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Abstract 13 

Epigenetic mechanisms such as DNA methylation (DNAme) are thought to comprise an 14 

invaluable adaptive toolkit in the early stages of local adaptation, especially when genetic 15 

diversity is constrained. However, the link between genetic diversity and DNAme has been 16 

scarcely examined in natural populations, despite its potential to shed light on the evolutionary 17 

forces acting on methylation state. Here, we analysed reduced-representation bisulfite 18 

sequencing and whole genome pool-seq data from marine and freshwater stickleback 19 

populations to examine the relationship between DNAme variation (between- and within-20 

population), and nucleotide diversity in the context of freshwater adaptation. We find that sites 21 

that are differentially methylated between populations have higher underlying standing genetic 22 

variation, with diversity higher among sites that gained methylation in freshwater than those that 23 

lost it. Strikingly, while nucleotide diversity is generally lower in the freshwater population as 24 

expected from a population bottleneck, this is not the case for sites which lost methylation which 25 

instead have elevated nucleotide diversity in freshwater compared to marine. Subsequently, we 26 

show that nucleotide diversity is higher among sites with ancestrally variable methylation and 27 

also positively correlates with the sensitivity to environmentally induced methylation change. 28 

The results suggest that as selection on the control of methylation state becomes relaxed, so 29 
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too does selection against mutations at the sites themselves. Increased epigenetic variance in a 1 

population is therefore likely to precede genetic diversification. 2 

Keywords: DNA methylation, stickleback, epigenetic, nucleotide diversity, local adaptation 3 

Abbreviations: 4 

DNAme – DNA methylation 5 

DM – Differential Methylation  6 

DMC – Differentially Methylated Cytosine 7 

DMR – Differentially Methylated Region 8 

FW – Freshwater 9 

FW-hyper – Hypermethylated in Freshwater population 10 

FW-hypo – Hypomethylated in Freshwater population 11 

Non-DMC – Non-Differentially Methylated Cytosine 12 

RRBS – Reduced Representation Bisulfite Sequencing 13 

SNP – Single Nucleotide Polymorphism 14 

 15 

Introduction 16 

DNA methylation (DNAme) is an epigenetic mark whose roles in genome regulation, including 17 

gene expression regulation and transposable element suppression, have been well studied (He 18 

et al. 2011). Its role in local adaptation and long term evolution however, for example via 19 

plasticity, remains a topic of active debate. Methylome data support a potential role for DNAme 20 

in local adaptation in several species (Dubin et al. 2015; Sammarco et al. 2022), revealing that 21 

some genomic regions show differential methylation (DM) between different locally adapted 22 

populations. Populations (Johnson and Kelly 2020) and species (Vernaz et al. 2021) with low 23 

genetic divergence from one another have been found to differ considerably in DNAme patterns 24 

at environmentally relevant loci, raising the possibility that DNAme can be a source of 25 

phenotypic variation which increases adaptive potential of populations when genetic diversity is 26 

challenged (Flores et al. 2013). While such variation in DNAme can be environmentally induced 27 

or stochastic (Richards 2006), it is also influenced by genetic diversity. For example, DNAme is 28 

determined by the presence of sites with the capacity to be methylated (typically in a CpG 29 

context) and is subject to trans- and cis-regulation (Villicaña and Bell 2021). Therefore, the 30 

potential for methylation and corresponding plasticity is determined by the local genomic 31 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sad068/7083720 by U
niversitaetsbibliothek Bern user on 23 M

arch 2023



3 

context, and thus the 'epigenetic potential' of a population evolves at the sequence level (Kilvitis 1 

et al. 2017, see also Adrian-Kalchhauser et al. 2020). 2 

It is also established that the epigenetic conformation of the genome affects the propensity for 3 

sequence change. Notably, DNAme can influence mutation rates due to the higher susceptibility 4 

of methylated Cs to spontaneous deamination to form thymine (Xia et al. 2012; Poulos et al. 5 

2017; Zhou et al. 2020). In mammals CpG mutation rates have been estimated at 10-50x higher 6 

than in other sequence contexts (Walser and Furano 2010). CpG mutation rate also has a 7 

nuanced relationship with methylation levels, as CpG sites with the highest mutation rates in 8 

human populations were observed to have low-to-intermediate methylation levels in cultured 9 

cells (Xia et al 2012). Therefore, by influencing sequence evolution, epigenetic variation may 10 

have unappreciated roles in the emergence of genomic novelties and adaptations (Storz et al. 11 

2019; Guerrero-Bosagna 2020), as well as mediating environmental influences on sequence 12 

evolution (Guerrero-Bosagna 2012; Lu et al. 2021). 13 

Despite the interdependence of DNAme and sequence variation, the potential importance of this 14 

link in local adaptation has been largely overlooked. For example, typical workflows for 15 

detection of differential methylation tend to exclude CpG sites that are not detected at a certain 16 

coverage in a certain proportion of individuals (e.g. Akalin et al. 2012), and therefore it could be 17 

assumed that genetic diversity of those sites is irrelevant. However, these sites may 18 

nevertheless harbour genetic variants in the population, the relative frequencies of which may 19 

be informative about evolutionary forces acting on methylation state, potentially allowing further 20 

dissection of the manner in which DM evolves in the context of local adaptation. Indeed, 21 

methylation sites within certain promoters have already been shown to exhibit selective sweep 22 

signatures in Arabidopsis (Shirai et al. 2021). Epigenetic diversification is one of many possible 23 

routes to local adaptation (e.g. Smith et al. 2016) but may occur in conjunction with others, such 24 

as selection on discrete new mutations (hard sweeps) or on standing genetic variation (soft 25 

sweeps) (Bernatchez 2016; Hermisson and Pennings 2017). For example, if epigenetic 26 

modifications at multiple loci could confer similar adaptive benefit, epigenetic diversification 27 

could occur in conjunction with a soft sweep. Furthermore, given the heightened mutation rate 28 

of methylated Cs and its complex relationship with methylation levels (Xia et al, 2012), 29 

acquisition of methylation in a divergent population or a change in methylation level may 30 

influence mutation rates at affected sites. There is therefore a need to examine the relationships 31 

between differential methylation and nucleotide diversity in divergent populations. 32 
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The three-spined stickleback fish (Gasterosteus aculeatus) has long been a popular model to 1 

study the genetics and, more recently, the epigenetics, of local adaptation. Ancestrally a marine 2 

fish, G. aculeatus has repeatedly and rapidly colonised freshwater habitats over the last few 3 

millennia, with large waves of colonisations having occurred since the formation of glacial lakes 4 

following the last ice age (Jones et al. 2012; Roberts Kingman et al. 2021). Freshwater-adapted 5 

morphs show numerous phenotypic adaptations including the loss of armour plating (Barrett et 6 

al. 2008) and changes to kidney morphology (Hasan et al. 2017). Phenotypic and genetic 7 

divergence has been observed over short time scales (Lescak et al. 2015), with large shifts in 8 

frequencies of particular alleles having been observed over just a few years in newly 9 

established lake populations (Roberts Kingman et al. 2021). Such rapid fixation of alleles on the 10 

basis of standing genetic variation is characteristic of a soft sweep (Bernatchez 2016). However, 11 

the rapid adaptability and high plasticity of sticklebacks (Day et al. 1994) also makes the 12 

contribution of epigenetic variation to freshwater adaptation compelling. Multiple studies have 13 

used bisulfite sequencing to reveal differentially methylated sites in CpG context (DMCs) or 14 

differentially methylated regions (DMRs) between marine and freshwater populations. Some 15 

DMCs and DMRs are in the vicinity of genes relevant to freshwater adaptation (Smith et al. 16 

2015; Artemov et al. 2017; Heckwolf et al. 2020; Hu et al. 2021). 17 

A potential role for epigenetic variation in freshwater adaptation is especially pertinent given that 18 

the formation of freshwater populations has been characterised by population bottlenecks, 19 

constraining genetic diversity. Steep declines in the effective population size Ne have been 20 

observed in newly established freshwater populations both from time series experiments 21 

(Aguirre et al. 2022) and ancient DNA (Kirch et al. 2021). Interestingly, in their comparison of gill 22 

DNA methylomes between marine and freshwater fish in the White Sea region, Artemov et al. 23 

(2017) showed that freshwater fish had higher variance of DNAme compared to marine fish, in 24 

line with the idea that higher epigenetic variation could compensate for reduced genetic 25 

diversity, enhancing the adaptive potential of a population following a bottleneck. 26 

While genome and / or epigenome data have been generated from multiple stickleback 27 

populations across the Northern Hemisphere, the White Sea population complex is unique in 28 

that a variety of different data types have been generated from populations inhabiting the same 29 

region, including DNAme (Artemov et al. 2017), mRNA and small RNAseq (Rastorguev et al. 30 

2016; Rastorguev et al. 2017), and whole genome pool-seq (Terekhanova et al. 2014, 2019). 31 

Freshwater colonisation in this region has occurred relatively recently, with the oldest sampled 32 

lake estimated to have been formed approx. 700 years ago. While nucleotide diversity is 33 
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typically lower in freshwater populations, likely due to a past bottlenecks (Terekhanova et al. 1 

2014), patterns of nucleotide diversity at methylation sites, and DMCs specifically, have not 2 

been addressed. Shifts in nucleotide diversity at DMCs may be informative about the 3 

evolutionary forces acting on DNAme during local adaptation, namely the tightening or 4 

loosening of selective constraint on methylation state in a new environment. 5 

Here, we combine epigenetic and genetic data from the White Sea stickleback population 6 

complex to study the interactions between methylation differences and nucleotide diversity 7 

during freshwater colonisation. We examined nucleotide diversity in relation to methylation 8 

divergence, variance, and the environmental inducibility of methylation state, considering both 9 

variance and inducibility as indicators of the relative stringency DNAme regulation. 10 

Results 11 

Elevated nucleotide diversity accompanies differential methylation but level depends on the 12 

direction of methylation change 13 

For generation of DNAme and genome sequence data, respectively, both Artemov et al. and 14 

Terekhanova et al. sampled freshwater fish from the same lake (Lake Mashinnoye) and marine 15 

fish from nearby coastal locations in the Kandalaksha gulf. A combined analysis of samples 16 

from these two datasets therefore allowed us to identify differentially methylated cytosines in 17 

CpG context (DMCs) between marine and freshwater populations and examine the nucleotide 18 

diversity of these sites in separate samples of those populations (Fig. 1). The RRBS data 19 

(Artemov et al. 2017) derived from gill tissue from a total of 11 individuals. These included six 20 

individuals as part of the main population comparison (N = 3 per population) and a further five 21 

experimental treatment animals that were used for a subsequent analysis of site inducibility. 22 

After filtering to remove sites with C-T/G-A SNPs detected in RRBS individuals, which could 23 

otherwise lead to spurious counts of unmethylated Cs, the analysis included just over 1 million 24 

CpG sites with at least 5x alignment coverage in all individuals, comprising approx. 6.9% of 25 

CpGs in the genome. The pool-seq data (Terekhanova et al. 2014, 2019) comprised sequenced 26 

material of two pools containing 12 marine and 10 freshwater individuals, and with genome 27 

coverage (high quality alignments) of 10.4x and 8x, respectively. 28 

We first derived measures of nucleotide diversity of differentially methylated (DMCs) and non-29 

differentially methylated DNAme sites (Non-DMCs) in the form of π (average number of pairwise 30 

differences within population) (Nei and Li 1979), Watterson's θ (population-scaled mutation rate) 31 

(Watterson 1975), and Tajima's D (Tajima 1989). π and θ are complementary measures of 32 
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within-population nucleotide diversity, while Tajima’s D is a composite statistic derived from 1 

these two measures and can identify deviation of a sequence from neutrality. We also derived 2 

pairwise Fst (ratio of between-to-within population diversity; Weir and Cockerham 1984), which 3 

in a local sequence context can signify differential selection between populations. All nucleotide 4 

diversity measures were derived from pool-seq data at methylation sites detected from RRBS 5 

data (Fig. 1). Considering Non-DMCs as representing a baseline level of nucleotide diversity at 6 

cytosines in CpG context, we compared the π of Non-DMCs with that of DMCs that either lost 7 

methylation (at least 15% fewer methylated copies at p </= 0.05, FW-hypo) or gained 8 

methylation in freshwater compared to marine (at least 15% more methylated copies at p </= 9 

0.05, FW-hyper). Substantially more FW-hypo sites (91,320) were detected than FW-hyper sites 10 

(14,508), while 895,121 sites were Non-DMCs. For nucleotide diversity analyses we 11 

subsampled Non-DMCs by taking one random Non-DMC within 2Mb of each DMC, resulting in 12 

a subsample of 99,585, approx. 11% of the total number. For each of these categories, 13 

nucleotide diversity measures were calculated per-chromosome. 14 

We observed consistent associations between differential methylation and nucleotide diversity. 15 

DMCs showed elevated π compared to Non-DMCs regardless of population, with the highest π 16 

observed amongst sites which gained methylation in FW (FW-hyper) (Fig. 2A). When 17 

comparing π between populations for each category of sites, π was slightly though significantly 18 

reduced in FW compared to marine at Non-DMCs (paired Wilcoxon test, p < 0.001), reflecting 19 

the expected reduction in nucleotide diversity in the derived population. π calculated for sliding 20 

windows across chromosome 1 suggested that the pattern of reduced diversity in FW is a 21 

genome-wide feature (Fig. S1A) which likely resulted from a past bottleneck. FW π was 22 

similarly lower at FW-hyper sites (p < 0.001), but not at FW-hypo sites which rather showed 23 

elevated π in FW compared to marine (p = 0.017). Watterson's θ showed a similar pattern to 24 

that of π, although there was no significant difference between marine and FW at FW-hypo sites 25 

(Fig. S2). Between-population diversity (Fst), showed significant differences between DMCs 26 

and Non-DMCs, with both FW-hypo and FW-hyper sites showing significantly higher Fst values 27 

than Non-DMCs (paired t-tests, p < 0.01 in both cases; Fig. 2B). Tajima’s D was mostly 28 

negative in both populations as indicated by sliding windows across chromosome 1 (Fig. S1B), 29 

but was higher in FW, consistent with the scenario of a population bottleneck following 30 

freshwater colonisation. Tajima’s D of methylation sites largely reflected this chromosome-wide 31 

pattern of higher values in FW, with the exception of FW-hyper sites which showed no 32 

significant difference in Tajima’s D between the two populations (Fig. 2C). Tajima’s D tended to 33 

be higher among DMCs than Non-DMCs in marine, but not in FW. 34 
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These patterns of elevated nucleotide diversity were not driven by enrichment for DMCs in 1 

regions of high diversity. Rather, elevated π of DMCs was found to be strongly localised around 2 

individual DMCs (Fig. S3). The pattern was largely consistent across different genomic features 3 

including CpG islands, gene bodies, promoters, and intergenic regions (Fig. S3). No clear 4 

pattern of localised elevated diversity was observed for DMCs which fell within differentially 5 

methylated regions (DMRs) (Fig. S3), however only a fraction of FW-hypo (approx. 17%) and 6 

FW-hyper DMCs (approx. 12%) fell within DMRs. 7 

Next, we determined which mutation type(s) were most likely to be driving the elevated π of 8 

DMCs, and specifically whether this was driven by an over-abundance of C-T transitions. To this 9 

end, the percentages of sites in each category harbouring biallelic SNPs of different types (C-10 

T/G-A, C-A/G-T, or C-G/G-C) were calculated from the pool-seq data. The majority of SNPs 11 

were C-T/G-A, comprising 90% of SNPs across all categories in marine and 94% in freshwater. 12 

The proportion of sites harbouring biallelic C-T/G-A SNPs across the three categories of 13 

methylation site and two populations showed a similar pattern to that of π, with FW-hyper sites 14 

harbouring the highest proportion of C-T/G-A SNPs in both populations (Fig. 2D). Marine had 15 

more C-T/G-A SNPs than freshwater in the Non-DMC (paired Wilkoxon test, p < 0.001) and FW-16 

hyper categories (p < 0.001) but not the FW-hypo category, in which FW and marine had similar 17 

proportions of C-T/G-A SNPs. Meanwhile, the percentage of other SNP types showed no clear 18 

differences between the site categories. Therefore, the generally increased nucleotide diversity 19 

amongst DMCs relative to Non-DMCs seemed to be driven by a greater occurrence of C-T 20 

mutations. 21 

Higher nucleotide diversity of infrequently-methylated DMCs 22 

The finding that sites which gained methylation in freshwater (FW-hyper) had the highest π and 23 

highest proportion of C-T/G-A mutations in marine (Fig. 2) was contrary to expectations, as 24 

these sites would be expected to be infrequently methylated in marine and therefore not at high 25 

risk of mutation via deamination. We therefore tested the relationship between π and the 26 

distributions of mean percentage of methylation (hereafter Mean{PM}) across the three site 27 

categories. Here, Mean{PM} refers to the average percentage of copies on which the C is 28 

methylated, or in other words the average frequency of the methylation mark among copies of 29 

given CpG site. We found that Non-DMCs displayed a bimodal density distribution, with most 30 

sites either very frequently (>75%) or very infrequently methylated (Fig. 3A, left). Meanwhile, 31 

the distributions of Mean{PM} of DMCs were markedly different to those of Non-DMCs. FW-32 

hypo sites were characterised by a shift from mostly high Mean{PM} in marine to mostly 33 
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intermediate Mean{PM} in FW (Fig. 3A, middle). Mirroring this pattern, FW-hyper sites were 1 

characterised by a shift from low-intermediate Mean{PM} in marine to high Mean{PM} in FW 2 

(Fig. 3A, right). 3 

Because pool-seq data are not appropriate for estimating π at the level of a single site, we used 4 

a ranking procedure to examine the relationship between Mean{PM} and π. Sites were divided 5 

into ranks according to their Mean{PM}, with higher ranks containing sites with higher 6 

Mean{PM}. This ranking was performed separately for each population and each site category, 7 

and a measure of π obtained for each rank. The relationship between the rank-level Mean{PM} 8 

and π was clearly non-monotonic for Non-DMCs, with the highest values appearing at low to 9 

intermediate Mean{PM} of around 25% (Fig. 3B, left). The higher π of FW-hypo sites in 10 

Freshwater appeared to be driven largely by sites in the low-intermediate range (Fig. 3B, 11 

middle). Amongst FW-hyper sites, those with the highest Mean{PM} clearly contributed to the 12 

lower π of these sites in FW (Fig. 3B, right). 13 

We also examined the relationship of π with the population difference in Mean{PM} (i.e. the 14 

extent of hypo- or hypermethylation). We observed that among FW-hypo sites, the freshwater 15 

population had the largest increases in the π where the hypomethylation was strongest (Fig. 3C 16 

and Fig. 3D). FW-hyper sites also increased in π with the extent of hypermethylation (Fig. 3C), 17 

but this also corresponded with greater loss of π in FW (Fig. 3D). Meanwhile, sites with larger 18 

difference in Mean{PM} in either direction (methylation loss or gain) had higher Fst (Fig. 3E). 19 

High nucleotide diversity accompanies high variability in ancestral methylation 20 

Considering that sites with intermediate Mean{PM} are liable to have more variable methylation 21 

frequency than those with very low or very high Mean{PM}, we also considered the relationship 22 

between π and the standard deviation of percentage methylation (hereafter SDmeth). We 23 

predicted that sites with more variable methylation would have higher nucleotide diversity, 24 

reasoning that the methylation state of these sites is not stringently controlled and therefore 25 

mutations at these sites may have little impact on function. We first examined the distributions of 26 

SDmeth values of sites in the Non-DMC, FW-hypo and FW-hyper categories. Non-DMCs were 27 

largely invariable, with slightly more variable methylation in freshwater compared to marine (Fig. 28 

4A, left), consistent with the observations of Artemov et al. (2017). FW-hypo sites were 29 

characterised by a pronounced increase in SDmeth from ancestral to derived population, shifting 30 

from a left-skewed distribution in marine to a Gaussian-like distribution in freshwater (Fig. 4A, 31 
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middle). Meanwhile, FW-hyper sites, showed a skewed distribution in marine with an elongated 1 

plateau to the right, while methylation was less variable in freshwater (Fig. 4A, right). 2 

To examine the relationship between π and the variability in methylation, sites were ranked 3 

according to SDmeth in each population and site category. We observed that π increased steeply 4 

at an SDmeth above ~15 in all three site categories in the marine population and two of the three 5 

site categories in freshwater (Fig. 4B). For the π of FW-hypo sites in FW however, there was no 6 

obvious relationship with the exception of two ranks showing highly elevated π at opposite ends 7 

of the range of SDmeth values (Fig. 4B, middle). The high π of the lowest rank, which 8 

contradicted the trend observed in the other categories, is likely attributable to high ancestral 9 

diversity of sites that have almost completely lost methylation in freshwater (and therefore attain 10 

very low variance) but retain high ancestral nucleotide diversity. The relationship between π and 11 

the shift in SDmeth would appear to support this notion because sites with the largest decrease in 12 

SDmeth in freshwater also have the highest π in marine (Fig. 4C). Shifts in the SDmeth were also 13 

associated with shifts in π (Fig. 4D). Both amongst FW-hypo and FW-hyper sites, there was a 14 

trend towards reduced π with decreased SDmeth and increased π with increased SDmeth. For FW-15 

hypo sites this was only apparent at extreme shifts in SDmeth, while for FW-hyper sites there was 16 

a significant linear relationship (linear model, R2 = 0.58, p < 0.001). No clear relationships were 17 

observed between the shift in SDmeth and Fst for either FW-hypo or FW-hyper categories (Fig. 18 

4E). 19 

Environmentally inducible DNA methylation is linked with higher nucleotide diversity 20 

So far, we have considered differential methylation in regard to losses or gains of methylation 21 

that have been detected in a population ~700 years after its colonisation of a new environment. 22 

While such differences may result from evolution, differences in methylation state can also be 23 

directly induced by the environment. Such inducibility may be important for adaptation but also 24 

subject to genetic variation. We therefore analysed additional samples from the dataset by 25 

Artemov et al. (2017), as in addition to the main population comparison, the authors also 26 

quantified gill methylation differences in fish from each population in response to a change in 27 

environmental salinity. Fish from each population were exposed to the opposite conditions, with 28 

marine fish exposed to reduced salinity and freshwater fish exposed to increased salinity (Fig. 29 

5A). Here, we reasoned that environmental inducibility of methylation state could also reflect the 30 

degree of genetic versus environmental control of methylation state, similar to increased SDmeth 31 

possibly reflecting relaxed control of methylation state. Sites whose methylation state is more 32 

responsive to the environment could be assumed to be under looser genetic control and 33 
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10 

possibly relaxed selection. In total, sites that were induced in either population constituted 3.8% 1 

of Non-DMCs, 11.3% of FW-hypo and 39.2% of FW-hyper sites, with DMCs, and particularly 2 

FW-hyper sites therefore being enriched for induced sites. When considering the proportions of 3 

induced sites in each population separately (Fig. 5B), freshwater had a higher proportion of 4 

induced sites than marine among FW-hypo sites and a lower proportion among FW-hyper sites, 5 

a pattern that almost perfectly mirrored that which was observed for π (Fig. 2A). Induced sites 6 

were slightly enriched amongst CpG islands in that a higher % of induced sites than non-7 

induced sites resided in CpG islands (Wilcoxon tests, p < 0.01 for both FW-hypo and FW-8 

hyper), while among FW-hypo sites induced sites were slightly more likely than non-induced 9 

sites to reside in promoter regions (p = 0.004) (Fig. S4). 10 

Sites that were induced in either population, or that were induced only in one of the two 11 

populations, had elevated π compared to sites that were not induced in either population (paired 12 

t-tests, all p < 0.01), while the π of non-induced DMCs was closer to that of Non-DMCs (Fig. 13 

5C). Furthermore, the gain in π in freshwater among FW-hypo sites appeared to be driven by 14 

sites that had gained inducibility (i.e. which were not ancestrally inducible), as this elevated π 15 

was observed among sites that were induced only in freshwater (paired T- test, p < 0.001), but 16 

not sites that were induced only in marine (p = 0.83). Meanwhile, amongst FW-hyper sites, π 17 

was consistently significantly lower in freshwater compared to marine (paired t-tests, p < 0.05), 18 

with the exception of sites induced only in FW in which the difference was not significant (p = 19 

0.09). When induced sites in each population were assigned to ranks according to the mean 20 

absolute induced methylation change (i.e. regardless of whether salinity change induced lower 21 

or higher methylation), π increased linearly with the mean induced methylation change in both 22 

marine (linear model, R2 = 0.83, p < 0.001) and FW populations (R2 = 0.59, p < 0.001) (Fig. 5D), 23 

suggesting that environmental inducibility can reliably predict nucleotide diversity. 24 

Compared to non-induced sites, sites that were induced in either population had significantly 25 

elevated pairwise Fst in both FW-hypo (paired t-test, p < 0.001) and FW-hyper categories (p = 26 

0.002) (Fig. 5E). However, this elevated Fst was driven by sites that were induced in FW, as 27 

sites induced only in FW had significantly elevated Fst in both FW-hypo (p < 0.001) and FW-28 

hyper categories (p = 0.008), while sites induced only in marine fish did not show elevated Fst 29 

compared to non-induced sites. Indeed, FW-hypo sites that were induced only in marine even 30 

had lower Fst than non-induced sites (p = 0.046). The elevated Fst of DMCs (as seen in Fig. 31 

2B) was therefore likely driven by sites that are inducible in the freshwater population. Finally, 32 

when induced sites in each population were ranked according to the degree of induced 33 
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methylation change in that population, sites that were induced in the freshwater population 1 

showed a weak positive correlation between inducibility and Fst (linear model, R2 = 0.25, p < 2 

0.001), while sites that were induced in the marine population did not show such a correlation 3 

(R2 = -0.01, p = 0.4) (Fig. 5F). 4 

Discussion 5 

Here, we examined the relationship between DNA methylation differences and nucleotide 6 

diversity in an ancestral and a derived population of wild three-spined stickleback. For this 7 

purpose, CpG sites with different methylation status in freshwater compared to the marine 8 

population were interpreted as changes in DNAme that occurred in the course of freshwater 9 

colonisation. Our analyses show that genetic diversity is intimately linked to variation in DNAme 10 

across both long (population differentiation) and short timescales (environmental responses). 11 

This link between DNAme and nucleotide diversity can shed light on the evolutionary forces 12 

acting on methylation state and could hint at the extent to which epigenetic changes precede 13 

sequence evolution. 14 

Sites prone to methylation divergence have high standing genetic variation driven by 15 

hypermutability of 5mC 16 

Despite applying stringent filtering to retain only CpG sites that were detected in all RRBS 17 

individuals (requiring all individuals to be either C/C or heterozygous at reference CpG loci), we 18 

found that not only did DMCs harbour SNPs among the individuals represented in the pooled 19 

sequencing dataset, but were even enriched for them (Fig. 2A, D). The high nucleotide diversity 20 

of DMCs was regardless of population, indicating that differential methylation occurred at sites 21 

of high standing genetic variation. Consistent with a probable past bottleneck (Terekhanova et 22 

al. 2014), nucleotide diversity was reduced in FW, a pattern that held for FW-hyper sites despite 23 

the expectation that sites gaining methylation should incur higher mutation rates (Xia et al. 24 

2012). However, FW-hypo sites – those that had lost methylation in freshwater – exhibited a 25 

slight increase in π in FW compared to marine, implying relaxed selection among these sites in 26 

the derived population. 27 

The use of various measures of genetic diversity in parallel can provide insights into possible 28 

evolutionary processes at a fine scale. DMCs had higher diversity than Non-DMCs as measured 29 

by both π (Fig 2A) and θ (Fig. S2), indicating both more pairwise differences at polymorphic 30 

sites and more polymorphic sites overall amongst these sites. However, DMCs also had higher 31 

Tajima's D (higher proportion of intermediate-frequency alleles) than Non-DMCs within the 32 
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marine population (Fig. 2C), suggesting that sites with a tendency to diverge in methylation 1 

state are those that were already under weaker selective constraint or possibly under balancing 2 

selection (Jackson et al. 2015). The generally higher Tajima's D in FW was expected following a 3 

recent population bottleneck (Stajich and Hahn 2005). However, this increase was not observed 4 

at FW-hyper sites, suggesting that while FW had an overall tendency to accumulate 5 

intermediate frequency alleles, this was impeded at FW-hyper sites, possibly due to increased 6 

selective constraint. The elevated Fst (Fig. 2B) of FW-hypo and FW-hyper sites compared to 7 

Non-DMCs further suggests that both types of DMC are subject to some degree of differential 8 

selection. 9 

DNAme and mutations rates are intrinsically linked by the hypermutability of 5mC. Indeed, we 10 

find that the patterns of nucleotide diversity are driven by higher abundance of C-T/G-A SNPs 11 

amongst DMCs, but not other SNP types (Fig. 2D), suggesting that they are driven by higher 12 

rates of spontaneous deamination of methylated Cs (Xia et al. 2012). The hypermutability of 13 

5mC may further explain why FW-hypo sites were >6x more common than FW-hyper sites. If 14 

sites that acquire methylation during the transition to a new environment are more prone to 15 

mutation, then many such methylation gains would be transient. Thus, stable gains in 16 

methylation would be more difficult to attain than stable losses, and active selection might be 17 

required for their maintenance. Indeed, as sites with newly gained methylation must escape 18 

deamination in several individuals in order to be detected in the differential methylation analysis 19 

(due to stringent site filtering), FW-hyper sites may be enriched for the subset of new 20 

methylations that are under selective constraint. 21 

We also note that while π was increased in FW relative to marine at FW-hypo sites (Fig. 2A), 22 

this increase was not observed in θ (Fig. S2) or the percentage of C-T/G-A SNPs (Fig. 2D), 23 

which instead showed similar values in marine and FW. Nevertheless, given the lower overall 24 

diversity of FW, this population would need to have incurred elevated mutation rates at FW-25 

hypo sites in order to reach similar values of θ and C-T/G-A SNPs to the marine population. 26 

Therefore the slightly elevated π in FW is likely to have been driven largely by accumulation of 27 

C-T/G-A SNPs. 28 

Overall, contrasting the different measures of nucleotide diversity reveals complex patterns of 29 

sequence evolution at methylation sites, reflecting ancestral standing genetic variation and 30 

possibly recent changes in the fitness landscape of methylation sites. 31 
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Relationships between nucleotide diversity and methylation frequencies further imply differential 1 

selection of DMCs 2 

The relative frequencies at which sites are methylated (expressed as Mean{PM}, Fig. 3) capture 3 

both intra- and inter-individual variation in methylation state. Although the RRBS data derived 4 

from a specific tissue – gill, such a tissue is nevertheless heterogeneous, comprising of different 5 

specialised cell types (Pan et al. 2022). Very high or very low Mean{PM} values are therefore 6 

likely to comprise sites where the same state is consistently maintained across the majority of 7 

cells and/or cell types. Although cell type-specific methylation is likely to be important in some 8 

contexts (Loyfer et al. 2023), it could nevertheless be inferred that sites with consistent 9 

methylation state are more likely to be selectively constrained. We observed that among Non-10 

DMCs, most sites had either very high or very low Mean{PM}, suggesting most sites have a 11 

methylation state that is consistently maintained across cell types (i.e. consistently methylated 12 

or non-methylated). Non-DMCs with intermediate Mean{PM} had higher π than those with very 13 

high or very low Mean{PM}, again indicating stronger selective constraints on sites which are 14 

consistently either methylated or non-methylated. This is consistent with previous observations 15 

that sites in the human genome with low to intermediate methylation frequency in vitro have 16 

higher mutation rates in human populations (Xia et al. 2012). We found that in sticklebacks, 17 

differential methylation in the freshwater population was characterised by shifts either towards 18 

(FW-hypo) or away from (FW-hyper) intermediate Mean{PM} (Fig. 3A), corresponding with 19 

increase or decrease in π, respectively (Fig. 3B). Accordingly, π increased in freshwater with 20 

the degree of hypomethylation and decreased with the degree of hypermethylation, while Fst 21 

tended to increase with the degree of difference in either direction (Fig. 3D, E). Combined, 22 

these patterns imply that differential methylation occurs alongside differential selection, in that 23 

(stable) gains in methylation tend to be selectively constrained while sites that lose methylation 24 

are released from selective constraint. This would make sense given that a loss of methylation 25 

relinquishes the requirement of the locus to remain as a CpG dinucleotide. 26 

Genetic variation reflects (ancestral) epigenetic variation 27 

Inter-individual variability of DNA methylation remains understudied in natural populations, and 28 

yet it may hint at the processes by which the methylome evolves. Using the same RRBS 29 

dataset, Artemov et al. (2017) previously showed that methylation was more variable in the 30 

derived freshwater population. Here, we show that this effect depends on differential 31 

methylation (Fig. 4A).  Indeed, the higher variability in freshwater appeared to be driven largely 32 

by FW-hypo sites which showed a Gaussian-like distribution of SDmeth values in the FW 33 
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population compared to a strongly left-skewed distribution of the same sites in marine. FW-1 

hyper sites on the other hand became less variable in FW. Loss of methylation in FW therefore 2 

appears to be characterised by relaxed control of methylation state, while gain of methylation is 3 

associated with tighter control. Indeed, heightened variability of FW-hypo sites suggests that 4 

loosening of regulation is itself the cause of methylation loss. 5 

π tended to increase with variability of methylation (Fig. 4B), which would support the 6 

hypothesis that sites with less tightly maintained methylation state are under weaker selective 7 

constraint. This pattern was consistent across all three site categories in the marine population, 8 

but was absent among FW-hypo sites in FW. Genetic variation therefore reflects ancestral, but 9 

not recently acquired variability in methylation state. Relaxed selection on sites which lose 10 

methylation would lead to an accumulation of C-T mutations, while stronger selective constraint 11 

would reduce the nucleotide diversity of sites with stable methylation gain. Concordantly, sites 12 

that became less variable in FW tended to lose π, while sites that became more variable tended 13 

to gain π (Fig. 4D). The pattern was more prominent among FW-hyper sites which 14 

predominantly had both decreased SDmeth of methylation and decreased π. Among FW-hypo 15 

sites, the lack of correlation between SDmeth and π in freshwater (or difference in SDmeth and 16 

difference in π) could be explained by the relatively young age of the freshwater population 17 

(~700 years) and subsequent lack of time for mutations to accumulate. 18 

While it is plausible that the increased π and SDmeth of FW-hypo sites reflect relaxed selection 19 

on the regulation of methylation state, an alternative hypothesis is that variable loss of 20 

methylation reflects epigenetic responses that have occurred only in a fraction of individuals in 21 

the population. This scenario would also be consistent with elevated π of the FW-hypo sites; if 22 

these differential epigenetic responses were genotype-specific, the elevated π would reflect 23 

standing genetic variation as opposed to new mutations. Such a scenario would be consistent 24 

with a soft sweep (Hermisson and Pennings 2017), in which selection could act on many 25 

different genetic and epigenetic loci, thus maintaining diversity at both levels. 26 

Environmental inducibility of DNA methylation may predict sequence evolution 27 

The potential importance of epigenetic mechanisms in mediating plastic responses has long 28 

been discussed (Johnson and Tricker 2010) and, more recently, demonstrated experimentally 29 

(Stajic et al. 2019). Although the environmental induction of a particular epigenetic state (e.g. 30 

addition or removal of DNAme) can occur in the context of adaptive mechanisms (Lämke and 31 

Bäurle 2017), such an induction may not necessarily constitute an adaptive response (see also 32 
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Hu and Barrett 2022). As such, we considered environmental inducibility in a different context, in 1 

that the degree of environmental inducibility of methylation state is (inversely) indicative of the 2 

degree of intrinsic regulation. We therefore use the term ‘inducibility’ loosely to refer to the 3 

sensitivity of a site to methylation change in response to the environment, regardless of its 4 

potential adaptive importance. We found that elevated π of and Fst of DMCs was driven by sites 5 

that were environmentally inducible (Fig. 5A, B, E), further supporting a hypothesis of relaxed 6 

regulation and relaxed selective constraint at sites that are responsive to environmental 7 

conditions. Furthermore, the increased π among FW-hypo sites in FW relative to marine was 8 

driven by sites that were induced only in FW, i.e. those not induced in the ancestral population, 9 

suggesting that nucleotide diversity is more likely to accumulate at sites where intrinsic control 10 

of methylation is relaxed (and therefore more sensitive to the environment). Indeed, the positive 11 

correlation between π and the degree of inducibility (Fig. 5C) suggests that the more sensitive 12 

the methylation state is to the environment, the more likely mutations are to be selectively 13 

neutral. Therefore, shifts in inducibility (in addition to shifts in methylation variance, as discussed 14 

above) may precede shifts in nucleotide diversity. Our results suggest that the majority of 15 

environmentally inducible sites are simply 'blowing in the wind' and do not have important 16 

functions for plasticity which would constrain nucleotide diversity. Nevertheless, in their analysis 17 

of Baltic Sea sticklebacks, Heckwolf et al. (2020) observed that the Fst of induced sites (marine 18 

fish responsive to lower salinity) depended on the direction of the induced change. Sites that 19 

were induced to the ‘evolved’ methylation state observed in the derived freshwater population 20 

had lower Fst than those that were induced in the opposite direction. This suggests that some 21 

environmentally inducible sites are indeed constrained by selection due to the importance of site 22 

plasticity. Here, we did not consider the direction of inducible change, merely considering 23 

inducibility as a proxy for the relative weakness of intrinsic regulation. 24 

Again, these observations could also be reconciled with the scenario of a soft sweep, as it is 25 

also possible that plasticity of only some methylation sites is necessary to confer adaptation. In 26 

other words, plasticity of multiple sites provides multiple alternate routes to adaptation. As many 27 

methylation sites would therefore be redundant, they could be lost to mutation without 28 

detrimentally affecting the organism’s capacity for adaptive plasticity. 29 

Limitations and future directions 30 

Our analyses have revealed striking associations between genetic and epigenetic variation in 31 

divergent stickleback populations. However, we must acknowledge limitations including the 32 
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extent of the data used to address the question, technical and analytical limitations, and 1 

knowledge gaps that pave the way for future investigations. 2 

A key limitation is that the RRBS data we used came from only a single tissue type (gill), and 3 

therefore we were unable to determine which methylation differences between populations are 4 

tissue-specific and which are organism-wide. However, many divergent methylation states are 5 

not tissue specific, as a recent analysis of divergent cichlid ecotypes showed that a high 6 

proportion of DMRs were shared across tissue types (Vernaz et al. 2021). Also, with respect to 7 

the studied divergence between marine and freshwater environments, gills are key to salt 8 

homeostasis and their ability to respond to changes in osmolarity affects the entire organism. A 9 

similar sampling limitation is that, while the two datasets used in this study included marine fish 10 

collected from similar locations in the White Sea, we cannot be sure that pool-seq marine and 11 

RRBS marine individuals were representative of the same population. In a structured 12 

population, DNAme and nucleotide variation may co-vary at different sites across different 13 

branches of the population. This would cause some relationships to be missed if RRBS and 14 

pool-seq individuals came from different branches of the population. 15 

The detection of differential methylation is highly sensitive to the analytical methods applied. 16 

Firstly, the use of RRBS instead of whole-genome bisulfite sequencing limited the number of 17 

sites that could be analysed to approx. 6.9% of genome-wide CpGs. It is also selective for CG-18 

rich regions, and as such approx. half of the analysed sites belonged to CpG islands (see Fig. 19 

S3). Therefore, the patterns we observe may not necessarily be representative of genome-wide 20 

patterns. RRBS remains however a powerful and cost-effective means of methylome 21 

interrogation (see also Klughammer et al. 2023). Secondly, the retention of individual-specific 22 

CpG sites can lead to the detection of differential methylation simply due to differences in the 23 

abundance of CpGs available to be methylated – i.e. directly due to SNPs (Wulfridge et al. 24 

2019). We suggest that whether or not individual-specific CpGs are retained in an analysis, and 25 

by extension the definition of 'differential methylation', should depend on the goals of the study. 26 

Here, by excluding individual-specific sites we aimed to detect differential methylation that arose 27 

through the differential action of the methylation machinery and not due directly to nucleotide 28 

variation at the sites themselves. We acknowledge that excluding individual-specific CpGs risks 29 

ignoring a potentially high proportion of methylation variation and, while it was not the goal of 30 

this study to extensively characterise this variation, the results should be interpreted with this in 31 

mind. A third important analytical limitation stems from the necessity to filter C-T/G-A SNPs from 32 

bisulfite sequencing data to avoid A bases resulting from these SNPs being mis-classed as 33 
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unmethylated Cs that were bisulfite-converted to Ts. Although we used a combination of three 1 

SNP-callers designed for BS-seq data (see methods), we cannot be certain that some 2 

differential methylation was not the result of SNPs that these algorithms failed to detect (see 3 

Lindner et al. 2022). 4 

In a broader context, our study is limited in that we only examined one population pair. It is 5 

therefore currently not known whether the patterns we observed occur more broadly across 6 

different local adaptations (in stickleback and other species) or whether they are idiosyncratic to 7 

the relatively recent colonisation event considered in this study (~700 years). The existence of 8 

far older populations, such as those in the Japanese archipelago which are estimated to have 9 

colonised freshwater ~170,000 years ago (Kakioka et al. 2020), raises the question as to the 10 

fate of differential methylation over longer periods. Over time, for example, the initially 11 

heightened methylation variance may return to a less variable state due to refinement of 12 

methylation states via selection or the removal of the CpG sites via accumulation of C-T 13 

transitions. Alternatively, no substantial accumulation of mutations over time would suggest that 14 

the heightened diversity of FW-hypo sites reflects standing genetic variation. 15 

If, indeed, heightened methylation variance arises due to relaxed control of methylation state, 16 

the mechanisms by which this could occur are not known. Artemov et al. (2017) suggested that 17 

mutations in genes encoding epigenetic regulators may underlie increased methylation 18 

variance, but did not identify any known epigenetic regulators in the vicinity of genomic regions 19 

differentiating marine and freshwater populations in the White Sea region. Trans- and cis-20 

meQTL have however been identified in stickleback (Hu et al. 2021), some of which are indeed 21 

in the vicinity of genomic regions of high Fst between marine and freshwater populations. 22 

Differential selection on trans-meQTL in particular could have knock on effects on methylation 23 

sites across the genome. 24 

While our study considered only genetic variation in the form of SNPs at CpG sites themselves, 25 

DNAme is associated with other types of genome sequence alterations. These include 26 

mutations in non-CpG context (Walser and Furano 2010), recombination rate variation (Mirouze 27 

et al. 2012), and structural variation including copy number and transposable element variation 28 

(Guerrero-Bosagna 2020). Indeed, the role of structural variation in local adaptation is 29 

increasingly appreciated and major inversions, transposable elements and copy number 30 

variants are all proposed to have played a role in stickleback freshwater adaptation (Reid et al. 31 

2021). The interplay between epigenetic variation and other forms of genetic variation therefore 32 
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warrants further interrogation in the local adaptation context (see however Kim et al. 2015; 1 

Huang and Chain 2021). 2 

Finally, while shifts in nucleotide diversity in certain methylation contexts may signify changes in 3 

the fitness landscape of methylation sites, how they translate to fitness itself at the organism-4 

level remains to be elucidated. Exploring the influence of methylation site diversity on gene 5 

expression variation would be a step towards addressing the possible fitness consequences. 6 

Conclusions 7 

By intersecting genetic and epigenetic data from naturally diverging populations, we have 8 

identified signatures of differential selection on DNAme sites which, combined with patterns of 9 

methylation variance and environmental inducibility, support a hypothesis that differential 10 

methylation is driven by shifts in the degree of intrinsic control of methylation state in a derived 11 

population. Shifts in this control seem to precede increases in nucleotide diversity and may 12 

therefore indicate parts of the genome where diversification is imminent. Heightened diversity of 13 

DMCs may also reflect a soft sweep which retains diversity at both genetic and epigenetic 14 

levels, a scenario compatible with previous genetic studies of local adaptation in stickleback 15 

(Terekhanova et al. 2014; Roberts Kingman et al. 2021). Indeed, our results support the idea 16 

that epigenetic variation should be incorporated alongside genetic mechanisms of adaptation in 17 

models of species adaptation and evolutionary potential (Bernatchez 2016). Our analyses 18 

demonstrate the exciting potential held in published datasets for exploring combined patterns of 19 

genome and epigenome evolution. Further investigation is now required to evaluate the broader 20 

role of methylome variation in shaping genomic landscapes across populations and species, 21 

and ultimately the influence of these interactions on fitness at the phenotypic level. 22 

Materials and Methods 23 

Datasets 24 

We obtained a reduced-representation bisulfite sequencing (RRBS) dataset published by 25 

Artemov et al. (2017) (SRA project accession: PRJNA324599) comprising a total of six marine 26 

sticklebacks (of which three were exposed to lower salinity) and six freshwater sticklebacks (of 27 

which three were exposed to higher salinity; however, one of these three samples was excluded 28 

due to incomplete bisulfite conversion). The freshwater fish used for RRBS were sampled from 29 

Lake Mashinnoye, while the marine fish were sampled from the Kandalaksha gulf. Freshwater 30 

fish were also collected for pool-seq by Terekhanova et al. (2014) from Lake Mashinnoye (SRA 31 
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run accession: SRR869609), while marine fish were collected from the Kandalaksha gulf as part 1 

of the 2014 study and a subsequent 2019 study (Terekhanova et al. 2019). We selected the 2 

'White Sea, WSBS' sample from Terekhanova et al. (2019) (SRR7470095) as the marine 3 

sample for our comparison, given that it has a similar pool size to the Mashinnoye sample (12 4 

vs 10) and a similar number of 100bp paired reads (64,176,648 vs 62,016,859 after quality 5 

trimming). Sequence files were obtained in FASTQ format from the Sequence Read Archive 6 

(SRA) and European Nucleotide Archive (ENA). 7 

Data processing: RRBS 8 

Raw RRBS reads were trimmed using TrimGalore v0.6.6 using default settings. Alignment to 9 

the Three-spined stickleback v.5 assembly (Nath et al. 2021) and subsequent methylation 10 

calling were carried out using Bismark v0.22.3 (Krueger and Andrews 2011) with Bowtie2 11 

v2.3.4.1 as the aligner (Langmead and Salzberg 2012). Methylation calls were not strand-12 

specific. To remove sites harbouring C-T/G-A SNPs which otherwise contribute erroneous 13 

counts of non-methylated Cs, we ran three SNP-callers on each sample: BS-SNPer v1.1 (Gao 14 

et al. 2015), Biscuit v0.3.14 (https://github.com/zhou-lab/biscuit), and CGmap-tools v0.1.2 (Guo 15 

et al. 2018). We then compiled the coordinates of all sites harbouring C-T/G-A SNPs detected in 16 

any of the individuals by any of the SNP-callers (either homo- or heterozygous), and removed 17 

these sites from the Bismark coverage files containing the methylation counts (counts of Cs and 18 

Ts at each position). This approach detected 75% of C-T/G-A that were detected at high 19 

frequency in the freshwater pool-seq sample (Fig. S5). Further details of SNP calling from 20 

RRBS are provided in the supplementary methods. 21 

Data processing: Pool-seq 22 

Raw reads were trimmed with Trimmomatic v0.36 (Bolger et al. 2014) with the option 23 

SLIDINGWINDOW:4:20 and otherwise default parameters. Only reads which remained paired 24 

after trimming were kept. Reads were mapped to the Three-spined stickleback v.5 assembly 25 

with Bowtie2 v2.3.4.1 with default parameters (Langmead and Salzberg 2012). Sambamba 26 

v0.7.1 (Tarasov et al. 2015) was used to filter the alignments to retain those with MAPQ >/=20 27 

and to remove PCR duplicates. This resulted in 46,588,899 and 35,691,831 high quality 28 

alignments from marine and FW samples, equating to average genome coverage of 10.4x and 29 

8x, respectively. Samtools v0.1.18 (Danecek et al. 2021) was used to generate a pileup file from 30 

each BAM file, as required for the Popoolation and Popoolation2 toolkits. 31 

Identification of differentially methylated CpG sites (DMCs) and subsampling of Non-DMCs 32 
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Site-level differential methylation analysis was carried out using the methylKit R package 1 

v1.22.0 (Akalin et al. 2012), inputting the SNP-filtered Bismark coverage files. We omitted sites 2 

which did not have at least 5x coverage in each of the 11 samples as well as sites located on 3 

the mitochondrial chromosome and two sex chromosomes (chromosomes XIX and Y). We then 4 

filtered out sites that had either 0% or 100% methylation (i.e. no variation) in all samples from 5 

the main population comparison (3x marine and 3x freshwater). Three differential methylation 6 

analyses were then performed separately, comprising the comparisons also described in 7 

Artemov et al (2017): (1) marine fish in saltwater vs freshwater fish in freshwater (main 8 

population comparison), (2) marine fish in saltwater vs marine fish in freshwater (marine low 9 

salinity treatment), and (3) freshwater fish in freshwater vs freshwater fish in saltwater 10 

(freshwater high salinity treatment). All groups comprised N=3 with the exception of freshwater 11 

fish in saltwater (N=2, due to low bisulfite conversion efficiency of sample SRR3632642). 12 

Regardless, we considered sites to be differentially methylated given a difference in percentage 13 

methylation of >/= 15 and a FDR-corrected p-value of </= 0.05. The purpose of the experimental 14 

comparisons was to identify which population-DMCs were also induced by salinity change, and 15 

so we did not consider sites that were induced by salinity change but not differentially 16 

methylated between populations. We also did not consider the direction of induced change 17 

(hypo- or hypermethylated in response to salinity change). Subsequently, we detected 91,320 18 

sites that were hypomethylated in freshwater compared to marine (of which 10,289 were 19 

induced in either population) and 14,508 sites that were hypermethylated in freshwater 20 

compared to marine (of which 5685 were induced in either population). 895,121 sites were not 21 

differentially methylated between populations, a subsample of which we would use as reference 22 

sites when examining nucleotide diversity. Due to the possibility that DMCs could be distributed 23 

non-randomly across a chromosome and given that nucleotide diversity can vary across a 24 

chromosome (e.g. lower diversity in centromeric regions), we used a sampling procedure which 25 

randomly selected one non-differentially methylated site that was within 2kb upstream or 2kb 26 

downstream of each DMC. After removing duplicate samples, this resulted in a subsample of 27 

99,585 non-differentially methylated CpG sites (Non-DMCs). 28 

Nucleotide diversity of site categories 29 

We used the variance-at-position.pl script from the Popoolation toolkit (Kofler, Orozco-30 

terWengel, et al. 2011) to calculate within-population nucleotide diversity statistics (π, 31 

Watterson's θ, and Tajima's D) for different categories of site (e.g. Non-DMC, FW-hypo, FW-32 

hyper) on each chromosome for each population. The decision to obtain estimates of π on a 33 
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per-chromosome basis was because Popoolation's estimates of π are accurate over large 1 

numbers of sites, but not at the single site level (Kofler, Orozco-terWengel, et al. 2011). Each 2 

site was labelled with its chromosome and its category within the analysis (e.g. chrI FW-hypo) 3 

and the labelled category was entered as the 'gene ID' in a GTF file, such that variance-at-4 

position.pl, which was developed to calculate diversity statistics per-gene, was instructed to 5 

calculate π for each combination of chromosome and site category. A similar procedure was 6 

used to obtain π for sites ranked according to (difference in) mean percentage methylation 7 

(Mean{PM}), (difference in) SD of percentage methylation (SDmeth), and absolute inducibility, 8 

whereby ranks were assigned using the bin() function from the OneR package, specifying 50 9 

ranks each time. Sites were then labelled in the GTF according to their rank (regardless of 10 

chromosome), such that a single value of π was obtained for each rank. Variance-at-position.pl 11 

from Popoolation was run with the parameters --min-qual 20 --min-coverage 3 --min-count 2. 12 

The majority of sites met the requisite 3x coverage for inclusion in nucleotide diversity estimates 13 

of marine (99%) and FW (93%). For the analysis of nucleotide diversity as a function of absolute 14 

inducibility, one rank was excluded from the FW population due to insufficient coverage (<60% 15 

of sites with 3x coverage). 16 

Fst for different categories of methylation sites (including ranked sites) were obtained using the 17 

Popoolation2 toolkit (Kofler, Pandey, et al. 2011). 'Gene-wise' .sync files were obtained from the 18 

pileup files using coordinates in the abovementioned gtf files and were used as input for the 'fst-19 

sliding.pl' script which was run with parameters --min-count 2 --min-coverage 3 --pool-size 22 --20 

min-covered-fraction 0 --max-coverage 1000 --window-size 1000000 --step-size 1000000. 21 

Percentage of sites with SNPs 22 

To obtain the % of sites within each result category (Non-DMC, FW-hypo, and FW-hyper) 23 

harbouring SNPs of different types (C-T/G-A and non-C-T/G-A) in the pool-seq samples, we 24 

filtered the BAM files of each population to retain alignments corresponding with the positions of 25 

interest. We then ran GATK HaplotypeCaller (McKenna et al. 2010) with the –sample-ploidy set 26 

to the pool size x 2 (24 for marine and 20 for freshwater), and otherwise default settings. The 27 

subsequent VCF file was then filtered using bcftools v1.10 to retain only biallelic SNPs at the 28 

sites of interest. We subsequently extracted from the VCF a list of reference and alternate 29 

alleles at sites of interest harbouring biallelic SNPs. We were therefore able to assign SNPs as 30 

either 'C-T/G-A' or 'other', and calculate the % of sites in each result category harbouring 31 

biallelic SNPs of one of those two classes. 32 
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Statistical comparisons 1 

All plotting and statistical analyses were carried out in R version 4.2.0 (R Development Core 2 

Team 2011), with plots generated using the ggplot2 package (Wickham 2011). For comparing 3 

nucleotide diversity between populations, we first used Shapiro-Wilkes tests to determine 4 

whether the distribution of pairwise differences (paired chromosomes) differed significantly from 5 

a normal distribution. Paired t-tests were used in the case of normally-distributed pairwise 6 

differences and paired Wilcoxon tests were used in the case of non-normally-distributed 7 

pairwise differences. Linear models of nucleotide diversity parameters as a function of 8 

inducibility were fit using the lm() function from the stats package. 9 

Supplementary Material 10 

Supplementary figures and methods are available in the online supplementary material. 11 
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 14 

Figure 1. Analysis workflow for obtaining nucleotide diversity estimates for differentially 15 

methylated sites. Site-level differential methylation analysis was performed to compare marine 16 

(considered as ‘ancestral’ population) vs freshwater sticklebacks (considered as ‘derived’ 17 

population) using gill RRBS data previously published by Artemov et al. (2017). Taking the 18 

marine population as the reference methylation state, sites were classified as not differentially-19 

methylated (Non-DMC; no significant difference in percentage of methylated copies between 20 

populations), FW-hypo (significantly lower percentage of methylated copies in freshwater 21 

compared to marine), or FW-hyper (significantly higher percentage of methylated copies in 22 

freshwater compared to marine). For Non-DMCs, a subset of the total was used, comprising 23 

~11% of the total Non-DMCs (see methods). Coordinates of sites belonging to the three site 24 

classes (Non-DMC, FW-hypo, and FW-hyper) were compiled in a GTF file for use with the 25 

variance-at-position.pl script from the Popoolation toolkit. The nucleotide diversity (π) of each 26 

site class on each chromosome was estimated from whole-genome pool-seq data 27 

(Terekhanova et al. 2014, 2019) of marine and freshwater fish derived from the same or similar 28 

geographic locations as those taken for the RRBS data. 29 

Figure 2. Nucleotide diversity of differentially methylated sites. (A) π (average number of 30 

pairwise differences), (B) Fst (marine vs. freshwater), and (C) Tajima’s D estimated from pool-31 

seq of marine and freshwater sticklebacks for three classes of methylation site identified from 32 

RRBS individuals and classified according to the direction of methylation difference in 33 

freshwater fish compared to marine (Not differentially-methylated (Non-DMC), hypomethylated 34 

in freshwater (FW-hypo), or hypermethylated in freshwater (FW-Hyper)). (D) Percentage of sites 35 

in each site class harbouring biallelic SNPs of the type C-T/G-A (upper panel) or other types (C-36 

A/G-T or C-G/G-T, lower panel), estimated separately for each chromosome. Average numbers 37 
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of sites per chromosome were 4979, 4566, and 725 for Non-DMC, FW-hypo, and FW-hyper, 1 

respectively. All estimates (π, Fst, Tajima’s D, and percentage of C-T/G-A SNPs) are per-2 

chromosome. P-values derive from paired Wilcoxon tests (A, C, D) or paired t-tests (B) 3 

(comparison of chromosome pairs). 4 

 5 

Figure 3. Distribution of mean percentage of methylation (percentage of methylated 6 

copies at a given CpG site; Mean{PM}) in three site categories and their relationship with 7 

nucleotide diversity in marine and freshwater populations. (A) The relative distribution of 8 

sites across values of Mean{PM} in each population and site category. (B) π of sites that were 9 

ranked according to Mean{PM} in three site categories. A single π estimate was derived for all 10 

the sites in a given rank and π is plotted against the Mean{PM} of the rank. Sites were ranked 11 

separately for marine (blue circles) and freshwater (green triangles) populations and for Non-12 

DMC (left panel), FW-hypo (middle panel), and FW-hyper sites (right panel). (C-E) Nucleotide 13 

diversity (C), difference in nucleotide diversity (π of freshwater – π of marine) (D), and pairwise 14 

Fst (marine vs. freshwater) (E) of sites that were ranked according to difference in Mean{PM} 15 

(Mean{PM} of freshwater – Mean{PM} of marine). For each population, a single π estimate was 16 

derived for all the sites in a given rank. In (B-E), 50 ranks are included (per population in the 17 

case of B and C). Each rank contains an average of 2012, 1826, and 290 sites for Non-DMC, 18 

FW-hypo, and FW-hyper, respectively. 19 

Figure 4. Distribution of standard deviation of percentage of methylation levels (SDmeth) in 20 

three site categories and two populations and their relationship with nucleotide diversity. 21 

(A) The relative distributions of SDmeth in each population and category. (B) π of sites that were 22 

ranked according to their SDmeth. A single π estimate was derived for all the sites in a given rank 23 

and this rank-level π is plotted against the mean SDmeth of sites in the rank. Sites were ranked 24 

separately for marine (blue circles) and freshwater (green triangles) populations and for Non-25 

DMC (left panel), FW-hypo (middle panel), and FW-hyper sites (right panel). (C-E) π (C), 26 

difference in π (π of freshwater – π of marine) (D), and pairwise Fst (marine vs. freshwater) (E) 27 

of sites that were ranked according to difference in SDmeth between marine and freshwater 28 

(SDmeth of freshwater – SDmeth of marine), where higher values represent higher SDmeth in 29 

freshwater and lower values represent lower SDmeth in freshwater. For each population, a single 30 

π estimate was derived for all the sites in a given rank. In (B-E), 50 ranks are included. Each 31 

rank contains an average of 2012, 1826, and 290 sites for Non-DMC, FW-hypo, and FW-hyper, 32 

respectively. Trend line in (D) derived from a linear model and ribbon shows SEM. 33 
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Fig. 5. Nucleotide diversity of differentially methylated sites in relation to their capacity 1 

for induced methylation change in response to environmental salinity. (A) Additional 2 

RRBS data deriving from experimental salinity treatments performed by Artemov et al (2017) 3 

(marine fish placed in freshwater and freshwater fish placed in saltwater) were used to identify 4 

sites that were inducible in response to salinity change in either of the two populations. (B) % of 5 

sites in the Non-DMC, FW-hypo, and FW-hyper categories that were induced in response to 6 

salinity change in the marine (blue) and freshwater (green) populations. P-values derived from 7 

paired Wilcoxon tests. (C) Per-chromosome estimates of π for FW-hypo and FW-hyper sites 8 

divided according their capacity for induced gill methylation change in response to a change in 9 

environmental salinity, considering sites that were induced in neither of the populations, either of 10 

the two populations, or only in one of the two populations (marine or freshwater). π of Non-11 

DMCs is shown in separate panel for comparison. P-values derived from paired t-tests. (D) π of 12 

inducible DMCs that were ranked according to their mean absolute induced change in 13 

percentage of methylation (i.e. regardless of the direction). Within each population, only sites 14 

that were significantly differentially methylated in response to salinity (mean difference in 15 

percentage of methylation >/= 15 or </= -15, p < 0.05) were considered. Separate ranks were 16 

obtained for marine and FW and a single π estimate obtained for each rank. (E) Per-17 

chromosome estimates of pairwise Fst (freshwater vs. marine) of FW-hypo and FW-hyper sites 18 

divided according to their capacity for induced methylation change. Fst of Non-DMCs is shown 19 

in separate panel for comparison. P-values derived from paired t-tests. (F) Pairwise Fst of 20 

inducible DMCs that were ranked according to their mean absolute induced change in 21 

percentage of methylation (i.e. regardless of the direction of the change). For (D) & (F), 50 ranks 22 

were used for marine and 49 for freshwater. Each rank contains an average of 227 sites for 23 

Marine and 228 sites for Freshwater. Trend lines derived from linear models and ribbons show 24 

SEM. 25 

 26 
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