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2D CFTs: Large charge is not enough to control the dynamics
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In this note we study two-dimensional conformal field theories at large global charge. Since the large-
charge sector decouples from the dynamics, it does not control the dynamics and an effective field theory
construction that works in higher-dimensional theories fails. It is however possible to use large charge in a
double-scaling limit when another controlling parameter is present. We find some general features of the
spectrum of models that admit a nonlinear sigma model description in a Wentzel-Kramers-Brillouin
approximation and use the large-charge sector of the solvable SUð2Þk Wess-Zumino-Witten model to argue
the regimes of applicability of both the large-Q expansion and the double-scaling limit.
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I. INTRODUCTION

In more than two dimensions, studying conformal field
theories (CFTs) in sectors of large global charge leads to
important simplifications and allows the semiclassical
computation of the conformal data as an expansion in
inverse powers of the large charge. The large-charge
expansion has been put to work in various dimensions
[1–9], but the case of two-dimensional CFTs has received
much less attention and has been studied only in [10].
There it was shown that the approach of writing an effective
field theory (EFT)—so successful in higher dimensions—
fails in D ¼ 2. If we impose unitarity and discreteness of
the spectrum, then the Uð1Þ sector corresponding to the
fixed charge can describe only a free boson with central
charge c ¼ 1 and completely decouples from the rest of the
theory as a consequence of Sugawara’s construction [11].
The large charge does not control the full low-energy
dynamics, unlike in the higher-dimensional case, where the
dynamics is controlled by the scale introduced by the
chemical potential. This means that in two dimensions
the scaling dimension of the lowest operator of fixed charge
Q is given by Q2 (from the c ¼ 1 free boson) plus
contributions not controlled by the charge.
While using the charge as a controlling parameter in an

EFT for an otherwise strongly coupled model fails, we can
still use it in regimes where the theory has a controlling
parameter of its own. Despite the failure of the EFT

construction, studying sectors of large charge still allows
us to extract general insights about the spectrum. If the CFT
can be described by a nonlinear sigma model (NLSM) in a
particular limit, working at large charge simplifies the
analysis in analogy to the double-scaling limits considered
in higher-dimensional theories [5,12–25]. We find that, in
such a regime, generically the conformal dimension of the
lowest operator of charge Q is written as an expansion in
1=Q starting at order OðQ2Þ.
In this note, we first compute the spectrum of a system

with an NLSM description using a geometrical approach in
which the large charge is the controlling parameter in a
Wentzel-Kramers-Brillouin (WKB) approximation. Then,
we exploit the fact that some two-dimensional CFTs are
exactly solvable to compare our large-charge results with
the exact partition function specialized to a sector of fixed
charge. This allows us to verify our general results and spell
out the precise regimes of validity of the large-charge
expansion and of the double-scaling limit.
We make in particular use of the fact that Wess-Zumino-

Witten (WZW) models at level k admit a geometrical
interpretation in the limit k → ∞. For the SUð2Þ WZW
model, this limit corresponds to an NLSMwith target space
S3. This model has a SUð2Þ × SUð2Þ global symmetry that
we can use to fix two independent charges Q and Q̄. In the
limit k ≫ Q; Q̄ ≫ 1, we can use the WKB approximation
and find the scaling dimension

Δ ¼ ðQþ Q̄ÞðQþ Q̄þ 2Þ
2k

; ð1:1Þ

which is matched by the exact result from the partition
function. Also the marginal JJ̄ deformation, where the
symmetry is reduced to Uð1Þ × Uð1Þ, can be treated in the
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same way. In this limit, the charges are not the dominating
controlling parameter but still serve to simplify the com-
putation. Our treatment of the SUð2Þk WZWmodel gives a
proof of concept for the usefulness of working at large
charge in a double scaling limit together with the control-
ling parameter of the theory. This approach will be valuable
in the study of more general models for which an exact
solution is not known.
The plan of this note is as follows. In Sec. II we study

CFTs which by assumption have an NLSM description.
The most general such action is the one of the string world
sheet. In Sec. II A, we make use of some classical string
theory results that allow us to identify the operator
appearing in the one-loop tachyon beta-function equation
with the cylinder Hamiltonian, which in geometrical terms
is interpreted as a generalized Laplacian. In Sec. II B, we
observe that in the limit of large charge, the eigenvalue
equation of this Laplacian has the right form to admit a
WKB approximation. In Sec. II C, we consider three
examples, in which the WKB hierarchy can be solved:
the case of two-dimensional target space, the case of the
three-sphere corresponding to the semiclassical k → ∞
limit of the SUð2Þk WZW model, and the marginal
deformation of this latter example.
In Sec. III, we consider the fixed-charge sectors of the

completely solvable SUð2Þk WZW model and its marginal
deformations starting from the exact partition function.
First we briefly introduce the WZW model (Sec. III A) and
the parafermion decomposition (Sec. III B), specializing
the general results to a sector of fixed charge and finding the
lowest-energy state. Via the state-operator correspondence,
this leads us directly to the scaling dimension of the
lowest operator of fixed charge. Two regimes emerge: if
ðQþ Q̄Þ < k, the large charge is not the dominating
controlling parameter and we match the WKB results from
Sec. II C in the limit k → ∞. For ðQþ Q̄Þ > k, the Uð1Þ
sector decouples and only controls a subsector of the full
dynamics.
In Sec. IV, we give brief conclusions and an outlook. In

the Appendix, we discuss the free boson at large charge.

II. THE NONLINEAR SIGMA MODEL
AT LARGE CHARGE

We start by considering CFTs for which, by assumption,
an NLSM description exists. This is for example the case if
a Lagrangian description can be realized in a semiclassical
approximation thanks to the existence of a small parameter.
In this case, in string-theoretical language, the CFT is
described in terms of background fields (the metric, the B
field, the dilaton, the tachyon) living on a target space. In
particular, the spectrum of the dilatation operator is
identified with the spectrum of a differential operator that
is constructed using these background fields.
One possible way of constructing this operator was

proposed in [26,27] in order to realize a geometrical

description for a given CFT. The idea is to study the beta
function of the lowest-lying state in the NLSM, i.e., the
tachyon, in order to identify the cylinder Hamiltonian of
the theory with the generalized (string-frame) Laplacian on
the target space.
In this section we first summarize this construction and

then show how, in presence of a Uð1Þ global symmetry in
the CFT [which translates into a Uð1Þ isometry for the
target space] the spectrum of this Laplacian can be studied
in a WKB approximation in the limit of large fixed
charge Q.

A. The cylinder Hamiltonian as
a differential operator

The most general action with up to two derivatives is the
NLSM of the closed string world sheet,

S ¼ 1

4πα0

Z
dτdσ

�
GμνðXÞ∂αXμ∂αXν

þ iBμνðXÞ∂αXμ∂βXνϵαβ þ α0

2
ΦðXÞRð2Þ þ T

�
; ð2:1Þ

where μ ¼ 1;…; N, G is the target space metric, B is the
antisymmetric Kalb-Ramond field,Φ is the dilaton, T is the
tachyon and Rð2Þ is the Ricci scalar of the world sheet. We
assume that the system has a global Uð1Þ (compact)
symmetry that is realized nonlinearly as the shift of one
of the fields XN ¼ φ as φ → φþ ε. It follows that φ can
only appear via its derivatives, and the target-space fields
cannot depend on φ.
If we want the NLSM to describe a CFT, we need to

study the β functions for the fields G, B, and Φ. At one
loop the vanishing of the conformal anomaly takes the
form [28]:

βGμν ¼ Rμν −
1

4
H2

μν þ 2∇μ∇μΦ; ð2:2Þ

βBμν ¼
1

2
∇λHλμν −∇λΦHλμν; ð2:3Þ

βΦ ¼ N
6
þ α0

2

�
−RþH2

12
þ 4ð∇ΦÞ2 − 4ΔΦ

�
; ð2:4Þ

where N is the number of two-dimensional fields, R is the
curvature of G, H ¼ dB, ∇ is the covariant derivative
associated to G, H2

μν ¼ HμλρHν
λρ , H2 ¼ Hμ

μ. We require
βG ¼ βB ¼ 0. These conditions imply that 6βΦ is a con-
stant c to be identified with the central charge. As for the
tachyon, the one-loop beta-function is a second-order
differential equation for T [26],

βT¼
�
−

e2Φ

2
ffiffiffiffiffiffiffiffiffiffi
detG

p ∂μðe−2Φ
ffiffiffiffiffiffiffiffiffiffi
detG

p
Gμν∂νÞ−

c
12

�
T¼0: ð2:5Þ
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This operator appears in the equations satisfied by all the
small perturbations of the target-space fields around the
background values at the fixed point β ¼ 0.
In order to compute the conformal dimensions in the

CFT we can apply the state-operator correspondence and
identify the dilatation operator in the plane with the
Hamiltonian on the cylinder, which in a CFT is generically
given by

Hcyl ¼ L0 þ L̄0 −
c
12

: ð2:6Þ

We now need to identify the differential operator corre-
sponding to this Hamiltonian in terms of the background
fields of the sigma model. A possible strategy was proposed
in [26,27]. The idea is that the cylinder Hamiltonian
appears in string theory in the Virasoro condition that a
state has to satisfy in order to be physical:�

L0 þ L̄0 −
c
12

�
jphysi ¼ Hcyljphysi ¼ 0: ð2:7Þ

The tachyon T, being the lowest scalar of the theory, must
in particular satisfy this condition:

HcylT ¼ 0: ð2:8Þ

It is thus natural to identify this Virasoro condition with the
vanishing of the one-loop beta function for the tachyon that
we have written above and the cylinder Hamiltonian with
the operator in Eq. (2.5). It is worth emphasizing that we
will not need to impose the Virasoro condition in the
following, since we will not be discussing a string theory.
We use it here to identify the correct representation of the
Hamiltonian.
Hcyl has a geometrical interpretation in terms of the

target space: we can identify it with a generalized (or string-
frame) Laplacian. All together,

Hcyl ¼ −
1

2
ΔΦ −

c
12

: ð2:9Þ

As an aside, for vanishing dilaton Φ ¼ 0, this Hamiltonian
describes the propagation of a free particle on the space
with metric Gμν. This shows that we are actually studying
the homogeneous limit of the NLSM, or equivalently, the
motion of the center of mass of a closed string.

B. WKB approximation at large charge

We now specialize to a sector of the theory with fixed
and largeUð1Þ chargeQ. Wewant to compute the spectrum
of the generalized Laplacian ΔΦ in this sector, i.e., the
eigenvalues EðQÞ of the equation

1

2
ΔΦΨQ þ EðQÞΨQ ¼ 0: ð2:10Þ

The Laplacian is a second-order differential operator, and
we can generically expand it in terms of derivatives with
respect to the target-space directions

1

2
ΔΦ ¼ AmnðXÞ∂m∂n þ BmðXÞ∂m∂φ þ CðXÞ∂2

φ

þDmðXÞ∂m þ FðXÞ∂φ; ð2:11Þ

where m ¼ 1;…; N − 1, φ ¼ XN and the functions A, B,
C, D, and F are written in terms of the metric and the
dilaton:

Amn ¼ 1

2
Gmn; Bm ¼ Gmφ; C ¼ 1

2
Gφφ;

Dm ¼ 1

2

e2Φffiffiffiffi
G

p ∂nðe−2Φ
ffiffiffiffi
G

p
GmnÞ;

F ¼ 1

2

e2Φffiffiffiffi
G

p ∂nðe−2Φ
ffiffiffiffi
G

p
GφnÞ: ð2:12Þ

The global Uð1Þ symmetry of the NLSM is now an
isometry of the metric G, so in general A, B, C, D, and
F depend on Xm and not of φ, and the eigenfunctions of the
Laplacian take the form

ΨQðXm;φÞ ¼ ΨQðXmÞeiQφ; m ¼ 1;…; N − 1: ð2:13Þ

Our problem then reduces to

ðAmnðXÞ∂m∂n þ ðiQBmðXÞ þDmðXÞÞ∂m

−Q2CðXÞ þ iQFðXÞ þ EðQÞÞΨQðXmÞ ¼ 0: ð2:14Þ

We are interested in the scaling properties of the
spectrum as function of the charge. For large Q, we can
use the WKB method, which allows us to approximate the
solution of a differential equation whose highest derivative
is multiplied by a small parameter. If we divide Eq. (2.14)
by Q2, then we have the exact form suitable for the
approximation in the Q ≫ 1 limit.
We start with the ansatz

ΨQðXmÞ ¼ exp

�
Q
X∞
i¼0

SiðXÞ
Qi

�
: ð2:15Þ

The eigenvalue problem can be decomposed into an
expansion in powers of Q, starting from Q2. It follows
that the energy must have the form

EðQÞ ¼ E2Q2 þ E1Qþ E0 þ…; ð2:16Þ

and we obtain a hierarchy for the family of functions SiðXÞ,
starting with the eikonal (leading order) approximation

AmnðXÞ∂mS0∂nS0 þ iBmðXÞ∂mS0 ¼ CðXÞ − E2; ð2:17Þ
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which, expressed in terms of the metric, has the form

Gmn∂mS0∂nS0 þ 2iGmφ∂mS0 ¼ Gφφ − 2E2 ð2:18Þ

and does not depend on the dilaton.

C. Examples

The main result of the previous calculation is that if a
CFT is described by an NLSM and it has a global Uð1Þ
symmetry, the conformal dimensions of the lowest oper-
ators of fixed charge Q are given by an expansion in 1=Q
starting at orderQ2. In special cases we can solve the WKB
hierarchy and extract more information about the system.
Two dimensions.—In the special case of two fields

Xμ ¼ ðX;φÞ, the WKB approximation is particularly sim-
ple. In fact, we can always rewrite the spacetime metric as
Gμν ¼ e2fðXÞδμν, so that the generalized Laplacian is

1

2
ΔΦ ¼ 1

2
e−2fðXÞð∂2

X − 2∂XΦ∂X þ ∂2
φÞ: ð2:19Þ

Then the WKB hierarchy becomes

S00ðXÞ2 ¼ 1 − 2e2fðXÞE2;

S01ðXÞ ¼
2S00ðXÞΦ0ðXÞ − S000ðXÞ − 2e2fðXÞE1

2S00ðXÞ
;

..

. ð2:20Þ

which can be solved order by order

S0ðXÞ ¼ �
Z

X
dξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2e2fðξÞE2

q
;

S1ðXÞ ¼ ΦðXÞ − fðXÞ
2

þ 1

2

Z
X
dξ

f0ðξÞ
1 − 2E2efðξÞ

� E1e2fðξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2E2efðξÞ

p ;

..

. ð2:21Þ

where, at the fixed point, the functions fðXÞ and ΦðXÞ are

fðXÞ ¼ c1 −
1

2
logð1 − c2ec3XÞ;

ΦðXÞ ¼ c4 þ
c3
2
X −

1

2
logð1 − c2ec3XÞ; ð2:22Þ

with ci being constants.
The three-sphere.—Another interesting example is the

three-sphere NLSM that describes the semiclassical k → ∞
limit of the SUð2Þk WZW model. Using the WKB
approximation we can study the regime k ≫ Q ≫ 1. It
is convenient to pick a coordinate system in which the two

Uð1Þ s are manifest, for example by embedding the three-
sphere in C2 as follows (Hopf coordinates):�

z1 ¼ ρeiϑ

z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

p
eiφ

: ð2:23Þ

The corresponding line element is

ds2 ¼ k

�
dρ2

1 − ρ2
þ ρ2dϑ2 þ ð1 − ρ2Þdφ2

�
: ð2:24Þ

The Laplacian reads

Δ¼1

k

�
ð1−ρ2Þ∂2

ρþ
1−3ρ2

ρ
∂ρþ

1

ρ2
∂2
ϑþ

1

1−ρ2
∂2
φ

�
: ð2:25Þ

Given the Uð1Þ ×Uð1Þ symmetry generated by shifts in φ
and ϑ, the eigenfunctions of the Laplacian have the form

ΨQ;Q̄ðρ; ϑ;φÞ ¼ ΨQ;Q̄ðρÞeiQ̄ϑeiQφ: ð2:26Þ

Let us consider the limit where both Q and Q̄ are large and
of the same order:Q ¼ qΩ, Q̄ ¼ q̄Ω, Ω ≫ 1. We can use a
WKB-type argument to show that the eigenvalues of the
Laplacian have the form

E ¼ E0ðq; q̄ÞΩ2 þ E1ðq; q̄ÞΩþ E2ðq; q̄Þ þ…: ð2:27Þ

The eikonal approximation is the ansatz

ΨQ;Q̄ðρÞ ¼ eQ̄SϑðρÞþQSφðρÞ ¼ eΩðq̄SϑðρÞþqSφðρÞÞ; ð2:28Þ

and at leading order in Ω, the eigenvalue equation for the
Laplacian reduces to

ð1−ρ2Þðq̄S0ϑðρÞþqS0φðρÞÞ2−
q̄2

ρ2
−

q2

1−ρ2
þ2kE0ðq; q̄Þ¼ 0:

ð2:29Þ
The term proportional to qq̄ must be ρ independent since it
has to cancel with a contribution from E0. It follows that

S0ϑðρÞS0φðρÞ þ
C1

1 − ρ2
¼ 0 ð2:30Þ

and that

2kE0 ¼ C2q2 þ C3q̄2 þ 2C1qq̄: ð2:31Þ
In this way we obtain two separate equations for SφðρÞ:

ðS0φÞ2 ¼
C2
1ρ

2

ð1 − ρ2Þð1 − C3ρ
2Þ ;

ðS0φÞ2 ¼
1 − C2ð1 − ρ2Þ

ð1 − ρ2Þ2 ; ð2:32Þ
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which are compatible for C1 ¼ C2 ¼ C3 ¼ 1. The solution
of the eikonal equation is then

SφðρÞ ¼
1

2
logð1 − ρ2Þ;

SϑðρÞ ¼ logðρÞ; E0 ¼
ðqþ q̄Þ2

2k
: ð2:33Þ

In fact, in this case it turns out that the eikonal
approximation is exact at all orders in Q; Q̄, and we have

1

2
ΔΨQ;Q̄ðρ;ϑ;φÞþ

ðQþ Q̄ÞðQþ Q̄þ2Þ
2k

ΨQ;Q̄ðρ;ϑ;φÞ ¼ 0;

ð2:34Þ

where

ΨQ;Q̄ðρ; ϑ;φÞ ¼ ρQ̄ð1 − ρ2ÞQ=2eiQ̄ϑeiQφ ¼ zQ̄1 z
Q
2 : ð2:35Þ

We will recover this eigenvalue when discussing the exact
partition function of the WZW model.
Marginal deformation of the three-sphere.—The SUð2Þk

WZW admits a continuous line of marginal deformations
driven by the current-current operator J3J̄3. The coordinate
system that we have introduced above is particularly well
adapted to describe this marginal deformation which, in
the infinite-k limit, corresponds to the following back-
ground [29,30]:

ds2 ¼ k

�
dρ2

1− ρ2
þ ρ2

1þðλ2 − 1Þρ2 dϑ
2 þ λ2ð1− ρ2Þ

1þðλ2 − 1Þρ2 dφ
2

�
;

ð2:36Þ

B ¼ kλ2ρ2

1þ ðλ2 − 1Þρ2 dϑ ∧ dφ; ð2:37Þ

e−2ΦðρÞ ¼ ρffiffiffiffiffiffiffiffiffiffiffi
detG

p ; ð2:38Þ

where λ is the parameter along the marginal line
(the undeformed model has λ ¼ 1). The generalized
Laplacian is

ΔΦ ¼ Δþ λ2 − 1

k
∂2
ϑ þ

1 − λ2

kλ2
∂2
φ; ð2:39Þ

where Δ is the operator given in Eq. (2.25). Geometrically,
the deformation is driven by the Uð1Þ operators ∂φ and ∂ϑ

that commute with the Laplacian. It follows that the
generalized Laplacian admits the same eigenfunctions
ΨQ;Q̄ðρ; ϑ;φÞ as in the undeformed case, but now with
different eigenvalues. Using again the solution to the
eikonal approximation we find:

1

2
ΔΦΨQ;Q̄ðρ;ϑ;φÞ þ EðQ; Q̄ÞΨQ;Q̄ðρ; ϑ;φÞ ¼ 0; ð2:40Þ

EðQ; Q̄Þ ¼ ðQþ Q̄ÞðQþ Q̄þ 2Þ
2k

þ 1 − λ2

2k
ðQ

2

λ2
− Q̄2Þ; ð2:41Þ

which we will again recover from the partition function in
the k → ∞ limit, see Eq. (3.22).

III. THE SUð2Þ WZW MODEL
AT FIXED CHARGE

Up to now, we have studied CFTs that we have assumed
to have an NLSM description in a certain limit. However, in
two dimensions, some CFTs are exactly solvable. In these
cases, we can directly access the fixed-charge sectors via
the partition function. This enables us to compare our
NLSM results and the generic predictions of the large-
charge expansion in [10] and identify the respective
regimes of validity.
Concretely, we will start from the canonical (fixed-

charge) partition function on the torus, written as the trace
over the states of given charge Q:

ZðQÞ ¼ TrQ½qL0−c=24q̄L̄0−c=24�; where q ¼ e2πiτ; ð3:1Þ

and take the cylinder limit,

τ ¼ i
β

2πR
; β → ∞; ð3:2Þ

so that

ZðQÞ ¼ TrQ½e−β=RðL0þL̄0−c=12Þ�: ð3:3Þ

From here, we can extract the conformal dimension ΔðQÞ
of the lowest operator in the corresponding ensemble as the
free energy in the infinite cylinder limit:

− lim
β→∞

R
β
logðZðQÞÞ ¼ ΔðQÞ − c

12
; ð3:4Þ

where Δ ¼ hþ h̄ and h, h̄ are the conformal weights.

A. The WZW model

The simplest nontrivial example of a solvable CFT in
two dimensions is the SUð2Þk Wess-Zumino-Witten model,
which for integer k is a rational CFT based on the affine
algebra bsuð2Þk. In the limit k → ∞ it admits a semiclassical
description in terms of an NLSM on the three-sphere,
which is the group manifold of SUð2Þ. Its action is
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S ¼ k
16π

Z
dzdz̄Tr½∂μg−1∂μg� þ kΓ; ð3:5Þ

Γ ¼ −
i

24π

Z
d3yϵαβγTr½g−1∂αgg−1∂βgg−1∂γg�; ð3:6Þ

where g is an element of SUð2Þ, and the second integral
goes over a 3-manifold that has the world sheet as its
boundary. The model has a global SUð2Þ × SUð2Þ sym-
metry since the group can act on the left and on the right.
We can thus fix two charges corresponding to a left and a
right Uð1Þ.
For this model, the full partition function is known. To

identify the sectors of fixed charge, we start from the grand-
canonical partition function which includes the dual
chemical potentials:

Zðz; z̄; q; q̄Þ ¼ Tr½e−β=RðL0þL̄0−c=12ÞyJ
3
0 ȳJ̄

3
0 �; ð3:7Þ

where y ¼ e2πiz and the J30, J̄
3
0 are the Cartan generators of

the left and right SUð2Þ. This partition function can be
expressed in terms of the characters χl of the affine algebrabsuð2Þ, where l labels the representation:

Z ¼
X
l;l0

χlðz; τÞMll0χl0 ðz̄; τÞ: ð3:8Þ

We can always chooseMll0 ¼ δll0 . The SUð2ÞWZWmodel
has a continuous line of marginal deformations which are
generated by adding the operatorZ

dzdz̄J30J̄
3
0 ð3:9Þ

to the action [31]. In the deformed case, the SUð2Þ × SUð2Þ
symmetry of the semiclassical model is broken to
Uð1Þ ×Uð1Þ.

B. The parafermion decomposition

The WZW model is made of two building blocks: an
suð2Þ=uð1Þ piece associated to parafermions and a uð1Þ
associated to a free boson at the self-dual radius.1 The
two pieces are not independent, they are related by an
orbifold [32]: �

suð2Þk
uð1Þ ⊗ uð1Þ ffiffi

k
p
�
=Zk: ð3:10Þ

We intend to fix the charge associated to the bosonic
uð1Þ ffiffi

k
p , so it is convenient for us to write the characters in

terms of this decomposition:

χlðz; τÞ ¼ Trl½qL0− c
24e2πizJ

3
0 �

¼
Xk

m¼−kþ1

clmðqÞθmlðq; zÞ: ð3:11Þ

We use the conventions in which 0 ≤ l ≤ k − 1 is an
integer, −kþ 1 ≤ m ≤ k, and l −m ¼ 0 mod 2. The theta
function is given by

θmlðq; zÞ ¼
X
n∈Z

qlðnþm
2lÞ2zðlnþm

2
Þ ð3:12Þ

and clm are the string functions [33] (see also [34]). The
added advantage of this decomposition is that the marginal
deformation only acts on the uð1Þ boson by changing its
radius away from the self-dual point (i.e., it does not
anymore coincide with

ffiffiffiffi
α0

p
), and does not modify the

parafermion string functions [29,30,35,36]:�
suð2Þk
uð1Þ ⊗ uð1Þ ffiffi

k
p

λ

�
=Zk: ð3:13Þ

Here λ is the deformation parameter, and λ ¼ 1 corresponds
to the undeformed model. For irrational values of λ2, the
resulting theory is not a rational CFT.
Having an explicit expression for the characters, we can

derive the full torus partition function for any value of the
marginal deformation parameter [36]:

Zðz; z̄; q; q̄Þ ¼
Xk−1
l¼0

Xk
m¼−kþ1

Xk−1
r¼0

clmðqÞclm−2rðq̄Þ

×
X

M;N∈Z
q

1
4kðkMþm−r

λ þλðkNþrÞÞ2

× q̄
1
4kðkMþm−r

λ −λðkNþrÞÞ2ykMþm−rȳkNþr; ð3:14Þ

which has a manifest λ → 1=λ symmetry, the axial-vector
duality [29,37,38]. The exponents of y and ȳ are, respec-
tively, the charges Q and Q̄. It is immediate to specialize to
the partition function at fixed charges by imposing

Q ¼ kM þm − r; Q̄ ¼ kN þ r; ð3:15Þ

or equivalently,

m ¼ ðQþ Q̄Þ þ kðM þ NÞ;
m − 2r ¼ ðQ − Q̄Þ þ kðM − NÞ: ð3:16Þ

We now obtain the canonical partition function

ZðQ; Q̄; q; q̄Þ ¼
Xk−1
l¼0

clðQþQ̄Þk c̄
l
ðQ−Q̄Þkq

1
4kðQ=λþλQ̄Þ2 q̄ 1

4kðQ=λ−λQ̄Þ2 :

ð3:17Þ
1In stringy terms, this is to say that the radius of the Uð1Þ isffiffiffi
k

p ¼
ffiffiffiffi
α0

p
.
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We are interested in the lowest state with fixed charge. To
find it, first observe that the string functions clm have the
symmetries

clm ¼ cl−m ¼ ck−lk−m ¼ clmþ2k ð3:18Þ

and that for jmj ≤ l, in the infinite cylinder limit q → 0

clm ∼ q
lðlþ2Þ
4ðkþ2Þþ k

8ðkþ2Þ−
m2

4k þ � � � : ð3:19Þ

The state of minimal energy is then obtained for the values
of M and N such that

�
m ¼ ðQþ Q̄Þ mod k≡ ðQþ Q̄Þk
m − 2r ¼ ðQ − Q̄Þ mod k≡ ðQ − Q̄Þk

; ð3:20Þ

and for l being the smallest value such that jmj ≤ l and
jm − 2rj ≤ l. If we assume, without loss of generality,
that Q > Q̄ > 0, then we have l ¼ ðQþ Q̄Þk, and the free
energy gives directly the dimension of the lowest operator,

Δ ¼ ðQþ Q̄ÞkððQþ Q̄Þk þ 2Þ
2ðkþ 2Þ −

ðQþ Q̄Þ2k
4k

−
ðQ − Q̄Þ2k

4k

þ 1

4k

�
Q
λ
þ λQ̄

�
2

þ 1

4k

�
Q
λ
− λQ̄

�
2

: ð3:21Þ

This expression is manifestly invariant under the axial-
vector duality.
Depending on the value of the charges there are two

qualitatively different behaviors:
(i) If Qþ Q̄ < k, then ðQþ Q̄Þk ¼ Qþ Q̄ and the

dimension is

Δ ¼ ðQþ Q̄ÞðQþ Q̄þ 2Þ
2ðkþ 2Þ þ 1 − λ2

2k

�
Q2

λ2
− Q̄2

�
;

ð3:22Þ

which, in the special case λ ¼ 1, reduces to

Δ ¼ ðQþ Q̄ÞðQþ Q̄þ 2Þ
2ðkþ 2Þ : ð3:23Þ

This is the dimension of a primary along the line
of marginal deformations of the SUð2Þ WZW
model parametrized by λ. Geometrically, at the
undeformed point λ ¼ 1 this is the eigenvalue of
the Laplacian on a three-sphere of radius

ffiffiffiffiffiffiffiffiffiffiffi
kþ 2

p
with angular momentum Qþ Q̄. For generic values
of λ, the SUð2Þ symmetry is clearly broken, but the
expression still only depends onQ and Q̄, and it still
can be interpreted as the eigenvalues of a Laplacian
on a deformed sphere. These results reproduce

respectively the expressions in Eqs. (2.34) and
(2.40) in the appropriate semiclassical limit k → ∞.

(ii) If Qþ Q̄ > k, the dimension is

Δ ¼ 1

2k

�
Q2

λ2
þ λ2Q̄2

�
þ akðQ; Q̄Þ; ð3:24Þ

where akðQ; Q̄Þ is defined in Eq. (3.21) and is
generically of orderQ0 for fixed k. From the general
theory, we expect in this regime a Uð1Þ ×Uð1Þ
sector to decouple. In fact, the conformal dimension
is given by the sum of the contribution of the two
fixed charges, that enter precisely with a term
proportional to their square (as in the compact free
boson discussed in the Appendix), and another term
that is not controlled by the large charge. The axial-
vector duality is then understood as the T-duality
that relates the momentaQ to the windings Q̄. In this
regime we do not expect the theory to be described
by a simple EFT. The dominating scale is fixed by
the large charge Q which only controls a subsector
of the full dynamics. Even for k large, we are
not in the standard semiclassical regime of the
WZW model.

Since this model is exactly solvable, we can identify
precisely the regimes of validity of the large-charge
expansions. If the charge is the dominating controlling
parameter (Qþ Q̄ ≫ 1, Qþ Q̄ ≫ k), then we see that the
twoUð1Þs decouple from the rest of the model and the large
charge does not control the entire dynamics. The spectrum
is the one of a free boson plus order-one corrections. In the
regime where the theory is not controlled by Q, but there is
an NLSM description (k ≫ Qþ Q̄ ≫ 1), we find that the
scaling dimensions have an expansion in Q and Q̄ starting
at ðQþ Q̄Þ2. In the special WZW case we studied, it only
contains two terms.

C. Special cases

For concreteness, we study some special cases.
k ¼ 1.—At level k ¼ 1, the suð2Þ1 model is just a free

boson at the self-dual radius and the JJ̄ deformation
changes the radius. Consider (3.21) with k ¼ 1. The
function a1ðQ; Q̄Þ in Eq. (3.24) vanishes identically for
integer Q and Q̄, and we are left with

ΔFB ¼ 1

2

�
Q2

λ2
þ λ2Q̄2

�
: ð3:25Þ

This is the lowest operator dimension of the free boson
discussed in the Appendix with both of the Uð1Þ charges
fixed, with Q and Q̄ identified, respectively, with momen-
tum and winding number.
k ¼ 2.—For k ¼ 2, the parafermion decomposition

of an suð2Þ2 is the orbifold of a free boson and a k ¼ 2
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parafermion, which is a standard fermion. The primary
fields are given by

Φl
mðzÞ ¼ ϕl

mðzÞeimφðzÞ=2; Φ̃l̃
m̃ðz̄Þ ¼ ϕ̃l̃

m̃ðz̄Þeim̃ φ̃ðz̄Þ=2; ð3:26Þ

where the orbifold fixes the values of m and m̃ in the
parafermion field to be the same as the Uð1Þ charge of the
boson. This corresponds to the relations that we had found
above:

m ¼ ðQþ Q̄Þ2; m̃ ¼ ðQ − Q̄Þ2; ð3:27Þ

which in turn fixes the parity of l and l̃, since in general

l −m ¼ 0 mod 2; l̃ − m̃ ¼ 0 mod 2: ð3:28Þ

The parity of l is related to the boundary conditions on the
cylinder: if l is odd, we have a Ramond (R) boundary
condition (BC), while if l is even, we have a Neveu-
Schwarz (NS) BC. The dimension of the lowest (Virasoro)
primary of charges ðQ; Q̄Þ will receive two contributions:
one from the boson Uð1Þ ffiffi

2
p

λ, the other from the zero-point
energy of the appropriate fermionic sector.

(i) If Qþ Q̄ ¼ 0 mod 2, we have Neveu-Schwarz
BC and the free fermion partition function is given
by [34]

ZNS ¼
1

2

����θ3η
����þ1

2

����θ4η
����

¼ 1

2jηj
�����X

n∈Z
qn

2=2

���� þ
����X
n∈Z

ð−Þnqn2=2
����
�
; ð3:29Þ

where q ¼ e−β=R. In the infinite cylinder limit
β → ∞, we have

ZNS ∼ eβ=ð24RÞð1þOðe−β=ð2RÞÞÞ; ð3:30Þ

where we have used that for small q, ηðqÞ ∼ q1=24

and that the leading contribution comes from the
n ¼ 0 mode. It follows that the contribution to the
conformal dimension is

ΔNS ¼ − lim
β→∞

R
β
logðZNSÞ þ

c
12

¼ −
1

24
þ 1

24
¼ 0: ð3:31Þ

(ii) If Qþ Q̄ ¼ 1 mod 2, instead, the free fermion
partition function with Ramond BC is

ZR ¼ 1

2

���� θ2η
���� ¼ 1

2jηj
���� X
r∈Zþ1=2

qr
2=2

����: ð3:32Þ

In this case, in the infinite-cylinder limit the leading
contribution comes from r ¼ �1=2 and the partition
function becomes

ZR ∼ eβ=ð24RÞe−β=ð8RÞð1þOðe−β=RÞÞ: ð3:33Þ

Then the contribution to the conformal dimension is

ΔR ¼ −
1

24
þ 1

8
þ 1

24
¼ 1

8
: ð3:34Þ

This is to be compared with our result from the general
partition function: for k ¼ 2, the function a2ðQ; Q̄Þ takes
the values 0 for Q and Q̄ both even or both odd, and 1=8
otherwise:

Δ ¼ 1

4

�
Q2

λ2
þ λ2Q̄2

�

þ
�
0 if Qþ Q̄ ¼ 0 mod 2
1
8

if Qþ Q̄ ¼ 1 mod 2
: ð3:35Þ

This is precisely what we found in Eqs. (3.31) and (3.35).
As expected from general arguments, we see that in this

case the scaling dimension is made up of the free boson
piece which scales asOðQ2; Q̄2Þ and a second contribution
from the fermion that is independent of the fixed charge.

IV. CONCLUSION AND OUTLOOK

Unlike in higher-dimensional cases, in two-dimensional
CFTs we cannot construct an EFT in terms of an expansion
in the charge that controls the dynamics in sectors of large
fixed charge [10]. Naïvely, one expects problems from the
fact that in two dimensions we do not have Goldstone
modes from the spontaneous breaking of the global
symmetry, which in higher dimensions serve as the light
degrees of freedom in terms of which the EFT is expressed.
The problem however lies in the fact that if we require
unitarity and a discrete spectrum, the Uð1Þ sector which is
controlled by the charge decouples from the full dynamics.
If the full dynamics was strongly coupled, then the rest of
the physics remains perturbatively inaccessible.
The large-charge expansion can however be put to good

use when studying a model which per se has an NLSM
description. Then we can work in a double-scaling limit of
large charge in conjunction with the controlling scale of the
model. In such a case, we can extract general properties of
the spectrum using time-honored approximations such as
the WKB method. Concretely, we have shown how to
compute conformal dimensions via differential equations
describing the target space geometry of the NLSM.
The results from this method can be verified in the case

of fully solvable models such as the SUð2Þk WZW model
by writing down the full partition function and extracting
the fixed-charge sector.
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While we have confined ourselves here to the simplest
case of the SUð2Þ WZW model and its marginal JJ̄
deformation, it would be interesting to study more com-
plicated solvable models such as the SUðNÞ WZW model
or more general marginal deformations [39,40] with this
technique. The real merit of working at large charge is that
it allows for tackling cases which are not solvable but admit
a semiclassical description, as is assumed to be the case for
most string theory solutions. We leave these points for
future investigation.
While the standard large-charge EFT construction is not

directly applicable for two-dimensional CFTs, we conclude
that the approach can be successfully applied in settings
admitting a semiclassical description.
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APPENDIX: THE FREE BOSON

We consider the CFT of a free periodic scalar field,
X ≃ X þ 2πr,

L ¼ 1

2πα0
∂X∂̄X: ðA1Þ

The momentum is quantized:

p ¼ n
r
; n ∈ Z: ðA2Þ

The second quantum number in the compact case is the
winding number w,

Xðσ þ 2πÞ ¼ XðσÞ þ 2πrw; w ∈ Z: ðA3Þ

We can write down the exact partition function for this
theory,

Z ¼ TrðqL0−c=24q̄L̄0−c=24Þ; ðA4Þ

where q ¼ e2πiτ and in our case, c ¼ 1. In the cylinder
limit, τ ¼ iβ=ð2πRÞ, β → ∞, so

Z ¼ Trðe−β=RðL0þL̄0−c=12ÞÞ; ðA5Þ

which we can write explicitly in terms of two integers [34]:

Z ¼ 1

jηðτÞj2
X
n;w∈Z

exp

�
−

β

2R

�
α0n2

r2
þ w2r2

α0

��
: ðA6Þ

This system has two Uð1Þ symmetries associated to the
quantum numbers n and w, and we can fix either of them or
both by imposing appropriate boundary conditions.
The conformal dimension Δ of the lowest operator in a

given sector is found via the state-operator correspondence
starting from the free energy:

−R lim
β→∞

1

β
logZ ¼

�
Δ −

c
12

�
ðA7Þ

and Δ ¼ L0 þ L̄0.
For β=R → ∞, the leading behavior of the Dedekind eta

function is

1

jηðτÞj2 ∼ exp

�
β

12R

�
; ðA8Þ

which measures the contribution of the zero modes and
corresponds to the zero-point energy. So

Z ∼ eβ=ð12RÞ
�X
n∈Z

e−
β
2R

α0
r2
n2
X
w∈Z

e−
β
2R

r2

α0w
2

�
: ðA9Þ

In this form, the sectors of fixed charge already appear
manifestly. For fixed n ¼ Q,

Z ∼ eβ=ð12RÞ
�
e−

β
R
α0
2r2

Q2X
w∈Z

e−
β
R
r2

2α0w
2

�
; ðA10Þ

and taking the limit β=R → ∞, only w ¼ 0 survives, so

ΔQ ¼ α0

2r2
Q2 þ ðc − 1Þ

12
; ðA11Þ

where the second term is zero for the compact boson, i.e.,
the contribution of the central charge cancels the contri-
bution of the Casimir energy.
Instead of fixing n, we could have fixed w ¼ Q̄, which

would have lead to the expression

ΔQ̄ ¼ r2

2α0
Q̄2: ðA12Þ

Unsurprisingly, the dimensions of the lowest operators ΔQ

and ΔQ̄ are related by the T-duality transformation that
exchanges r2=α0 ↔ α0=r2 and swaps Q ↔ Q̄.
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