaH2PO4/0.15 M 
NaCl pH 7.4, 1 h on ice, 1.5 h at RT) to stabilize reducible 
acid-labile cross-links, digested for 12 h at 37 oC with high 
purity bacterial collagenase (C0773; Sigma, 50 U/ml) and 
hydrolyzed in 6 N HCl at 110 °C for 24 h. The hydrolysates 
were precleared by solid phase extraction and analyzed on 
an amino acid analyzer (Biochrome30, Biochrome, Cam-
bridge, UK). Quantification was based on ninhydrin-gener-
ated leucine equivalence factors (DHLNL, HLNL: 1.8). The 
nomenclature used in the manuscript refers to the reduced 
variants of cross-links (DHLNL, HLNL). For protein anal-
ysis, specimens were digested with bacterial collagenase. 
After centrifugation, the soluble fraction containing collagen 
was subjected to hydrolysis and amino acid analysis. Col-
lagen content was calculated based on a content of 14 mg 
hydroxyproline in 100 mg collagen. The residual fraction 
was extracted with hot alkali (0.1 N NaOH, 95 °C, 45 min). 
After centrifugation, the supernatant containing non-colla-
gen/non-elastin proteins and the insoluble residue containing 
elastin were subjected to hydrolysis and amino acid analysis.

Tissue and cell processing

Tissue samples were fixed overnight at 4 °C in acetic etha-
nol (25% acetic acid glacial, 75% ethanol) or 4% paraform-
aldehyde (PFA) (#P6148, Sigma), embedded in paraffin, 
and sectioned (3.5 µm thickness). Alternatively, fresh tis-
sue was immediately frozen in tissue freezing medium® 
(#14020108926, Leica Biosystems, Wetzlar, Germany) and 
sectioned (5 µm thickness).

Immunofluorescence staining

Sections from lung tissue, which had been fixed with PFA 
or acetic ethanol, were dewaxed using xylene and rehy-
drated using an ethanol gradient. PFA sections were sub-
jected to an antigen retrieval step performed by incubation 
in citrate buffer (10 mmol/l citric acid pH 6) at 95 °C for 
1 h, followed by three washes with PBS containing Tween 

(PBS-T; 137 mM NaCl, 2.7 mM KCl, 10 mM  Na2HPO4, 
2 mM  KH2HPO4; 0.1% Tween). All samples were blocked 
with 10% bovine serum albumin (BSA) (#P06-1391100, 
PAN Biotech, Aidenbach, Germany) in PBS for 30 min at 
RT, followed by incubation with the primary antibody over-
night at 4 °C and for 2 h with the secondary antibody at RT. 
Hoechst 33342 (1:1000 diluted) was used to counterstain 
nuclei. The samples were mounted with Mowiol-DABCO.

The following antibodies were used for immunostaining: 
rabbit anti-VLK 404 (Whitman laboratory, Harvard Uni-
versity, Boston, MA), goat anti-cytokeratin 19 (Hybridoma 
Product TROMA-III; Developmental Studies Hybridoma 
Bank (DSHB), Iowa City, IA), rabbit anti-SPC (#sc-13979, 
Santa Cruz, Santa Cruz, CA), rat anti-Ki-67-FITC (#11-
5698-82, Thermo Fisher Scientific), rabbit anti-fibromodulin 
(#ab81443, Abcam, Cambridge, UK), mouse-anti podopla-
nin (#8.1.1.; DSHB), rabbit-anti-SOX9 (#AB5535 Millipore, 
Darmstadt, Germany), rat anti-CD31-phycoerythrin (PE) 
(#553370, BD Pharmingen, San Diego, CA), rabbit anti-
matrilin-4 (#ab106379, Abcam), rabbit anti-cleaved caspase 
3 (#9661, Cell Signaling, Danvers, MA), guinea pig anti-
pan keratin (GP14, Progen Biotechnik GmbH, Heidelberg, 
Germany), goat anti-PDGFR alpha (AF1062, R&D Systems, 
Minneapolis, MN), donkey anti-rabbit-Cy3 (#711-165-152, 
Jackson ImmunoResearch, West Grove, PA), donkey anti-
rat-Cy3 (#712-165-150, Jackson ImmunoResearch), bovine 
anti-goat-Cy3 (#805-165-180, Jackson ImmunoResearch), 
goat anti-guinea pig-Cy2 (#106-225-003, Jackson Immu-
noResearch) and donkey anti-goat-Cy2 (#705-225-147, 
Jackson ImmunoResearch).

Haematoxylin and eosin (H&E), Sirius red 
and Herovici staining

Acetic ethanol- or PFA-fixed paraffin sections were depar-
affinized, rehydrated using a xylene/ethanol gradient, stained 
with haematoxylin (#3870, JT  Baker®, Phillipsburg, NJ) and 
eosin-Y alcoholic (#102439, Merck, Darmstadt, Germany), 
Sirius Red (Direct Red 80, #365548, Sigma), or using the 
Herovici procedure [16], and mounted with  Eukitt® (#03989, 
Sigma).

Quantification of Sirius red und Herovici staining

ECM patterns based on Sirius Red staining were analyzed 
in Fiji v1.53t using TWOMBLI (version April 2022) [17]. 
Three representative images were used as a test set to deter-
mine optimal parameters: contrast saturation (0.35), line 
width (5), curvature window (40), minimum branch length 
(15), and maximum display HDM (200). Gap analysis was 
excluded.

Herovici-stained areas were quantified using QuPath Ver-
sion 0.40 [18]. A pixel classifier based on an artificial neural 
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network (ANN_MLP) was trained on a representative subset 
of the analyzed images to identify areas of young collagen. 
Young collagen was calculated in relation to total stained 
tissue area.

Isolation and culture of primary mouse embryonic 
fibroblasts (MEFs) or lung fibroblasts

MEFs or primary lung fibroblasts were isolated from E18.5 
embryos. Embryos were decapitated. For MEF isolation, 
the head, liver and heart were removed, and the remaining 
tissue was minced with a razor blade. For lung fibroblasts, 
the lung was isolated and also minced with a razor blade. 
Minced tissue was incubated with 2 × trypsin (#59418C, 
Sigma) for 15 min in a water bath at 37 °C. The suspen-
sion was then centrifuged, and afterwards the supernatant 
was discarded. Cells were then cultured in 6-well plates in 
DMEM (#6429, Sigma) containing 10% fetal bovine serum 
(FBS, #A4766801 Thermo Fisher Scientific) and 1% penicil-
lin–streptomycin (Sigma) at 37 °C, 5%  CO2.

RNA isolation and RT‑qPCR analysis

RNA was isolated using TRIzol (#15596026, Thermo Fisher 
Scientific) using the manufacturer’s protocol. cDNA was 
synthesized using iScript (#1708891, BioRad, Hercules, 
CA). RT-qPCR was performed using the LightCycler®480 
SYBR Green I Master reaction mix (Roche), and data (Ct-
values) were collected using the LightCycler®480 software. 
All samples were measured in duplicates and gene expres-
sion was determined using the  2−ΔΔCt method. Data were 
normalized to the expression levels of the gene encoding 
ribosomal protein 29 (Rps29).

Primers Sequence forward 
primer

Sequence reverse 
primer

Pkdcc CAA GCT GCT 
CAA AGA GAT 
GGT 

TGG TAG CAA TAG 
CCA TAG AGC TG

Fmod CAG GGC AAC 
AGG ATC AAT G

CTG CAG CTT GGA 
GAA GTT CAT 

Matn4 GGC GAT CCA 
GTA CGC TAT 
GAA 

GGC CAA ACT CCT 
GGA TGA GA

Timp1 GCC CCC TTT 
GCA TCT CTG 
GCA T

TGC GGC ATT TCC 
CAC AGC CT

Col1a1 TGT TCA GCT 
TTG ACC TCCC 
GGCC T

TCT CCCC TTG 
GGT CCC TCG 
ACT 

Col3a1 TCC CCT GGA 
ATC TGT GAA 
TC

TGA GTC GAA TTG 
GGG AGA AT

Primers Sequence forward 
primer

Sequence reverse 
primer

Hrg CAC CAA CTG 
TGA TGC TTC 
TGA 

AGT AGT AGA CTG 
TGG CCG TTC C

C4b CCT GGG TGT 
TCA GCT TCT 
GT

CAG GAA CCA CCC 
TTT GGG TT

Cfh TTA CCG TGA 
ATG TGG TGC 
AGA 

GCT CCA AAG GCC 
ATT TTC TGA 

Fgg GGT CAC CCA 
GAC ACC ATG 
AG

GGT TGG GCA GAA 
ACT ACC GA

Rbp4 ACA AGG CTC 
GTT TCT CTG 
GG

TGT GAA AGT GCC 
CAC CAT GT

Fth1 ACC TGG AGT 
TGT ATG CCT 
CCT 

AGG AAG ATT CGG 
CCA CCT 

Rps29 GGT CAC CAG 
CTC TAC TG

GTC CAA CTT AAT 
GAA GCC TAT 
GTC C

Ccnd1 ACT GCC GAG 
AAG TTG TGC 
AT

AAG CAG TTC CAT 
TTG CAG CAG 

Smo GCA AGC TCG 
TGC TCT GGT 

TCC ACT CGG TCA 
TTC TCA CA

Ptch1 TGG AGC AGA 
TTT CCA AGG 
GGA 

GCC CCA AAT ATG 
AGG AGA CCC 

Gli1 GTA TGA GAC 
AGA CTG CCG 
CT

GCT CAC TGT TGA 
TGT GGT GC

Azgp1 TCA CCC CAG 
ACA TCA ACT 
CCT A

GGT CTA AGG GGA 
TCC AAG CTG 

Pdpn GGA GGG CTT 
AAT GAA TCT 
ACT G

GTT GTA CTC TCG 
TGT TCT CTG 

Scgb1a1 AAG ATC GCC 
ATC ACA ATC 
AC

CTT CAG GGA TGC 
CAC ATA AC

Fgb AAG CTG CCG 
ATG ATG ACT 
ACG 

CGA TAG CCC CCT 
CCA CTG ATA 

Plod1 CCA CAA AAG 
AGA CTG AGG 
GC

CAT CCA CAC TCC 
AGT CCT CC

Plod2 TGA TGG ATT 
CCA CAG ATT 
TAT GA

CCC CTC CGA TAC 
TGT TCA TT

Plod3 ATT GCT GGT 
GAT CAC TGT 
GG

TCC TTC TTG AGC 
CAC CTG AC
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Image acquisition and quantification

Fluorescence stainings were imaged using an Axioskop 2 
fluorescence microscope (Carl Zeiss, Inc., Oberkochen, Ger-
many), and the corresponding software (Carl Zeiss, Inc.). 
Image acquisition was performed with an Axiocam HRc 
camera (Carl Zeiss, Inc.) connected to the microscope. His-
tochemical stainings were imaged with a Pannoramic 250 
slide scanner (3DHISTECH, Budapest, Hungary). Quanti-
fications were performed using the Fiji software [19].

Computer tomograph (CT) scan

The heads from E18.5 CTRL and Pkdcc−/− embryos were 
fixed in 4% PFA for 24 h and then washed and stored in 
PBS. They were scanned on a vivaCT80 (Scanco Medical 
AG, Brüttisellen, Switzerland). 1000 projection images were 
obtained at an energy of 45 kVp, a current of 177 µA and 
an integration time of 350 ms. Density calibration of the 
scanner is checked weekly. Images were reconstructed at 
an isotropic voxel size of 10.4 µm. After filtration (Gauss 

Fig. 1  VLK is highly expressed in the lung during late embryonic 
development. A, B Representative VLK immunofluorescence stain-
ings of sections from the lung of wild-type mice at different stages 
of embryonic development (red or white) and counterstaining of 
nuclei with Hoechst (blue). Scale bars: 50 μm. C, D RT-qPCR analy-
sis of RNA samples from total lung tissue of wild-type mice at dif-
ferent stages of lung development (embryonic day (E) 13.5–18.5; C, 
D) and of postnatal (P2, C) and adult mice (D) for Pkdcc relative to 

Rps29. N = 4–5 mice per time point. E Representative VLK immu-
nofluorescence stainings (red) of lung sections from E18.5 or adult 
PDGFRa-eGFP mice. eGFP-positive mesenchymal cells are labelled 
in green. eGFP/VLK double positive cells are indicated with white 
arrows. Nuclei were counterstained with Hoechst (blue). Scale bars: 
20  μm (E18.5) and 50  μm (adult). Bar graphs show mean ± S.D. P 
values are indicated in the graphs; statistical analysis was performed 
using Mann–Whitney U test
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filter, sigma 1.2, support 1), a threshold of 150 mgHA/cm3 
was applied to segment bone from soft tissue. Because of the 
low threshold, noise in the soft tissue remained, which was 
removed partially by a component labelling that excluded 
components containing less than 20 voxels. Images were 
visualized in 3D using the software of the scanner (µCT Ray, 
Scanco Medical AG).

Statistical analysis

Statistical analysis was performed using Prism 8 software 
(GraphPad Inc., San Diego, CA). Differences between 
groups were analyzed using Mann–Whitney test (n ≥ 4 or 
unpaired t test (n = 3)).

Results

VLK is expressed in the developing lung

Based on the previously reported Pkdcc expression in mes-
enchymal and mesothelial cells of the lung and the abnor-
malities in lung development that were observed in mice 
with global Pkdcc knockout [3], we studied the expression 
and function of VLK in this tissue. Consistent with pub-
lished RNA data [3], immunofluorescence staining using 
an antibody with previously confirmed specificity for VLK 
[8] showed expression of VLK in the developing lung. Only 
weak staining was observed at embryonic day 13.5 (E13.5), 
but the staining intensity continuously increased until post-
natal day 2 (P2) (Fig. 1A, B and Supplementary Fig. 1A for 

Fig. 2  Pkdcc deletion in mesenchymal cells leads to smaller body 
size, craniofacial abnormalities and high postnatal lethality. A, B 
Expected and observed ratios between genotypes in the progeny of 
Pkdccfl/fl x Pkdccfl/+; Col1a2-Cre± mice after weaning (A) or in the 
progeny of Pkdccfl/fl x Pkdccfl/fl; Col1a2-Cre± mice at E18.5 (B). C, 
D Whole-body images (C) and head close-up (D) of CTRL (left) 
and Pkdcc−/− (right) mice taken at the indicated ages. E, F RT-
qPCR analysis of RNA samples from primary mouse embryonic 
fibroblasts (MEFs; E) and primary lung fibroblasts (F) from E18.5 

CTRL and Pkdcc−/− mice for Pkdcc relative to Rps29. Bar graphs 
show mean ± S.D. P values are indicated in the graphs; statisti-
cal analysis was performed using unpaired t test. N = 3–4 MEF, 5–8 
lung fibroblasts; each culture was from a different embryo. G Rep-
resentative co-immunofluorescence stainings for VLK (red), PDGFR 
alpha  (green) or pan-keratin (Krt) (green) on lung sections from 
adult CTRL and Pkdcc−/− mice. Double positive cells appear yellow. 
Nuclei were counterstained with Hoechst (blue). Scale bars: 50 μm
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secondary antibody staining). mRNA quantification using 
whole lung tissue revealed a decrease in Pkdcc expression 
after birth (Fig. 1C), and a further decline in adult lung 
(Fig. 1D). These results demonstrate that VLK expression 
peaks around birth and suggest a role for VLK during the 
canalicular (E16.5-E17.4) and saccular stages (E17.5-P5) 
of lung development, when the respiratory tree is further 
expanded, the terminal bronchioles are divided into respira-
tory bronchioles and alveolar ducts, and the interstitium is 
thinned as a consequence of apoptosis and differentiation of 
mesenchymal cells [17, 18].

Immunofluorescence staining of lung sections from 
mice that express nuclear enhanced green fluorescent pro-
tein (eGFP) in mesenchymal cells of all organs under the 
control of the platelet-derived growth factor receptor alpha 
(Pdgfra) promoter identified VLK in eGFP-positive cells of 
E18.5 lungs, confirming VLK expression in cells of mesen-
chymal origin (Fig. 1E). However, VLK staining was also 
detected in other cells of the developing lung, in particular 
in epithelial cells. No signals were obtained when sections 
were only stained with the secondary antibody (Supplemen-
tary Fig. 1A). In adult lung tissue, VLK staining was still 
observed in epithelial cells, but the number of eGFP-positive 
mesenchymal cells as well as the VLK staining intensity 
in the mesenchyme had decreased (Fig. 1E; Supplementary 
Fig. 1B for secondary antibody staining only). Together with 
the RNA data, this finding demonstrates that VLK expres-
sion declines in the lung after birth, in particular in mesen-
chymal cells, and suggests that VLK in mesenchymal cells 
is most important during late lung organogenesis.

Deletion of Pkdcc in mesenchymal cells results 
in smaller body size, craniofacial abnormalities 
and early postnatal lethality

To investigate the role of mesenchyme-derived VLK in 
lung organogenesis, we crossed mice with floxed Pkdcc 
alleles [9] with transgenic mice that express Cre under the 
control of the Col1a2 promoter [10]. We and others pre-
viously showed that this mouse line allows specific dele-
tion of floxed alleles in cells of mesenchymal origin when 
male Col1a2-Cre mice are used [10, 19]. Surprisingly, 
the Col1a2-Cre-driven Pkdcc knockout (Pkdcc−/−) caused 
lethality of most of the mice. Only very few homozygous 
knockout mice survived the first night or even reached 
adulthood, with the majority being males (Fig. 2A). Chi-
square test revealed a significant difference between the 
observed and expected Mendelian ratio (Supplementary 
Fig. 1C). However, when we performed timed pregnancies 
and analyzed the embryos at E18.5, the knockout mice 
were present in the expected Mendelian ratio (Fig. 2B). 
E18.5 knockout embryos included mice of both sexes, 
although seven out of ten knockout embryos that were 
tested for their sex were also males. These findings sug-
gest that Pkdcc−/− mice die shortly after birth, possibly 
from respiratory failure. The few surviving homozygous 
Col1a2-Pkdcc−/− mice were smaller than control mice 
(mice with floxed Pkdcc alleles, but without Cre allele) or 
heterozygous littermates, both at birth and during adult-
hood (Fig. 2C). Moreover, they presented craniofacial 
abnormalities, resulting in a ‘rounded’ head (Fig. 2D). 
Heterozygous littermates did not show an obvious mac-
roscopic phenotype. This new mouse line therefore has 
some similarities with the previously reported global 
Pkdcc knockout line obtained with transgenic mice in 
which Cre expression is under the control of the ubiq-
uitously active Ella promoter [3], suggesting that major 
phenotypic traits of the global knockout mice result from 
the loss of VLK in mesenchymal cells. The efficient Pkdcc 
knockout was confirmed in MEFs (Fig. 2E) and in lung 
fibroblasts (Fig. 2F) from E18.5 embryos. Co-immunoflu-
orescence staining with markers for epithelial cells (pan-
keratin) or mesenchymal cells (PDGFRα) showed that 
VLK was almost undetectable in mesenchymal cells of 
adult Pkdcc−/− mice, while epithelial cells were still VLK 
positive (Fig. 2G, Supplementary Fig. 1D). These find-
ings suggest the expected mesenchyme-specific deletion 
of Pkdcc, although the signal intensity in some bronchi 
was also reduced. This could be a consequence of the loss 
of mesenchyme-derived VLK that also reaches epithelial 
cells, but some deletion in epithelial cells cannot be fully 
excluded.

Following the initial characterization of the knockout 
mice and considering the high lethality, breedings leading to 

Fig. 3  Loss of mesenchyme-derived VLK causes severe lung abnor-
malities. A Ratio of lung weight of E18.5 embryos relative to whole 
body weight. N = 4–5. Each image depicts a single mouse. B, C Rep-
resentative photomicrographs (B; Scale bars: 50  mm) and quanti-
fication of positively stained area relative to total lung area in lung 
sections from E18.5 CTRL and Pkdcc−/− mice using the indicated 
histological stainings or measuring young collagen based on Herovici 
stainings (B). N = 6 mice per genotype. D–F Representative immu-
nofluorescence stainings of mouse lung sections from E18.5 CTRL 
and Pkdcc−/− mice for Ki67 (D, Scale bars: 50  μm) and quantifica-
tion of Ki67-positive cells per area (E) or total nuclei count per field 
of view (F). N = 4–10 mice per genotype. G Representative immuno-
fluorescence stainings of mouse lung sections from E18.5 CTRL and 
Pkdcc−/− mice for cleaved caspase 3. Liver sections from mice treated 
with the hepatotoxin  CCl4 were used as a positive control (Scale bars: 
100  μm). H RT-qPCR analysis of RNA samples from E18.5 lung 
tissue of CTRL and Pkdcc−/− mice for Pkdcc, Col3a1, Col1a1 and 
Timp1 relative to Rps29. N = 8 per genotype. I, J Biochemical analy-
sis of matrix proteins (I) or collagen cross-links (J) in E18.5 lungs. 
N = 8 per genotype, for each data point two embryos were pooled. 
Bar graphs indicate mean ± S.D. P values are indicated in the graphs; 
statistical analysis was performed using Mann–Whitney U test. Each 
image depicts a single mouse
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Col1a2-Pkdcc−/− mice in the litters were stopped for animal 
welfare reasons, in line with 3R regulations. We therefore 
performed timed matings and focused on E18.5 embryos, 
because this time point represents the peak of embryonic 
VLK expression (Fig. 2A, B).

Loss of mesenchyme‑derived VLK causes skeletal 
and lung abnormalities

Based on the previously demonstrated skeletal abnormali-
ties of the mice with global Pkdcc knockout, we performed 
computed tomography (CT) scans of the heads from E18.5 
embryos. The images confirmed the rounded shape of the 
head in the Pkdcc−/− mice. The top of the calvaria appeared 
rounded compared to CTRL mice, while the facial bones 
were shortened, resulting in brachycephaly (Supplementary 
Fig. 2A, B). Furthermore, the distance between left and right 
palate bone was increased. No increase in the distance was 
observed between the rostral bones, which form the palate, 
the palatine processes of the maxillae and the ossa inci-
sive. These features may indicate cleft palate, which would, 
however, only be present in the caudal part (Supplemen-
tary Fig. 2C). Overall, the phenotype of the skull appears 
milder than in the global Pkdcc knockout pups published 
by Kinoshita et al. [3], which is consistent with a cell type-
specific deletion.

Analysis of the lung showed a reduced ratio of lung to 
body weight in the mutant mice (Fig. 3A). Histologically, 
hematoxylin/eosin and Herovici stainings of lung sections 
revealed an altered and denser lung structure in Col1a2-
Pkdcc−/− homozygous embryos at E18.5 compared to con-
trol littermates (Fig. 3B, C), although the Herovici stain-
ing did not reveal differences in young collagen (Fig. 3C). 
The enhanced tissue density was also not a consequence 
of enhanced cell proliferation at this time point. Neither 
the number of Ki67-positive cells nor the total cell num-
ber (determined based on the number of nuclei) in whole 
lung tissue differed between genotypes (Fig. 3D–F). Cleaved 

caspase 3-positive (apoptotic) cells were not detectable in 
CTRL or Pkdcc−/− homozygous embryos at E18.5 (Fig. 3G). 
These data suggest that the denser lung structure results from 
alterations in the deposited ECM. RT-qPCR analysis of RNA 
from total E18.5 lung tissue for markers of collagen-dom-
inated fibrosis, such as collagen 1α1 (Col1a1) or collagen 
3α1 (Col3a1), did not reveal differences between genotypes. 
There was even a significant decrease in the expression 
of the fibrosis marker TIMP metallopeptidase inhibitor 1 
(Timp1) in lung tissue of Pkdcc−/− mice (Fig. 3H). Together, 
this data does not support a classical fibrotic phenotype [20, 
21]. Expression of these genes was also not significantly 
altered in cultured primary MEFs from Pkdcc−/− mice (Sup-
plementary Fig. 3A). In line with the mRNA data, collagen 
staining of E18.5 lung sections using Sirius Red did not 
show obvious differences in staining intensity, area of colla-
genous ECM, collagen branch points, high density matrix or 
collagen fiber alignment between genotypes (Supplementary 
Fig. 3B, C). The similar amounts of collagen and elastin in 
E18.5 lung tissue were confirmed by biochemical quantifi-
cation. The total amount of non-collagen and non-elastin 
proteins was even slightly, but significantly reduced in lung 
tissue from Pkdcc−/− mice (Fig. 3I), suggesting that altera-
tions in the composition and/or organization of the ECM 
rather than a global increase in ECM proteins are responsible 
for the phenotypic abnormalities. Biochemical analysis of 
E18.5 lung tissue further revealed an increase in the hydrox-
ylysine-derived collagen cross-link dihydroxylysinonorleu-
cine (DHLNL), demonstrating that the deposited collagen 
is differently cross-linked. This may have functional conse-
quences, because an increase in DHLNL is associated with 
a stiffer ECM [25]. Hydroxylysinonorleucine (HLNL) col-
lagen cross-links were not affected in Pkdcc−/− lung tissue 
(Fig. 3J). To determine if the increase in DHLNL cross-links 
is a consequence of increased expression of genes encoding 
the lysine hydroxylases procollagen-lysine,2-oxoglutarate 
5-dioxygenases 1–3 (Plod1, Plod2, Plod3), we analyzed 
their expression in cultured primary E18.5 lung fibroblasts, 
but we did not detect a significant difference between geno-
types. In vivo, Plod1 and Plod3 expression was even reduced 
in total lung tissue. Only expression of Plod2 was increased, 
but the variability in the knockout mice was rather high 
(Supplementary Fig. 3D, E). Overall, these results suggest 
that changes in the expression of PLODs are not responsible 
for the increased DHLNL levels.

Histological analysis of lung tissue from adult heterozy-
gous mice did not show an obvious phenotype (Supplemen-
tary Fig. 4A, B), and neither expression of Col1a1, Col3a1 
and Timp1 nor the total levels of hydroxyproline were 
affected (Supplementary Fig. 4C, D).

Fig. 4  Pkdcc deletion in mesenchymal cells severely affects epithelial 
cells in the developing lung. A-I Representative immunofluorescence 
stainings of E18.5 lung sections from CTRL and Pkdcc−/− mice for 
SPC (A), CK19 (C), SOX9 (F) or CD31 (H) (red), counterstained 
with Hoechst (blue), and quantification of SPC-positive cells (B; 
N = 7–8 mice per genotype), total CK19-positive area (D), number 
of bronchi per area, CK19-positive wall area and wall thickness (E; 
N = 6–8 mice per genotype), SOX9-positive cells (G; N = 6–8 mice 
per genotype); or size and number of CD31-positive vessels (I; 
N = 6–7 mice per genotype). The cartoon in E indicates the param-
eters that were measured to obtain the wall area and wall thickness. 
Created with BioRender. J RT-qPCR analysis of RNA samples from 
lung tissue of E18.5 CTRL and Pkdcc−/− mice for Gli1, Ptch1, Fgf10 
and Fgfr2b relative to Rps29. N = 8 per genotype. Scale bars: 50 μm. 
2–5 images per mouse were analyzed. Bar graphs show mean ± S.D. 
P values are indicated in the graphs; statistical significance was deter-
mined using Mann–Whitney U test
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Loss of VLK in mesenchymal cells affects 
differentiation of lung epithelial cells

Next, we investigated whether loss of VLK in mesenchy-
mal cells affects epithelial cell differentiation. This is rel-
evant, since during the saccular stage alveolar epithelial 
cells (AEC) differentiate into alveolar type I (AECI; pneu-
mocytes) and type II epithelial cells (AECII) [26]. The 
latter secrete surfactant, thereby reducing tension within 
the lung upon inhalation [27]. Lung tissue from E18.5 
Pkdcc−/− embryos showed significantly less cells that were 
positive for the AEC II cell marker surfactant protein C 
(SPC) compared to control littermates (Fig. 4A, B, and 
Supplementary Fig. 5A for staining with secondary anti-
body only). The number of AECI cells was not affected as 
revealed by podoplanin immunofluorescence staining (Sup-
plementary Fig. 5B, C). However, RT-qPCR data showed 
a significant reduction in podoplanin (Pdpn) expression 
in Pkdcc−/− embryos (Supplementary Fig. 5D), possibly 
as a result of reduced expression of this gene in AECI or 
other cell types. The secretoglobin family 1A member 1 
(Scgb1a1), a marker for Club cells [28], was expressed at 
similar levels in E18.5 lungs from CTRL and Pkdcc−/− mice 
(Supplementary Fig. 5E). However, the area stained with 
an antibody against the bronchial epithelial cell marker 
cytokeratin 19 (CK19) [29] was significantly reduced in 
Pkdcc−/− lung tissue (Fig. 4C, D). The bronchial wall area 
was also reduced, while the thickness of the bronchi and 
their total number was not significantly affected (Fig. 4E 
and Supplementary Fig. 5A for secondary antibody staining 
only). These results indicate abnormalities in the structure of 
bronchi, rather than a reduction of their numbers.

Overall, these data suggest that lung epithelial differentia-
tion is delayed and/or altered in Col1a2-Pkdcc−/− homozy-
gous embryos. The SRY-box transcription factor 9 (SOX9) 
is involved in epithelial cell proliferation and differentiation 
across organs, and its expression is usually downregulated in 
the developing lung at E16.5 [30]. Consistent with a delay in 

lung development, we detected significantly more SOX9-pos-
itive cells in Pkdcc−/− vs. control lung tissue at E18.5 (Fig. 4F, 
G and Supplementary Fig. 5F for secondary antibody staining 
only). Vascularization also plays a key role in lung organogen-
esis [21]. However, there was no difference in vessel size or 
vessel number as revealed by CD31 staining (Fig. 4H, I), but 
abnormalities in their positioning or functionality cannot be 
excluded. Because the HH signaling cascade plays an impor-
tant role during lung development and in the crosstalk between 
mesenchymal and epithelial cells [28, 29] and because of the 
previously identified link between VLK and the HH pathway 
[4, 5], we investigated the expression of several HH targets at 
the mRNA level. Surprisingly, expression of Gli1 and Ptch1 
was mildly, although significantly downregulated in lungs 
of Pkdcc−/− mice (Fig. 4J), while expression of Ccnd1 and 
Smo was not affected (Supplementary Fig. 5G). The reduced 
expression of Gli and Ptch1 may point to a mild defect in lung 
branching because of the key role of HH signaling in this pro-
cess [33, 34]. Consistent with this assumption, mRNA levels 
of Fgf10 and its receptor Fgfr2b, which are also key regulators 
of lung branching [35, 36] were also reduced in Pkdcc−/− mice 
(Fig. 4J).

Overall, these results support a delayed or defective dif-
ferentiation of the lung epithelium in mice lacking VLK in 
mesenchymal cells. This is likely to result in respiratory 
problems, providing a possible explanation for their early 
postnatal lethality.

VLK regulates the abundance of ECM proteins 
in the developing lung

To identify proteins, whose abundance is affected by the 
loss of VLK in mesenchymal cells and which may affect 
epithelial cells, we performed an unbiased mass spec-
trometry-based quantitative proteomics analysis of lung 
tissue from E18.5 Pkdcc−/− mice and control littermates 
(Fig. 5A). In total, 6989 proteins were identified, of which 
4627 could be relatively quantified through protein-level 
TMT labelling (Supplementary Table S1). Among them, 
97 proteins were significantly and at least 1.5-fold differ-
entially abundant (raw p value < 0.05) (62 increased, 35 
decreased) between genotypes (Fig. 5B) (Supplementary 
Table S2). String database [37] (https:// string- db. org/) 
analysis identified strong interactions between subsets of 
differentially abundant proteins and classified 24 of them 
as located in the extracellular region (GOCC:0005576) 
(Supplementary Table S3) as one of the top ten enriched 
COMPARTMENTS [38] categories. Fifteen of these pro-
teins also belong to the mouse matrisome [39] (Fig. 5C, 
D), further pointing to alterations in the matrix of the 
knockout mice as suggested by the histological and bio-
chemical data. Based on the increase in DHLNL cross-
links that we observed (Fig. 3J), we checked if enzymes 

Fig. 5  Quantitative proteomics analysis of E18.5 lung tissue reveals 
profound differences between CTRL and Pkdcc−/− mice. A Work-
flow of proteomics analysis and validation, created with BioRender. B 
Volcano plot of all quantified proteins in lungs of CTRL vs. Pkdcc−/− 
mice. Thresholds for selection of differentially abundant proteins: raw 
p value: 0.05, fold change: 1.5. Listed are the top ten proteins with 
either lower or higher abundance in samples from knockout vs. CTRL 
mice. C String database [37] (www. string- db. org) analysis of the 112 
proteins fulfilling criteria for differential abundance between geno-
types. Proteins classified as ‘GOCC:0005576 extracellular region’ 
by COMPARTMENTS [38] are highlighted and color-coded for sig-
nificantly higher (red) or lower (green) abundance in samples from 
knockout vs. CTRL mice. D Table showing details for the 25 proteins 
highlighted in C). Asterisks indicate proteins that are also compo-
nents of the mouse matrisome [39]. Information on reported tyrosine 
phosphorylation (pY) was extracted from  PhosphoSitePlus® v6.6.0.4 
[51] (www. phosp hosite. org)

◂
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involved in collagen hydroxylation are differentially abun-
dant. Among the detected enzymes we found that the abun-
dance of multifunctional procollagen lysine hydroxylase 
was not altered, but prolyl 3-hydroxylase 3 (P3h3), which 
is part of a complex that also catalyzes lysine hydroxyla-
tion [40], was significantly increased in abundance in the 
knockout mice (Fig. 5B).

Analysis of 98 unique quantifiable tyrosine-phosphorylated 
peptides from the same dataset (Supplementary Table S4) iden-
tified the fibrinogen beta chain as significantly differentially 
lower in abundance in samples from Pkdcc−/− vs. control litter-
mates. The affected phosphorylation site (Y4) is located within 
the proteolytically released fibrinopeptide B. Notably, the effect 
size of this difference in abundance between genotypes (log2 
= 0.592) was almost twice as high as for the corresponding 
fibrinogen beta protein (0.33), indicating a bona fide differential 
phosphorylation event.

The differential abundance of other quantified proteins 
suggests that alterations in a few specific non-collagen ECM 
proteins might drive the reported lung phenotype in Col1a2-
Pkdcc−/− embryos. In line with VLK’s reported function as a 
secreted kinase [1], we checked if these and other differentially 
abundant proteins are regulated at the protein rather than the 
RNA level. Interestingly, fibromodulin (FMOD), matrilin-4 
(MATN4), fibrinogen beta (FGB), complement factor H (CFH), 
zink-alpha-2-glycoprotein (AZGP1) and retinol-binding pro-
tein 4 (RBP4) fulfilled this criterium (Fig. 6A), while others, 
including histidine-rich glycoprotein (HRG), fibrinogen gamma 
(FGG) and ferritin heavy chain (FTH1), also showed alterations 
in their mRNA levels (Fig. 6A). FMOD and MATN4 protein 
levels were approximately 6 or 4 times, respectively, higher in 
lung tissue from Col1a2-Pkdcc−/− embryos (Figs. 5D and 6A).

To validate the proteomics findings, we determined FMOD 
and MATN4 expression in lung tissue sections from E18.5 
embryos by immunofluorescence staining and confirmed 
the increase in FMOD and MATN4 in the lung of Col1a2-
Pkdcc−/− embryos (Fig. 6B-D and Supplementary Fig. 6 for 
secondary antibody staining only). MATN4 belongs to the 
matrilin family, which are matrix proteins that mainly serve 
as adaptors to link different ECM proteins, thereby building a 

supramolecular structure [33, 34]. FMOD is a small leucine-
rich proteoglycan that is involved in collagen fibrillogenesis 
[43]. The differential abundance of these proteins therefore 
suggests that loss of mesenchymal VLK causes alterations in 
matrix organization and structure.

Discussion

In this study we provide evidence for a key role of mesenchyme-
derived VLK in lung development via its role in the regulation 
of the lung ECM and resulting alterations of lung epithelial 
cell differentiation. Knockout of Pkdcc in mesenchymal cells 
caused early postnatal death of the mutant mice. Surprisingly, 
very few Pkdcc−/− mice, in particular male mice, survived to 
adulthood and did not exhibit major abnormalities, possibly as 
a result of unknown compensatory mechanisms, which may be 
more active in males. Alternatively, the Cre-mediated deletion 
may have been less efficient in these mice, resulting in compen-
satory growth of cells, which had escaped recombination. Such 
a phenomenon is frequent in mice with deletion of an essential 
gene [37, 38].

We propose that delayed or incomplete lung organogenesis 
likely results in impaired gas exchange and is the major cause 
for the very early postnatal lethality. In addition, mild altera-
tions in the nasal bone and airway passage may further aggra-
vate any breathing problems.

The reduction in AECII in Col1a2-Pkdcc−/− lungs most 
likely results in insufficient surfactant production, leading to 
reduced oxygenation in the neonatal mice. Similarly, human 
premature infants have breathing difficulties due to the incom-
plete differentiation of surfactant-producing AECII cells and 
need surfactant supplementation to reduce tension within their 
lungs [44].

In line with an overall impaired lung organogenesis, the 
bronchial structures were also altered as reflected by reduced 
CK19 staining and the smaller bronchial wall area. Finally, 
expression of the progenitor marker SOX9, which during 
lung development is normally downregulated by E16.5 [30], 
was still strongly expressed in E18.5 Col1a2-Pkdcc−/− tis-
sue. This data further supports a delay or arrest in lung epi-
thelial cell differentiation. It is possible that lung branching 
is also mildly affected in the mutant mice as suggested by the 
reduced expression of HH targets and of the genes encoding 
FGF10 and its receptor FGFR2, which are crucial regulators 
of this process [33–36]. Therefore, this possibility should be 
tested in future studies using whole-mount immunostaining.

Although some deletion in other cell types cannot be 
fully excluded, the results presented here strongly suggest 
non-cell-autonomous functions of VLK in the developing 
lung, which may be mediated by alterations of the matrix. 
However, we neither observed enhanced mesenchymal cell 
proliferation nor alterations in the extent of apoptosis in the 

Fig. 6  Verification of differential abundance of fibromodulin and 
matrilin-4 in E18.5 lungs of CTRL vs Pkdcc−/− mice. A Bar graphs 
showing relative abundance of individual proteins based on the MS 
data and corresponding mRNA levels determined by RT-qPCR anal-
ysis (relative to Rps29). N = 4 mice per genotype (MS data) or 2–8 
mice per genotype (RT-qPCR). B Representative immunofluores-
cence stainings of E18.5 lung sections from CTRL and Pkdcc−/− mice 
for FMOD or MATN4 (red or white) and counterstaining with Hoe-
chst (blue). Scale bars: 50 μm. C, D Quantification of FMOD (C) or 
MATN4 (D) staining intensities. N = 11–12 mice per genotype. Bar 
graphs show mean ± S.D. P values are indicated in the graphs; statis-
tical significance was determined using Mann–Whitney U test (C, D 
and RT-qPCR in A). For "Relative protein abundance", p-values were 
taken from the MS analysis as described in Fig. 5B

◂
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lung of Col1a2-Pkdcc−/− mice at E18.5, suggesting that the 
histological alterations are not a consequence of a higher 
number of mesenchymal cells. There was also no increased 
expression of collagens I and III, and the amount of total 
collagen was also unchanged. By contrast, DHLNL collagen 
cross-links were increased in E18.5 Col1a2-Pkdcc−/− lungs, 
suggesting potential differences in tissue stiffness.

Quantitative proteomics comparing lung tissue from 
E18.5 Col1a2-Pkdcc−/− mice and control littermates iden-
tified a significantly increased abundance of FMOD and 
MATN4 in Col1a2-Pkdcc−/− lungs. FMOD forms a com-
plex with and guides lysyl oxidase to specific collagen 
cross-linking sites [47], and the increased FMOD levels may 
therefore contribute to the observed differences in DHLNL 
cross-links. Similarly, the increase in MATN4 could also 
lead to a denser and potentially stiffer ECM due to its func-
tion in linking ECM components [33, 34].

The increased FMOD and MATN4 levels in the lung of 
Col1a2-Pkdcc−/− mice were not associated with increased 
levels of their mRNAs, suggesting that their abundance 
is regulated at the protein level. Further studies should 
address whether VLK directly phosphorylates these pro-
teins, thereby affecting for example their stability. The 
FMOD protein has a tyrosine residue (Y319), which had 
been shown to be phosphorylated (phosphosite.org), and 
VLK may be responsible for its phosphorylation. Members 
of the matrilin family have several conserved tyrosines, 
which up to now have not been reported as being phos-
phorylated. However, the strong conservation of some of 
these residues points to important biological functions, 
and it may well be that these tyrosines get phosphorylated 
under certain conditions.

Although inherently very limited due to lack of a spe-
cific enrichment step, a search for tyrosine phosphorylated 
peptides revealed differential phosphorylation of Y24 in 
the fibrinogen beta chain that corresponds to Y4 of the pro-
teolytically released fibrinopeptide B. These data are not 
sufficient to validate fibrinogen beta as a new and direct 
VLK substrate, but are consistent with reports on fibrino-
gen tyrosine phosphorylation in the context of VLK activity 
[42, 43]. The reduced Tyr-phosphorylation of fibrinopeptide 
B in the Pkdcc−/− mice may provide an explanation for the 
overall reduction in total fibrinogen beta, possibly because 
of protein destabilization. This may further contribute to the 
alterations in the ECM. Tyrosine phosphorylated peptides in 
MATN4 and FMOD were not detected in this study. There-
fore, their potential phosphorylation should be tested in the 
future using a phosphopeptide enrichment approach.

Overall, our study shows that mesenchyme-derived VLK 
is required for proper lung organogenesis, an activity that 
results at least in part from non-cell-autonomous effects on 
lung epithelial cells. VLK is a secreted kinase, which phos-
phorylates substrates (including ECM and secreted proteins) 

in the secretory pathway and extracellularly [1]. Therefore, 
VLK is not only localized in or around the producing cells, 
but also in their microenvironment, and it seems likely that 
VLK produced by mesenchymal cells affects the neighbor-
ing epithelial cells. In addition, the phosphorylated sub-
strates of VLK can affect the cells that produce VLK, but 
also other cell types in the close environment. A paracrine 
mechanism of action of VLK was previously also demon-
strated in the liver, where the loss of VLK in hepatocytes 
promoted perivascular fibrosis, a phenotype that resulted 
from altered matrix production by mesenchymal cells [8].

Importantly, alterations in ECM deposition are a com-
mon feature of several lung pathologies in humans [49]. 
Therefore, it will be interesting in the future to determine 
the expression and function of VLK in developmental and 
fibroproliferative diseases of this organ.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00018- 023- 04735-6.
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