Variance component estimation for co-estimated noise parameters in GRACE Follow-On gravity field recovery

Martin Lasser, Ulrich Meyer, Daniel Arnold, Adrian Jäggi

Astronomical Institute, University of Bern, Switzerland

EGU General Assembly 2022
May 23-27, 2022
Vienna, Austria
Introduction

basic parametrisation:
- initial conditions 2x(6)
- accelerometer bias 2x(3)
- accelerometer scaling 2x(3)

parameters per arc 24
Introduction

Perturbation theory [Kim, 2000]: Errors in background models will (mostly) sum up in 1/rev → frequently used in the Celestial Mechanics Approach [Beutler et al., 2010]

<table>
<thead>
<tr>
<th>basic parametrisation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• initial conditions 2x(6)</td>
</tr>
<tr>
<td>• accelerometer bias 2x(3)</td>
</tr>
<tr>
<td>• accelerometer scaling 2x(3)</td>
</tr>
<tr>
<td>parameters per arc 24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>additional parameters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 15 min PCA per satellite in</td>
</tr>
<tr>
<td>• radial 2x(96)</td>
</tr>
<tr>
<td>• along-track 2x(96)</td>
</tr>
<tr>
<td>• cross-track 2x(96)</td>
</tr>
<tr>
<td>parameters per arc 576</td>
</tr>
</tbody>
</table>

in daily arcs (30 days):
• 18000 parameters,
• 17280 for the noise model
• + gravity field
Introduction

Perturbation theory [Kim, 2000]: Errors in background models will (mostly) sum up in 1/rev → frequently used in the Celestial Mechanics Approach [Beutler et al., 2010]

How to constrain their impact to the correct magnitude?

<table>
<thead>
<tr>
<th>basic parametrisation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial conditions</td>
</tr>
<tr>
<td>accelerometer bias</td>
</tr>
<tr>
<td>accelerometer scaling</td>
</tr>
<tr>
<td>parameters per arc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>additional parameters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 min PCA per satellite in</td>
</tr>
<tr>
<td>radial</td>
</tr>
<tr>
<td>along-track</td>
</tr>
<tr>
<td>cross-track</td>
</tr>
<tr>
<td>parameters per arc</td>
</tr>
</tbody>
</table>

in daily arcs (30 days):
• 18000 parameters,
• 17280 for the noise model
• + gravity field
Impact of different constraints

solution for Jan. 2019

1 × 10⁻⁸ m⁻²
«loose» constraint

(gravity field signal absorbed in PCAs)
Impact of different constraints

solution for Jan. 2019

1 $\times 10^{-12}$ ms$^{-2}$

«tight» constraint

(not enough to absorb mis-modellings)
Impact of different constraints

solution for Jan. 2019

3×10^{-10} \text{ ms}^{-2}

«reasonable» balance

(applied in the operational solutions)
Constraining

\[\mathbf{N} = (\mathbf{A}^T \mathbf{P} \mathbf{A}) \quad \text{and} \quad \mathbf{b} = \mathbf{A}^T \mathbf{P} \mathbf{l} \]

\[\hat{\mathbf{x}} = \mathbf{N}^{-1} \mathbf{b} \]

- design matrix
- weight matrix
- vector of observations
Constraining

\[N = (A^T P A) \quad \text{and} \quad b = A^T P l \quad \rightarrow \quad \hat{x} = N^{-1} b \]

\[N = (A^T P A + W) \]

\[N = \begin{bmatrix} \text{Matplotlib} \\
\text{grid} \\
\text{plot} \end{bmatrix} + \begin{bmatrix} \text{PCA noise} \end{bmatrix} \]

\[\sigma_{PCA}^2 = \text{e.g., } 3 \times 10^{-10} \text{ ms}^{-2} \]
Variance Component Estimation

\[N = (A^T PA) \quad \text{and} \quad b = A^T Pl \quad \Rightarrow \quad \hat{x} = N^{-1}b \]

\[N = (A^T PA + W) \]
Variance Component Estimation

\[N = (A^T P A) \quad \text{and} \quad b = A^T P l \quad \Rightarrow \quad \hat{x} = N^{-1} b \]

\[N = (A^T P A + W) \]

VCE: Each group of observations gets a weight based on its contribution to the final solution.
Variance Component Estimation

\[N = (A^T P A) \quad \text{and} \quad b = A^T P l \quad \Rightarrow \quad \hat{x} = N^{-1} b \]

\[N = (A^T P A + W) \]

VCE: Each group of observations gets a weight based on its contribution to the final solution.

\[l = \begin{bmatrix} 0 & 0 \end{bmatrix} \]

\[\sigma_k^2 \]

\[\sigma_i^2 \]
Variance Component Estimation

\[N = (A^T P A) \quad \text{and} \quad b = A^T P l \]
\[\hat{x} = N^{-1} b \]

\[N = (A^T P A + W) \]

VCE: Each group of observations gets a weight based on its contribution to the final solution.
Variance Component Estimation

\[N = (A^T P A) \quad \text{and} \quad b = A^T P l \quad \Rightarrow \quad \hat{x} = N^{-1} b \]

\[N = (A^T P A + W) \]

VCE: Each group of observations gets a weight based on its contribution to the final solution.

The equation for \(\hat{x} \) is:

\[\hat{x} = \left(\sum_{k=1}^{K=3} \frac{\sigma_0^2}{\sigma_k^2} N + \sum_{i=1}^{I=2} \frac{\sigma_0^2}{\sigma_i^2} W_i \right)^{-1} \sum_{k=1}^{K=3} \frac{\sigma_0^2}{\sigma_k^2} b_k \]

This represents the information about the observations introduced via \(\sigma_0^2 \).
Results

solution for Jan. 2019

radial 1×10^{-8}

along-track 1×10^{-8}

cross-track 1×10^{-8}
Results

solution for Jan. 2019

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>radial</td>
<td>1.9×10^{-8} ms$^{-2}$</td>
</tr>
<tr>
<td>along-track</td>
<td>9.8×10^{-9} ms$^{-2}$</td>
</tr>
<tr>
<td>cross-track</td>
<td>8.6×10^{-9} ms$^{-2}$</td>
</tr>
</tbody>
</table>
Results

solution for Jan. 2019

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>radial</td>
<td>2.9×10^{-9} ms$^{-2}$</td>
</tr>
<tr>
<td>along-track</td>
<td>1.5×10^{-9}</td>
</tr>
<tr>
<td>cross-track</td>
<td>1.3×10^{-9}</td>
</tr>
</tbody>
</table>
Results

solution for Jan. 2019

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>radial</td>
<td>1.2×10^{-9} ms$^{-2}$</td>
</tr>
<tr>
<td>along-track</td>
<td>6.2×10^{-10}</td>
</tr>
<tr>
<td>cross-track</td>
<td>6.9×10^{-10}</td>
</tr>
</tbody>
</table>
Results

solution for Jan. 2019

\[
\begin{array}{ll}
\text{radial} & 5.6 \times 10^{-10} \\
\text{along-track} & 2.6 \times 10^{-10} \\
\text{cross-track} & 6.1 \times 10^{-10}
\end{array}
\]
Results

solution for Jan. 2019

- radial: 5.6×10^{-10} ms$^{-2}$
- along-track: 2.6×10^{-10} ms$^{-2}$

Graph showing geoid heights in meters as a function of degree and iteration.

Astronomical Institute, University of Bern
Conclusion

- observation-based approach
- computed together with the solution
- provides a good solution (if PCAs sample correctly)
- improvement...

- computational efficiency?
- observation-based – outliers
- improvement...
References

