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ABSTRACT 

Determining similarities and differences in brain structure across psychiatric disorders 

is important to determine if psychiatric taxonomy is reflected in distinct brain structural 

changes. Previous neuroimaging meta-analyses have typically focused on a single 

disorder, precluding transdiagnostic comparisons, we therefore aimed to quantify 

patterns of similarity and differences between psychiatric disorders in terms of regional 

brain volumes. 

Here we show, in network and pairwise meta-analyses of 498 studies (51,227 

individuals, 17 psychiatric disorders, 17 brain regions), that psychiatric disorders show 

both distinct and overlapping patterns of brain volume gain and loss. A principal 

components analysis demonstrated the first principal component could account for 48 

percent of variance and corresponded to a pattern of increased basal ganglia and 

decreased hippocampal and amygdala volumes. This component loaded most 

strongly for disorders on the psychosis spectrum, and most weakly for affective 

disorders. Our findings illustrated that while similar volumetric alterations are 

frequently shared between disorders,  neuroanatomical patterns also appear related 

to clinically meaningful categories. 

PROSPERO Registration number: CRD42020221143 



Main Text 

A wide range of psychiatric disorders have been associated with alterations in regional 

brain volumes.1–3 Understanding similarities and differences in brain structure 

between disorders has major relevance for understanding if there are transdiagnostic 

or distinct pathophysiological processes in psychiatric disorders.  

Meta-analysis has been frequently used to synthesise findings from the large number 

of psychiatric structural neuroimaging studies. These meta-analyses, however, 

typically only examine a single disorder.2,3 Where there have been transdiagnostic 

meta-analyses, these have reported some shared patterns of structural abnormalities 

across disorders, but have studied a relatively restricted range of disorders.1,4–6 As 

such, it remains unclear whether regional patterns of structural abnormalities differ 

between disorders or represent a more general transdiagnostic process. 

Meta-analyses of neuroimaging studies can use a coordinate based approach which 

allows an assessment of the spatial distribution of group differences.7 This approach, 

however, does not allow for analysis of the magnitude of group differences. An 

examination of the magnitude of differences can be undertaken via pairwise meta-

analysis following the calculation of effect sizes from data reporting predefined regions 

of interest (ROIs). A pairwise approach allows for the examination of patient-control 

differences, but is not well suited to comparing multiple disorders.   

Network meta-analysis is an approach originally used for the comparison of multiple 

health interventions,8 and allows comparisons to be made between interventions that 

have not been directly tested against one another. This approach has not previously 

been applied to neuroimaging studies. In addition to being a succinct approach to 

analysing data from multiple disorders, it has further advantages over a pairwise 

approach in that it allows for the inclusion of studies that have compared different 

disorders as well as those solely report patient-control differences. It has the potential 

to advance understanding by coherently synthesising structural imaging studies 

across multiple disorders, even in cases where these disorders have not been directly 

compared.  



In the current paper we describe a network meta-analysis of structural MRI studies 

including individuals from seventeen separate diagnostic categories. The protocol was 

registered on PROSPERO on 18th November 2020 (CRD42020221143) and 

published in a peer-reviewed journal https://ebmh.bmj.com/content/24/3/111.9 Our 

primary objective was to quantify patterns of similarity and differences in regional brain 

volumes between disorders. We did this by estimating differences in volume between 

disorders for 17 brain regions, and then investigating similarities and differences 

between disorders in terms of their spatial distribution of volumetric gain or loss. This 

provided the means to derive a coherent understanding of brain abnormalities across 

psychiatric disorders. 

Of the 10,861 citations retrieved, 498 studies met the inclusion criteria (See Figure 1 

for PRISMA flow diagram). The overall sample included 51,227 participants. The 

mean age of participants was 39.3 years, and participants were 54.8% male 

(demographics by disorder are displayed in Table 1). While age and sex were 

matched for all direct comparisons, the mean values differed across disorders in the 

sample as a whole. 

Sufficient studies were found to conduct analyses for the following regions: total gray 

matter, total white matter, lateral ventricles, cerebellum, corpus callosum, frontal lobe, 

anterior cingulate cortex, insula, temporal lobe, parahippocampal gyrus, 

hippocampus, amygdala, accumbens, caudate, putamen, pallidum, and thalamus. 

There were insufficient studies for the parietal and occipital lobes to undertake 

meaningful cross-disorder analyses. 

Pairwise meta-analysis 

117 pairwise meta-analyses were performed using a random effects model for all 

potential combinations of regions and disorders where there were at least 3 eligible 

studies. The full results of these meta-analyses, including forest plots, assessment of 

between-study heterogeneity, small study effects and publication bias are presented 

in the supplementary materials. We also calculated the percentage of heterogeneity 

that can be attributed to chance using the I2 statistic, and performed meta-regressions 

of age and sex to determine if this contributed to any observed heterogeneity. Overall 



we found indications of large heterogeneity in several meta-analyses. The mean I2 

across all pairwise analyses was 39%, and 15% of the pairwise analyses displayed 

high heterogeneity of over 75%. For the 49 analyses where metaregressions were 

performed 5 showed I2 of over 75%. In 7 of the 49 cases age or sex significantly 

moderated the result, and in 2 of the 5 cases the addition of age and sex to the meta-

analytic model reduced residual heterogeneity to below 75%. There was some 

evidence of publication bias or small study effects as indicated by the Egger’s test, 

with 5 meta-analyses (out of a total of 32 analyses with 10 studies or more) giving a 

p-value<0.05.

Network meta-analysis 

For each brain region we fit a random-effects frequentist network meta-analysis using 

netmeta (version 1.0-5). The geometries of the various networks are shown in Figure 

2. Forest plots for the estimated differences in volume for psychiatric disorders

compared to healthy controls are shown in Figure 3, and league tables comparing

disorders against one another for each brain region are shown eFigure1. For all brain

regions there was frequently strong evidence of important differences between the

volume of the control group and that of multiple other disorders, but evidence of a

difference between disorders was less common. Details regarding measures of

heterogeneity and inconsistency are displayed in eTable 2 and CINeMA confidence

ratings are also shown in the supplementary materials.

A summary of these results is shown in Figure 4A where color intensity represents the 

magnitude of effect size: red indicates that relative to controls the disorder is 

associated with reduced volume of the region in question. Correlating disorder:control 

effect sizes between disorders (i.e. across brain regions) generated the heatmap 

shown in Figure 4B, where a positive correlation between disorders indicates a similar 

pattern of disorder:control brain differences. A high degree of similarity is observed 

between PTSD and controls exposed to trauma (r=0.70. Bipolar disorder with 

psychosis showed a similarity to other psychotic disorders (schizophrenia r=0.71, 

schizoaffective disorder r=0.82, unspecified psychosis r=0.71), which was not 

observed for bipolar disorder without psychosis (schizophrenia r=0.13, schizoaffective 

disorder r=-0.02, unspecified psychosis r=0.11). Psychotic depression meanwhile 



showed greater similarity with depression (r=0.82) than with other psychotic disorders 

(schizophrenia r=0.30, schizoaffective disorder r=0.39, unspecified psychosis r=0.20). 

Borderline personality disorder, meanwhile, showed similarities with both affective and 

psychotic disorders (depression r=0.74, bipolar disorder with psychosis r=0.50, bipolar 

disorder without psychosis specified r=0.56, schizophrenia r=0.43, schizoaffective 

disorder r=0.97, unspecified psychosis r=0.52). 

The inclusion or exclusion of studies reporting ENIGMA consortium results did not 

notably alter results (see supplementary materials). 

Principal Components Analysis 

In order to aid interpretation we next condensed the data by performing a principal 

components analysis in which disorders were treated as variables, and the effect sizes 

for the various brain regions as observations. Four components explained 93% of the 

variance (Figure 5A). The loading for each diagnosis is shown in Figure 5B and the 

scores for the various brain regions are illustrated in Figure 5C. For the first 

component, which explained 48 % of the variance one can see from Figure 5B that 

there is a high loading for disorders on the psychosis spectrum and a low loading for 

affective disorders. This component corresponds to relatively larger volumes of the 

pallidum, accumbens, and caudate and reduced volumes of the corpus callosum, 

parahippocampal gyrus, amygdala and hippocampus. 

The second component accounted for 29% of the variance. This component shows 

the highest loading for anxiety disorders and trauma exposed controls, and low 

loadings for schizoaffective disorder, psychotic depression, and bipolar disorder with 

psychotic features. This component corresponds to relatively larger volumes for the 

anterior cingulate cortex and frontal lobe. 



Discussion 

We synthesised data from over 50,000 MRI scans and 17 different disorders to present 

a transdiagnostic analysis of structural brain abnormalities across psychiatric 

disorders. 

We found, with some exceptions, that compared to control populations psychiatric 

disorders are associated with lower brain volumes across a wide range of brain 

regions. One exception relating to the direction of effect relates to schizophrenia, 

unspecified psychosis, bipolar disorder with psychosis and schizoaffective disorder 

which all showed relative increases in the basal ganglia volumes. This may be a 

medication-related phenomenon as previous studies have demonstrated an 

association between the use of dopamine receptor antagonists and volume increases 

in this region.10,11 Another finding of potentially increased volumes was seen with 

trauma exposed controls in which the direction of effect was positive for total white 

matter, frontal and temporal lobes, and anterior cingulate volumes. In this case these 

changes may potentially be a marker of resilience given the individuals had not 

developed a mental disorder despite exposure to significant trauma.  

There is notable overlap between disorders, and statistically significant differences 

between disorders were much rarer than differences with control populations.  When 

correlating the magnitude of differences across the brain certain disorders showed 

patterns of volume gain and loss that were very similar to other disorders. Examples 

include the high degree of similarity between PTSD and controls exposed to trauma, 

which may relate to the similar environmental exposures experienced by both groups. 

Bipolar disorder with psychosis showed a similarity to other psychotic disorders, which 

was not observed for bipolar disorder without psychosis. This is in keeping with recent 

findings of an analogous pattern of similarities  at a neurochemical level.12 Psychotic 

depression showed greater similarity with depression than with other psychotic 

disorders. The similarities between borderline personality disorder and both affective 

and psychotic disorders is in keeping with the occurrence of both affective and 

psychotic symptoms in the disorder.13 

These findings are partially consistent with prior work investigating cross-disorder 

genetic correlations.14 This work had found positive correlations between ADHD, 



bipolar disorder, autism spectrum disorder, schizophrenia, OCD, PTSD and anxiety 

disorders.14 Many of these correlations were similarly seen in the present work 

although there are also clear areas of distinction, with the current work observing 

negative correlations from PTSD and anxiety to a range of disorders. Further analyses 

examining whether the differences may be driven by environmental factors, including 

differing use of psychotropic medication between disorders is indicated. 

It is also clear that while there is extensive overlap between disorders, there are some 

differences. Some of these differences may map to the clinical phenotype. This was 

illustrated by the principal components analysis that found a pattern of increased 

volume in the basal ganglia and reduced volume in hippocampal regions and the 

amygdala explained a large proportion of the overall variance. This pattern was 

primarily observed in disorders that can be understood as lying on the psychosis 

spectrum (schizophrenia, schizoaffective disorder, bipolar disorder with psychosis, 

unspecified psychosis, and interestingly borderline personality disorder). As 

mentioned above, the basal ganglia association is likely to some extent reflect the 

medications most frequently used in this cohort. 

Examining brain anatomy to better understand the pathophysiology of psychiatric 

disorders has a long history,15 and the number of studies investigating this in vivo has 

increased dramatically following the advent of MRI. While previous meta-analyses of 

individual disorders have helped to condense this large body of research, a coherent 

transdiagnostic synthesis is challenging. Previous large scale transdiagnostic meta-

analyses are relatively few in number. A prior study of six disorders collated voxel-

based morphometry studies.1 This allowed for a more precise approach to spatial 

localisation, but as discussed above a coordinate based approach does not allow for 

comparison of the magnitude of abnormalities between disorders.  

Studies combining results of single-disorder ENIGMA meta-analyses were able to take 

a more fine-grained approach to cortical regions, but examined only six disorders, 

meaning they were not able to comment on disorders including PTSD, anxiety 

disorders, psychotic depression, schizoaffective disorder, or borderline personality 

disorder.4,6,16 In keeping with the current findings these prior studies found shared 

patterns of gray matter loss across disorders, with more severe cortical loss and 



enlargement of the pallidum in schizophrenia. These studies were able to more 

precisely study spatial patterns of change given the use of a single parcellation 

scheme, this had the benefit of allowing links with patterns of gene expression to be 

identified, showing that regions with greater expression of pyramidal cell related genes 

tended to show the greatest case-control differences.17  The current sample, while 

providing less precise spatial localisation, covers a considerably wider range of 

disorders, allowing for a more comprehensively transdiagnostic view. 

Limitations 

While all direct comparisons were matched for age and sex, these variables do differ 

across disorders. Our analysis does not account for the fact that the magnitude of 

patient-control effect sizes may vary depending on age or sex. For example, given that 

the mean age of individuals with depression is different to that of CHR individuals the 

finding that individuals with depression have a larger amygdala than CHR individuals, 

could be explained if the magnitude of patient-control differences in either disorder 

changes markedly with age. Concerns about the magnitude of this impact may be 

tempered by the fact that meta-regressions rarely found a significant modifying effect 

of either age or sex.  

As with previous single disorder meta-analyses, the current analyses are limited in 

terms of spatial resolution by the data reported in the primary studies. While activation 

likelihood meta-analyses may be able to provide great spatial precision, these can 

only provide an estimation of the spatial extent of any potential between group 

differences, thereby precluding comparisons between disorders in terms of magnitude 

of difference.  Moreover, as many of the primary studies included patients taking 

psychotropic treatment, it is not possible to disambiguate volumetric changes 

associated with disorders from those associated with the drugs used to treat these 

disorders. Although a large number of participants were included in the study, certain 

comparisons for certain regions were based on relatively few studies, and some 

correlations between disorders calculated for the cluster analysis were based on a 

relatively small number of regions (see table 1, eTable 1, and supplementary forest 

plots). Also as seen in single disorder meta-analyses there was large heterogeneity 

observed for several regions,3,18 which may relate to differences in patient populations 

and methodology between studies.  



Implications and future work 

The finding that  patterns of volumetric change heavily overlap across psychiatric 

disorders suggests that a general transdiagnostic dimension of psychopathology 

observed at the symptomatic level may be reflected in neurobiology.19 Transdiagnostic 

work looking at the influence of symptom severity on the magnitude of gray matter loss 

would help to refine this hypothesis. While some differences between disorders were 

observed, there was substantial between-disorder overlap and it would be of interest 

if other methods of psychiatric categorisation could lead to greater between category 

distinction.20 Future work involving greater spatial precision, and examination of 

underrepresented disorders and regions would also be of benefit. 

Conclusion 

The current analysis shows that based on patterns of brain morphometry psychiatric 

disorders show many transdiagnostic features with between disorder differences less 

frequently being of statistical significance compared to disorder-control differences. 

Despite these similarities across disorders there are also areas of distinction, with 

disorders on the psychosis spectrum showing a different pattern of gain and loss 

compared to other diagnoses. 



METHODS 

Study Selection and data extraction 

We searched MEDLINE, EMBASE, and PsychINFO databases from inception to 

March 1, 2022.  We included the majority of psychiatric disorders in terms of lifetime 

prevalence.21 Eligible studies included individuals over the age of 18 that reported 

measures of regional brain volumes in at least two of the following seventeen groups: 

attention deficit hyperactivity disorder (ADHD), mixed anxiety and depression, anxiety 

disorders (including generalised anxiety disorder, social phobia, and panic disorder), 

autism spectrum disorder, bipolar disorder with psychosis, bipolar disorder without 

psychosis specified, borderline personality disorder, clinical high risk for psychosis 

(CHR), healthy controls, major depressive disorder, obsessive compulsive disorder 

(OCD), psychotic depression, psychosis otherwise unspecified, post-traumatic stress 

disorder (PTSD), schizophrenia, schizoaffective disorder, and trauma exposed 

controls that had not developed PTSD.  We used this relatively fine grained 

classification of the psychosis spectrum because there is evidence of highly 

heterogeneous neurobiological correlates, and certain biological correlates have clear 

transdiagnostic relevance.12,22,23 The use of more precise categories (e.g. bipolar 

disorder with and without psychosis) allows differences within a broader category to 

be observed if they exist, and we felt that this outweighs the drawback of reduced 

category sample size. 

We included only studies in which volumes of predefined regions (including total gray 

and white matter) were reported. We did not include studies reporting solely volumes 

of voxel based morphometry statistically defined clusters, given that these produce 

biased estimates as the cluster is defined as the area of maximum group difference. 

We included only studies in which participants’ mean age was over 18 years and, 

given the well-established influence of age and sex on brain volumes, we only included 

studies in which groups were matched so that no group differed from another by more 

than ten years in term of mean age, or by 10% in terms of sex composition.24 

For each study and for each group, we extracted the mean and standard deviation of 

volumetric or thickness measurements for the following seventeen regions: total gray 

matter, total white matter, lateral ventricles, cerebellum, corpus callosum, frontal lobe, 



anterior cingulate cortex, insula, temporal lobe, parahippocampal gyrus, 

hippocampus, amygdala, nucleus accumbens, caudate, putamen, pallidum, and 

thalamus. As with previous meta-analyses,2,22 relatively broad cortical areas were 

employed in order to allow for synthesis across studies. In addition, we extracted 

participant numbers, age, sex, and diagnosis. Using the group-level data from each 

study, we estimated the standardised mean difference (Hedges’ g) for the volumetric 

difference between the groups and corresponding standard errors.  

Pairwise meta-analysis 

For each brain region where between-disorder pairwise comparisons were informed 

by three or more studies, we synthesised data in a meta-analysis using a random 

effects model. We estimated the standard deviation of random effects (𝜏𝜏) with the 

restricted maximum likelihood estimator,25 and the corresponding 95% Confidence 

Interval using the Q-profile approach.26 We also calculated the percentage of 

heterogeneity that can be attributed to chance using the 𝐼𝐼2 statistic, and performed 

meta-regressions of age and sex to determine if this contributed to any observed 

heterogeneity.27 These meta-regressions were only performed on a pairwise basis as 

current frequentist network meta-analysis packages do not allow for the inclusion of 

covariates. We created forest plots to illustrate all meta-analyses. Where there were 

at least ten studies, we assessed the existence of small-study effects or publication 

bias by visually inspecting contour-enhanced funnel plots and also via Egger’s test.28 

We performed all analyses using the metafor package (version 3.0–2)29 in R (version 

.6.1). 

Network meta-analysis 

For each brain region we fit a random-effects frequentist network meta-analysis for 

each pairwise effect size and its variance, and assuming a common heterogeneity 

parameter across the whole network. We produced league tables to illustrate indirect 

and direct comparisons between diagnoses, and created forest-plots showing the 

estimated relative effects vs. healthy controls. These analyses were performed using 

netmeta (version 1.0-5).30 

Assessments of heterogeneity and inconsistency 



We assessed network heterogeneity by monitoring 𝜏𝜏 and the I² statistic. Consistency 

of each network (i.e. the agreement between direct and indirect evidence) was 

evaluated using a global method (“design-by-treatment”) as well as a local method 

(back-calculation).31,32 

Risk of bias 

Risk of bias for individual studies was assessed using a modified version of the 

Newcastle-Ottawa scale for observational studies.33 We incorporated the results of 

this into the Confidence in Network Meta-Analysis (CINeMA) application, to assess 

credibility of each network meta-analysis.34 

Sensitivity analyses 

Following the protocol,9 we performed a prespecified sensitivity analysis where we 

included studies from the Enhancing Neuro Imaging Genetics through Meta-Analysis 

(ENIGMA) consortium. These were excluded from analyses presented in the main 

paper given the large number of participants included in these studies, and the fact 

that it is not always clear if subjects included in ENIGMA analyses have also been 

reported on in previously published work. 

Principal components analysis 

We performed a principal components analysis  in which disorders were treated as 

variables, and the effect sizes for the various brain regions treated as observations. 

Probabilistic principal components analysis  was implemented using the pcaMethods 

package (version 1.89.0). 35. We illustrated the results of this analysis using the R 

package ggseg (version 1.6.4).36 

Data availability 

All data obtained from publicly available research accessed via Medline, EMBASE and 

PSYCHINFO databases. 

Code availability 

All code available at https://github.com/rob-mccutcheon/volumetric_network_meta 

https://github.com/rob-mccutcheon/volumetric_network_meta
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Tables 

Diagnosis Number of Studies Number of Participants Mean Age (Years) Sex (Percent Male) 

CON 481 26246 41.8 53.0 
SCZ 169 6909 31.1 67.0 

MDD 117 6451 49.1 46.6 

PTSD 53 1412 40.0 70.3 

BPAD.NP 46 1811 39.6 44.8 
OCD 39 2081 30.0 56.1 

TCON 29 845 43.6 71.9 

PSY 25 1491 27.2 63.6 

ASD 22 1120 29.4 55.3 
BPAD.P 16 466 31.9 55.5 

BPD 13 302 29.7 16.5 

ANX 12 277 35.3 57.0 
CHR 10 955 21.5 56.5 

ADHD 7 441 35.1 43.5 

PDEP 7 121 44.7 47.8 

SZAF 5 211 36.9 50.4 
A&D 1 88 37.3 33.0 

Table 1: Details of included studies 

A&D: Mixed Anxiety and Depression, ADHD: Attention Deficit Hyperactivity Disorder, ANX: Anxiety Disorder, ASD: Autism Spectrum 
Disorder, BPAD.P: Bipolar Disorder with Psychosis, BP.NP: Bipolar Disorder without Psychosis Specified, BPD: Borderline Personality 
Disorder, CHR: Clinical High Risk for Psychosis, CON: Controls, MDD: Major Depressive Disorder, OCD: Obsessive Compulsive Disorder, 
PDEP: Psychotic Depression, PSY: Unspecified Psychosis, PTSD: Post Traumatic Stress Disorder, SCZ: Schizophrenia, SZAF: Schizoaffective 
Disorder, TCON: Trauma Exposed Controls  



Figure Captions 

Figure 1: PRISMA flow chart 

Figure 2: Network graphs for brain regions examined 
Disorders with direct comparisons are linked with a line. The thickness of connecting lines 
corresponds to the number of studies evaluating the comparison. 

A&D: Mixed Anxiety and Depression, ADHD: Attention Deficit Hyperactivity Disorder, ANX: Anxiety Disorder, ASD: Autism Spectrum 
Disorder, BPAD.P: Bipolar Disorder with Psychosis, BP.NP: Bipolar Disorder without Psychosis Specified, BPD: Borderline Personality 
Disorder, CHR: Clinical High Risk for Psychosis, CON: Controls, MDD: Major Depressive Disorder, OCD: Obsessive Compulsive Disorder, 
PDEP: Psychotic Depression, PSY: Unspecified Psychosis, PTSD: Post Traumatic Stress Disorder, SCZ: Schizophrenia, SZAF: Schizoaffective 
Disorder, TCON: Trauma Exposed Controls 

 Figure 3: Forest plots for standardised mean differences of individual disorders compared 
with healthy controls 
The x-axis represents Hedges’ g, with a negative number indicating the observed volume for 
the disorder is smaller than that observed for healthy controls. The width of the lines 
extending from the center point represent the 95% confidence interval. 
A&D: Mixed Anxiety and Depression, ADHD: Attention Deficit Hyperactivity Disorder, ANX: Anxiety Disorder, ASD: Autism Spectrum 
Disorder, BPAD.P: Bipolar Disorder with Psychosis, BP.NP: Bipolar Disorder without Psychosis Specified, BPD: Borderline Personality 
Disorder, CHR: Clinical High Risk for Psychosis, CON: Controls, MDD: Major Depressive Disorder, OCD: Obsessive Compulsive Disorder, 
PDEP: Psychotic Depression, PSY: Unspecified Psychosis, PTSD: Post Traumatic Stress Disorder, SCZ: Schizophrenia, SZAF: Schizoaffective 
Disorder, TCON: Trauma Exposed Controls

 Figure 4: Summary of regional volume differences 
3a: Heat map of disorders ranked according to regional brain volumes 
Color intensity represents the magnitude of effect size: red indicates that relative to 
controls the disorder is associated with reduced volume of the region in question (with the 
exception of the lateral ventricle for which the reverse is true). Grey squares indicate that 
data were not available. 

3b: Disorder correlations based on brain volume differences 
Heatmap illustrates between-disorder effect size correlations where green equates to a 
positive, and red to a negative correlation. 

A&D: Mixed Anxiety and Depression, ADHD: Attention Deficit Hyperactivity Disorder, ANX: Anxiety Disorder, ASD: Autism Spectrum 
Disorder, BPAD.P: Bipolar Disorder with Psychosis, BP.NP: Bipolar Disorder without Psychosis Specified, BPD: Borderline Personality 
Disorder, CHR: Clinical High Risk for Psychosis, CON: Controls, MDD: Major Depressive Disorder, OCD: Obsessive Compulsive Disorder, 
PDEP: Psychotic Depression, PSY: Unspecified Psychosis, PTSD: Post Traumatic Stress Disorder, SCZ: Schizophrenia, SZAF: Schizoaffective 
Disorder, TCON: Trauma Exposed Controls 

Figure 5: Principal Components Analysis 
4a: Cumulative variance explained 
The first two components account for > 75% of total variance. 

4b: PCA loadings for first two components 
Loading of principal components onto disorders. Green indicates a positive, and red a 



negative loading. Psychosis spectrum disorders have a high loading for component 1, which 
as can be seen in 3C equates to relatively larger pallidum, accumbens and putamen, and 
relatively smaller corpus callosum, parahippocampal gyrus and amygdala. 

4c: PCA scores for first two components 
Green indicates a component is associated with a relatively larger volume of the region in 
question, and red a smaller volume (with the exception of the lateral ventricle in which the 
direction is reversed). 

A&D: Mixed Anxiety and Depression, ADHD: Attention Deficit Hyperactivity Disorder, ANX: Anxiety Disorder, ASD: Autism Spectrum 
Disorder, BPAD.P: Bipolar Disorder with Psychosis, BP.NP: Bipolar Disorder without Psychosis Specified, BPD: Borderline Personality 
Disorder, CHR: Clinical High Risk for Psychosis, CON: Controls, MDD: Major Depressive Disorder, OCD: Obsessive Compulsive Disorder, 
PDEP: Psychotic Depression, PSY: Unspecified Psychosis, PTSD: Post Traumatic Stress Disorder, SCZ: Schizophrenia, SZAF: Schizoaffective 
Disorder, TCON: Trauma Exposed Controls 
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