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Abstract

Background: Patient motions are a repeatedly reported phenomenon in oral and maxillofacial cone beam CT

scans, leading to reconstructions of limited usability. In certain cases, independent movements of the mandible

induce unpredictable motion patterns. Previous motion correction methods are not able to handle such complex

cases of patient movements.

Purpose: Our goal was to design a combined motion estimation and motion correction approach for separate

cranial and mandibular motions, solely based on the 2D projection images from a single scan.

Methods: Our iterative three-step motion correction algorithm models the two articulated motions as inde-

pendent rigid motions. First of all, we segment cranium and mandible in the projection images using a deep neural

network. Next, we compute a 3D reconstruction with the poses of the object’s trajectories fixed. Third, we improve

all poses by minimizing the projection error while keeping the reconstruction fixed. Step two and three are repeated

alternately.

Results: We find that our marker-free approach delivers reconstructions of up to 85% higher quality, with

respect to the projection error, and can improve on already existing techniques, which model only a single rigid

motion. We show results of both synthetic and real data created in different scenarios. The reconstruction of

motion parameters in a real environment was evaluated on acquisitions of a skull mounted on a hexapod, creating
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a realistic, easily reproducible motion profile.

Conclusions: The proposed algorithm consistently enhances the visual quality of motion impaired CBCT scans,

thus eliminating the need for a re-scan in certain cases, considerably lowering radiation dosage for the patient. It

can flexibly be used with differently sized regions of interest and is even applicable to local tomography.

ii
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I. Introduction

Cone Beam Computed Tomography (CBCT) is an established three-dimensional (3D) radiographic imaging tech-

nique. Introduced in dental imaging in the late 1990’s1,2, the technique is now also widely used in other medical

disciplines3,4,5,6. Owing to the implementation of flat-panel detectors as image receptors and to its technical design,

an inherent shortcoming of CBCTs for maxillofacial application lies in long rotation times of 10 to 40 s, during which

several hundreds of projection radiographs used for 3D reconstruction are acquired7. The backprojection process for

3D reconstruction relies on a priori knowledge of the imaging geometry for each projection radiograph up to voxel

size accuracy8. If a patient moves during the acquisition time, errors in the reconstruction chain necessarily occur.

Due to the long scan times, patient motion is an issue in CBCT7,9. The most common reconstruction technique relies

on the Feldkamp algorithm10 which essentially is a 3D adaptation of the classical fan-beam filtered backprojection11.

However, iterative reconstruction techniques are known to be more flexible and can incorporate statistics, physical

models and a priori knowledge12. This can be used to create more exact results, which is especially important when

using a projection based motion correction method. In this context it is noteworthy that CBCTs do not produce

standardized gray values in the sense of e.g. Hounsfield units (HU), i.e. they cannot be compared between machines.

The scale of the reconstructed gray values even differs within volumes and also between different exposure settings in

one machine.13,14

Periodic motions, such as those caused by breathing or heart-beat, has been a topic of lively research over the last

20 years15,16,17,18,19. Typically, such approaches use models, for instance surrogate motion models, to estimate motion

that is otherwise not directly accessible19,20, instead of real yet inaccessible organ motion, e.g. lung deformation

estimated from the thoracoabdominal surface19 or by measuring air flow changes by spirometry21,22. Inherent errors

from such surrogates lie in potential miscorrelation with the internal organ motion they shall represent23. While such

techniques may be capable to address periodic motion, patient movement characteristics in maxillofacial CBCT can

not easily be described by such models, since they include multiplanar movements, head rotation or swallowing24.

Cases are also observed in which only the mandible is moved against the remaining (resting) skull24. Techniques, which

are applicable in scenarios more similar to ours, include methods of autofocus25,26,27,28, consistency conditions29,30,31

and learning based approaches32,33,34. However, methods using consistency conditions are currently not able to

correct separate cranial and mandibular motions, which is the goal of our work. Approaches based on an autofocus

metric are typically able to compensate non-rigid transformations, but usually incorporate temporal regularization

of some kind to reduce the motion parameter space, hindering their application in cases of inconsistent or sudden

motions of the patient. Motion correction methods based on deep learning are another lively field of research and

will play an important role in the future. Berger et al.35 presented an approach which is able to correct multiple

rigid motions in one field of view (FOV). This method relies on a prior motion-free reconstruction of the same region,

performing a 3D/3D registration, followed by a bone-wise 2D/3D registration. Another noteworthy work in that field

was presented by Flach et al.36, performing deformable 3D/2D registration by applying a regularized deformation field

to the reconstructed volume. In their method, the authors also make use of an artifact-free reconstruction by splitting

the scan into a ”prior” and ”intervention” phase, of which only the second one was motion impaired. Unfortunately,

such an artifact-free reconstruction is usually not available in clinical applications.

Based on the work of Niebler37, in this paper we introduce a marker-free, projection-based iterative framework

for correcting movements of the facial skull or of the mandible, which may move relative to the cranium in certain

cases. Without any priori knowledge, we model the motion as two separate rigid motions of these two components.

The paper is structured as follows: After an explanation of the CBCT reconstruction model the method is

described, followed by the segmentation process of the mandible from 2D projection images. The next section highlights

the implementation of the algorithm. Results from synthetic experiments and real world data are then described.
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Subsequently, the method is discussed and conclusions are drawn. Lastly future work directions are presented.

II. Materials and Methods

A typical CBCT setup consists of an X-ray source S and a panel detector D rotating around an object x̃, generating

n ∈ N individual X-ray images b(i), i ∈ {1, ..., n}, each of dimension w× h. This results in a total number of n×w× h
pixels b

(i)
c , each of which, in simplified terms, can be associated with one X-ray r

(i)
c running from S through x̃ into b

(i)
c

in a straight line along the path γ
(i)
c . On this path, the intensity of r

(i)
c is weakened by the attenuation coefficient of

the matter which it is currently passing through.

Since in practice it is only possible to reconstruct a discrete approximation of x̃, we define a grid of mx×my×mz

voxels v each with a given pitch (size) over the region of interest (ROI) Ω, where mx,my,mz ∈ N denote the number of

voxels in x, y, z-dimension, respectively. Each voxel is then assigned the attenuation value of x̃ at its spatial position.

The following notation will use the continuous and discrete versions of x̃ interchangeably.

Using this discrete version of x̃, the reconstruction problem boils down to solving a linear system of equations of

the form

Ax̃ = b. (1)

The system matrix A has a block diagonal shape, as projection images are independent from one another, and

can be fully determined based on the specifications of the CBCT-machine. Since A is usually not a square matrix,

Eq. (1) cannot be solved directly. We can use the corresponding (damped) least squares problem

arg min
x̃
‖Ax̃− b‖22 + λR(x̃), (2)

with a suitable regularization term R and parameter λ ∈ R, to minimize the residual error of the projection by using

the conjugate gradient method for least squares (CGLS ) on the normal equation.

II.A. Method Overview

By assuming a static object x̃, standard reconstruction algorithms cannot account for patient motion, resulting in

highly artifact-laden reconstructions in certain cases8. In this paper, we propose a method to mitigate these effects,

solely based on the 2D acquisition images and without any need for further prior knowledge.

Contrary to the previous work of Niebler37, occurring patient movements are modeled as two separate rigid

motions, one for the cranium and an independent mandibular motion. Since the focus lies primarily on reconstructing

bone structure and teeth, modeling the patient’s movement as two separate rigid motions is well justified.

For that we need to separate x̃ into two parts: mandible and cranium. We define ΩC ⊂ Ω as the region of the

cranium and ΩM ⊂ Ω as the mandibular region, so that ΩM ∪ ΩC = Ω, ΩM ∩ ΩC = ∅. This splits x̃ into

x̃C/M (x) =





x̃(x), x ∈ ΩC/M

0, otherwise

(3)
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s.t. x̃(x) = x̃C(x) + x̃M (x) ∀x ∈ Ω. For each of the two regions we define motion fields pC = {p(i)
C }i=1,...,n

and pM = {p(i)
M }i=1,...,n of the shape p

(i)
C;M = (φ(i), θ(i), ψ(i), t

(i)
x , t

(i)
y , t

(i)
z ) , associated with cranium and mandible,

respectively, each describing the 6 degrees of freedom (3 rotational and 3 translational) of a rigid motion at acquisition

time i.

Our proposed algorithm aims to solve the motion corrected reconstruction problem for both x̃C and x̃M using a

three-step approach, iteratively splitting Ω into ΩC and ΩM (Section II.B.3.), reconstructing the approximate volume

x̃ = x̃C + x̃M using a motion aware reconstruction method with the current motion parameters (Section II.B.1.) and

finally updating the motion fields using the latest (imperfect) reconstruction (Section II.B.2.).

II.B. Method Details

II.B.1. Motion-Aware Volume Reconstruction

ty
tz

tx

DC

DM

SC

SM

θ ψ
y

x

z
φ

Figure 1: Instead of using one projection, our approach uses two virtual source-detector pairs per X-ray image b(i).
(SC , DC) only scans x̃C (grey area) while (SM , DM ) scans x̃M (blue area). The resulting intensities are then added
to generate the final projection.

As we model the movement of the patient by two separate rigid motions, we can express x̃ at frame i as

x̃(x, i) = x̃C(x, i) + x̃M (x, i)

= T (p
(i)
C )x̃C(x, 0) + T (p

(i)
M )x̃M (x, 0)

(4)

where T (p
(i)
C ) and T (p

(i)
M ) are some linear maps describing the two separate rotations and translations of x̃, parameter-

ized by pC and pM . In our motion-aware reconstruction the patient’s motion is incorporated into the system matrix

A.

The key observation in finding the motion-aware projection A(pC , pM ) comes from Eq. (4), as splitting x̃ into

two disjoint regions, each acted upon by only a single rigid motion, allows us to also write A(pC , pM ) as two matrices

II.B. Method Details
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and rewrite Eq. (1) into

A · (T (pC)x̃C + T (pM )x̃M ) = b

⇐⇒ A(pC)x̃C +A(pM )x̃M = b

⇐⇒ (A(pC) · 1ΩC
+A(pM ) · 1ΩM

) x̃ = b

(5)

where A(·) := AT (·) is the motion-aware projection matrix depending on only one of the two motion fields and the

indicator 1 can be expressed as a matrix multiplication. Defining

AΩC ,ΩM
(pC , pM ) := A(pC) · 1ΩC

+A(pM ) · 1ΩM
(6)

leads to the linear system in the form of Eq. (1), assuming ΩC ,ΩM , pC and pM are known.

II.B.2. Motion Estimation

In this section, we leverage a given reconstruction x̃approx to find a better set of parameters pC and pM by minimizing

the residual error between b and the virtual projections of x̃approx

arg min
pC ,pM

E (AΩC ,ΩM
(pC , pM ) · x̃approx, b) . (7)

In our implementation we chose E as the L2-norm of the residual. There are numerous different suitable metrics

for this task suggested by other 2D/3D registration works, e.g. the gradient orientation similarity metric (GO) used

by Ouadah38, or gradient correlation (GC) and normalized gradient information (NGI) as used by Berger et al.35,

however in our experiments we could achieve the most consistent results using L2.

As the motion parameters corresponding to two different projection images b(i) and b(j) are independent of each

other, we can separate Eq. (7) into n independent optimization problems, one for each frame, for each of which we

apply a gradient based solver (for details see Appendix A). We use the nonlinear conjugate gradient method with

Polak-Ribière weights39 for the optimization process of pC and pM . The required line search is performed as an exact

line search for quadratic functionals, as suggested by van Leeuwen et al.40 We discard gradients outside of the ROI in

general.

II.B.3. Mandible Segmentation

Unfortunately, the unambiguous segmentation into cranium (ΩC) and mandible (ΩM ) on an estimated reconstruction

x̃approx of earlier iterations, especially in the first iteration, is not possible. This is because x̃approx still contains

artifacts, such as blur or double contours. Even state-of-the-art neural networks such as Anatomy Net41 are therefore

unable to correctly identify the mandible. Instead we perform 2D segmentations of the mandible on the artifact-

free projection images b(i) yielding labeled data l
(i)
b , by using the segmentation network PointRend42 (see following

paragraph 2D segmentation). From these the 3D label ΩM is computed. We use a principal component model

depending on only a small number of parameters, representing triangle meshes of various shapes of different mandibles.

This model’s projection is registered with the 2D labels, creating the volumetric label of the mandible within x̃approx

(see paragraph Creating 3D labels).

II.B. Method Details
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2D segmentation: PointRend is an improvement of Mask-RCNN43, a network that for a given class (in our case the

mandible) provides the localization in the form of a bounding box and a coarse mask. The PointRend variant uses the

coarse-resolution pixel mask and increases it to the original input resolution to enhance the segmented objects’ edges.

For the training set, we used 43 CT datasets representing heads from a previous work44. To generate the mask for

the mandible, we first extracted the bone structure from the CT by applying the Marching Cubes algorithm, yielding

a triangle mesh of the whole skull. We subsequently extracted the mandible from the bony structure by manually

separating the meshes at the condyles and teeth area. As a result, we have 43 volumes for our CT set showing the

masking of the mandible area. For each volume, we synthetically created a CBCT scan of 516 projection images for

the training process. The trained neural net is robust against physical effects like noise, beam hardening and scatter,

so we did not need to consider these during data generation.

Creating 3D labels: We compute ΩM using a principal component analysis (PCA) model. This model is built

from the same k = 43 triangle meshes of the mandible used for training the 2D segmentation network. We use the k̂

largest principal components to formulate a parameterized triangle mesh model Lk̂(λ). This number is set to k̂ = 5,

since these 5 eigenvalues are sufficient to achieve a coverage of more than half of the underlying data. Finally, we

extend L by the parameters t, r, s ∈ R3, the translation, rotation and scale of the resulting mesh, respectively, leading

to the final model being parameterized by π = {λ, t, r, s}, a total number of 14 parameters. Since the triangle meshes

used for L are static, this model can be computed offline.

We register the forward projection of L with the labels of the projection data lb = {l(i)b }, i ∈ {1, ..., n} using the

following minimization problem

arg min
π

E (Amax(pM ) · L(π), lb) (8)

where Amax denotes a maximum projection dependent on the parameters pM . We solve Eq. (8) using the Nelder-Mead

algorithm45. In our implementation we chose E to be the L2-norm of the residual, but other tested metrics such as

Intersection over Union (IoU) provide very similar results. Note that Eq. (8) is still dependent on pM , suggesting

more exact fits with a good approximation of the jaw’s motion parameters in later iterations.

With the optimal set of parameters π computed, ΩM is defined as the set of voxels inside the triangle mesh L(π);

ΩC is then given implicitly as ΩC = Ω \ΩM . This approach created very close fits in all of our experiments (Sec. IV.),

even for local tomography scenarios where the neural net is not always able to correctly identify the whole mandible

(see Fig. 2b). It also has the advantage of being independent of x̃approx, restricting further propagation of occurring

reconstruction errors.

We artificially enlarge the computed 3D label of the mandible to account for motions of soft tissue, especially

relevant in the chin area, and for possible inaccuracies of L. To avoid growing into the upper tooth row, we do not

dilate in the positive y-direction, keeping the upper and lower teeth separated. Using a hard partition into cranium

and mandible in Eq. (6) leads to very sharp edges between the two regions within the final result, especially since

parts of the soft tissue do not undergo a rigid transformation. Therefore we apply a Gaussian blur to the 3D label

itself, smoothing out those edges. Mathematically speaking, we convolve the 1ΩM
function from Eq. (6) with a

three-dimensional Gaussian kernel Gσ of standard deviation σ. This extends A to

A∗ΩC ,ΩM
(pC , pM ) := A(pC) · (1−Gσ ∗ 1ΩM

)

+A(pM ) · (Gσ ∗ 1ΩM
),

(9)

II.B. Method Details
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where 1 is the identity. In our implementation we chose σ = (5/vpx, 5/vpy, 5/vpz)T , where vp is the voxel pitch. This

ensures consistent results with differently sized ROIs and resolutions (e.g. in local tomography).

(a) −−−−−−−→

(b) −−−−−−−→

Figure 2: The segmentation process. In each row, the two pictures on the left show the labeling l
(i)
b done by our neural

net. On the right side, the computed 3D label L(π) can be seen. The top row (a) shows scans of the whole head
whereas the bottom row (b) depicts a typical local tomography scenario. Note that in both cases the 3D labels are of
high quality.

II.C. Putting everything together

Algorithm 1 combines the described three separate phases. We first create the labels of the mandible in the 2D

projections, since they are independent of the motion parameters. ΩM is then computed in an outer loop as described

in Section II.B.3. using the current motion parameters. In earlier iterations of this outer loop, we use a downsampled

version bk of b to speed up calculations. In later iterations we gradually increase the resolution by adjusting the

downsampling factor. In an inner loop the reconstruction of x̃ and the search for pC and pM are performed alternately

according to the sections II.B.1. and II.B.2. The resolution of x̃ also increases with the number of iterations already

performed (similar to Sun et al.46), since the low resolution versions bk of the images can only support a limited

reconstruction quality. This procedure allows us to decrease the reconstruction time drastically while not sacrificing

overall reconstruction quality.

We chose not to update ΩM in every iteration of the process. Since the updates of pM are rather small in each

iteration, they induce very little change to ΩM . We find that delaying this calculation has very little impact on quality,

while further reducing computational costs.

III. Implementation Details

Rigid Motion Description The position of the source S(i) at acquisition time i is given by applying the rotation

R(i) :=
(
Rx(φ(i))Ry(θ(i))Rz(ψ

(i))
)
·Ry(δ(i))

and the translation

t(i) :=
(
t(i)x , t(i)y , t(i)z

)T

to the initial source position S(0) defined by the specifications of the CBCT device, resulting in

S(i) = R(i) · S(0) + R(i) · t(i),

II.C. Putting everything together
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Algorithm 1: The complete reconstruction algorithm. We set α := pC , β := pM for notation purposes.

Input : raw projections b, regularization parameter λ, PCA-model L, number of max iterations
Ninner, Nouter, stopping criteria

Output: motion corrected reconstruction x
1 x0, α0, β0 ← 0

/* use neural net to find 2D segmentations */

2 lb ← IdentifyJaw2d(b)
3 for k = 1, . . . , Nouter do

/* downsample the resolution of each image */

4 bk ←↓k b
/* compute ΩM and ΩC */

5 πk ← arg min
π

E (Amax(βk−1) · L(π), lb)

6 ΩMk ← {v | v is inside L(πk)}
7 ΩCk ← Ω \ ΩMk

8 α̂0, β̂0 ← αk−1, βk−1

9 for t = 1, . . . , Ninner do
/* reconstruct x with current motion parameters using CGLS */

10 x̂t ← arg min
x

(‖A∗ΩCk,ΩMk
(α̂t−1, β̂t−1)x− bk‖22 + λR(x))

11 if stopping criteria met then
12 break
13 end

/* find optimal motion parameters for each image independently */

14 for i = 1, . . . , n do

15 α̂
(i)
t , β̂

(i)
t ← arg min

α,β
‖A∗(i)ΩCk,ΩMk

(α, β)x̂t − b(i)k ‖22
16 end

/* concatenate individual poses to motion field */

17 α̂t, β̂t ← (α̂
(1)
t , . . . , α̂

(n)
t ), (β̂

(1)
t , . . . , β̂

(n)
t )

18 end
/* update reconstruction and parameters in outer loop */

19 xk ← x̂t

20 αk, βk ← α̂t, β̂t
21 end
22 return xNouter
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see Fig. 1 for details. As the relative positions of source and detector are fixed, the position and rotation of the

detector can be computed in exactly the same way. The angle δ(i), the gantry rotation, is implicitly given by the

device geometry. Often, the default positions are equidistantly placed on a circle around the scanned object.

The reason for using the local coordinates of the source-detector pair for t, i.e. translating by R · t instead of only

t, is that translations perpendicular to the detector plane cannot be reconstructed reliably. The narrow field of view

(FOV) of CBCT machines (in our test cases about 18° horizontal and 14° vertical cone angles) makes the recovery of

this dimension nearly impossible. Using the above notation ensures that only tz is affected by this uncertainty. In our

implementation we drop this coordinate for the optimization process.

Stopping Criteria We stop the motion-aware CGLS reconstruction from Sec. II.B.1. after 30 iterations since we

found a higher number to only increase the noise within the reconstruction as well as negatively affecting the runtime,

but less iterations may yield a blurry 3D volume. We stop Newton’s method for Eq. (7) if there is no significant

improvement of the residual anymore, i.e. 1− ‖rk‖22
‖rk−1‖22

< ε2, which takes about three to four iterations on average. In

Sec. II.B.3. we stop the computation of Eq. (8) if 2 · ‖rbest−rworst‖22
‖rbest+rworst‖22

< 10−5 or after a fixed number of 800 iterations.

For all our experiments we set the maximum number of outer iterations in Alg. 1, Nouter, to three and inner iterations,

Ninner, to five. As an additional stopping criterion we test whether 1 − ‖Ax̂t−bk‖2
‖Ax̂t−1−bk‖2 < ε and if so, we continue the

outer loop with k + 1. We set ε = 0.025.

IV. Results

We conducted several experiments with both synthetic and real data to evaluate our motion correction algorithm.

The synthetic data stems from a volumetric density model44, on which different magnitudes of motion were tested.

We are aware that this data may overlap with data used to train the neural net and the PCA-model from Sec. II.B.3.

Therefore we also verify the labeling of the 2D projection images and creation of the 3D labels on data sets of real

patients which were not included in this process.

IV.A. Synthetic Data

In this section we evaluate our methods using synthetically generated projection data. To assess the quality of our

motion correction algorithm in various scenarios, we created projections with three differently sized ROIs, one of the

whole head, one representing the biggest possible volume of the Accuitomo 170 CBCT device (170 mm diameter,

120 mm height), and a local tomography setup with a very limited ROI (80 mm diameter, 65 mm height), see Fig. 3.

For each scenario we simulated the two separate motions of cranium and mandible using different motion profiles.

Motion of the cranium We used three distinct motion profiles for the cranium. For two of them, a random walk

was performed for each motion parameter, i.e. degree of freedom, one of low (up to 5° rotation, 2 mm translation)

and one of high (up to 15° rotation, 6 mm translation) amplitudes. These motion profiles were taken from the work of

Niebler et al.37 and provide an unpredictable, challenging environment with multiplanar patient motions. In the third

profile the patient performed a single sudden movement after 200 frames (3° rotation on each axis, 2 mm translation

on each axis) and held this position for the rest of the scan. Spin-Neto et al.47 put an approximate threshold of

3 mm movements that significantly increases the likelihood of images being not interpretable, but acknowledge that
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Figure 3: The cylindrical ROIs of the three tested setups are shown in different colors. The biggest is a scan of the
whole head (blue), the purple one resembles the biggest ROI of the Accuitomo 170 device and our local tomography
scenario can be seen in orange.

the majority of present patient movements are ≤ 2 mm. Those smaller movements are covered by our first profile while

our second and third ones cover motions, that potentially render reconstructions unusable.

Motion of the mandible Using 50 volumes of the same subject but with different positions of the mandible, we

simulate a patient opening the mouth during an acquisition. For the low and high amplitude motion profiles the

mouth is being opened steadily by a downward motion during the whole acquisition (5° and 3 mm in total), in the

scenario with the sudden movement the mandible is moved once between frames 258 and 259 (also 5° and 3 mm). All

other motions (and thus degrees of freedom) are simulated implicitly since the mandible is additionally moved with

the cranium. In the motion reconstruction process we treat pC and pM as two independent parameter sets.

With the given motion parameters and CBCT device geometry we generate the 2D acquisition images from the

synthetically generated volumes (550×625×550 voxels) by virtually applying rotation and translation in the forward

projection. We make sure to always scan the whole head (i.e. matter outside of the reconstruction radius) to achieve

high authenticity of our synthetic data. This is especially important in the local tomography scenario.
Whole head Accuitomo 170 Local Tomography

Low amplitude
0.056 / 0.011 0.051 / 0.015 0.050 / 0.026
0.81 / 0.93 0.74 / 0.90 0.66 / 0.76

High amplitude
0.093 / 0.014 0.066 / 0.016 0.072 / 0.029

(∗)
0.69 / 0.92 0.63 / 0.87 0.60 / 0.72

Sudden motion
0.057 / 0.02 0.058 / 0.02 0.071 / 0.029
0.78 / 0.92 0.71 / 0.89 0.63 / 0.78

Table 1: Comparisons of the relative projection errors ‖Ax̃−b‖2/‖b‖2 (upper rows) and SSIM48 values (bottom rows) of
the uncorrected reconstruction (first value) and the output of our algorithm (second value). SSIM values stem from
comparing the reconstructions to the ground truth, restricted to their respective ROIs, with a window of 7 voxels. Our
procedure was able to drastically improve the projection error (up to 85%) as well as increase the similarity between
reconstruction and ground truth in every case. Due to the high motion amplitude and narrow ROI however, the result
of the marked scenario (∗) would still be unusable in a clinical application.

IV.A. Synthetic Data
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Figure 4: Using the proposed method we were able to increase the visual quality of the reconstruction of our synthetic
model drastically. In the top image ([−1000 HU, 1600 HU]), one can see a slice of the initial, uncorrected reconstruction
while the bottom image ([−1000 HU, 2200 HU]) shows the same slice of our motion correction algorithm output. This
motion parameters of this scenario are shown in Fig. 5.

Whole head In this paragraph we evaluate the quality of our proposed algorithm in a scenario, where the limitations

and effects of local tomography setups, in particular the truncation of matter, do not occur. Tab. 1 shows a quantitative

analysis of similarities to the ground truth and residual errors of this and the following scenarios. An overview over

volume and image dimensions can be found in Tab. 3.

Accuitomo 170 Fig. 5 shows the comparison of both the computed cranial (5a) and mandibular (5b) motions to

their respective ground truths in the case of high motion amplitudes. Typically, the computed motion parameters

and the ground truth would not align. This happens because the pose of the reconstruction itself can differ from the

ground truth, for example the whole reconstruction could be shifted upwards on the y-axis. To achieve the maximal

comparability of the motion parameters, we rotated and shifted the coordinate system so that it aligns with the first

projection image. Even in this case of severe motion, our method could identify the present motion with high precision

and increase the overall reconstruction quality (Fig. 4, Tab. 1).

The figure also suggests that finding the cranium’s motion works better than reconstructing movements of the

mandible. Since the influence of pC on the cost function E from Eq. (7) is usually greater than the influence of pM

(i.e. E(pC + ε, pM ) > E(pC , pM + ε) for optimal pC , pM ), this phenomenon would be expected. As already mentioned,

the translation parameter tz cannot be computed reliably and is therefore fixed at 0. The relative projection error of

this scenario can always be kept below 2% and we achieve an SSIM value of at least 0.86.

IV.A. Synthetic Data
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(a) Cranium (b) Mandible

Figure 5: Comparison of the reconstructed motion parameters (Rec, blue curve) with the ground truth (GT , orange
curve) for the Accuitomo 170 scenario of both the cranium (a) and mandible (b). The projection data was created
using motions from the data set of high motion amplitudes.
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(a) Local tomography (b) Whole head

Figure 6: Qualitative comparison of the local tomography setup using low intensity motion amplitudes (a) and the
whole head scenario using the sudden motion (b). Even for small movements, the uncorrected reconstruction bears
artefacts like double contours, concentric ring patterns and general fuzziness (as already described by Schulze et
al.8). Compared to the previous approach37, our method can improve the reconstruction even further. In the local
tomography scenario, the improvements are not limited to the region of the lower jaw only, but the quality (visual
as well as in least squares sense) of the remaining image is also increased by using our mathematical model of two
separate rigid motions. In scenario (b) the definition of the lower jaw is clearly enhanced compared to the previous
approach. All shown Hounsfield units are within [−1000 HU, 2200 HU].

Local Tomography The local tomography problem is an especially challenging one for our algorithm. This type

of scan normally only allows reliable reconstructions inside a very limited cylindrical ROI (see Fig. 3). Since the

forward projection of our algorithm has to mimic the X-ray projections of the CBCT device (to correctly find the

solution of Eq. (7)), we also need to project matter outside of the reconstruction radius. Therefore we are forced to

reconstruct data outside of the ROI, which of course automatically induces some error due to incorrect attenuation

values at those voxel positions. Accurately identifying the mandible within these truncated 2D projection images

poses another challenge for our algorithm. However, even in this setup it was still possible to create fitting 3D labels

for the mandible. In Fig. 6 we compare the output of the proposed method with the uncorrected reconstruction, the

previous work37, and the ground truth in our local tomography setup (6a) and for the whole head (6b).

PCA-model L Fig. 7 shows the voxels inside the triangle mesh resulting from Eq. (8), i.e. L(π), for three examples,

before we artificially enlarge this area and soften its edges to create the final label ΩM . The three depicted volumes

were neither involved in the training data for our neural net, nor are they included in the data for the PCA-model L

IV.A. Synthetic Data
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Figure 7: Three examples of our PCA-model with scans of real patients. The model provides a good fit in all cases,
albeit a bit offset in the last image. Since the labels are artificially enlarged afterwards, small misalignments of only
a few voxels usually do not matter. The second image shows a patient with a tilted head, in this case the model finds
the correct rotation parameters and can achieve a close fit, too.

Whole head Accuitomo 170 Local Tomography

DSC 0.95 0.95 0.84

Table 2: The dice-coefficient DSC between ground truth and the segmentation in the 2D projection data provided by
our neural network. The projections stem from the data sets of the high motion amplitude category.

(see Sec. II.B.3.). In Tab. 2 we compare the output of the neural net with the ground truth of the labeled projection

data. The network provides segmentations of very high quality, whenever the whole mandible is visible, i.e. for the

whole head and Accuitomo 170 scenarios, and some reduced quality in the case of local tomography.

Regularization The choice of the regularization term R and the parameter λ in Eq. (2) can have a drastic effect

on the reconstructions x̂t, and with that especially on the motion estimation in Eq. (7). It is important to note

that reconstructions showing high visual quality (which can for example be achieved by penalizing ‖∇x‖22) are not

necessarily those, which are most useful for our motion estimation. Fig. 8 shows a study on different regularization

terms. We find that strongly penalizing negative attenuation values, i.e. setting R(x) = ‖x−‖22, which in theory breaks

the linearity of Eq. (2), forces the conjugate gradients in a ”more positive” direction and has a beneficial effect on our

whole algorithm. All shown results were created using this regularization term with λ = 10.000 during the motion

correction algorithm and R(x) = ‖∇x‖22 with λ = 100 for the final, depicted reconstructions.

Figure 8: Influence of the regularization term on the quality of our method using the example of the Accuitomo
170 data set with high motion amplitudes. The plot shows the SSIM value between the final reconstruction and the
ground truth. All intermediate reconstruction were obtained with the depicted regularization term and for the final
reconstruction we applied the same regularization to all test cases (R(x) = ‖∇x‖22 with λ = 100).

IV.A. Synthetic Data
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Runtimes Optimizing the runtime of our algorithm was not the primary focus of this work. Nevertheless we want

to give a brief summary of the overall execution times of the previously discussed scenarios, which can be seen in

Tab. 3. Our algorithm was run on a test system with an Intel i7-11700K processor and 64 GB of RAM equipped

with an Nvidia RTX 3090 GPU. The resulting execution time is directly dependent on the number of input pixels

and the dimension of the reconstructed volume. Using the resampling approach decreased the number of pixels and

voxels along each dimension by 50% and 30% in the two first outer iterations, respectively, cutting the execution time

roughly in half without negatively impacting the final reconstruction. Note that the output motion parameters are

independent of image dimensions and volume sizes, so they can be used to create arbitrarily large reconstructions

afterwards.
Volume size Image size Runtime

Whole head 300× 300× 300 300× 300× 516 9min
Accuitomo 170 450× 300× 450 465× 370× 512 23min

Local Tomography 450× 300× 450 357× 285× 600 21min

Table 3: Runtimes and dimensions of the different test scenarios. For this table we performed all three outer and five
inner iterations without the usage of other stopping criteria to achieve a conservative runtime estimation.

IV.B. Real Data

Figure 9: The skull is placed on top of the hexapod, at the height of a real patient’s head. The platform moves during
the acquisition, creating reproducible motion parameters.

(a) (b) (c) (d)

Figure 10: Individual components of the motion apparatus. Skull suspension and mandibular support (a), freedom of
movement of the mandible (b), HSRM marker (c), placement of marker and camera on the platform (d).

Skull To verify the practicality of our approach with real CBCT machines, we conducted several scans of a skull

placed on a robot platform. We simulate the patient’s head movement utilizing a Stewart-Platform49, often also

called a hexapod. A hexapod is a composition of two platforms connected by six linear actuators. The position and

orientation of the upper platform can be adjusted by changing the length of the individual actuators. Fig. 9 shows our

setup positioned under the CBCT machine during a test run. We use a commercial solution for the Stewart-Platform50,

which we adapt and expand for our usage. In addition, we developed a construction for independent movement of the

skull’s lower jaw (Fig. 10a). We simulate the complex mandible movement as a simple rotation around the laterally

IV.B. Real Data
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(a) Cranium and mandible (b) Mandible only

Figure 11: With our setup we were able to precisely control the movements (cranium and mandible) of a human skull
while performing an actual CBCT acquisition. Here we show the reconstructions of the machine’s manufacturer (top)
and the output of our algorithm (bottom). The shown slices of the two scenarios slightly differ to properly highlight
the affected regions. In scenario (a) the vendor’s reconstruction suffers heavily from motion-induced artifacts, while
our method was able to mitigate those up to a point where they are barely even noticeable. In the right half of this
figure, reconstruction errors of the mandible are clearly observable in the top row, while the reconstruction of the
cranium worked perfectly. By modeling the patient’s mandibular motions independently, we were able to create an
error-free reconstruction of the mandible in this case, too. [−1000 HU, 2400 HU]

(a) Cranium (b) Mandible

Figure 12: From the tracked positions and orientations of cranium and mandible we compute the angles and translations
in the local coordinate system of the source-detector pair, as described in Sec. III. This figure compares the tracked
motions (GT , orange curve) with the motion parameters found by our algorithm (Rec, blue curve). Again, the
translation in the z-direction is kept at 0.

oriented axis positioned in the condyles area as a first approximation. Using a standard step motor, we can perform jaw

movements with a rotation angle of around 9◦ in steps of 0.1◦ (Fig. 10b). To track the current position and orientation

of cranium and mandible, we use an in-house built tracking system (HSRM Tracking51). As seen in Fig. 10d, we

placed one marker on the backside of the platform and attached an additional one to the construction of the mandible

holder. With a camera fixed to the lower platform, we can simultaneously track the current positions of cranium and

mandible.

We run different motion profiles, concurrently moving the skull’s cranium and the lower jaw. Fig. 11 shows the

results of two different such profiles. For Fig. 11a we performed a (quite strong) periodic motion of the cranium while

simultaneously moving the mandible (also see Fig. 12). In total we measured a movement of about 6 mm in the middle

and 7.4 mm in the upper part of the reconstructed area. Fig. 11b shows a scenario where the lower jaw of the skull was

opened and closed several times and then remained in a different position for the rest of the scan. With this motion

profile the chin moved 9.5 mm between start and end position.

Patient Lastly we verify our method on a CBCT acquisition of a patient in a real clinical application. During this

acquisition the patient performed a strong motion (about 1 cm displacement), rendering the uncorrected reconstruction

unsuitable for further clinical usage (see Fig. 13a). In this case the patient had to undergo another CBCT-examination.

The result of our method can be seen in Fig. 13c. Compared to the vendor’s reconstruction, the quality could be

IV.B. Real Data
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(a) Vendor ([−1000HU, 1750HU]) (b) Niebler et al. ([−1000HU, 1750HU]) (c) Ours ([−1000HU, 1750HU])

Figure 13: Reconstructions of motion-impaired data from a real patient. Written informed consent was obtained prior
to publishing this image.

clearly enhanced and existing motion artifacts are mitigated. Due to the severe motion however, we increased Nouter

and Ninner and performed a total number of 34 iterations. The image in the middle (Fig. 13b) shows the result when

applying the method described by Niebler et al.37 Our reconstruction shows further improvement of the overall quality,

especially noticeable as sharper edges throughout the image, for example the transition between tooth and air is less

blurry. The visible artifacts in the region of the lower jaw are due to a metal implant in one of the patient’s teeth.

V. Discussion

Patient motion during the 10 to 40 s long exposure in maxillofacial CBCT is a frequent finding. Depending on the

assessment method, patient motion was detected between 24%52,53 and up to 78% of the CBCT-examinations24.

Typical image degrading effects caused by such motion are motion blur, i.e. reduced spatial resolution and typical

artefacts like stripe- and ring-patterns7,8,54. Since the long exposure times are due to hardware limitations and will

most likely not be reduced considerably in the near future, the patient motion issue will also persist. We propose

a marker-free method capable of enhancing the quality of motion-beset maxillofacial CBCT-data a posteriori. As a

novelty, the method also reconstructs separate motion of the mandible relative to the cranium. This motion pattern

has been observed in patient CBCT-examinations24. Even in cases with unrealistically large motion amplitudes of

6 mm the proposed method worked rather well. Using a convolutional neural net dealing with segmentations in the

artefact-free 2D projection images from the CBCT-scan, the mandible is very reliably segmented from the remaining

skull. Based on the previous work from Niebler and colleagues37 our motion aware reconstruction based on the CGLS

algorithm models patient motion by two separate rigid motions, i.e. that of the mandible and that of the cranium.

This consideration is the main difference to previous works, e.g. Niebler37 and the similar approach of Sun et al.46,

providing a much more versatile motion correction algorithm. Our real-world clinical case (Fig. 13) also proves the

enhancement of the resulting volume reconstruction in an actual clinical application. In theory, it is even possible

to apply a different reconstruction algorithm, for example the widely used FDK algorithm, but we found CGLS to

produce results of higher quality.

It is also interesting to note, that the proposed method is capable of reliably estimating the motion occurring

in a CBCT. This could also be used to track motion in existing data, whenever the 2D projection radiographs and

geometric machine parameters are available. In a clinical or scientific context, estimation of the true patient motion

yields helpful information for both CBCT image acquisition as well as further enhancement of the machines.

V.A. Limitations

All of our test cases assumed an aligned detector of the CBCT device and a full 360° rotation scan. Contrary, some

clinical CBCT devices employ different strategies, e.g. by using a lateral-offset detector or by applying short scan
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(a) (b)

Figure 14: Limitations of our algorithm: (a) A typical flawed output when using scan geometries with lateral-offset
detectors. (b) Reconstruction of the scenario marked in Tab. 1 after motion correction. In this case the combination
of high motion amplitudes and small ROI made the recovery of the true motion parameters impossible.

protocols in certain acquisition modes. In such cases, the patient is scanned mostly, or even completely, for only 180°
plus cone angle. Similar to the methods analyzed by Santaella et al.55 we find that our motion correction algorithm

produces results of lower quality in setups with lateral-offset detectors, and it fails to output acceptable results for

short scan data. In lateral-offset setups, recovery of motions of the cranium is still possible in many cases (albeit

usually with less precision), but correcting separate mandibular motions was impossible in our test cases. A typical

output with this setup can be seen in Fig. 14a.

When motion amplitudes are excessive, our proposed method cannot reconstruct the correct motion parameters

because the bad quality of the initial reconstruction does not allow useful pose estimations. Usually it is still possible

to reduce the projection error ‖Ax̃− b‖2 and enhance the reconstruction quality, but the result may still be unusable

for medical diagnosis. For example, with the local tomography scenario using the tested high motion amplitudes, our

algorithm can improve both the projection error as well as the SSIM compared to the ground truth (Tab. 1), however

the visual quality of the result is still not satisfactory and unsuitable for further usage (Fig. 14b). Unfortunately there

is no hard threshold of when motion amplitudes are too high, since the quality of our results also depends on the

given setup. The motion estimation works best for bigger ROIs and therefore fails earlier in narrow local tomography

setups, as already seen in Sec. IV.

Real-world CBCT data is hard to come by. We could demonstrate our approach on one clinical data set and

several scans of a moving skull, but the evaluation of our method would still benefit from more clinical data. This also

applies to the mandible segmentation within the 3D volume. In our test cases, the label of the mandible did not grow

into the region of the upper jaw. However, our segmentation method currently does not strictly enforce this. In such

cases separate motion correction for cranium and mandible would not be possible or artifacts like double contours

within the tooth row can arise. In these situations a tooth-type trained network could be helpful to ensure a more

exact segmentation of the lower and upper teeth. We hope to perform further studies on more measurements in the

future.

VI. Conclusion and Future Work

We presented a motion estimation and motion correction method for 3D-CBCT, based only on the 2D radiographic

images. As a novelty, our method considers separate cranial and mandibular motions. The experiments showed that

our algorithm is capable of consistently enhancing reconstruction quality. Quantitative comparisons of synthetically

generated data from different scenarios (including local tomography) and qualitative comparisons of real acquisitions

are provided. We found, that the proposed method was able to improve visual quality as well as the SSIM to the
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ground truth in every case. In many cases previously unusable CBCT scans could be enhanced to allow for further

clinical usage. Since some manufacturers use lateral-offset detectors to save hardware costs, our research group will

focus future work on further improving results with these kinds of scanning geometries. Future research will be also

directed towards refinement of the methodology and potential implementation in clinical work.
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A Derivation of the Gradient

Here we derive the gradient of Eq. (7) with respect to the motion parameters pC and pM . As we separate Eq. (7) into

n independent optimization problems and choose E as the L2-norm of the residual, we can write it for each image b(i)

as

E(x̃, p
(i)
C , p

(i)
M ) = ‖A(i)(p

(i)
C , p

(i)
M )x̃− b(i)‖22

and with that the gradient is given by

∇pE = 2(∇pA(i)(p
(i)
C , p

(i)
M )x̃)T (A(i)(p

(i)
C , p

(i)
M )x̃− b(i)).

To compute ∇pA(i)(p
(i)
C , p

(i)
M )x̃, we first look at every pixel c of the forward projected (discrete) volume, which is given

by summing up the attenuation values along the discretized ray γc:

(A(pC , pM )x̃)c =
∑

x∈γc
[(1− λ(T (pC)(x))) · x̃(T (pC)(x))

+ λ(T (pM )(x)) · x̃(T (pM )(x))]

=
∑

x∈γc
(1− λ(T (pC)(x))) · x̃(T (pC)(x))

+
∑

x∈γc
λ(T (pM )(x)) · x̃(T (pM )(x)),

where λ(x) is the value of the 3D label at position x ∈ R3 and T being the rigid transformation on the voxel position.

This results in the (separated) gradients

∇pC (A(pC , pM )x̃)c

=
∑

x∈γc
[−JT (pC)(x) · ∇xλ(T (pC)(x)) · x̃(T (pC)(x))

+(1− λ(T (pC)(x))) · JT (pC)(x) · ∇xx̃(T (pC)(x))]

=
∑

x∈γc
JT (pC)(x) · [−∇xλ(T (pC)(x)) · x̃(T (pC)(x))

+(1− λ(T (pC)(x))) · ∇xx̃(T (pC)(x)))]

∇pM (A(pC , pM )x̃)c

=
∑

x∈γc
JT (pM )(x) · [∇xλ(T (pM )(x)) · x̃(T (pM )(x))

+λ(T (pM )(x)) · ∇xx̃(T (pM )(x))].

JT ∈ R6×3 can be obtained by computing the Jacobian of the rigid transformation T (p) with respect to the

parameter p ∈ R6 and ∇xx̃,∇xλ ∈ R3 as the spatial gradient of the reconstruction and label, respectively. In our

implementation we use linear interpolation on both volumes, which enables a fast computation of these gradients as

they can be implemented via texture lookups on the GPU.
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