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Márton Papp ,6 Ádám Dán ,2 and Imre Biksi 1,2

1Department of Pathology, University of Veterinary Medicine Budapest, Budapest, Hungary
2SCG Diagnostics Ltd., Délegyháza, Hungary
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Livestock-Associated Methicillin-ResistantStaphylococcus aureus (LA-MRSA) strains of clonal complex (CC) 398 are widely
disseminated in pigs and are considered emerging pathogens in human medicine. To investigate the prevalence, genetic
characteristics, and zoonotic potential of the pathogen in pig production settings, dust samples were collected from 40 pig
operations in Hungary, along with nasal swabs of attending veterinarians and other swine professionals (n= 27) in 2019. MRSA
isolates were further characterized by performing whole-genome sequencing and susceptibility testing. Te whole-genome
sequences of 14 human-derived LA-MRSA clinical isolates from the same year were also included in the study. Te proportion of
positive farms was 83% (33/40), and 70% (19/27) of the swine professionals carried the pathogen. All but one MRSA strain
belonged to CC398, including the human clinical isolates. Te core genome multilocus sequence typing (cgMLST) analysis
revealed clusters of closely-related isolates of both environmental and human origin with a pairwise allelic distance of ≤24, and
both cgMLST and single nucleotide polymorphism (SNP) analyses suggest recent transmission events between the farm en-
vironment and humans. Four human clinical isolates harboured the immune-evasion gene cluster, of which one was considered to
be closely related to farm isolates. Half of the swine-related strains showed decreased susceptibility to eight ormore antimicrobials,
and along with human isolates, they carried eight diferent types of multidrug-resistance genes, including cfr. Te results showed
a dramatic increase in the occurrence of LA-MRSA in the swine industry in Hungary, compared with the 2% prevalence reported
by the European Food Safety Authority baseline study in 2008. Te wide range of antimicrobial resistance of the strains, ac-
companied by the emergence of the pathogen in humans— both asymptomatic carriers and diseased— call for revision of the risk
posed by LA-MRSA to the public health.

1. Introduction

After the frst report of livestock-associated methicillin-
resistant Staphylococcus aureus (LA-MRSA) from swine
and swine farmers in 2005, a Europe-wide baseline study was
conducted in 2008 to estimate the burden of the pathogen on
the swine farming sector (European Food Safety Authority

[1]). With the participation of more than 5,000 holdings
from 26 countries, the prevalence of MRSA infection in
breeding and production holdings was 14.0% and 26.9%,
respectively. However, except for some severely afected
countries, such as Germany, Spain, and Italy, there were
much lower prevalence estimates in most member states.
Hungary reported 3/141 positive production farms, while
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none of the 40 breeding holdings surveyed at that time were
positive. Inmost countries, the dominant genetic lineage was
clonal complex (CC) 398; other lineages were rarely iden-
tifed. In the subsequent decade, similar investigations have
been performed in countries with a previously low preva-
lence. Te results have indicated rapid spread and increased
genetic variability of the pathogen in only a few years [2, 3].

Pig farmers and attending veterinarians of farms are at
higher risk of carrying LA-MRSA [4]. Surveys have esti-
mated as high as 77%–86% prevalence among people
working in MRSA-positive farms [5, 6]. Te colonization
seems to be transient in most cases [7], but data also suggest
long-term persistence [8]. Terefore, it is not surprising that
LA-MRSA CC398 has also entered the human health care
system in some European countries, initially recognized as
an occupational hazard of patients who work in animal
husbandry [4]. However, recent results suggest the spread of
LA-MRSA among people without livestock contact, which is
a probable consequence of the recently discovered
readaptation of the bacteria to the human host [9]. Besides
the pathogen’s zoonotic potential, MRSA infections are
difcult to treat due to the frequent resistance to several
antibiotic classes.

Since the EFSA baseline survey in 2008, no such further
ofcial estimation of MRSA in pig settings has been made in
Hungary. However, an increased prevalence is expected
based on the growing annual number of MRSA-positive
swine samples that have been cultured at the Diagnostic
Centre of Production Animal Diseases (University of Vet-
erinary Medicine, Budapest, Hungary) since the early 2010s.
Meanwhile, the proportion of suspected LA-MRSA CC398
strains isolated from human samples has risen in the past few
years, as observed by the National Reference Laboratory for
Antimicrobial resistant bacteria (AMR NRL), National
Public Health Centre, Budapest, Hungary. Tus, the aim of
this study was to investigate the prevalence, genetic vari-
ability, and resistance of LA-MRSA strains in the Hungarian
swine sector and to assess their zoonotic potential by
comparing them with those of human clinical origin.

2. Materials and Methods

2.1. Origin of Swine-Industry-Related Samples. One hundred
of the total 292 large-scale breeding and production farms
with more than 100 sows were randomly selected across the
country and invited to participate in the survey. Tis
sample size was determined to be able to estimate the
proportion of MRSA-infected farms. Te Epitools package
(available at https://epitools.ausvet.com.au/oneproportion)
was used for this calculation, with an estimated proportion
(target prevalence) of 0.7 (70%), a desired precision of the
estimate of 0.1 (10%), and a 95% confdence interval of the
estimate. Te calculation suggested the random selection of
64 farms to reach the goals of the sampling. Te 100 fgure
was used instead to allow for loss of farms due to refusal to
participate (meaning a 64% response rate). Finally, two
randomly chosen fattening units were also invited to
complete the survey. Hence, the number of investigated
farms was 40.

Environmental dust samples were collected between
May 2019 and December 2019 from fve diferent production
units on each farm, whenever possible, representing more
age or production groups. Samplers were asked to rub
a minimum 0.5m2 area per unit with a 5× 5 cm sterile dry
cotton swab. Swabs were then pooled in a sterile plastic bag
and delivered to the laboratory at ambient temperature
(2–25°C) within 10 days. A questionnaire was supplied to
inquire about the basic farm-related data, the primary source
of the breeding population, regular animal movements
between farms, and information on previous occurrences of
MRSA. Te completed questionnaire and a signed consent
form were mandatory for further processing of the samples.
Veterinarians and farm managers (henceforth: swine pro-
fessionals) of the respective holdings could also provide
a sample voluntarily. Human sampling was performed as
described previously [10].

2.2. Isolation and Characterization of the MRSA Strains

2.2.1. Culturing the Bacteria. Upon their arrival, environ-
mental swabs were incubated overnight (16–20 h) at 37°C in
100ml Mueller–Hinton broth supplemented with 6.5% (w/
v) NaCl. Subsequently, about 10 µl of the enrichment sus-
pension was spread simultaneously onto chromogenic agar
plates for the selection of S. aureus (BD BBL CHROMagar
Staph aureus) and MRSA (BD BBL CHROMagar MRSA II,
Diagon Ltd, Hungary) and incubated at 35± 1°C for 24–48 h.
One colony per sample, showing the characteristics de-
scribed by the manufacturer, was chosen from the MRSA
selective medium and subcultured on Columbia sheep blood
agar plates under the same conditions. If more than one
phenotypic variant of presumptiveMRSAwas present on the
chromogenic agar plate, then one colony of each variant was
chosen. Human nasal swabs were processed the same way.
Colonies from the S. aureus-selective plates were treated as
described above, only if the MRSA medium yielded no
isolates. Pure cultures of the bacteria were stored at −80°C
until further investigation.

2.2.2. Molecular Investigation and Antibiotic Susceptibility
Testing. Initial identifcation of presumptive S. aureus and
MRSA isolates included a multiplex polymerase chain re-
action (PCR) targeting the spa gene, a species-specifc
marker of S. aureus; the mecA and mecC genes, confrm-
ing methicillin resistance; and the lukS-PV/lukF-PV gene,
the marker of the human-related Panton–Valentine leu-
kocidin virulence factor [11]. Only MRSA strains were
characterized further.

Te minimal inhibitory concentrations (MIC) of 19
selected antibiotics were determined by microdilution in
Mueller–Hinton broth using the Sensititre EUST plates
(Termo Fischer Scientifc). When applicable, MIC values
were interpreted using the European Committee on Anti-
biotic Susceptibility Testing [12] criteria. In the case of
sulfamethoxazole, the Clinical and Laboratory Standards
Institute [13] criteria were applied. Epidemiological cut-of
values were used to determine the wild-type susceptibility to
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kanamycin, mupirocin, streptomycin, and tiamulin
according to the methodology recommended by the Euro-
pean Union Reference Laboratory for Antimicrobial
Resistance [14].

Fifty-seven isolates were selected for whole-genome
sequencing (WGS). Whole-genome sequences were ob-
tained from a NEBNext Ultra II directional DNA library
with TruSeq adapters on an Illumina NovaSeq 6000 se-
quencing system (2 ×150-bp paired-end reads) at the NGS
Platform, University of Bern, Switzerland. Te resulting
Illumina reads were transferred to BIOMI Ltd., Gödöllő,
Hungary, for further bioinformatic investigation. Whole-
genome multilocus sequence typing (MLST) analysis was
performed on assembly free (AF) datasets using the
BioNumerics software package version 8.0 (Applied
Maths NV, Belgium), as described previously [15]. Ten,
distance matrices were generated by selecting the subset of
1861 core genome (cg) loci of each isolate. To visualize
genetic relatedness, the unweighted pair group method
with arithmetic mean (UPGMA) trees was constructed
based on the cgMLST allele matrices. No resampling was
performed during the tree construction, and branch
lengths were calculated according to the average allelic
diferences of the isolates. Te trees were annotated based
on the iTOL 6.3 online platform [16]. Clusters of closely-
related isolates were defned according to previous rec-
ommendations, using a 24 allelic diference as a cut-of
value [17]. Recent transmission events were considered if
the pairwise allelic diference was lower between the two
strains than the estimated median annual variability
within a S. aureus population (≤5) [18]. Spa typing and
classical MLST of the seven housekeeping gene loci was
performed within BioNumerics. De novo draft genome
contigs were assembled using SPAdes in BioNumerics
[19], and RASTtk was used for the annotation of selected
genomes [20].

Resistance genes and mutations generating antibiotic
resistance and the mec-carrying cassette chromosome
(SCCmec) type were investigated by using the online Res-
Finder 4.1 [21] and SCCmecFinder 1.2 [22] tools with default
settings (threshold of coverage: 60%, threshold of identity:
90%). Te presence of virulence genes was assessed by using
the sequence extraction tool in BioNumerics and confrmed
by mapping the assembled genomes against the given vir-
ulence gene as reference in Geneious Prime 2022.1.1 (Bio-
matters Ltd., New Zealand) with default settings. Hits of
100% coverage and >98% nucleotide identity were consid-
ered to be valid results. Te homology of the annotated draft
genomes to plasmids known to carry the cfr resistance gene,
pSCFS3 (AJ879565.1), and pSA737 (KC206006.1), was in-
vestigated in the same way. Te genetic vicinity of the
identifed cfr gene was also investigated by using Geneious
Prime.

Furthermore, 14 human-derived MRSA CC398 isolates
from 2019 were involved in the study. MRSA isolates ob-
tained from human clinical samples were routinely sub-
mitted to the AMR NRL of the National Public Health
Centre for molecular typing between January and December
2019. Strains were selected based on their nontypeability

(NT) by SmaI-pulsed-feld gel electrophoresis (PFGE) and
spa type related to CC398. WGS was performed in the se-
quencing facility of the National Public Health Centre on the
MiSeq platform (Illumina) using 150-bppaired-end chem-
istry. Raw reads were then analyzed at BIOMI Ltd. as de-
scribed previously. WGS data from this study are available in
the Sequence Read Archive under the project numbers
PRJNA901421 and PRJNA893357.

Whole-genome data of nine LA-MRSA strains from
Denmark were included in the cgMLST analysis for
comparative purposes. Te strains represent the three
dominant CC398 lineages—L1, L2, and L3—as identifed
by Sieber et al. [23]. To reinforce the cgMLST results in
the case of closely related isolates, single nucleotide
polymorphism (SNP) analysis was performed by using an
in-house pipeline on all 79 strains. Te pipeline is de-
tailed in Supporting Information S1. A maximum like-
lihood tree was generated and then visualized and
annotated with iTOL.

3. Results

3.1. Number of MRSA-Positive Farms and MRSA in Swine
Professionals. A total of 40 holdings participated in the
survey, including 38 farms rearing sows and two fattening
farms, representing all major pig-producing regions of the
country (Figure 1). Te number of sows per breeding farm
varied from 470 to 3000, with the total number accounting
for 13% of the registered sows in Hungary in 2019 (National
Food Chain Safety Ofce, Budapest, Hungary). Both fat-
tening farms dealt with approximately 2000 fatteners per
fattening cycle. Of the 40 sampled farms, 33 were MRSA
positive (82.5%) during the recent sampling, and the pro-
portion of the positive breeding and production farms was
31/38 (81.6%). Interestingly, only a quarter of the farms (10/
40) reported a previous laboratory confrmation of MRSA.
All but one previously MRSA-positive farm tested positive
again. In the case of four farm samples, there were two
distinct phenotypes present on the chromogenic agar plate-
and both were selected for further testing-resulting in 37
farm isolates.

Among the 36 swine professionals in contact with the
farms, 27 provided samples, of whom 25 were veterinarians
and two were farm managers. Nineteen of them tested
positive for MRSA (70.4%), including both farm managers.
In a single case two phenotypically diferent isolates were
further investigated from the same sample (Farm 28); thus,
there were a total of 20 swine professional isolates. Te
number of MRSA-positivefarm-swine professional couples
was 14. In only two cases, both the farm and the contact
person were negative. In six cases the farms tested positive,
while the swine professionals tested negative, and in fve
cases the farm was negative but the human sample tested
positive.

Of note, none of the MRSA-negative samples yielded
S. aureus on the S. aureus-selective chromogenic agar me-
dium cultured in parallel, while other staphylococci grew on
most plates, ruling out failure of sampling, or culturing in
these cases (data not shown).
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3.2. Initial Characterization of Farm-Related and Human
Clinical MRSA Isolates. Among the 57 MRSA isolates
chosen for further testing, all but a sequence type 45
(ST45) isolate belonged to MLST CC398, of which most
represented the founder ST, ST398 (52/56). Tree isolates
were ST541, a single locus variant (SLV) of ST398, and
a new SLV was also identifed in the case of the isolate
F19_E1, assigned to ST6268. An array of spa types related
to CC398 were identifed, with t034 (n = 22; 38.6%) and
t011 (n = 21; 36.8%) being the two most prevalent variants.
A few other isolates carried spa types t4208 (n = 3) and
t1197 (n = 2), and one each represented spa types t571,
t1250, t1255, t1451, and t4571. A new, yet unassigned spa
type was identifed among three further isolates by the
WGS-based analysis, all originating from the same farm.
Te vast majority of the isolates carried the Vc (5C2&5)
variant of the Staphylococcus cassette chromosome mec
(n = 55), and a single isolate had type IVb(2B). A swine
professional isolate was scn positive, carried SCCmec type
IVa, identifed as spa type t330, and belonged to a human-
associated ST45. Tis isolate was considered not to be
livestock-associated and was excluded from subsequent
analyses.

Te human clinical isolates (n= 14) all belonged to
CC398, and except for three isolates, they were all typed as
ST398. Two isolates (N19145 and N19284) belonged to
ST1232 and one isolate (N19018) was an SLV of ST398 and
assigned to a new ST, ST8001. Six isolates were spa type t011,
fve were t034, two were t4208, and one was t3275. Except for
two, all isolates belonged to the Vc (5C2&5) SCCmec type.
Te two ST1232 isolates lacked a second ccrC1 allele and thus
were typed as V (5C2). Te major characteristics of the
isolates that underwent WGS are summarized in Supporting
Information S2.

3.3. Phenotypic Antimicrobial Susceptibility and Resistance
Genes of Farm-Related Isolates. All analyzed farm-related
LA-MRSA isolates (n� 56) were susceptible to rifampicin,
vancomycin, mupirocin, and sulfamethoxazole, while re-
sistance to fusidic acid or linezolid was observed only in single
isolates (1.8%) (Table 1). In addition to resistance to the beta-
lactam antibiotics penicillin and cefoxitin, all isolates were also
resistant to tetracycline. It should be noted that three isolates
were apparently susceptible to cefoxitin (MIC� 4mg/L) but
considered to be MRSA as these strains had previously grown
on selective medium containing cefoxitin and tested positive
for the mecA gene by PCR. Tere was higher resistance in the
case of clindamycin (83.9%), trimethoprim (57.1%), and qui-
nupristin/dalfopristin (48.2%). Almost three quarter of the
isolates showed a non-wild-type phenotype when tested with
tiamulin. Half of the isolates were resistant or expressed a non-
wild-type phenotype to at least six tested antibiotics other than
beta-lactams (Supporting Information S2).

Twenty-four resistance genes and three nonsynonymous
point mutations in two genes conferring resistance to an-
tibiotics were identifed, in good agreement with phenotypic
data (Table 2, Supporting Information S2). However, there
were also discrepancies between the phenotypic and ge-
notypic results in several isolates (Supporting Information
S3). Eight isolates showed resistance towards chloram-
phenicol, without an identifable underlying genetic trait. In
addition, 14 isolates were apparently resistant to the qui-
nupristin/dalfopristin combination (≥4mg/L); however,
each of them carried only the lsa(E) gene conferring re-
sistance to streptogramin A antibiotics.

3.4. Relatedness of MRSA CC398 Isolates. Te allelic difer-
ences among the 70 compared isolates ranged from 0 to
189.8 in almost all cases based on the cgMLST analysis

Figure 1: Location of farms and geographical origin of human clinical livestock-associated methicillin-resistant Staphylococcus aureus
isolates involved in the study. Farms (F, blue circle) and places of origin of human clinical isolates (N, red circle) are numbered as referred to
in the text. Counties are shaded according to the number of sows in the year 2019: 20,000–32,000 (dark grey); 10,000–20,000 (medium grey);
5,000–10,000 (light grey); and 1,000–5,000 (white).
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(Supporting Information S4). Tere were two pairwise
comparisons, however, where the diferences were >200 and
not displayed by the BioNumerics software. Tese were the
human-derived clinical isolates of ST1232, which were
distantly related to all others (minimum allelic diference
>100) and thus were considered to be outliers (N19145 and
N19284). On the other hand, they were rather closely related
and showed a 5.0 allelic diference. Te groups of farm
environmental and swine professional isolates showed
comparable yet moderate within-group heterogeneity, with
allelic diferences ranging from 0 to 125.9 (median 81.5) and
from 0 to 123.0 (median 81.2), respectively. Except for the
two outliers, the human clinical isolates were more distantly
related, difering by a minimum of 29.3 alleles (maximum:
189.8, median: 144.6).

Both UPGMA trees, with (Supporting Information S5)
or without (Figure 2) the Danish isolates, were split into two
main groups, Groups 1 and 2.Te groups comprised clusters
of closely-related isolates (Clusters C1 to C5), identifed
based on the trees and by applying the threshold of ≤24
allelic diferences.

Te SNP analysis identifed 26–946 pairwise SNP dif-
ferences (median: 241) in the case of all 79 LA-MRSA
isolates. Within-group heterogeneity was indicated by
41–485 pairwise SNP diferences (median: 239) among the
farm environmental isolates, and the swine professional
strains difered by 44–281 SNPs (median: 220). Te human
clinical isolates showed 37–335 SNP diferences (median:
236) within the group. Te maximum likelihood phylogeny

tree refected most characteristics of the UPGMA trees, as
the previously identifed clusters C1–C3 were well recog-
nizable, while the genetic heterogeneity of C4 and C5 be-
came more apparent (Figure 3).

3.5. Evaluating the Relatedness of Swine Professional, Farm
Environmental, and Human Clinical Isolates. All whole
genome–sequenced swine professional LA-MRSA isolates
(n� 19) showed close relatedness (≤24.0 allelic diference) to
at least one environmental isolate. When considering the 13
cases where both the farm and the swine professional tested
positive for LA-MRSA, there were almost identical pairs. In
eight cases, the allelic diference between the environmental
and swine professional isolates was between 0 and 4.5, and
the pairwise SNP diference was between 26 and 73. From
the remaining fve environments, three nasal swab isolate
pairs showed 114.4–122.5 allelic diferences or 230–248
SNPs. In one case (Farm 8), there were two phenotypically
distinct environmental strains isolated, of which one did not
difer from the nasal swab isolate (F08_E1; 0 allelic diference
and 73 SNPs), while the other was rather distantly related
(F08_E2; >100 allelic diference and >247 SNPs). All swine
professionals who carried other genotypes than those de-
tected on the farms were veterinarians. Only one of them
reported no professional contact with other animals; the rest
either worked with other farm animal species, mainly ru-
minants (n� 1), or also with swine on other farms (n� 2).

Nine out of 14 human clinical isolates clustered together
with at least one farm environmental isolate, which was

Table 1: Phenotypic antimicrobial susceptibility of 56 Swine-Related Livestock-Associated Methicillin-Resistant Staphylococcu saureus
isolates.

Farm environment isolates
(n� 37)

Swine professional isolates
(n� 19) Total (n� 56)

R(%) I(%) S(%) R(%) I(%) S(%) R(%) I(%) S(%)
Penicillin 37 (100) — 0 (0) 19 (100) — 0 (0) 56 (100) — 0 (0)
Cefoxitin 36 (97.3) — 1 (2.7) 17 (89.5) — 2 (10.5) 53 (94.6) — 3 (5.4)
Tetracycline 37 (100) 0 (0) 0 (0) 19 (100) 0 (0) 0 (0) 56 (100) 0 (0) 0 (0)
Clindamycin 29 (78.4) 0 (0) 8 (21.6) 18 (94.7) 1 (5.3) 0 (0) 47 (83.9) 1 (1.8) 8 (14.3)
Trimethoprim 21 (56.8) — 16 (43.2) 11 (57.9) — 8 (42.1) 32 (57.1) — 24 (42.9)
Quinupristin/dalfopristin 20 (54.1) 4 (10.8) 13 (35.1) 7 (36.8) 8 (42.1) 4 (21.1) 27 (48.2) 12 (21.4) 17 (30.4)
Ciprofoxacin† 15 (40.5) 3 (8.1) — 10 (52.6) 5 (26.3) — 25 (44.6) 8 (14.3) —
Chloramphenicol 17 (45.9) 0 (0) 20 (54.1) 7 (36.8) 0 (0) 12 (63.2) 24 (42.9) 0 (0) 32 (57.1)
Erythromycin 15 (40.5) 0 (0) 22 (59.5) 8 (42.1) 0 (0) 11 (57.9) 23 (41.1) 0 (0) 33 (58.9)
Gentamicin 4 (10.8) — 33 (89.2) 3 (15.8) — 16 (84.2) 7 (12.5) — 49 (87.5)
Fusidic acid 1 (2.7) — 36 (97.3) 0 (0) — 19 (100) 1 (1.8) — 55 (98.2)
Linezolid 1 (2.7) — 36 (97.3) 0 (0) — 19 (100) 1 (1.8) — 55 (98.2)
Rifampicin 0 (0) 0 (0) 37 (100) 0 (0) 0 (0) 19 (100) 0 (0) 0 (0) 56 (100)
Vancomycin 0 (0) — 37 (100) 0 (0) — 19 (100) 0 (0) — 56 (100)
Sulfamethoxazole‡ 0 (0) — 37 (100) 0 (0) — 19 (100) 0 (0) — 56 (100)

ECOFF (mg/L) NWT (%) WT (%) NWT (%) WT (%) NWT (%) WT (%)
Tiamulin§ 2 25 (67.6) 12 (32.4) 16 (84.2) 3 (15.8) 41 (73.2) 15 (26.8)
Streptomycin§ 16 9 (24.3) 28 (75.7) 5 (26.3) 14 (73.7) 14 (25.0) 42 (75.0)
Kanamycin§ 8 4 (10.8) 33 (89.2) 3 (15.8) 16 (84.2) 7 (12.5) 49 (87.5)
Mupirocin§ 1 0 (0) 37 (100) 0 (0) 19 (100) 0 (0) 56 (100)
R, resistant; I, susceptible, increased exposure; and S, susceptible. †Te susceptibility of 23 isolates could not be determined, because their minimal inhibitory
concentration (MIC) fell below the lowest concentration measured (0.25mg/L). ‡MIC values evaluated according to the Clinical and Laboratory Standards
Institute (CLSI) criteria. §Epidemiological cut-of (ECOFF) values were used to determine wild-type (WT) and non-wild-type isolates.
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considered to be closely-related based on the cgMLSTanalysis
(Figure 2). Two of them also showed <5 allelic diferences
with farm isolates (N19211 and N20002). Of note, isolates
N19211 and F09_E1 (2 allelic diferences or 52 SNPs) both
exhibited the phenicol-lincosamide-oxazolidinone-

pleuromutilin-streptogramin A (PhLOPSA) multiresistance
pattern. Te resistance could be attributed to the cfr gene,
encoded on a large pSA737-like plasmid 40 kB in size.

Four isolates carried the immune evasion cluster (IEC)
gene cluster, but only one of them showed a minimum of 15
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Figure 2: Relatedness and genetic traits of livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) clonal complex (CC)
398 strains isolated from farm environments, swine professionals, and human clinical specimens. Te unrooted unweighted pair group
method with arithmetic mean (UPGMA) tree was generated using the core genome multilocus sequence typing (cgMLST) distance matrix
of 70 MRSA isolates. Te identifed genetic clusters (C1–C5) are highlighted. Te tree scale bar indicates a 10 allelic diference. Te branch
showing an allelic diference >200 was trimmed automatically by the BioNumerics software. Please note the strong association between the
farm genetics and the clustering of isolates in C2 and C3.
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pairwise allelic diferences or ≥56 SNPs compared with farm
environmental isolates; the rest were separated by a mini-
mum of 48.4 allelic diferences or 105 SNPs. Two of them
were the ST1232 outliers, isolates N19145 and N19284. Only
these two isolates encoded the Panton–Valentine leukocidin
genes (lukS-PV/lukF-PV).

3.6. FarmBreedingGenetics andRelatedness ofMRSA Isolates.
In some cases, there was a strong association between the
farms’ breeding genetics and the genetic clustering of cor-
responding isolates. Farms could be classifed into four well-
defned groups (A–D) according to their breeders’ genetics,
while Genetics E comprised all other farms with mainly
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highly mixed breeds. Purchase networks of holdings were
also identifed. Holding-1 is a large integration with two
nucleus farms, which has imported breeding Genetics A
exclusively from Denmark in years prior to the recent study.
Tese two nucleus farms, including Farm 14, supplied the
multiplier and production farms of the integration (n� 5)
and farms of other holdings (n� 6) (Figure 4). Most farms of
Genetics A (10/12) clustered in Group 1, and mainly within
cluster 2, according to the cgMLST analysis.

All but one farm breeding Genetics B were clustered in C4
(n� 3) and C5 (n� 3) (Figures 2 and 3).Te farms of Genetics
C had purchased their animals from the same source and
formed the well-separated cluster C3 in Group 2. Te three
farms rearing Genetics D were scattered among C4 (n� 1)
and C5 (n� 2), rather distantly-related (pairwise allelic dif-
ference >17.5). Among the farms of diferent mixed genetics,
there were more in each main genetic group (Groups 1 and 2)
of the cgMLSTsimilarity trees. However, Farms 17, 29, and 36
formed a well-separated subcluster within C5 (pairwise allelic
diference <3.1), and two of these farms were known to supply
each other with animals (Figures 2 and 3).

3.7. Relatedness of Hungarian and Danish LA-MRSA Isolates.
According to the cgMLST tree, the randomly selected Danish
isolates of Lineages 1 and 3 clustered together with the
Hungarian MRSA strains (Supporting Information S5). Te
three L1 isolates showed 10.1–27.2 allelic diferences from the
C1 strains, and similarly, L3 isolates showed 5.1–34.3 allelic
diferences from C2 isolates. Despite no obvious clustering,
the L2 isolates were rather close to the Hungarian C4 strains,
showing 8.3–45.5 (median: 17.5) pairwise allelic diferences.
Te SNP analysis reinforced only the closely relatedness of all
three L3 to C2 isolates, while only two L1 isolates and a single
L2 isolate fell close to the C1 and C4 strains on the phylo-
genetic tree, respectively (Figure 3).

4. Discussion

Hungary used to be a country characterized by a low
prevalence of MRSA according to a survey conducted by the
EFSA in 2008 [1], as MRSA could be detected in none of the

40 breeding herds examined. Similarly, only 3 out of the 141
Hungarian production farms were positive (2.1%). Te
present study included a total of 40 pig farms in Hungary.
Te majority of these were production farms (n� 36), two
were pig fattening operations, and only two farms corre-
sponded to the “breeding farm” category as defned by the
EFSA [1]. Tis is why it was not possible for us to conduct an
analysis according to the categories used in the 2008 survey.
As the composition of this sample is characterized by the
predominance of commercial pig-producing farms, the
indices of this latter category are also considered.

Compared with the data obtained in 2008, there had
been a dramatic increase in prevalence: MRSA could be
detected in 82% of the pig herds rearing sows. Based on a 10-
year perspective, this trend could be expected on the basis of
studies performed in other countries a few years after the
European baseline survey. Between 2008 and 2012, the
prevalence increased from 2.1%–3.4% to 23.6% in Poland
and from 35.9%–40.0% to 65.5% in Belgium, and this was
accompanied by an increase in the genetic variability of the
identifed strains [2, 3]. In the case of Poland, this phe-
nomenon was explained by the increasing proportion of
breeding pigs imported from countries characterized by
a high prevalence of MRSA, including Germany and the
Netherlands. In 2012, Denmark also belonged to that cat-
egory, with an increase in the positive herds of 0.0%–3.5% to
nearly 70% in 2014; however, in Denmark, the population
structure of the strains seemingly became more uniform, as
opposed to the examples cited above. Based on the genomic
analysis of strains originating from that period and the
retrospective study of animal transports, the pyramidal
structure of the Danish pig industry and the one-way
movement of animals within that structure proved to be
the most important factors [23].

In Hungary, the imports of breeding pigs have contin-
uously increased since the 2010s, and structural changes
have occurred in the pig industry. Tese factors may have
played a role in the wide dissemination of MRSA. Seven of
the sampled 40 pig herds studied in Hungary belonged to an
integration, Holding-1, which besides using imported
breeding genetics of Danish origin (Genetics A) has applied
the Danish pyramidal structure. Te movement of animals
was hierarchically organized within the holding, and at the
time of the survey, it supplied a further six sampled farms
with breeding animal replacements. Other herds had used
two types of genetics of Dutch origin, but our sample also
included farms working with hybrid genetics produced in
Hungary (Farms 24, 38, and 39), as well as other herds using
miscellaneous breeding genetics.

Te low number of Hungarian isolates (n� 3) included
in the 2008 EFSA survey does not allow us to draw con-
clusions regarding the genetic variability of the Hungarian
MRSA population typical of that time. Te genetic char-
acteristics of the MRSA strains isolated in the current study,
however, indicate the exclusive spread of strains belonging
to the CC398 lineage, as seen in the other European
countries [2, 24–26].

Comparison of the whole genomes also pointed to the
important role played by the interherd trade of animals. Te

DENMARK
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F27

F20 F28 F30

F34 F08

F02 F03 F09

F35 F40

Holding-1
Genetics A−

Figure 4: Overview of the purchase network of Holding-1 rearing
breeding Genetics A. Te farm shading corresponds to the
Methicillin-Resistant Staphylococcus aureus clusters identifed by
core genome multilocus sequence typing (cgMLST) analysis: C1
(red), C2 (green), C4 (blue), C5 (yellow), and no identifed genetic
cluster (white).
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strains of clusters C1–C5 were grossly arranged according to
the breeding genetics used in the herds. Clusters C1 and C2
mostly included the isolates obtained from Holding-1
working with Genetics A and from the farms supplied by
it. Te strains of the two clusters showed numerous simi-
larities in both their core genomes and their resistance set
encoded by their accessory genomes. Moreover, the in-
clusion of Danish LA-MRSA sequence data revealed a close
phylogenetic relationship between more selected Danish L1
and L3 strains [23] and the Hungarian C1 and C2 isolates,
respectively. In the light of these, it is reasonable to suppose
that the conditions of the integration can be considered
largely a Hungarian refection of the Danish example, ac-
companied by the circulation of LA-MRSA strains of Danish
import pig origin.

Researchers obtained similar results by comparing MRSA
isolates from Southern Italian pig farms with genomic data
originating from the previous Danish survey as well as from
a study analyzing samples from several European countries
[27]. Based on the analysis of the whole genomes, the strains
isolated from pig farms rearing animals imported from
Denmark could be assigned to one of the two dominant
clusters (L1 and L3) of the Danish MRSA strains. In addition,
the Danish and Italian strains also showed many similarities
in their resistance profles [26]. Tere were similar patterns in
the case of the other smaller groups of Hungarian farms,
further supporting the importance of animal movements
between herds regarding the spread of MRSA.

Of note, there were some exceptions to the above-
mentioned trend. Based on their isolates, some farms
working with Genetics A were also included in main genetic
Group 2, and vice versa, MRSA strains belonging to C1 were
isolated also from farms using other breeding genetics. Based
on earlier experience, in rare cases the simultaneous pres-
ence of multiple types of CC398 clonal lines in a given pig
farm also occurs [24, 28]. In the case of the samples evaluated
in this study, due to the divergent phenotype of the bacterial
colonies, their parallel testing seemed to be justifed.
However, from most of the samples only one bacterial
colony was selected for further study, an approach that
prevented the identifcation of variants that could be ge-
netically very diferent but with similar phenotypes present
in the culture. Such genetically diferent lines may be in-
troduced to pig farms not only with carrier pigs but also with
dust, by infected rodents or insects, and also by humans
permanently colonized by them [29].

Working with livestock substantially increases the risk of
colonization and developing a clinically apparent infection
[30]. People working in pig operations are at an especially
high risk [4]. Although humans seem to carry MRSA of
animal origin only transiently [7], other studies conducted in
pig farms indicate that permanent colonization is common
among farm workers [8]. In the present study, two-thirds of
the professionals working in pig farms, a total of 18 people,
carried an LA-MRSA CC398 strain. In half of the cases the
pig farm was clearly identifable as the source of coloniza-
tion, based on the high degree of similarity between the
strains (0–4.5 cgMLSTallelic diference and 26–72 SNPs). In
the remaining cases, the farm was either negative or

genetically diferent isolate was found. As at the time of the
study, the veterinarians involved were also attending other
pig farms or other livestock not included in the study, the
human strains diferent from the farm strains or those
isolated from farms with a negative status may have been
originated from other sources [31]. Similarly, as mentioned
before, in the current study the presence of multiple clonal
lines not identifed on the farms cannot be excluded.

Te majority of human clinical samples included in this
study are presumably of livestock origin. Tis seems to be
supported by the fact that the isolates were mostly derived
from the major pig-producing regions of Hungary. Al-
though no further data of the patients supplying the samples,
including their occupation, are known, a high animal density
at the place of residence is a known risk factor for the human
population that is not associated with animal production
[32]. During the genetic comparison, these isolates were
largely mixed with strains of pig origin, and in most cases,
a direct spread of pig farm origin could be supposed based
on the high degree of similarity found in the cgMLST and
SNP distance matrices and resistance profles. Tis view is
consistent with the results of other studies, where the ma-
jority of LA-MRSA strains isolated from clinical cases may
have been introduced into human health care directly from
animal production, retaining their major characteristics
[9, 24]. Except for two isolates, all of the clinical isolates in
this study showed a high degree of resistance and also carried
resistance genes against active compounds used almost
exclusively in livestock, such as tiamulin and phenicols.

Te host and ecological niche adaptation of MRSA
CC398 is accompanied by the gain and loss of mobile genetic
elements, like the human-associated IEC [9]. Although
regaining the IEC seems not to be a prerequisite for the
pathogen’s survival or pathogenicity in the human host, its
appearance in LA-MRSA strains is an indicator of the
spillover to humans, according to the latest research [33].
Four of the strains in this study carried the IEC, but only one
of them (N19281) showed a closer relationship with the
strains of pig origin. Due to the low number of samples and
the lack of metadata, no sound conclusions can be made
regarding the microevolutionary changes of the Hungarian
LA-MRSA population. However, the emergence of IEC-
carrying LA-MRSA isolates call for further studies to as-
sess the possibility of human-to-human spread and the risk
posed by such a scenario to public health in Hungary.

Even if the matter of host adaptation is somewhat
controversial, the high level of antibiotic resistance of
LA-MRSA is already a public health concern, as half of the
strains isolated from pig farms showed resistance or a non-
wild-type phenotype to at least six tested active ingredients
besides beta-lactams. Of the encoded resistance de-
terminants, the multidrug resistance (MDR) genes that
provide resistance to multiple antimicrobial agents cause the
greatest concern. Almost all MDR genes of this study are
known to be coded on mobile genetic elements and have
been previously detected in staphylococci of both human
and animal origin [34].

Te plasmid-borne cfr gene identifed in a pig farm
isolate and in a human clinical isolate in this study deserves
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particular attention, as it encodes resistance to fve classes of
antimicrobials at the same time (the PhLOPSA resistance
pattern) [34]. Of the compounds involved, the oxazolidi-
none derivative linezolid is especially important in human
medicine, as it is one of the antibiotics that can be used
against MDR Gram-positive bacteria and primarily against
MRSA [35]. Te importance of linezolid resistance is
underlined by the fact that MRSA, other Staphylococcus spp.,
and Enterococcus spp. strains carrying the cfr gene can cause
nosocomial infections [36–38]. Despite its importance,
however, it is reassuring that the data obtained in the years
since the frst detection of the cfr gene do not suggest an
epidemic-like spread of this resistance gene [39, 40]. At the
same time, pleuromutilins and forfenicol widely used in
animal production exert high selection pressure for the
enrichment of this resistance gene not only in the case of
MRSA strains but also in other species. Terefore, the de-
tection of this resistance gene in Hungary and the presence
of cfr-positive MRSA calls attention again to the increased
public health risk posed by the high-level MRSA carriage of
people working in the pig industry [9].

Te present study has some limitations. On the one
hand, factors infuencing the risk of MRSA occurrence on
a pig farm are not completely known; hence, appropriate
stratifed random sampling was not possible. Although the
sampled farms were randomly selected to eliminate some
bias in sampling, the results were not intended to be rep-
resentative for the Hungarian swine population. On the
other hand, only 38 of the hundred selected farms took part
in the study, less than the number needed for a proper
estimate (64 farms). Te low response rate further un-
derlines that the present prevalence estimate might deviate
from the (yet unknown) true prevalence of MRSA-infected
Hungarian swine farms. It should be noted, however, that
the results may adequately refect the conditions of the
important pig-producing regions of the country (Figure 1).
In addition, when evaluating the obtained prevalence data,
the fact that the method of sampling may reduce the sen-
sitivity of the test must be considered. In a preliminary study,
the EFSA found that the method based on testing dust
samples, used to survey the infection status of pig farms, was
somewhat less reliable than simultaneously sampling 60 pigs
[41]. Terefore, when evaluating the results of the baseline
survey conducted in 2008, the EFSA called attention to the
fact that the actual prevalence was presumably higher than
that suggested by the obtained data, even in areas showing an
apparently low prevalence [1]. Taking the abovementioned
facts into account, the number of infected farms in the
present study may be lower than the actual number. Tis
seems to be supported by the fact that pigs from some farms
found to be negative during the study subsequently yielded
MRSA strains in further routine diagnostic investigations
(data not shown). Nonetheless, due to its easy and rapid
implementation, the collection of environmental dust
samples is a widespread method for the detection of MRSA
in animal populations, in most cases supplemented by the
collection of samples from animals [2, 42, 43].

In conclusion, the results of this study showed that
livestock-associated MRSA has become extremely prevalent

in Hungarian pig farming. In accordance with other fndings
from then-low prevalence countries, like Denmark or
Poland, both massive live animal importing and interherd
movement of positive animals could contribute to its rapid
spread. Besides being abundant, most strains presented
a wide range of antimicrobial resistance and the capacity to
colonize and infect humans. Hence, the role of LA-MRSA as
a zoonotic pathogen should also be re-evaluated and its
epidemiology regularly monitored in Hungary.
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