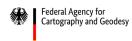


Earth rotation parameters estimated from combined GNSS and VLBI data and its impact on satellite orbits

Claudia Flohrer¹, Lisa Lengert¹, Hendrik Hellmers¹, Daniela Thaller¹, Stefan Schaer^{2,3}, Rolf Dach³


- (1) Federal Agency for Cartography and Geodesy (BKG, Frankfurt a. M., Germany)
- (2) Federal Office of Topography (swisstopo, Wabern, Switzerland)
- (3) Astronomical Institute of the University of Bern (AIUB, Bern, Switzerland)

Techniques' contributions to Earth Rotation Parameters (ERP)

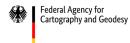
Techniques' contributions to Earth Rotation Parameters (ERP)

ERP	GNSS	VLBI INT	VLBI R1/R4	SLR	СОМВІ
dUT1	-	✓	√	-	✓
LOD	✓	-	√	√	\checkmark
Polar motion	\checkmark	-	√	√	✓

Techniques' contributions to Earth Rotation Parameters (ERP)

Benefits of multi-technique combination

- GNSS + VLBI INT → daily resolution and shorter latency of a consistent set of all ERPs
- multi-day combination → stabilization of ERP



ERP	GNSS	VLBI INT	VLBI R1/R4	SLR	СОМВІ
dUT1	-	✓	✓	_	✓
LOD	✓	-	✓	\checkmark	\checkmark
Polar motion	\checkmark	-	\checkmark	\checkmark	\checkmark

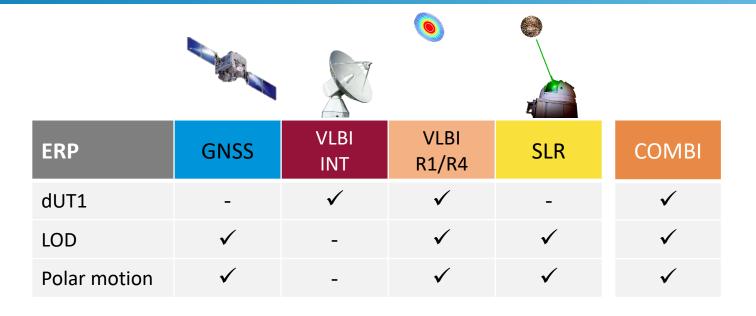
Techniques' contributions to Earth Rotation Parameters (ERP)

Benefits of multi-technique combination

- GNSS + VLBI INT → daily resolution and shorter latency of a consistent set of all ERPs
- multi-day combination → stabilization of ERP
- 24h VLBI R1/R4 twice/week → stabilization of ERP

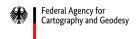
LOD

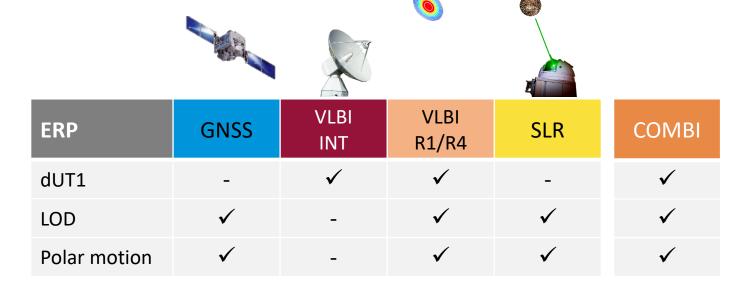
Polar motion


Techniques' contributions to Earth Rotation Parameters (ERP)

Benefits of multi-technique combination

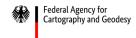
- GNSS + VLBI INT → daily resolution and shorter latency of a consistent set of all ERPs
- multi-day combination → stabilization of ERP
- 24h VLBI R1/R4 twice/week → stabilization of ERP
- stable contribution of LOD from SLR → improvement of ERP




Techniques' contributions to Earth Rotation Parameters (ERP)

Current ERP daily combination

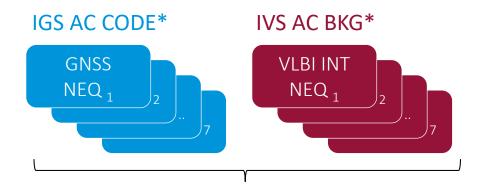
- combination at parameter level
- @ IERS RS/PC \rightarrow IERS-14-C04
- @ IERS EOP PC → IERS-Bulletin-A

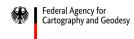

Techniques' contributions to Earth Rotation Parameters (ERP)

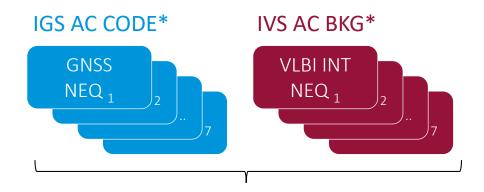
Current ERP daily combination

- combination at parameter level
- @ IERS RS/PC \rightarrow IERS-14-C04
- @ IERS EOP PC → IERS-Bulletin-A

Benefits of combination at NEQ level (SINEX)


- considers correlations
- consistent set of parameters
- assures same underlying reference frame
- (positive) impact on other technique-specific parameters

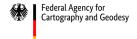



- Derived from combination at NEQ level
- Using NEQ from SINEX files

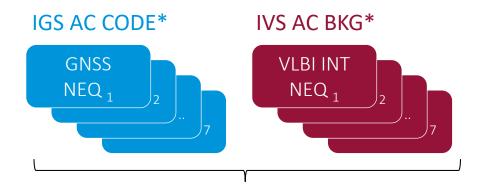
7d - COMBI RAP NEQ

- * official GNSS rapid solution from IGS Analysis Center "CODE"
- * official VLBI Intensives solution from IVS Analysis Center "BKG"

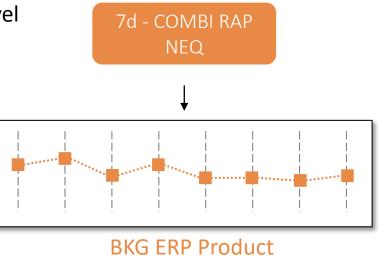
- * official GNSS rapid solution from IGS Analysis Center "CODE"
- * official VLBI Intensives solution from IVS Analysis Center "BKG"

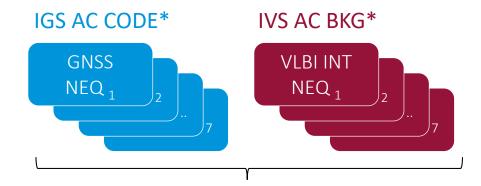

- Derived from combination at NEQ level
- Using NEQ from SINEX files

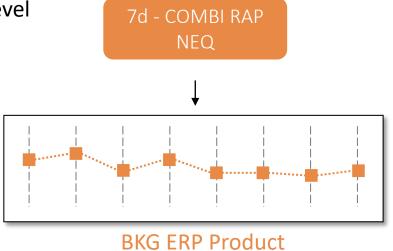
7d - COMBI RAP NEQ

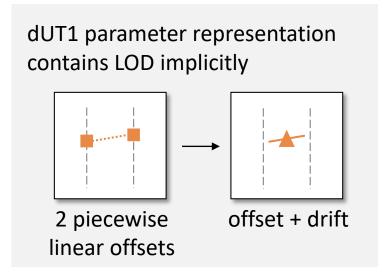

CODE = Center for Orbit Determination in Europe, a consortium of

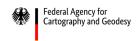
- Astronomical Institute of the University of Bern (AIUB, Bern, Switzerland)
- Swiss Federal Office of Topography (swisstopo, Wabern, Switzerland)
- Federal Agency for Cartography and Geodesy (BKG, Frankfurt a. M., Germany)
- Institut für Astronomische und Physikalische Geodäsie, Technische Universität München (IAPG/TUM, Munich, Germany)


IGS AC CODE is operated by AIUB, using the Bernese GNSS Software

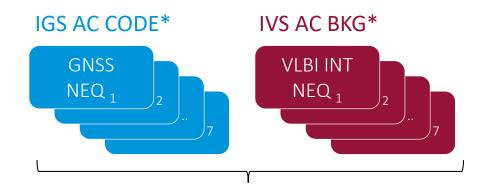

- Derived from combination at NEQ level
- Using NEQ from SINEX files
- Best ERP result:7-day piecewise linear polygon


- * official GNSS rapid solution from IGS Analysis Center "CODE"
- * official VLBI Intensives solution from IVS Analysis Center "BKG"

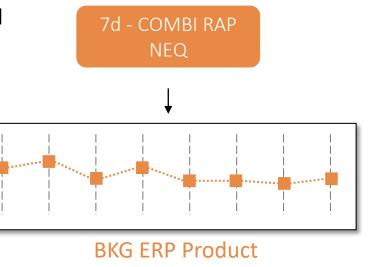


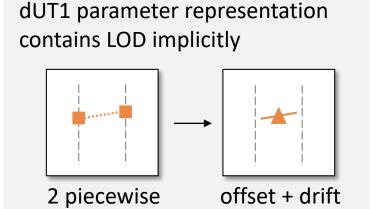


- Derived from combination at NEQ level
- Using NEQ from SINEX files
- Best ERP result:7-day piecewise linear polygon



- * official GNSS rapid solution from IGS Analysis Center "CODE"
- * official VLBI Intensives solution from IVS Analysis Center "BKG"


- Derived from combination at NEQ level
- Using NEQ from SINEX files
- Best ERP result:7-day piecewise linear polygon


Lengert L, Thaller D, Flohrer C, Hellmers H, Girdiuk A (2021):

Combination of GNSS and VLBI data for consistent estimation of Earth Rotation Parameters.

Proceedings of the 25th European VLBI Group for Geodesy and Astrometry Working Meeting (EVGA 2021). (eds. R. Haas). ISBN: 978-91-88041-41-8. https://www.oso.chalmers.se/evqa/25_EVGA
2021 Cyberspace.pdf

- * official GNSS rapid solution from IGS Analysis Center "CODE"
- * official VLBI Intensives solution from IVS Analysis Center "BKG"

linear offsets

Compare ERP product w.r.t. external reference

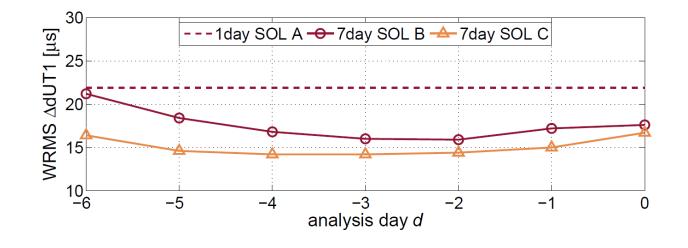
Compare ERP product w.r.t. external reference

Reference series: IERS-Bulletin-A, IERS-14-C04, ...

Validation epoch: 12:00 UTC, middle of VLBI observation epoch, ...

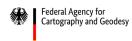
ERP product: different solutions A, B, C (technique, arc-length, ..)

Compare ERP product w.r.t. external reference


Reference series: IERS-Bulletin-A, IERS-14-C04, ...

Validation epoch: 12:00 UTC, middle of VLBI observation epoch, ...

ERP product: different solutions A, B, C (technique, arc-length, ..)


Analyse WRMS of ERP differences

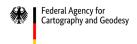
- absolute value → depends on the reference
- relative value → shows improvement, but also w.r.t. reference
- reference ≠ "truth"

Check impact on other parameter from same solution

Check impact on other parameter from same solution

Which impact has the combined solution (ERP from combining GNSS+VLBI) on GNSS orbit parameters?

Check impact on other parameter from same solution



Which impact has the combined solution (ERP from combining GNSS+VLBI) on GNSS orbit parameters?

Why to look at orbits?

GNSS orbits still have some deficiencies

- .. Solar radiation pressure modelling
- .. CODE estimates 3-day arcs
- .. LOD bias exists, but not understood

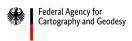
Check impact on other parameter from same solution

Which impact has the combined solution (ERP from combining GNSS+VLBI) on GNSS orbit parameters?

Why to look at orbits?

GNSS orbits still have some deficiencies

- .. Solar radiation pressure modelling
- .. CODE estimates 3-day arcs
- .. LOD bias exists, but not understood


Potential answers:

- Improved orbits
- No impact
- Worse orbits

Overview of estimated parameters in combined solution

Overview of estimated parameters in combined solution

Combined NEQ (7 days)

GNSS Rapid - CODE

VLBI INT - BKG

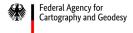
IGS station coordinates

IVS station coordinates

ERP

- Pole coordinates
- dUT1 (piecewise linear offsets)

Orbits


- Keplerian elements
- Dynamical parameter
- Stochastic pulses

Troposphere

- Zenith wet delays
- N/E Gradients

Troposphere

Zenith wet delays

Overview of estimated parameters in combined solution

Combined NEQ (7 days)

GNSS Rapid - CODE

VLBI INT - BKG

IGS station coordinates

IVS station coordinates

ERP

- Pole coordinates
- dUT1 (piecewise linear offsets)

Orbits

- Keplerian elements
- Dynamical parameter
- Stochastic pulses

Troposphere

- Zenith wet delays
- N/E Gradients

Troposphere

Zenith wet delays

Explicit in SINEX NEQ

Implicit in SINEX NEQ

Overview of estimated parameters in combined solution

Combined NEQ (7 days)

GNSS Rapid - CODE

VLBI INT - BKG

IGS station coordinates

IVS station coordinates

ERP

- Pole coordinates
- dUT1 (piecewise linear offsets)

Orbits

- Keplerian elements
- Dynamical parameter
- Stochastic pulses

Troposphere

- Zenith wet delays
- N/E Gradients

Troposphere

Zenith wet delays

Explicit in SINEX NEQ

Implicit in SINEX NEQ

Overview of estimated parameters in combined solution

Combined NEQ (7 days)

GNSS Rapid - CODE

VLBI INT - BKG

IGS station coordinates

IVS station coordinates

ERP

- Pole coordinates
- dUT1 (piecewise linear offsets)

Orbits

- Keplerian elements
- Dynamical parameter
- Stochastic pulses

Troposphere

- Zenith wet delays
- N/E Gradients

Troposphere

Zenith wet delays

Explicit in SINEX NEQ

Implicit in SINEX NEQ

No access to orbit parameters on SINEX NEQ level!

Estimated parameters

GNSS NEQ

GNSS Rapid - CODE

IGS station coordinates

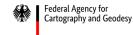
ERP

- Pole coordinates
- dUT1 (pwl offsets)

Orbits

- Keplerian elements
- Dynamical parameter
- Stochastic pulses

Troposphere


- Zenith wet delays
- N/E Gradients

Explicit

Implicit

Get access to orbit parameters from combined analysis by

- Re-running GNSS Rapid solution from CODE
- Using NEQs provided by CODE (containing orbits as explicit parameters)

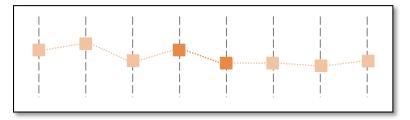
Estimated parameters

GNSS NEQ

GNSS Rapid - CODE

IGS station coordinates

ERP


- Pole coordinates
- dUT1 (fix all)

Orbits

- Keplerian elements
- Dynamical parameter
- Stochastic pulses

Troposphere

- Zenith wet delays
- N/E Gradients

Get access to orbit parameters from combined analysis by

- Re-running GNSS Rapid solution from CODE
- Using NEQs provided by CODE (containing orbits as explicit parameters)
- Introducing combined ERP product and fixing all dUT1 values

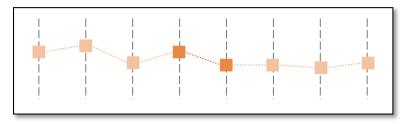
Estimated parameters

GNSS NEQ

GNSS Rapid - CODE

IGS station coordinates

ERP


- Pole coordinates
- dUT1 (fix all)

Orbits

- Keplerian elements
- Dynamical parameter
- Stochastic pulses

Troposphere

- Zenith wet delays
- N/E Gradients

BKG solution

BKG

Get access to orbit parameters from combined analysis by

- Re-running GNSS Rapid solution from CODE
- Using NEQs provided by CODE (containing orbits as explicit parameters)
- Introducing combined ERP product and fixing all dUT1 values

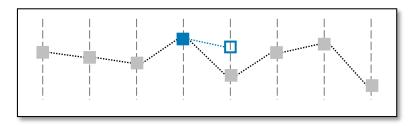
Estimated parameters

GNSS NEQ

GNSS Rapid - CODE

IGS station coordinates

ERP

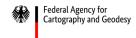

- Pole coordinates
- dUT1 (fix first)

Orbits

- Keplerian elements
- Dynamical parameter
- Stochastic pulses

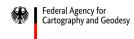
Troposphere

- Zenith wet delays
- N/E Gradients

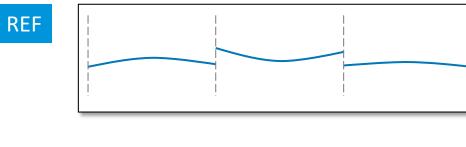


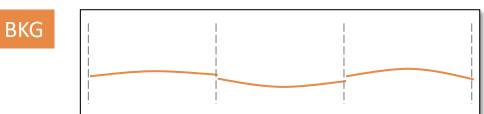
Reference solution

REF


Use GNSS Rapid solution from CODE as reference

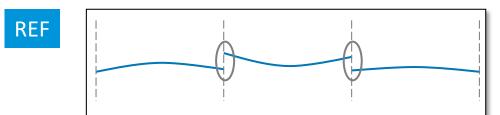
- Using IERS-Bulletin-A as a priori ERP
- Fix first dUT1 value

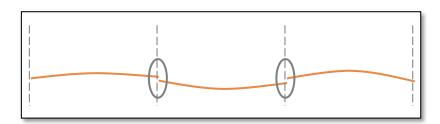

Orbit validation

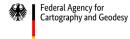


Orbit validation

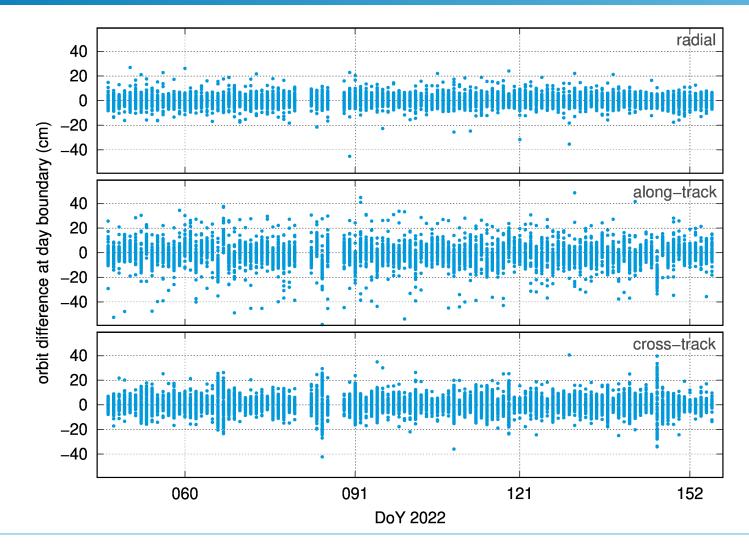
- 3 GNSS: GPS | GLONASS | Galileo
- 1-day arcs
- 113 days
- DoY 045-157 2022

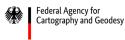


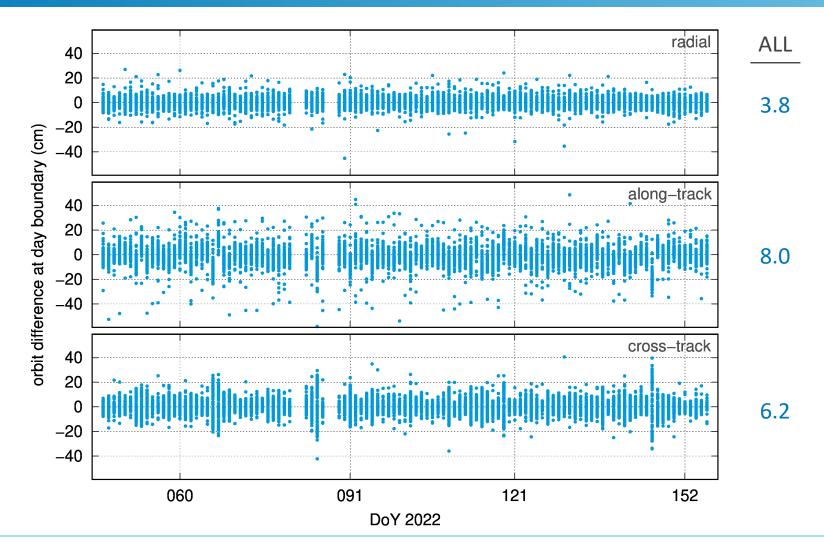

Orbit validation


Analyse orbit differences at day boundaries

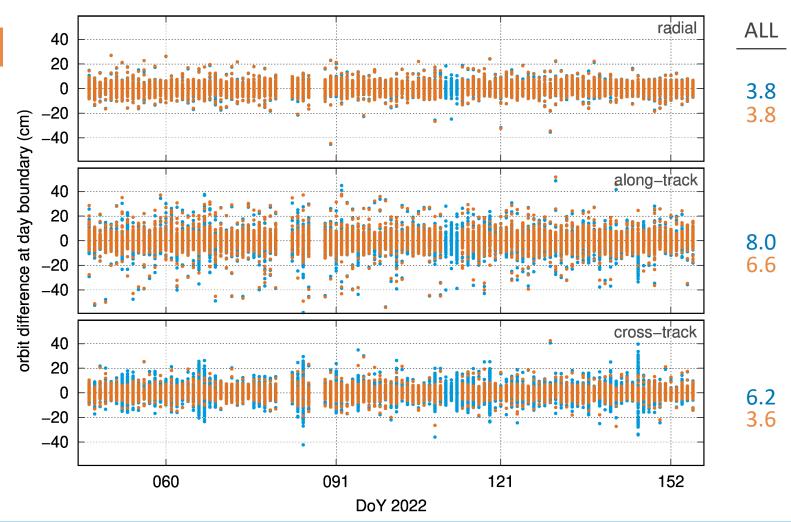
- 3 GNSS: GPS | GLONASS | Galileo
- 1-day arcs
- 113 days
- DoY 045-157 2022

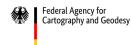




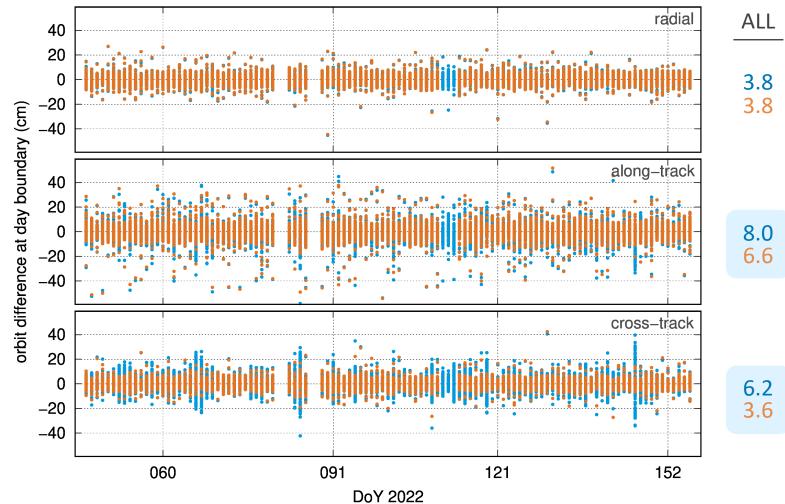


RMS (cm)

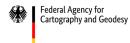




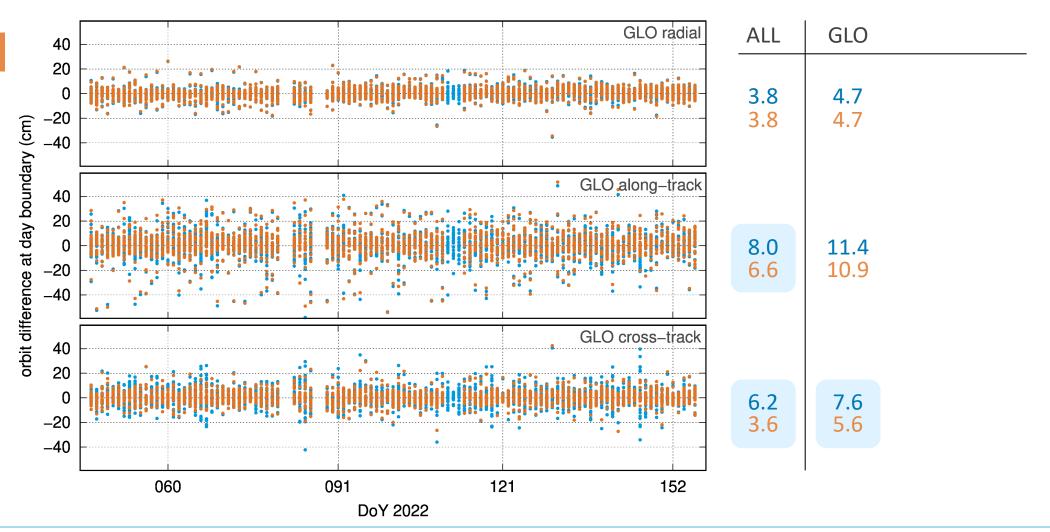
RMS (cm)



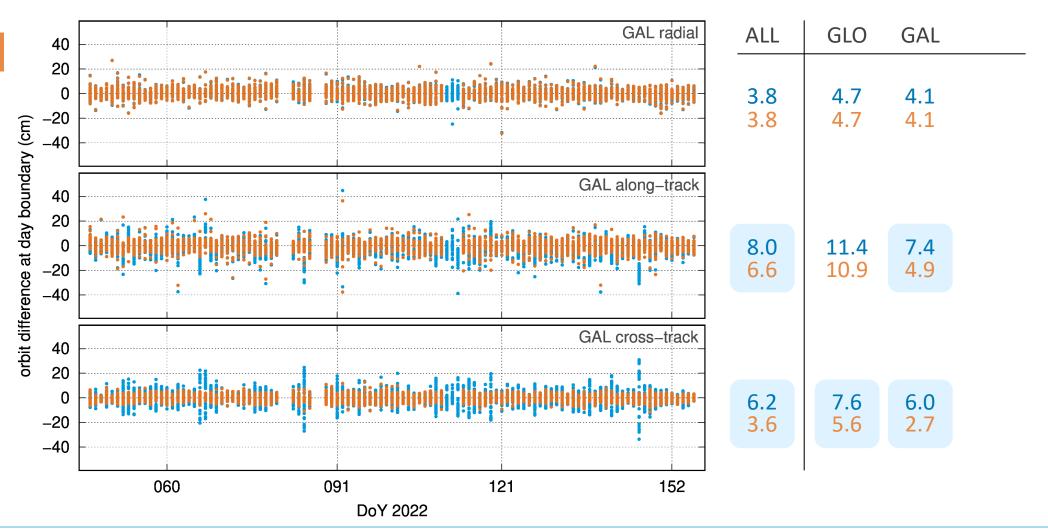
RMS (cm)



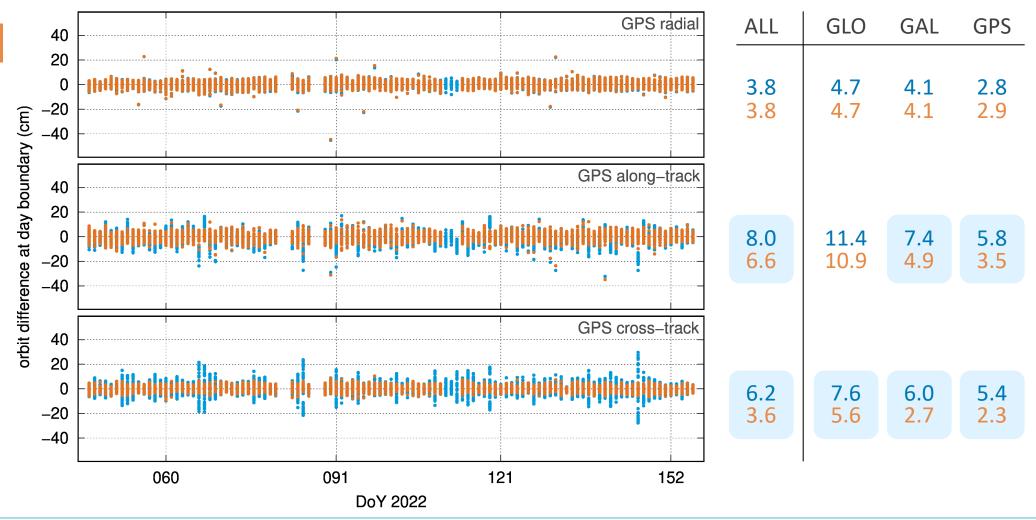
Improvement in along-track and cross-track

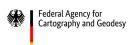


RMS (cm)



RMS (cm)




RMS (cm)

Which impact has the combined solution (ERP from combining GNSS+VLBI) on GNSS orbit parameters?

Which impact has the combined solution (ERP from combining GNSS+VLBI) on GNSS orbit parameters?

Using combined BKG ERP product, derived from combination of NEQs of

- official GNSS rapid solution from IGS AC "CODE"
- official VLBI Intensives solution from IVS AC "BKG"

Which impact has the combined solution (ERP from combining GNSS+VLBI) on GNSS orbit parameters?

Using combined BKG ERP product, derived from combination of NEQs of

- official GNSS rapid solution from IGS AC "CODE"
- official VLBI Intensives solution from IVS AC "BKG"

Answer: Improved orbits

- in along-track and cross-track orbit differences at day boundaries
- for GPS, GLONASS, Galileo
- for 1-day (and 3-day) arcs

Which impact has the combined solution (ERP from combining GNSS+VLBI) on GNSS orbit parameters?

Using combined BKG ERP product, derived from combination of NEQs of

- official GNSS rapid solution from IGS AC "CODE"
- official VLBI Intensives solution from IVS AC "BKG"

Answer: Improved orbits

- in along-track and cross-track orbit differences at day boundaries
- for GPS, GLONASS, Galileo
- for 1-day (and 3-day) arcs

Additional VLBI-based LOD information is clearly beneficial for all considered GNSS!

Which impact has the combined solution (ERP from combining GNSS+VLBI) on GNSS orbit parameters?

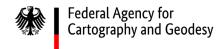
Using combined BKG ERP product, derived from combination of NEQs of

- official GNSS rapid solution from IGS AC "CODE"
- official VLBI Intensives solution from IVS AC "BKG"

Answer: Improved orbits

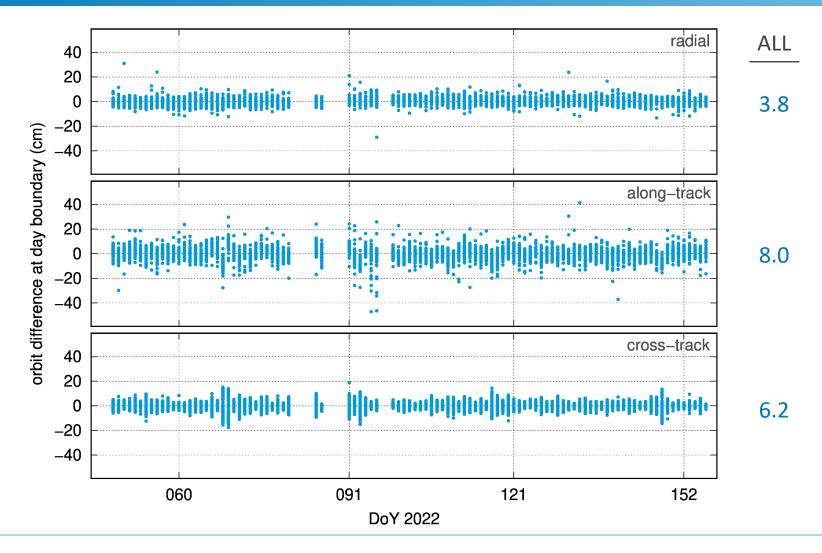
- in along-track and cross-track orbit differences at day boundaries
- for GPS, GLONASS, Galileo
- for 1-day (and 3-day) arcs

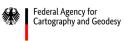
Additional VLBI-based LOD information is clearly beneficial for all considered GNSS!


Solar radiation pressure modelling? Plane-specific dependencies? Eclipse behavior? LOD bias?

•

Thank you for your kind attention!

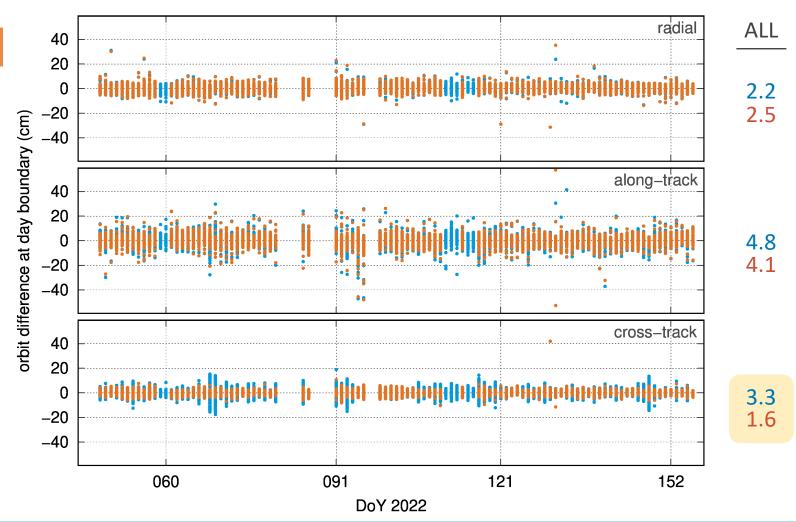


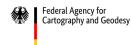

Federal Agency for Cartography and Geodesy (BKG) Section G1

Richard-Strauss-Allee 11 D-60598 Frankfurt am Main, Germany

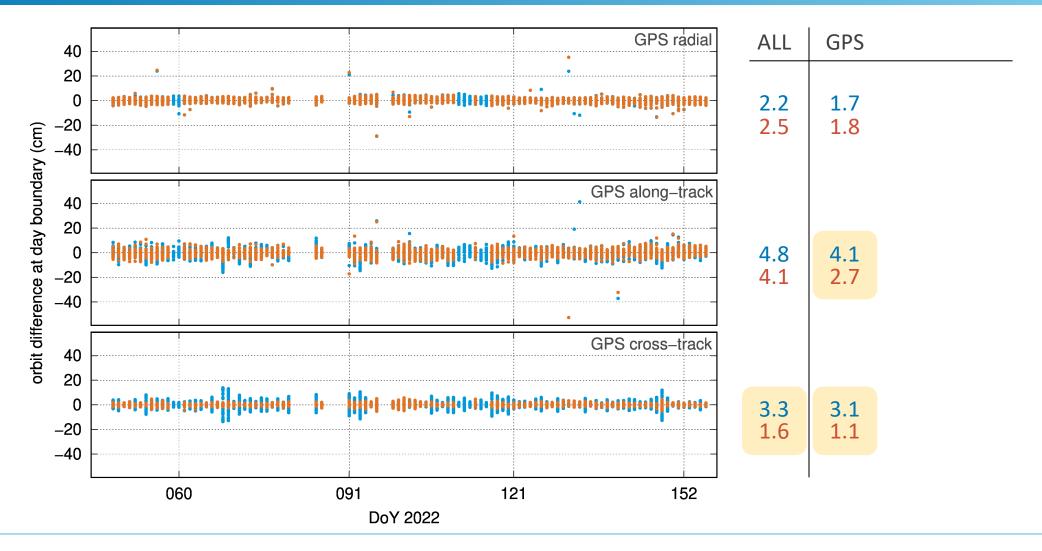
Claudia Flohrer, Dr. phil.-nat. claudia.flohrer@bkg.bund.de www.bkg.bund.de Phone +49 69 6333 – 456

RMS (cm)

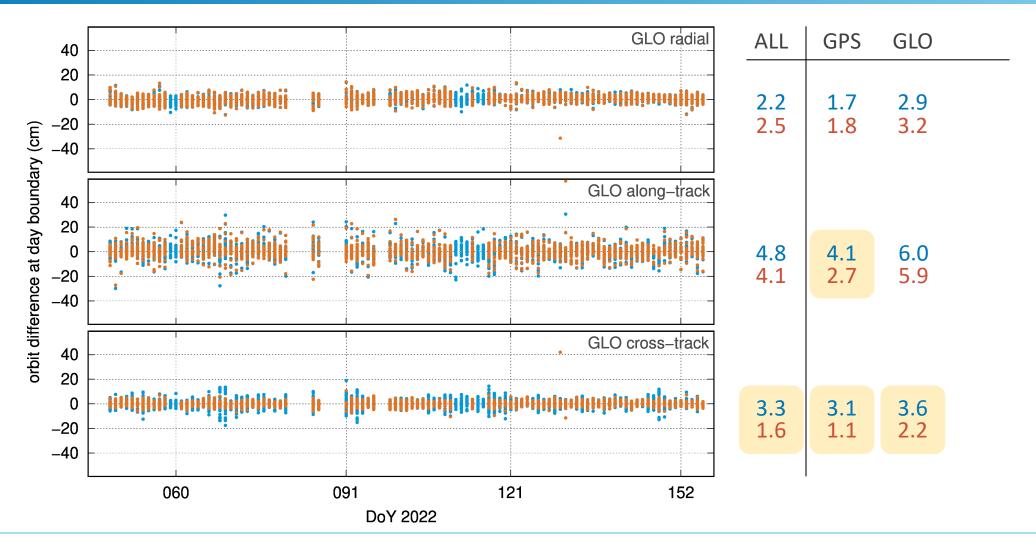


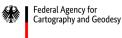


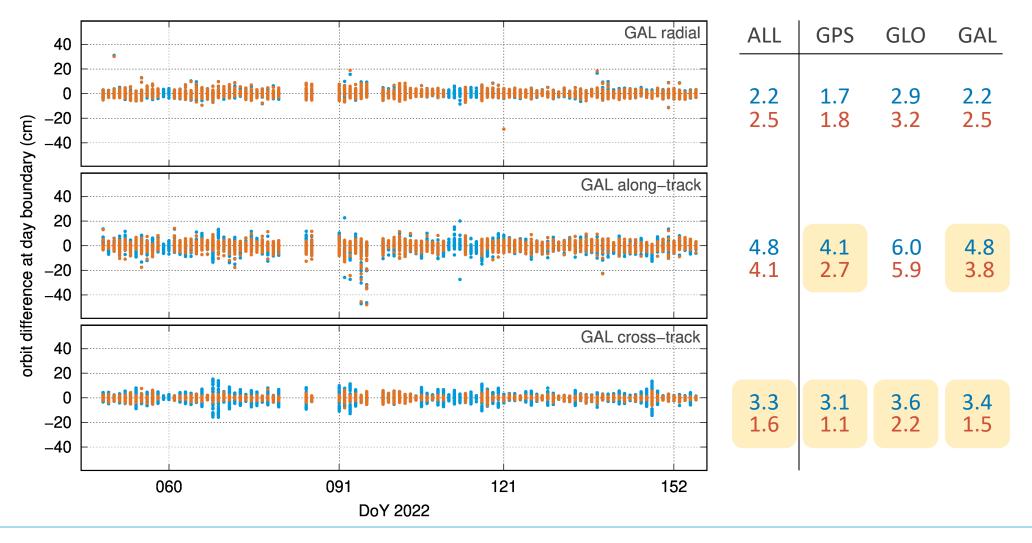
RMS (cm)

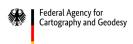


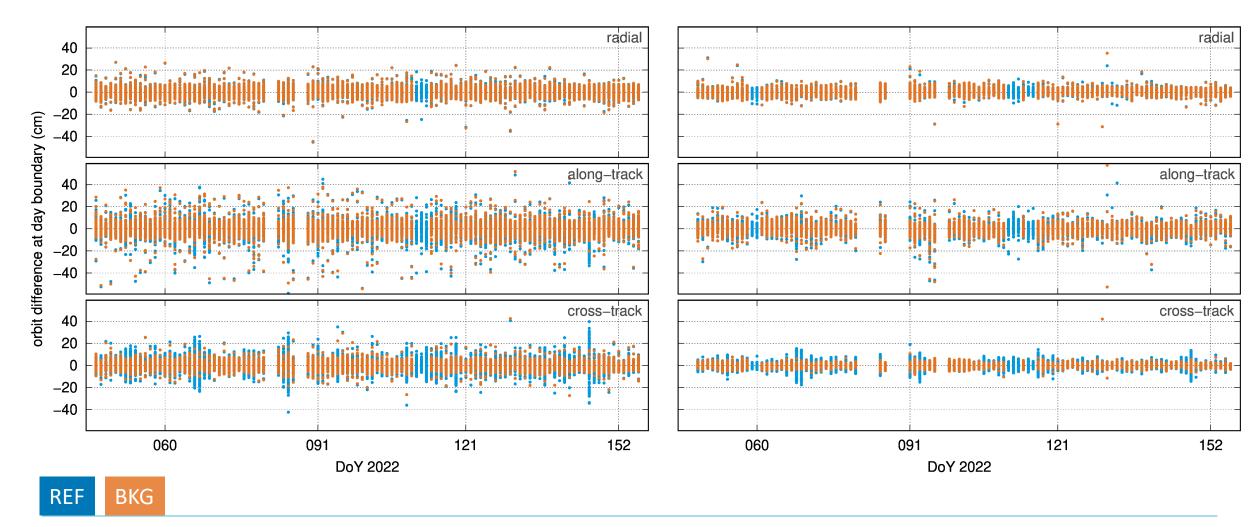


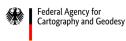

RMS (cm)



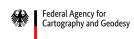

RMS (cm)




RMS (cm)



(3-day arcs)

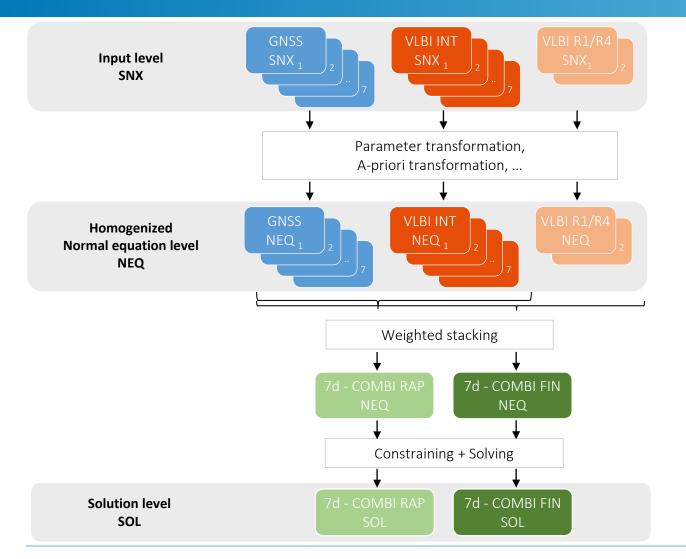

2019-2022 (GALILEO ab 2071_4) GNSS LOD Bias – 7-day GNSS single-technique

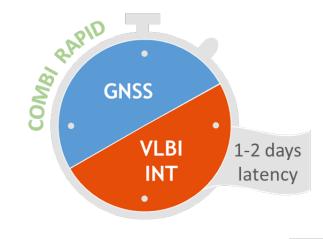
7-day GNSS
without
LOD bias correction

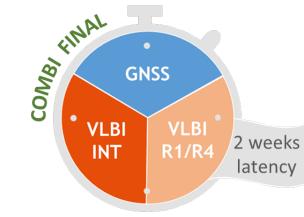
Day n	μ _{dUT1} [ms]	LoD [ms/d] ($\mu_{ ext{dUT1}_n}$ - $\mu_{ ext{dUT1}_{n-1}}$)
-6	0.0032	
-5	0.0093	0.0061
-4	0.0154	0.0061
-3	0.0213	0.0059
-2	0.0275	0.0061
-1	0.0336	0.0061
0	0.0396	0.0060

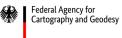
7-day GNSS
with
LOD bias correction
of 6.1µs

Day n	μ _{dUT1} [ms]	LoD [ms/d] (μ _{dUT1_n} - μ _{dUT1_n-1})
-6	0.0002	
-5	0.0003	0.0001
-4	0.0008	0.0005
-3	0.0010	0.0002
-2	0.0014	0.0004
-1	0.0018	0.0004
0	0.0025	0.0007

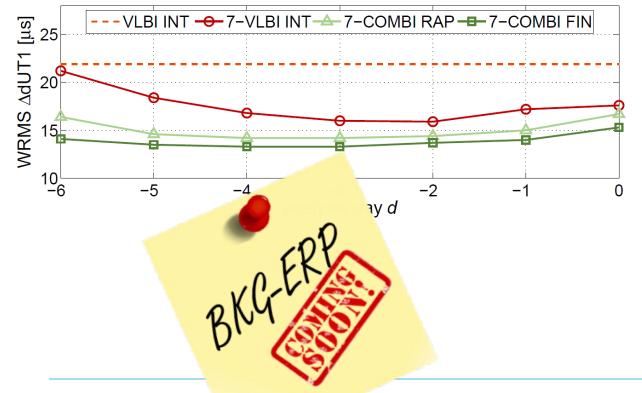



	GNSS RAP CODE (72h session)				
4.5	Station coordinates	D 1 1 1	constant offset		
explicit	ERP	Pole coordinates dUT1	PWL offsets every 24h (4/72h) PWL offsets every 24h (4/72h)		
	Geocenter	dO11	constant offset		
	Satellite PCO	Z-direction	constant offset		
	Satellite orbit	Keplerian elements			
		Dynamical parameter	constant offsets in D-, Y-, and B-direction periodic 1pr in B-direction		
implicit			periodic 2pr in D-direction		
apl		Stochastic pulses	small velocity changes every 12h in radial		
i			along-track and out-of-plane direction		
	Troposphere	ZWD	PWL offsets every 2h for each station		
		Gradients	constant offsets for 24h		
VLBI INT BKG (1h session)					
	Station coordinates		constant offset		
cit	ERP	Pole coordinates	constant offset		
explicit		Pole rates	drift		
ex		dUT1	constant offset		
		LOD	drift		
cit	Source coordinates		constant offset		
implicit	Troposphere	ZWD	constant offset for each station		
im	Station clocks		quadratic polynomial for each station		





Combination Scheme – 7-day Combination of VLBI and GNSS



Results – 7-day Combination of VLBI and GNSS

Validation epoch: 12:00 UTC

Reference series: IERS-Bulletin-A

7-day VLBI INT

- significant reduction of the WRMS values
- no constraining of the LOD is required
- improves accuracies outside the INT observation period

7-day COMBI RAPID

- significant reduction of the WRMS values
- polar motion and LOD from GNSS complements dUT1 from VLBI INT
 - → daily, consistent and regularly spaced high-precision ERP
 - → short latency of 1-2 days

7-day COMBI FINAL

- significant reduction of the WRMS values, especially at the boundary days of the 7-day polygon (d = 0, -6)
- stabilization of all ERP through 24h VLBI R1/R4 twice a week
 - → daily, consistent and regularly spaced high-precision ERP including the celestial pole offsets
 - → latency of 14 days

