
Prediction of post-stroke motor recovery 
benefits from measures of sub-acute 
widespread network damages
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Following a stroke in regions of the brain responsible for motor activity, patients can lose their ability to control parts of their body. Over 
time, some patients recover almost completely, while others barely recover at all. It is known that lesion volume, initial motor impairment 
and cortico-spinal tract asymmetry significantly impact motor changes over time. Recent work suggested that disabilities arise not only from 
focal structural changes but also from widespread alterations in inter-regional connectivity. Models that consider damage to the entire net
work instead of only local structural alterations lead to a more accurate prediction of patients’ recovery. However, assessing white matter 
connections in stroke patients is challenging and time-consuming. Here, we evaluated in a data set of 37 patients whether we could predict 
upper extremity motor recovery from brain connectivity measures obtained by using the patient’s lesion mask to introduce virtual lesions in 
60 healthy streamline tractography connectomes. This indirect estimation of the stroke impact on the whole brain connectome is more read
ily available than direct measures of structural connectivity obtained with magnetic resonance imaging. We added these measures to bench
mark structural features, and we used a ridge regression regularization to predict motor recovery at 3 months post-injury. As hypothesized, 
accuracy in prediction significantly increased (R2 = 0.68) as compared to benchmark features (R2 = 0.38). This improved prediction of re
covery could be beneficial to clinical care and might allow for a better choice of intervention.
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Abbreviations: ASTRAL = Acute Stroke Registry and Analysis of Lausanne; CST = cortico-spinal tract; DTI-TK = Diffusion Tensor 
Imaging ToolKit; EPI = echo-planar; FA = fractional anisotropy; FMA = Fugl–Meyer Assessment; FSL = FMRIB Software Library; 
HCP = human connectome project; LOO = leave-one-subject-out; MNI = Montreal Neurological Institute; NPV = negative 
predictive value; PPV = positive predictive value; VIF = variance inflating factors

Graphical Abstract

Introduction
In the USA alone, almost 800 000 people are affected every 
year by a cerebral stroke with consequences that include se
vere motor, cognitive, or emotional handicap.1

Unfortunately, less than 15% of the patients achieve full re
covery, making the number of persons currently living in the 
USA with motor impairments as a consequence of stroke on 
the order of millions.1 An additional challenge is the hetero
geneity in outcome and individual recovery potential that 
strongly influence our ability to identify the optimal neuror
ehabilitative programme to maximize individual treatment 
outcome. Indeed, even experienced clinicians find it difficult 
to accurately predict patients’ level of recovery.2 Accurate 
prediction in the early stage after the lesion has the potential 

to yield a patient-specific recovery trajectory, stratify pa
tients into recovery-focused clinical trials and guide rehabili
tation strategies including discharge destination.2

It has already been shown that the severity of motor impair
ment at admission provides useful information on the recovery 
trajectory.3 Indeed, the comparison of the Fugl–Meyer 
Assessment (FMA) score obtained right after the stroke and 
3–6 months later led to the postulation of the proportional re
covery model,4 which states that the majority of patients recover 
on average 70% of their initial impairments. However, models 
that aim to predict patients’ percentage of initial impairment 
may lead to an overestimation of the fit between initial impair
ment and clinical recovery due to mathematical coupling and 
ceiling effects.5,6 Moreover, the 70% rule does not apply to all 
patients. Indeed, even though the recovery trajectory of about 
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two-thirds of the patients fits this so-called proportional rule, the 
remaining ones, the so-called non-fitters, show very poor to no 
improvement.7 More recent work avoiding mathematical coup
ling and ceiling effects confirmed that patients present two dis
tinct recovery patterns8 and that the clinical recovery shows 
proportionality to the initial impairment, although with much 
less explained variance.9 Prediction of motor recovery remains, 
thus, an important and currently unmet need.

The integrity of the cortico-spinal tract (CST), as assessed 
with brain imaging or with motor-evoked potentials, has 
also been proposed as a good predictor of motor recovery 
after stroke.10,11 Indeed, large CST lesions, as depicted by 
a high degree of CST asymmetry, are linked to poor motor 
improvement.12,13 Yet, a combination of clinical assess
ments and measures of CST integrity allow a reliable predic
tion of motor recovery in only 75% of patients.10,11

The lack of generalization of these prediction models 
might be explained by the use of measures derived purely 
from focal brain regions. Indeed, increasing evidence settled 
a new clinical concept in stroke: connectional diaschisis, 
which illustrates the idea that even a focal lesion might in
duce a loss of functionality in a territory that is distant to 
the lesion.14 This observation is not surprising if we consider 
the brain as one complex network where the different re
gions are nodes linked together by a global architecture 
that makes them dependent on one another.15

For this reason, recent studies attempted to include in 
the prediction models network measures extracted from func
tional9,16–18 and diffusion-weighted10,18,19 magnetic resonance 
imaging (MRI) with encouraging results. However, measuring 
functional and diffusion-weighted MRI signals requires long 
and expensive acquisitions that are not easily implementable 
in clinical settings particularly in the acute phase post-lesion.

Here we propose a novel method to combine focal structural 
damages and alterations in widespread network overcoming 
the disadvantage of individual functional and diffusion- 
weighted MRI acquisitions. Specifically, we embedded a pa
tient’s lesion into a streamline tractography connectomes of 
60 healthy subjects, thus indirectly estimating the stroke impact 
on the whole brain connectome. We constructed a structural 
graph between N = 360 atlas regions and with edges weighted 
to depict the number of white matter connections between cor
tical regions. We then computed weighted and unweighted 
graph measures that characterize network properties and used 
them to predict upper-limb motor recovery at 3 months post- 
lesion. When adding these measures to features previously 
used (lesion volume, initial motor impairment and CST asym
metry), the recovery prediction significantly improved, demon
strating the importance of considering widespread network 
dysfunctions for accurate and precise patients’ assessments.

Materials and methods
Participants
Thirty-seven subjects were included in this study (data set 
#1). Additionally, to obtain a normative structural 

connectome, we used diffusion-weighted MRI acquisitions 
from 60 healthy volunteers (data set #2) from the human 
connectome project (HCP) database (db.humanconnecto
me.org; see Supplementary Table 2 for demographic details 
of data set #2). The healthy volunteers were not age-matched 
with the stroke cohort (mean age was 32, range 26–34; see 
Supplementary Table 2 for additional details).

Data set #1
Thirty-seven patients were recruited from the inpatient re
habilitation unit of the University Hospital of Geneva. Part 
of these data were published elsewhere.20 Inclusion criteria 
were (i) clinical diagnosis of stroke involving the territory 
of the middle cerebral artery as demonstrated by structural 
MRI and (ii) at least mild motor impairment (upper FMA 
of at most 55 points) at the beginning of rehabilitation. 
Sixty-three patients were included in the initial study. The se
lection of 37 patients (mean age was 65.6, range 28–85; see 
Supplementary Table 1 for additional details) for the present 
study has then been made on the basis of data completeness, 
which consists of the presence for each patient of (i) a 
diffusion-weighted and T2-weighted imaging obtained 2–4 
weeks after the stroke for lesion segmentation and (ii) upper 
FMA at 2 weeks and 3 months after the stroke. Patients for 
which one of these elements was lacking have been excluded 
from the present group. All patients received standard ther
apy at the stroke unit during the acute phase and an individu
ally tailored multidisciplinary rehabilitation programme in 
the subacute and chronic phases. All patients received two 
times 30 min of physical therapy per day on 5 days per 
week and five times 30 min of occupational therapy per 
week on an inpatient basis for 8–16 weeks, followed by out
patient treatment of 1–4 h of physical and occupational ther
apy per week.

All experiments were reviewed and approved by the 
Commission Cantonale d’Ethique de la Recherche de 
Geneve, Switzerland. Informed consent forms, including 
consent to share de-identified data, were collected for all sub
jects, and all methods were carried out in accordance to the 
Declaration of Helsinki.

Clinical assessments
Trained physical or occupational therapists performed stan
dardized clinical assessments of upper extremity motor func
tion at 2–4 weeks and 3 months after stroke using the upper 
extremity items of the FMA21,22 with a maximal score of 66 
points. We computed the FMA recovery score as 
100 · FMA3months−FMA2weeks

66−FMA2weeks
, where FMA3months and FMA2weeks 

are the FMA score at 3 months and 2 weeks post-lesion, 
respectively.

MRI acquisition
For both data sets, standard anatomical images and 
diffusion-weighted images were acquired.

Networks features for prediction of recovery                                                                 BRAIN COMMUNICATIONS 2023: Page 3 of 13 | 3

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/5/2/fcad055/7066788 by U

niversitaetsbibliothek Bern user on 21 M
arch 2023

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad055#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad055#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad055#supplementary-data


Data set #1
High-resolution structural T2-weighted (echo time/repeti
tion time = 376 ms/5.0 s; voxel size = 0.45 × 0.45 ×  
0.90 mm3) volumes were obtained on a 3.0-T Siemens Trio 
TIM 3.0-T scanner using a 64-channel coil. Additionally, 
whole brain, single-shot echo-planar (EPI) diffusion- 
weighted volumes (30 non-collinear directions; b = 1000 
s/mm2; 64 slices; voxel size 1.8 × 1.8 × 2.0 mm3; echo 
time/repetition time = 82 ms/8.2 s; acquisition time = 4 min 
40 s) plus one volume without diffusion weighting (b = 0 
s/mm2) were acquired parallel to a line intersecting the anter
ior and posterior commissure.

Data set #2
High-resolution structural MRI was acquired using a 3D 
MPRAGE T1-weighted (TR = 2400 ms, TE = 2.14 ms, 
TI = 1000 ms, flip angle = 8°, FOV = 224 × 224, voxel size  
= 0.7 mm isotropic). The following sequence was used for 
diffusion-weighted MRI: spin-echo EPI, TR = 5520 ms, 
TE = 89.5 ms, flip angle = 78°, FOV = 208 × 180, 3 shells 
of b = 1000, 2000 and 3000 s/mm2 with 90 directions plus 
6 b = 0 acquisitions; total acquisition time was 9 min 50 s. 
HCP-minimally preprocessed images were used for all 
acquisitions.

Lesion masking
T2-weighted and DWI sequences were used to delineate is
chaemic lesions using the software MRIcro (http://www. 
cabiatl.com/mricro/). Afterwards, images and lesion masks 
of individual subjects were normalized to canonical 
Montreal Neurological Institute (MNI) space (2 × 2 ×  
2 mm resolution) using SPM8 software. Specifically, we 
used the normalize function in SPM8 with regularization 
type MNI, a non-linear frequency cut-off of 25 and 16 itera
tions for the non-linear warping. Lesions were masked dur
ing normalization to avoid distortions.23

Streamline tractography 
connectomes
Part of the structural connectome used in this paper 
was already deployed in a previous publication.24

Diffusion-weighted scans of the healthy subjects (data 
set #2) were analysed using MRtrix325 (http://www. 
mrtrix.org/) with the following operations: multi-shell 
multi-tissue response function estimation, constrained 
spherical deconvolution, tractogram generation with 107 

output streamlines.

Brain connectivity measures
In order to compute a brain connectivity matrix per patient, 
we first virtually lesion each of the 60 healthy connectomes 
by intersecting them with each patient’s lesion mask using 
the tckedit function of MRtrix 3.0 software and deleting 
all white matter tracts passing through the lesioned area 

(Fig. 1). This indirect estimation of the stroke impact on 
the whole brain connectome is more readily available than 
direct measures of functional and structural connectivity ob
tained with MRI. For each patient, we thus obtained 60 vir
tually lesioned connectomes. Glasser’s multimodal cortical 
atlas26 converted to volume was split into the two hemi
spheres (first 180 areas on the left and last 180 on the right) 
and used to parcellate the cortex into N = 360 regions of 
interest and generate the N × N structural connectome using 
the tck2connectome function of MRtrix 3.0 software for 
each patient and each damaged connectome. For each im
pacted connectome, we then constructed a graph considering 
each brain area as a vertex and the number of fibres connect
ing two regions divided by the region volumes (sum of con
nected regions) as edges connecting two vertices. From 
these graphs, we computed seven brain connectivity mea
sures considering the weights of the edges (i.e. weighted 
graph) and 10 measures on binary graphs (i.e. graphs with 
edges either 0 or 1; see below for details) using the Brain 
Connectivity Toolbox27 (see Supplementary Table 3 for a 
complete list of the measures considered and for their math
ematical definitions and interpretations) (Fig. 1). Some mea
sures are not represented by a single value for the whole 
network, but by one value for each of the 360 nodes. 
When this was the case, we considered both the mean and 
the median to obtain one global value. For each patient 
and each connectivity measure, we then averaged the 60 va
lues obtained from the 60 virtually lesioned connectomes. To 
compute binary measures, the weighted adjacency matrices 
were first binarized through a thresholding process. As the 
threshold is inversely proportional to the density of the bi
narized graph, this must be chosen with care. If the density 
is too low, the graph is too sparse, and some points will be 
disconnected from the rest of the network. On the other 
hand, a too high density will lead to too many edges being 
present, which makes the interpretation of the graph pat
terns irrelevant. A threshold was chosen to obtain a density 
equal to the weighted density of the weighted matrices.

Cortico-spinal tract asymmetry
Data set #1 diffusion-weighted MRI data were preprocessed 
using the DIFF_PREP and DIFF_CALC methods of Tortoise 
software.28,29 The tensors were then spatially normalized 
using the Diffusion Tensor Imaging ToolKit (DTI-TK).30– 

32 Mean fractional anisotropy (FA) values for left and right 
CST were obtained with FMRIB Software Library 
(FSL).33–35 The percentage of asymmetry was then computed 
using the Stinear’s formula:36

Asymmetry =
FAH − FAL

FAH + FAL 

where FAL is the mean FA value of the left (right) CST and 
FAH is the mean FA value of the right (left) CST for a lesion 
in the left (right) hemisphere.
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Prediction models
In order to test whether brain connectivity measures will im
prove the prediction of recovery as compared to clinical 
state-of-the-art measures, we compared the predictive power 
of five different sets of features (Table 1). The first set of fea
tures was composed of immediately available information in 
the clinical setting: patient’s age and initial FMA impair
ment. In the second set of features, we added the lesion vol
ume. The CST asymmetry value was then added to obtain the 
third set of features. This set of features is the one that so far 
in literature demonstrated the highest accuracy in predicting 
motor recovery.10,11,37 In the fourth data set, we added the 
brain connectivity measures to the other features. Due to 
the number of connectivity features included and to avoid 
collinearity issues in the training part of the prediction mod
el, a feature selection step using variance inflating factors 
(VIF) was carried out to select the most important features. 
Finally, in the fifth set of features we excluded CST asym
metry (i.e. we considered only patient’s age, initial FMA im
pairment, lesion volume and brain connectivity measures). 
Indeed, CST asymmetry requires advanced imaging acquisi
tions (as diffusion-weighted MRI) that are not always avail
able in clinical setting. Also, for the fifth set of features, the 
most predictive brain connectivity measures were selected 
using VIF.

For each set, features were standardized to obtain a mean of 
0 and a standard deviation of 1 and then used as input for a 
ridge regression model to predict FMA recovery score (Fig. 1).

Ridge regression: minβ
1
N

y − Xβ2
2 + λ2β2

2

􏼚 􏼛

The standardization, feature selection and prediction steps 
were included in a leave-one-subject-out (LOO) cross- 
validation approach. For the fourth and fifth sets of features, 
VIFs were used in each LOO fold to iteratively exclude the 
most collinear feature until a certain VIF threshold was 
reached. A range of VIF thresholds were tested (every unit 
from 5 to 200). In each fold, the regularization λ2 coefficient 

of the ridge regression was optimized by identifying a value 
that minimized LOO prediction error over the training set. 
Optimal weights were solved across the entire training set using 
a grid search to minimize error for the ridge regression equation 
by varying lambda. These model weights were then applied to 
the left-out fold (i.e. subject) to predict the behavioural score. 
Model accuracy was assessed using the coefficient of determin

ation: R2 = 1 −
􏽐

(Y−Y′)2

􏽐
(Y−Y′)

2, where Y are the measured FMA re

covery score, Y′ are the predicted FMA recovery score and Y′

is the mean of predicted FMA recovery scores. We then com
pare each set of features based on their accuracy. As stated in 
the Introduction, predicting the FMA recovery and using the 
initial FMA score as part of the independent variables come 
with some limitations in the form of ceiling effects and mathem
atical coupling. These limitations may lead to the observation 
of a spurious correlation between the initial impairment and 
the recovery even if the correlation between the initial impair
ment and outcome is null. The presence of this issue in our ana
lysis would lead to an overestimation of the goodness-of-fit of 
our model. Fortunately, this issue can be ruled out by observing 
a similar goodness-of-fit using the same model to predict stroke 
outcome (i.e. FMA value at 3 months post-stroke) instead of re
covery.5 For this reason, we tested the ability of our best model 
to predict outcome using the same model reported above (i.e. 
ridge regression model with LOO approach).

Classification task
In order to demonstrate the classification ability, i.e. ability 
to obtain a categorial classification of the patients (0–1) of 
the five different sets of features, we divided the patients in 
fitters and non-fitters following the proportional recovery 
rule as in Koch et al.19 Specifically, fitters/non-fitters are pa
tients that follow/not the proportional recovery rule. It has 
been demonstrated that this separation into two classes is ro
bust and not an artefact of mathematical coupling, as it was 
present also when using Bayesian modelling.8 In order to de
termine these two groups of patients, we performed a 

Figure 1 Prediction model based on brain connectivity measures. First step: a lesion mask is drawn for each patient from the structural 
MRI. Second step: for each patient, the lesion mask is intersected with each of the 60 healthy streamline tractography connectomes deleting all 
white matter tracts passing through the lesioned area leading to 60 virtually lesioned connectomes. Third step: from each of these virtually lesioned 
connectomes, we estimate brain connectivity measures and the latter are averaged over connectomes. Fourth step: these measures are used as 
input for a ridge regression model to predict motor improvement.
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hierarchical clustering using Spearman correlation distance 
on the values of FMA points that should be recovered follow
ing the 70% proportional recovery model versus the actual 
number of FMA points effectively recovered by each patient. 
We additionally used a simple threshold of 30% FMA recov
ery score to separate fitter from non-fitters, based on litera
ture,20 and we confirmed that this led to precisely the same 
labelling as obtained from the hierarchical clustering method. 
Once we obtained this classification of the patients, we com
pared each set of features based on their ability to distinguish 
between fitter and non-fitter using specificity, sensitivity, posi
tive predictive value (PPV) and negative predictive value 
(NPV).

Statistical analysis
To estimate the correlation of our measures with FMA recov
ery score, we computed Spearman correlation values between 
FMA recovery score and each benchmark feature (initial im
pairment, lesion volume, age and CST asymmetry) and each 
brain connectivity feature. The associated P-values were 
Bonferroni corrected for the number of features tested. To as
sess the amount of shared information between features, we 
computed Spearman correlation values for each pair of vari
ables. Furthermore, we performed hierarchical clustering 
based on the Spearman correlation distance to identify clusters 
of variables sharing similar information. We have also assessed 
the ability of the features to individually distinguish between 
fitter and non-fitters by performing Wilcoxon rank–sum tests.

Additionally, we have bootstrapped 95% confidence in
tervals for each prediction model to assess the statistical dif
ference between Set 4 and the other feature sets. Specifically, 
we have randomly selected (N = 10 000) 32 points predicted 
by the model and computed their R2. Then, we derived 95% 
confidence intervals by computing the 2.5 and 97.5 percen
tiles of the obtained distribution.

Results
Brain connectivity measures 
correlated with motor impairments
We first assessed which features were most predictive of re
covery by computing Spearman correlation with the FMA 
recovery score, both for benchmark features and brain con
nectivity measures. As expected, when considering the fea
tures already known to be predictive of recovery, we found 
that initial impairment (ρ = 0.68, P-value < 0.00001) and 

CST asymmetry (ρ = −0.71, P-value < 0.01) correlated the 
most with the recovery. Lesion volume (ρ = −0.49, P-value  
= 0.03) had a strong correlation too, but age (ρ = 0.03, 
P-value = 0.88) was a poor predictor in our data set. 
Importantly also both binary and weighted brain connectiv
ity measures showed a strong correlation with motor im
provement. Specifically, we found that density (ρ = 0.53, 
P-value < 0.01 Bonferroni corrected), global efficiency (ρ =  
0.55, P-value < 0.01), median degree (ρ = 0.48, P-value <  
0.05), algebraic connectivity (ρ = 0.49, P-value <0.05), 
mean eigenvector centrality (ρ = 0.52, P-value < 0.05) and 
participation coefficient (ρ = 0.51, P-value ≤ 0.05) measures 
correlated with FMA recovery score (see Table 2). 
Additionally, these measures significantly distinguished fit
ters and non-fitters, as shown by their Wilcoxon rank–sum 
test P-values. Overall, poor recovery was thus observed 
when strokes hit highly connected brain areas (hubs) leading 
to a reduced global efficiency of information exchange on the 
whole network and between hubs.

We then performed hierarchical clustering based on 
Spearman correlation to determine which brain connectivity 
measures and benchmark features share a high proportion of 
information (Fig. 2). Interestingly, the first clustering split di
vided the variables into two groups, and for both groups we 
had both measures of segregation and measures of centrality 
highlighting the importance of these two groups of features. 
However, the first one, which contained the benchmark fea
tures except the initial impairment, included global (i.e. over 
the entire network) brain connectivity measures such as modu
larity, transitivity and mean and median betweenness central
ity. The second group, alternatively, contained measures of 
modularity and centrality on the level of individual nodes 
such as the participation coefficient and the mean and median 
of eigenvector centrality. These results might suggest that ini
tial impairment correlate more with changes in local nodes, 
whereas motor improvement and CST asymmetry have a 
stronger influence on global changes. Finally, the strong correl
ation between brain connectivity measures further supports 
the need of a feature selection step before the prediction to re
duce collinearity. This selection is based on the identification of 
VIF thresholds, and its results are described below.

Only a limited number of patients 
fitted within the proportional 
recovery model
Following the hierarchical clustering method, 45.9% of all 
patients (17/37) were determined to be fitters of the 

Table 1 List of sets of features tested

Models/Features Age + Initial FMA Volume CST asymmetry Brain connectivity

Set 1 x
Set 2 x x
Set 3 (Benchmark) x x x
Set 4 x x x x
Set 5 x x x
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proportional recovery model, and 54.1% (20/37) were iden
tified as non-fitters (Fig. 3). These results supported previous 
findings that only a limited portion of patients fit within the 
rule of the 70% of recovery (i.e. patients recover on average 
70% of their initial impairments), demonstrating the urge of 
novel more precise predictive models. The proportion of 
non-fitters was important. This was largely due to the pro
portion of severe initial impairment (as defined by an FMA 
score at 2 weeks ≤20) in our set of patients. Indeed, 76% 
(28/37) (Supplementary Fig. 1) of all patients had a severe 
initial impairment, which was associated with greater odds 
of belonging to the non-fitters group.19 We also separated 
patients based on a 30% threshold of FMA recovery score, 
and we verified that the two resulting groups coincided per
fectly with the fitter/non-fitter groups. Therefore, from now 
on, we will use this threshold to assess whether the prediction 
models correctly classify the patients.

Brain connectivity measures 
significantly increased the accuracy  
of prediction
Correlation analyses as the ones reported above do not ne
cessary imply that these features will be predictive of pa
tients’ recovery. To test prediction and in particular to test 
whether brain connectivity measures would lead to a better 
prediction than benchmark features so far utilized (i.e. pa
tient’s age, initial FMA impairment, lesion volume and 

CST asymmetry), we built five different linear regressor mod
els using five different set of features (Table 1).

As expected from previous work, clinical and demograph
ic features (i.e. patient’s age and initial FMA impairment) led 
to good prediction (R2: 0.27, Table 3 and Fig. 4A). The pre
diction could be further improved when lesion size (R2: 0.36) 
and the degree of CST damaged (R2: 0.38) were added. 
Importantly, when using the set of features that included 
on top of the benchmark features the brain connectivity mea
sures, the predictive model significantly outperformed all the 
others in terms of accuracy (R2: 0.68, Fig. 4B and 
Supplementary Table 5). Finally, when removing CST asym
metry, which is rarely available, the prediction was still high
er than benchmark features alone (R2: 0.46), though this 
difference was not statistically significant. The similarity in 
R2 between Set 3 and Set 5 demonstrates that CST asym
metry, which needs long and tedious DTI analyses, is equiva
lent to a full-brain analysis of the impact of the lesion on the 
network, which merely needs a binary image of the stroke le
sion. Increased accuracy of prediction could instead be 
achieved only combining CST asymmetry and whole-brain 
network changes. Importantly, we obtained a similar accur
acy (R2: 0.69) when using the brain connectivity measures on 
top of the benchmark features to predict outcome instead of 
recovery, thus ruling out the risk that our performance was 
spuriously inflated by mathematical coupling between the 
FMA score at baseline and the FMA recovery score.

Importantly, when predicting whether a patient will re
cover according to the ‘proportional rule’ (i.e. more than 

Table 2 First column: correlation between all the features used (benchmark and brain connectivity measures) and 
FMA recovery score    

Property Correlation value

Wilcoxon rank–sum test

U statistic P-value

Benchmark features Initial impairment 0.68** 5.50 <10−5

Age 0.03 0.46 0.65
Volume −0.49** −2.19 0.03
CST asymmetry −0.71** −2.86 <10−2

Binary graph measures Density 0.53** 2.29 0.02
Median degree 0.48* 2.07 0.04
Mean clustering coefficient 0.47 2.32 0.02
Median clustering coefficient −0.26 −0.96 0.33
Mean flow coefficient 0.36 1.52 0.13
Transitivity −0.26 −0.91 0.36
Modularity −0.02 0.18 0.85
Mean eigenvector centrality 0.52* 2.13 0.03
Median eigenvector centrality 0.33 1.49 0.14
Mean betweenness centrality −0.20 −0.61 0.54
Median betweenness centrality 0.11 0.55 0.58

Weighted graph measures Algebraic connectivity 0.49* 2.19 0.03
Mean eigenvector centrality 0.47 2.10 0.04
Median eigenvector centrality 0.41 1.80 0.07
Modularity 0.14 0.76 0.45
Global efficiency 0.55 ** 2.59 0.01
Participation coefficient 0.51 * 2.26 0.02
Quasi-idempotence 0.15 −0.09 0.93

For the reported features, (*) and (**) indicate correlation P-value Bonferroni corrected <0.05 and <0.01, respectively. Second column: U-statistic for the Wilcoxon rank–sum test 
between fitters and non-fitters. Third column: P-value for the Wilcoxon rank–sum test between fitters and non-fitters.
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30% of the initial FMA value, so-called fitters), we observed 
a very high accuracy (specificity = 1.00, sensitivity = 0.94) 
with Set 4, which includes brain connectivity measures in 
addition to the benchmark features (Table 3 and Fig. 4). 
Overall, these results demonstrate that information about 
widespread network dysfunctions are pivotal for an accurate 
prediction of the patients’ recovery.

Features selected and weights of the 
prediction
Because of the high collinearity between connectivity fea
tures, the number of features included in the prediction 

model was reduced using VIF in each of the leave-one-out 
folds both for Sets 4 and 5. In both cases, the predicting 
power increased with the reduction of the number of features 
up to a maximum (VIF = 23, number of brain connectivity 
features = 10). Yet, the predicting power for Set 4 was higher 
than the benchmark features for all considered VIF thresh
olds (where the maximum VIF threshold corresponds to a 
number of 14 brain connectivity features) highlighting the 
consistency over features on increasing the prediction 
(Fig. 5A). Additionally, the selected brain connectivity fea
tures were similar between Sets 4 and 5 highlighting the sta
bility of the predictive network’s characteristics.

In order to further assess the stability of the predictive con
nectivity features, we counted how many times a feature was 
selected over folds. Importantly, the selection was highly 
consistent over subjects highlighting the generalizability of 
our approach to unseen patients and novel data sets 
(Fig. 5B). Indeed, only the mean eigenvector centrality and 
the lesion volume were not selected at every fold (i.e. 2- 
and 8-folds for mean eigenvector centrality and lesion vol
ume, respectively). This shows that some brain connectivity 
features are very collinear with the lesion volume and carry 
the same information. Interestingly, some of the features 
that showed a strong correlation with FMA recovery score 
such as density, global efficiency and median degree were 
not selected in the prediction model, further highlighting 
that correlation does not necessarily imply features to be pre
dictive of patients’ recovery. Vice versa, some of the features 
with low correlation, such as modularity, had a strong pre
dictive information. Indeed, we extracted the weights fitted 
for each feature and averaged them over the folds 
(Fig. 5C). Interestingly, the features with highest weights 
(i.e. higher than benchmark features) belonged to both clus
ters of the first split of the hierarchical clustering and were 
measures related to both segregation (modularity weighted, 
participant coefficient, transitivity) and centrality (median 

Figure 2 Collinearity between predictive measures. (A) Spearman correlation matrix of all included variables. Yellow indicates a positive 
and blue a negative correlation. (B) Hierarchical clustering based on the Spearman correlation matrix.

Figure 3 Scatter plot showing fitter (cross symbols ) and 
non-fitter (rhomboid symbols) patients according to the 
proportional recovery model. The separation into two 
recovery groups is visible. Patients that recovered more than 30% 
threshold of FMA recovery score coincided with the fitter patients, 
whereas the patients that recovered less than 30% threshold of 
FMA recovery score coincided with the non-fitter group of 
patients. The line represents a simple linear regression including the 
fitter patients.
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eigenvector centrality and mean eigenvector centrality 
weighted). These two groups of measures describe how 
well a network can be subdivided into subnetworks (mod
ules) and how each node influences the network, respective
ly. Importantly, whereas modularity and transitivity are 
global measures, participant coefficient and eigenvector cen
trality are calculated on the level of individual nodes. This 
suggests that both local and widespread changes within the 
network consequently to a stroke are important characteris
tics to consider for an accurate prediction of recovery.

Discussion
Personalized outcome and recovery prediction are one of the 
main foci of stroke research. Indeed, in recent years, novel 
evolving therapeutic options have revolutionized post-stroke 
treatment. However, even experienced clinicians find it diffi
cult to accurately predict patients’ level of recovery2 and, 
consequently, to assign them to the appropriate treatment. 
For this, several prediction models have been proposed in 
the last decades. The majority of them utilized clinical and 
demographic information to predict motor recovery at 3 
months post-lesion, i.e. the moment at which the majority 
of the recovery has occurred.38 More recent studies included 
measurements obtained by neuroimaging or neurophysio
logical recordings that better capture interindividual 
lesion-induced neural abnormalities, leading to improved 
prediction accuracy when combined with clinical and 
demographic information.10,16–19,39–44 However, these 
neuro-biomarkers are often obtained by special imaging ac
quisitions (e.g. functional MRI or diffusion-weighted im
aging) that require computationally expensive algorithms 
of analysis and prediction, thus posing several challenges 
for practical application in clinical routine. Here we pro
posed a novel computationally efficient (i.e. 10 min on a re
cent desktop computer—12 cores AMD Ryzen 5900×—for 
the predictions starting from the lesion mask) prediction 
model that leverages high-quality tractography data from a 
public data set in healthy individuals and combines them 
with the patient’s lesion mask without the need for diffusion- 
weighted MRI acquisitions. Our model outperformed 
state-of-the-art methods both in term of specificity and sens
ibility. Here we discuss these findings with an emphasis on 
the additional knowledge about mechanisms driving 

functional recovery garnered with our prediction model 
and the clinical advantages of our approach.

Whole brain connectivity measures 
predict motor recovery better than 
cortico-spinal tract integrity on its 
own
We considered five different models with different sets of fea
tures (Table 1), and we compared both actual prediction in 
terms of R2 and binary, categorial (0–1) follow-up outcomes 
(i.e. in this case 0 represents a poor recovery—less than 30% 
of the initial impairment). Indeed, while the coefficient of de
termination gives a better estimation of the predictive power 
of a model, binary outcomes such as favourable versus un
favourable motor recovery are often more informative in 
clinical practice.39 We first considered only age and initial 
motor impairment that have been extensively studied, e.g. 
in the Acute Stroke Registry and Analysis of Lausanne 
(ASTRAL), which is so far the model tested in the largest 
data sets (i.e. more than 10 000 patients from different coun
tries and continents).45 When considering these features, we 
obtained low predictive power similar to previous studies 
(R2 = 0.27), which highlights that information about initial 
deficits is not enough to precisely predict changes over 
time. Prediction was improved when considering lesion vol
ume and CST asymmetry as also previously shown. For in
stance, Byblow et al.41 showed that the change in FMA 
score was predicted by initial FMA score, presence of motor- 
evoked potentials and FA asymmetry of the CST. These re
sults were further validated in a recent study from Lin 
et al.,10 which utilizes a template built from MRI acquisi
tions from a group of healthy subjects to estimate CST asym
metry. Importantly, our model using benchmark features 
(i.e. patient’s age, initial FMA impairment, lesion volume 
and CST asymmetry) explained a comparable proportion 
of variance to the model showed by Lin et al. However, the 
anatomy of the damage might be different in each patient, 
and so even if two subjects match for initial severity, they 
might present different recovery trajectories. While the ana
lysis of fibre tracts integrity can help elucidating these differ
ences, the choice of the CST entails two important 
drawbacks. It first limits the analysis to only the main path
way involved in motor control neglecting the influence from 
secondary pathways that are also important for recovery;46– 

Table 3 R2, specificity, sensitivity and positive and negative predictive value for proportional recovery from the five 
sets of features

Features R2 Specificity Sensitivity Positive predictive value Negative predictive value

Set 1 0.27 0.82 0.76 0.81 0.78
Set 2 0.36 0.88 0.76 0.87 0.79
Set 3 (benchmark) 0.38 0.88 0.76 0.87 0.79
Set 4 0.68 1.00 0.94 1.00 0.94
Set 5 0.46 0.82 0.76 0.81 0.78

Highlighted in bold the set of features with the best prediction.
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48 and, more importantly, it requires the analysis of individ
ual diffusion-weighted images. Here we overcome these lim
itations by intersecting the patient’s lesion mask with 60 
healthy high-resolution streamline tractography connec
tomes and computing whole brain connectivity measures. 
When brain connectivity measures were considered with 
age, initial impairments and lesion volume, they obtained 
performance similar to the benchmark features, demonstrat
ing that whole brain measures are equivalent to characteris
tics related to the integrity of the CST. Importantly, the brain 
connectivity measures, combined with CST integrity mea
sures, outperformed all other models.

The use of embedding patients’ lesions into a tractography 
atlas computed from a large population of healthy subjects49

has already been recognized for its unique potential (e.g. 
shortlisted for the 2019 Nature Research Award for 
Driving Global Impact18,50,51). Indeed, the streamline trac
tography connectome from a large population of healthy 
subjects49 or of the 60 healthy subjects used in our study 
has very high spatial resolution (i.e. 1 mm isotropic), which 
allows to better capture interindividual variability. Similar 
spatial resolution in single patients would require very 
long and clinically impracticable diffusion-weighted MRI 
acquisitions. The virtual lesion overcomes this problem at 
the computational cost for the clinician to manually draw 
the lesion mask, which can be considerably time-consuming 
and requires some expertise. Yet novel deep neural 
networks are continuously being proposed to automatize 

Figure 4 Prediction accuracy. (A) scatter plot of observed percentage of FMA recovery score versus predicted percentage of FMA recovery 
score for the five features set tested. In red the misclassified patients and in dark blue the correctly classified patients. The lines represent simple 
linear regressions including all participants. (B) Lines represent 95% confidence intervals for the proportional recovery prediction models R2 using 
bootstrapping for the five feature sets. Square indicates R2. Feature sets are significantly different if 95% confidence intervals do not overlap.

Figure 5 Stability of global measures. (A) R2 versus VIF for Set 4. The dash line indicates the R2 for the benchmark features (Set 3). (B) 
Number of times a feature is selected per fold. (C) Weights fitted for each feature (average and standard deviation over folds).
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or semi-automatize this process and consequently significantly 
reduces the timing and the expertise needed to obtain the le
sion masking. Importantly, the tractography atlases computed 
from a large population of healthy subjects require averaging 
over subjects of brain connectomes. In our case, instead, the 
averaging step is performed at the level of the brain connectiv
ity measures. It is interesting to notice that both approaches 
lead to accurate estimation of brain changes after lesion and 
consequently to accurate prediction of recovery.

Post-stroke motor symptoms are 
driven by local and global alteration
Importantly, for all our models, the pipeline comprised a ridge 
regression model and leave-one-patient-out cross-validation. 
The latter proves generalization of our models to unseen pa
tients and hint to the usability of these models for personalized 
outcome prediction, which is in line with the objective of pre
cision medicine.39 The ridge regression model was motivated 
by our interest in identifying the discriminative power of each 
feature to infer possible mechanisms of neural recovery. 
Indeed, while more advanced machine learning models, such 
as (deep) neural networks, nearest neighbour algorithms, ran
dom forests or kernel support vector machines often yield 
higher predictive power, they are denoted as ‘black-box’ mod
els because they do not allow identifying the weight of individ
ual features. Importantly, we demonstrated that more 
advance models, such as elastic net, Bayesian Ridge, etc., still 
yielded predictive power similar to ridge regression model 
(Supplementary Table 4).

The most discriminative brain connectivity features were 
modularity weighted, participant coefficient, transitivity, me
dian eigenvector centrality and mean eigenvector centrality 
weighted. These are measures of segregation (i.e. measures 
of how a network can be split into more efficient local net
works) and of centrality (i.e. measures of the influence of a 
node in a network). This suggests that a preserved ability of 
the network to integrate and segregate in subnetworks is piv
otal for the recovery. Previous results already hinted to a pos
sible reduction in modularity and efficiency of information 
transfer, which could manifest in the form of aberrant dura
tions of functional networks52–55 or in decreased static func
tional connectivity.56 Yet the indirect quantification of this 
efficiency alteration from simple lesion maps is easier and fas
ter to implement in clinical practice than measures extracted 
from functional resting-state or diffusion-weighted MRI ac
quisitions. Additionally, a single node in the network can 
strongly influence neural plasticity and clinical recovery. 
Indeed, as also demonstrated by the high correlation between 
density and motor improvement, a small stroke that hits well- 
connected hubs will lead to a poorer recovery than a stroke 
that hits unconnected hubs. Importantly, these differences 
are not captured by benchmark features. Indeed, lesion vol
ume and CST asymmetry will not be able to distinguish be
tween a small stroke that has or has not hit well-connected 
hubs. Additionally, whereas modularity and transitivity are 
calculated over the entire network; participant coefficient 

and eigenvector centrality are calculated on the level of indi
vidual nodes. This suggests that, as hypothesized, changes 
consequently to a stroke occurred both locally tied to the le
sion and in widespread highly connected brain areas, and 
both these changes need to be considered for an accurate pre
diction of recovery. Therefore, our results support recent 
works that went beyond focal lesions and incorporated mea
sures of network changes in the brain, based on the realization 
that stroke impacts the entire network.14,40,42 In the same dir
ection, recent investigations showed better discrimination of 
patients when using full electroencephalography (EEG) top
ography of responses as compared to single EEG electrodes lo
cated in proximity of the lesion, because the former captures 
changes over several cortical regions, extending beyond the lo
cation of the damage.57–59 Yet similar to functional MRI, 
EEG recordings require long and tedious acquisitions and 
computationally costly algorithms for the analysis. Finally, 
importantly, the same brain connectivity measures allowed 
an accurate recovery prediction also when holding out the 
CST asymmetry, further demonstrating that local changes 
due to the lesion can be accounted for using characteristics 
of CST integrity or brain connectivity measures. However, be
cause of the highest simplicity of the brain connectivity meas
ure, the latter are of highest clinical value.

Towards a clinically effective model
We showed that brain connectivity features allow remarkable 
prediction accuracy with a relatively low computational effort, 
which is a sine qua non characteristic for clinical usability and 
statistically significant higher accuracy when combined with 
pre-existing measures of CST integrity. In particular, our best 
model (benchmark features combined with brain connectivity 
measures) significantly improves predictions of non-fitters, i.e. 
patients that do not experience proportional recovery. Lack 
of fitting to the 70% rule seems to be particularly problematic 
for patients with severe baseline motor deficits (i.e. FMA score 
at 2 weeks ≤ 20).19 Importantly, these patients are those that do 
not show satisfactory improvements, thanks to current rehabili
tative intervention, and experience chronic clinical deficits.37

Therefore, our brain connectivity method would be particularly 
beneficial to predict recovery of moderate to severe patients to 
further improve therapeutic choice and hopefully motor out
come. However, for this, in future, our model will need to be 
extended to predict motor recovery in relation to the assigned 
therapeutic protocol. This will be pivotal to correctly stratify 
patients within treatment options.

It is important to highlight that at the moment, the main 
computational bottleneck in our approach is the drawing 
of the lesion mask. However, many groups are developing 
novel deep neural networks to automatize or semi- 
automatize this process and consequently significantly re
duce the timing to obtain the lesion masking. Importantly, 
while in our model the lesions were drawn from structural 
MRI acquired around 2 weeks post-stroke, computational 
tomography (CT) scans obtained at hospitalization could 
be used to identify the region affected by the stroke. This 
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will further improve the clinical usability of our method be
cause CT scans, as compared to MRI, are routinely obtained 
for stroke patients in many clinical settings. Yet further stud
ies are necessary to demonstrate that lesion masks from CT 
scans can be used in our method. Additionally, in future 
works, our results would need to be replicated in a larger co
hort and, ideally, in two different cohorts for the training and 
testing steps. Indeed, the current main limitation of our study 
is the low number of participants. For this, data acquired in 
clinical settings without specific scientific purposes may en
able a better representation of the full spectrum of stroke pa
tients and thus allow for a better validation.39 Importantly, 
because our model only utilizes lesion masks obtained 
from MRI, our method would be easily extendable to such 
data sets and so easily translatable to clinical practice.

Finally, importantly, our model will have to be extended to 
other post-stroke symptoms. Indeed, although motor impair
ment represents one of the main post-stroke symptoms (fre
quencies as high as 50% and 80%1), deficits also concern 
other behavioural domains such as language, attention and 
working memory.60 Moreover, a large fraction of strokes af
fects subcortical structures, especially white matter tracts, either 
exclusively or in addition to cortical lesions leading to the sim
ultaneous presence of deficits in more than one behavioural do
main.60 We expect that our brain connectivity measures will 
generalize to other symptoms. Indeed, a few recent studies de
monstrated that EEG graph measures and particularly small- 
worldedness characteristics (a measure of the balance between 
local connectedness and global integration of a network, repre
senting the brain network organization) correlated with func
tional recovery measured in activities of daily living.61–63
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Supplementary material is available at Brain 
Communications online.
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