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Abstract 

Cross-lagged models are by far the most commonly used method to test the prospective effect of 

one construct on another, yet there are no guidelines for interpreting the size of cross-lagged 

effects. This research aims to establish empirical benchmarks for cross-lagged effects, focusing 

on the cross-lagged panel model (CLPM) and the random intercept cross-lagged panel model 

(RI-CLPM). We drew a quasi-representative sample of studies published in four subfields of 

psychology (i.e., developmental, social–personality, clinical, and industrial–organizational). The 

dataset included 1,028 effect sizes for the CLPM and 302 effect sizes for the RI-CLPM, based on 

data from 174 samples. For the CLPM, the 25th, 50th, and 75th percentiles of the distribution 

corresponded to cross-lagged effect sizes of .03, .07, and .12, respectively. For the RI-CLPM, the 

corresponding values were .02, .05, and .11. Effect sizes did not differ significantly between the 

CLPM and RI-CLPM. Moreover, effect sizes did not differ significantly across subfields and 

were not moderated by design characteristics. However, effect sizes were moderated by the Time 

1 concurrent correlation between the constructs and the stability of the predictor. Based on the 

findings, we propose to use .03 (small effect), .07 (medium effect), and .12 (large effect) as 

benchmark values when interpreting the size of cross-lagged effects, for both the CLPM and RI-

CLPM. In addition to aiding in the interpretation of results, the present findings will help 

researchers plan studies by providing information needed to conduct power analyses and 

estimate minimally required sample sizes. 

Keywords: cross-lagged panel model, random intercept cross-lagged panel model, effect 

size, empirical benchmarks, longitudinal research 
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Effect Size Guidelines for Cross-Lagged Effects 

In many fields of psychology and related disciplines, researchers are interested in testing 

the effect of one construct on another. When experimental designs are not feasible for practical 

or ethical reasons, researchers often analyze longitudinal data using cross-lagged models to gain 

insights into prospective effects between the constructs (Biesanz, 2012; McArdle, 2009; Wu et 

al., 2013). The cross-lagged panel model (CLPM; e.g., Finkel, 1995) and the random intercept 

cross-lagged panel model (RI-CLPM; Hamaker et al., 2015) are arguably the two most 

frequently used cross-lagged models. The key coefficients from these models are the cross-

lagged effects, which capture the degree to which one construct predicts the other construct over 

time, controlling for prior levels of the outcome and concurrent associations between the 

constructs. Typically, a cross-lagged effect is reported in the form of a standardized regression 

coefficient (also called beta coefficient or beta weight), which provides information about how 

many standard deviations the outcome will change when the predictor changes by one standard 

deviation (Cohen et al., 2003). 

The Need for Effect Size Guidelines 

An important issue in research with cross-lagged models is that no effect size conventions 

are available for interpreting cross-lagged effects. Sometimes, the effects are evaluated using 

effect size conventions suggested for correlation coefficients, such as .10, .30, and .50 indicating 

small, medium, and large effects (Cohen, 1988, 1992). However, there are important reasons 

why conventions established for correlations should not be applied to cross-lagged effects 

(Adachi & Willoughby, 2015). 

First, cross-lagged effects are based on prospective associations using longitudinal data, 

whereas effect size conventions for correlations typically refer to concurrent associations 
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estimated using cross-sectional data. In most cases, cross-lagged effects are estimated over long 

periods (e.g., months or years). Given that virtually all psychological constructs change over 

time to some degree, theory predicts that longitudinal associations are systematically smaller 

than concurrent correlations. 

Second, not only are cross-lagged effects based on longitudinal data, they are also 

controlled for the prior level (i.e., the autoregressive effect) of the predicted variable. The 

autoregressive effect already accounts for a large portion of variance in the outcome (i.e., the 

variance that is stable over the time interval), which limits the theoretically-possible range of 

cross-lagged effects from other constructs. Thus, cross-lagged effects can explain only variance 

of the outcome that has changed between the assessments. 

Third, cross-lagged effects are also controlled for the concurrent correlation between 

predictor and outcome at Time 1. More precisely, cross-lagged models take the bivariate 

correlation between the predictor at Time 1 and the outcome at Time 2, and partition it into two 

components (Kenny, 1979): (a) the path consisting of the concurrent correlation between the 

constructs at Time 1 and the autoregressive effect of the outcome between Times 1 and 2, and (b) 

the direct path from the predictor at Time 1 on the outcome at Time 2. Given that the bivariate 

correlation equals the sum of the two paths, there is no reason to expect that one path (i.e., the 

cross-lagged effect) would have the same magnitude as the bivariate correlation (in fact, the 

other path often accounts for a large portion of the bivariate correlation). To state this more 

conceptually, the correlation between two variables separated in time might be due to a 

prospective effect of one variable on the other or an alternative pathway—i.e., that the two 

variables are concurrently associated and stable over time so what looks like a prospective effect 
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is really a concurrent correlation in disguise. Cross-lagged models provide a way to examine the 

prospective effect while controlling for the alternative pathway. 

Taken together, statistical theory predicts that cross-lagged effects should be substantially 

smaller than bivariate correlations between the constructs. However, many researchers and 

readers of research articles might not be aware that effect size conventions for correlations 

should not be used when evaluating cross-lagged effects. If cross-lagged effects are typically 

much smaller than correlations, then a cross-lagged effect of, for example, .10 might seem small, 

but it could indicate a much more meaningful effect than suggested by effect size conventions 

for correlations. 

Therefore, the present research aims to establish empirical benchmarks for small, 

medium, and large cross-lagged effects that can guide the interpretation of findings from cross-

lagged models. As we will explain in more detail below, we drew a quasi-representative sample 

of studies in several broad subfields of psychology to examine the distribution of cross-lagged 

effects in the literature. Empirical knowledge about the distribution of cross-lagged effect sizes 

and the factors that moderate the size of cross-lagged effects will help researchers plan studies by 

providing information needed to conduct a priori power analyses and estimate minimally 

required sample sizes. Empirical approaches have been used to derive benchmarks for other 

effect size measures, including correlation coefficients (Bosco et al., 2015; Brydges, 2019; 

Gignac & Szodorai, 2016; Lovakov & Agadullina, 2021; Paterson et al., 2016) and Cohen’s d 

(Kinney et al., 2020; Lovakov & Agadullina, 2021). For example, research on the empirical 

distribution of correlation coefficients suggests that .10, .20, and .30 (Brydges, 2019; Gignac & 

Szodorai, 2016; Paterson et al., 2016) or .10, .25, and .40 (Lovakov & Agadullina, 2021) are 
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appropriate benchmarks for small, medium, and large correlations, indicating that the values 

proposed by Cohen (1988, 1992) are too large. 

It may be useful to briefly review what can be anticipated about the typical size of cross-

lagged effects. Although no research on the empirical distribution of cross-lagged effects is 

available, meta-analytic reviews have estimated mean values for specific effects using the CLPM 

(we are not aware of meta-analytic reviews using the RI-CLPM). For example, the effect of self-

beliefs on academic achievement has been estimated as .08 (Valentine et al., 2004), the effect of 

low self-esteem on depression as .16 and on anxiety as .10, and the reversed effects both as .08 

(Sowislo & Orth, 2013), the effect of low positive emotionality on depression as .08 and on 

anxiety as .06, and the reversed effects as .07 and .09 (Khazanov & Ruscio, 2016), the effect of 

work-family conflict on strain as .03–.08 and the reversed effect as .05–.08 (Nohe et al., 2015), 

the effect of low attachment security on substance use as .05 (Fairbairn et al., 2018), the effect of 

social relationships on self-esteem as .08 and the reversed effect also as .08 (Harris & Orth, 

2020), and the effect of work experiences on self-esteem as .02–.05 and the reversed effect as 

.05–.10 (Krauss & Orth, 2021). These meta-analytic reviews are probably not representative of 

research conducted in psychology, because meta-analyses are commonly done when there is 

already a large literature documenting a particular effect, which likely introduces selectivity of 

stronger effects. For this reason, we believe that the approach taken in the present research (i.e., 

drawing a quasi-representative sample of individual studies) is a better strategy for establishing 

effect size benchmarks compared to sampling meta-analytic reviews. 

Description of the CLPM and RI-CLPM 

The need for effect size conventions applies to all types of cross-lagged models used in 

the field (for overviews, see Mund & Nestler, 2019; Orth et al., 2021; Usami, Murayama, et al., 
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2019). However, the present study focused on the CLPM and the RI-CLPM for three reasons. 

First, both models are frequently used, allowing us to generate reliable estimates of the 

distribution of cross-lagged effects. The CLPM is by far the most frequently used cross-lagged 

model in psychology (Orth et al., 2021; Usami, Todo, et al., 2019), and the RI-CLPM, although 

recently introduced in the literature (Hamaker et al., 2015), has seen a surge in use over the past 

few years (Mulder & Hamaker, 2021; Usami, 2021). Second, in typical applications in the field, 

estimating the CLPM or RI-CLPM rarely leads to convergence problems (e.g., improper 

solutions or nonconvergence), whereas other models often show convergence problems (Orth et 

al., 2021; Usami, Todo, et al., 2019). Third, the models can be considered representative for 

testing two types of cross-lagged effects: between-person (CLPM) and within-person (RI-CLPM; 

Lüdtke & Robitzsch, 2021; Orth et al., 2021). 

Figure 1A shows a generic illustration of the CLPM, which requires at least two waves of 

data. The CLPM tests for the cross-lagged effect of individual differences in one construct (e.g., 

Construct A at Time 1) on individual differences in the other construct (e.g., Construct B at Time 

2), controlling for prior individual differences in the outcome (e.g., Construct B at Time 1). 

Thus, given that the cross-lagged effects are controlled for autoregressive effects of the 

constructs, the CLPM tests for change in individual differences. Consider the example of warm 

parenting and children’s self-esteem given in Orth et al. (2021): In the CLPM, a cross-lagged 

effect of warm parenting on self-esteem would indicate that children raised by warm parents are 

more likely to develop high self-esteem than children raised by less warm parents. 

Figure 1B shows a generic illustration of the RI-CLPM, which requires at least three 

waves of data. The RI-CLPM is similar to the CLPM, but includes random intercept factors 

(conceptually corresponding to trait factors) that capture the stable between-person variance in 
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the constructs across assessments. The cross-lagged effects are then modeled between the 

residualized scores (in Figure 1B denoted as “rA1,” “rA2,” etc.), after removing the stable 

between-person variance associated with each construct. Consequently, the RI-CLPM tests for 

the cross-lagged effect of the within-person deviation from the trait level of one construct (e.g., 

“rA1”) on the within-person deviation from the trait level of the other construct (e.g., “rB2”), 

controlling for the prior within-person deviation from the trait level of the predicted construct 

(e.g., “rB1”). Again, given that the effects are controlled for autoregressive effects in the 

deviations, the RI-CLPM tests for change in the within-person deviation from the trait level. 

Using the same example as above, an RI-CLPM cross-lagged effect of warm parenting on 

children’s self-esteem would indicate that children who experience more parental warmth than 

usual at a particular time point will show a subsequent increase in self-esteem at the next time 

point (Orth et al., 2021). Thus, although the CLPM and RI-CLPM have some similarities, they 

test conceptually distinct effects, which could result in divergent effects across models, as well as 

divergent average effect sizes. 

Moderators of Cross-Lagged Effects 

In this project, we also examined moderators of cross-lagged effects. First, we examined 

whether the size of cross-lagged effects differed between subfields of psychology. Then, we 

tested whether cross-lagged effects varied as a function of: (a) design characteristics (i.e., control 

of covariates, latent vs. observed measurement of constructs, presence of shared method 

variance, and time lag between assessments) and (b) other coefficients estimated in the model 

(i.e., Time 1 concurrent correlation between the constructs, stability over time of predictor, 

stability over time of outcome, and, in the RI-CLPM, the correlation between random intercepts 

of the constructs). 
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Statistical theory suggests that design characteristics could influence the size of cross-

lagged effects. For example, controlling for covariates in the model could decrease the cross-

lagged effect of a predictor, if the effects of the covariates are confounded with the effect of the 

predictor (Rohrer, 2018). Latent measurement can increase the validity of the construct factors 

by separating measurement error from construct variance (Cole & Preacher, 2014). 

Consequently, if manifest variables (rather than latent variables) are used as construct factors, 

then the lack of control for measurement error and other biases could lead to artificially 

attenuated cross-lagged effects. In contrast, the presence of shared method variance could lead to 

artificially inflated cross-lagged effects, even if shared method variance is already accounted for 

to a great extent by controlling for the concurrent correlation between prior levels of the outcome 

and the predictor (Podsakoff et al., 2012). Also, the time lag between assessments may influence 

the size of cross-lagged effects. Research on continuous time modeling suggests that with 

increasing time lag, the cross-lagged effect first increases, reaches a maximum, and then 

decreases over long periods (Dormann & Griffin, 2015; Voelkle et al., 2012). In the analyses, we 

therefore tested for linear and curvilinear effects of time lag. However, the time lag at which a 

cross-lagged effect reaches its maximum may vary substantially across constructs, ranging from 

very short (minutes, hours, or days) to very long periods (years or even decades), depending on 

the presumed causal process through which one variable influences another (for an empirical 

example of a cross-lagged effect that increased over long periods, see de Moor et al., 2021). 

The size of cross-lagged effects could also be moderated by other coefficients in the 

model. For example, if the outcome shows high stability over time (i.e., a large autoregressive 

effect), then the maximum size of cross-lagged effects from other constructs is limited. In 

contrast, if the predictor shows high stability, then this could facilitate stronger cross-lagged 
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effects. Also, if the predictor and the outcome are strongly correlated (as indicated by, e.g., the 

concurrent correlation at Time 1 or, in the RI-CLPM, the correlation between the random 

intercepts), then this could predict stronger cross-lagged effects between the constructs. 

However, evidence that other coefficients in the model moderate the size of the cross-lagged 

effects does not imply any kind of causal effect, for two reasons. First, theory allows one to 

derive opposite causal hypotheses. For example, a large concurrent correlation between the 

constructs could be a consequence, rather than a cause, of a large cross-lagged effect of the 

predictor on the outcome. Similarly, although high stability of an outcome might prevent other 

constructs from showing large cross-lagged effects on the outcome (i.e., stability of the outcome 

influences the cross-lagged effect), one could also argue that the stability of an outcome is 

reduced by large cross-lagged effects of another construct on the outcome (i.e., the cross-lagged 

effect influences the stability of the outcome). Second, given that the other coefficients are 

estimated in the same model as the cross-lagged effect, there is no temporal ordering of the 

coefficients and the moderator results can only indicate if other coefficients from the model 

covary with the cross-lagged effect. Nevertheless, we believe that testing for the moderator 

effects of other model coefficients can provide useful information for understanding 

heterogeneity in the size of cross-lagged effects across studies. In the moderator analyses, we 

therefore used a hierarchical strategy. In the first step, we tested only for the effects of design 

characteristics, and in the second step, we added the effects of the other model coefficients. 

The Present Research 

The goal of this research was to establish empirical benchmarks for cross-lagged effects 

in the CLPM and RI-CLPM. First, we examined the distribution percentiles. Then, we estimated 

mean effect sizes for the CLPM and RI-CLPM, using meta-analytic methods. We also examined 
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whether effect sizes differed between the CLPM and RI-CLPM when both effects were 

estimated with the same data and whether effect sizes from the two models were correlated 

across studies. Next, we tested whether the size of cross-lagged effects was moderated by 

subfield of psychology, characteristics of the study design, and other coefficients in the models, 

again using meta-analytic methods. Finally, we compared the distribution of cross-lagged effects 

with the distribution of correlation coefficients estimated in the models. 

We operationalized small, medium, and large effects as the 25th, 50th, and 75th percentile 

of the distribution of effect sizes, following the procedures used in prior studies on empirical 

benchmarks for effect sizes (e.g., Brydges, 2019; Gignac & Szodorai, 2016; Kinney et al., 2020; 

Lovakov & Agadullina, 2021). Moreover, we conceptualized these benchmarks as surrounding 

anchors (Bosco et al., 2015), not as cutoff values (i.e., minimum values). For example, if a 

correlation of .10 indicates a small effect and .25 a medium effect, then a correlation of .17 is 

interpreted as a small to medium effect. 

Method 

The present research used anonymized data and therefore was exempt from approval by 

the Ethics Committee of the first author’s institution (Faculty of Human Sciences, University of 

Bern), in accordance with national law. 

Transparency and Openness 

We report how we determined our sample size, all data exclusions (if any), all 

manipulations, and all measures in the study, and we follow the Journal Article Reporting 

Standards (Appelbaum et al., 2018). Data, materials, and code are available on the Open Science 

Framework (OSF; https://osf.io/4cwbr). Computations were made with R (R Core Team, 2021), 

https://osf.io/4cwbr
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using the psych package version 2.1.6 (Revelle, 2021) and the metafor package version 3.0-2 

(Viechtbauer, 2010). The present research was not preregistered. 

Selection of Studies 

Since the goal of the present research was to establish empirical benchmarks for cross-

lagged effects in psychology, we collected the data by drawing a quasi-representative sample of 

articles published in the following four subfields: developmental, social–personality, clinical, 

and industrial–organizational. We selected these subfields because they frequently use cross-

lagged models and are among the largest areas of psychology. Collectively, the four subfields 

provide a relatively comprehensive coverage of psychological research that uses cross-lagged 

models. For each subfield, we selected three journals that could be considered representative of 

the field (developmental: Developmental Psychology, Child Development, European Journal of 

Developmental Psychology; social–personality: Journal of Personality and Social Psychology, 

Personality and Social Psychology Bulletin, Personality and Individual Differences; clinical: 

Journal of Consulting and Clinical Psychology, Clinical Psychological Science, Journal of 

Affective Disorders; industrial–organizational: Journal of Applied Psychology, Journal of 

Organizational Behavior, European Journal of Work and Organizational Psychology). We 

restricted the sample to articles published in six years (i.e., 2015 to 2020), which provided for a 

sufficiently large set of potentially eligible articles. We focused on the years 2015 to 2020 to 

maximize the number of articles that provided information on the RI-CLPM, which was 

introduced in the literature in 2015 (Hamaker et al., 2015). 

For each of the 12 journals, we searched the full text of all articles published between 

2015 and 2020. We selected all articles that included the term “cross-lagged” somewhere in the 

full text, which resulted in 1,048 potentially relevant articles. To decide whether the study should 
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be included in the present analyses, the full text of these articles was evaluated by the third, 

fourth, fifth, or sixth author of the present research. In addition, 80 articles were rated by two of 

the authors to obtain estimates of interrater agreement. The interrater agreement on inclusion or 

exclusion in the dataset was high (κ = .97) and all disagreements were discussed until consensus 

was reached. 

Studies were included if the following criteria were met: (a) the study was longitudinal; 

(b) the study used a relevant model (i.e., the CLPM and/or the RI-CLPM); (c) standardized 

estimates were reported for cross-lagged effects in both directions between constructs (i.e., effect 

of Construct A on Construct B, and vice versa); (d) the sample was not a treatment group of an 

intervention study (however, we used information from control groups if the control group did 

not undergo any treatment); (e) the article did not report inconsistent information on the effect 

sizes, and (f) the study was not a meta-analysis of cross-lagged effects (we used this exclusion 

criterion so that data from individual articles would not have a disproportionate influence on the 

benchmarks established in the present research). These procedures led to the inclusion of 144 

articles, which provided data on 174 samples. A document with the references of these articles is 

available on OSF (https://osf.io/4cwbr). Supplemental Figure S1 shows the PRISMA flow 

diagram of the selection procedure (adapted from Moher et al., 2009). 

Coding of Studies 

We coded the following sample characteristics: sample type (i.e., nationally 

representative, college/university students, clinical, or community), sample size, mean age at 

Time 1, and country in which the sample was collected. Moreover, we coded the following 

information regarding study design and effect sizes (this information was organized by pairs of 

constructs, for which cross-lagged effects were reported): Construct A, Construct B, presence of 

https://osf.io/4cwbr
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shared method variance (a dichotomous variable coded yes if measures of Constructs A and B 

were based on reports/ratings from the same person), latent measurement (a dichotomous 

variable coded yes if analyses were based on latent variables for at least one of the Constructs A 

and B), time lag between Times 1 and 2, correlation between Constructs A and B at Time 1, 

correlation between random intercepts (for the RI-CLPM only), cross-lagged effect of Construct 

A on B, cross-lagged effect of Construct B on A, stability effect of Construct A, stability effect 

of Construct B, and control of covariates (a dichotomous variable coded yes if at least one 

covariate was controlled in the model, over and above control for prior levels of the outcomes). 

For correlations and regression coefficients, standardized coefficients were coded. The effect 

size information was coded for both the CLPM and RI-CLPM, if available for the pair of 

constructs. Design and effect size information was coded for each pair of constructs available for 

a sample. Even if some studies included more than two waves of data (e.g., as noted above, the 

RI-CLPM requires at least three waves of data), the cross-lagged and stability effects were coded 

only with regard to the interval between Times 1 and 2, to avoid an overly complex structure of 

the dataset and analyses. This procedure is justified given that the cross-lagged and stability 

effects for Times 1 and 2 can be considered as unbiased sample from all intervals that would be 

available in multiwave studies. 

The articles were coded by the third, fourth, fifth, or sixth author of the present research. 

In addition, 75 studies were coded by two of the authors to obtain estimates of interrater 

agreement. The interrater agreement was good (mean r = .99 for continuous variables and mean 

κ = .89 for categorical variables). All disagreements were discussed until consensus was reached. 

Statistical Analyses 
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For each sample, the dataset included more than one cross-lagged effect, so there was a 

multilevel structure in the data (i.e., effect sizes nested in samples). Specifically, for each pair of 

constructs, there were two cross-lagged effects (i.e., Construct A predicting Construct B, and 

vice versa) and, moreover, for many of the samples information was available for multiple pairs 

of constructs. In all meta-analytic computations, we accounted for the multilevel structure by 

estimating multilevel meta-analytic models (using the “rma.mv” function in metafor; 

Viechtbauer, 2010). Specifically, we computed multilevel random-effects models (for estimating 

weighted mean effect sizes) and multilevel mixed-effects models (for testing moderators), 

following recommendations by Borenstein et al. (2009). Between-study heterogeneity was 

estimated with restricted maximum likelihood estimation, as recommended by Viechtbauer 

(2010). The meta-analytic computations with cross-lagged effects were made using Fisher’s zr 

transformations. Following Borenstein et al. (2009), the within-study variance of Fisher’s zr is 

given as v = 1 / (n − 3). 

In the analyses, we examined the absolute values of cross-lagged effects, unless otherwise 

noted. The sign of a cross-lagged effect can be positive or negative, depending on the specific 

constructs examined in the research. For establishing effect size benchmarks, the sign of the 

cross-lagged effect is irrelevant and including it in the analyses would have led to meaningless 

results. For the same reason, we examined absolute values of correlation coefficients when tested 

as moderators of cross-lagged effects (i.e., the Time 1 correlations of the constructs in the CLPM 

and RI-CLPM, and the correlation between the random intercepts in the RI-CLPM). 

Results 

Description of Dataset 
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The dataset included information from 174 samples. Seventy-five percent were 

community samples, 12% were samples of college/university students, 8% were nationally 

representative, and 5% were clinical samples. Sample sizes ranged from 54 to 14,004 (M = 

1,296.4, SD = 2,432.0, Mdn = 493.5; total number of participants = 225,577). Thirty-one percent 

of the samples were from the United States, 11% from China, 9% from Germany, 9% from the 

Netherlands, 7% from Switzerland, 5% from Canada, 5% from Norway, 3% from Finland, 2% 

from Australia, 2% from Poland, 2% from Sweden, 2% from the United Kingdom, 8% from 

other countries, and 4% were collected in multiple countries or the country was unknown. Mean 

age at Time 1 ranged from 2.5 to 74.4 years (M = 23.6, SD = 15.0). These data suggest that the 

samples included in the dataset were very heterogeneous. 

Effect size information was coded for 592 pairs of constructs. As noted above, for each 

pair of constructs, there were two cross-lagged effects. For the analyses, we therefore 

restructured the dataset so that both directions of effects could be examined in the same 

analysis.1 Thus, the dataset used in the analyses consisted of 1,184 cases (as noted above, the 

meta-analytic computations accounted for the multilevel structure of the data). In 48% of the 

models, constructs were measured as latent variables. Shared method variance was present in 

74% of the models. Time lag between Times 1 and 2 ranged from 0.02 to 10.00 years (M = 1.17, 

SD = 1.08, Mdn = 1.00). Covariates were controlled for in 65% of the analyses with the CLPM 

and in 53% of the analyses with the RI-CLPM. The dataset included 1,028 effect sizes for the 

CLPM and 302 effect sizes for the RI-CLPM. 

Distribution of Effect Sizes 

                                                 
1 When describing the moderator analyses, we use the terms stability of predictor and stability of outcome, rather 

than stability of Construct A and stability of Construct B, because in half of the cases Construct A was the predictor 

and in the other half the outcome (and vice versa for Construct B). 
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First, we examined the distribution percentiles of the effect sizes, separately for the 

CLPM and RI-CLPM (Table 1; for histograms, see Figure 2). For the CLPM, the 25th, 50th, and 

75th percentiles corresponded to values of .03, .07, and .12, respectively. For the RI-CLPM, the 

corresponding values were .02, .05, and .11. Then, we estimated weighted mean effect sizes by 

using multilevel random-effects models (Table 2). For the CLPM and RI-CLPM, the mean cross-

lagged effects were .095 and .083, respectively. 

We also tested whether effect sizes differed between the CLPM and RI-CLPM if the 

cross-lagged effect had been estimated with both models using the same data (k = 146 effect 

sizes for each model). Importantly, in this analysis we did not examine absolute values but the 

originally observed values of cross-lagged effects (i.e., it was essential to account for the fact that 

the sign of the cross-lagged effect could differ between the CLPM and RI-CLPM). The mean 

difference between CLPM and RI-CLPM effects was −.001 [−.018; .016], which was 

nonsignificant, t(145) = −0.123, p = .903. Moreover, the effect sizes in the CLPM and RI-CLPM 

were correlated at .37 (p < .001), suggesting some correspondence between the results obtained 

from these two models. It should be noted that this set of effect sizes was only a subset of the 

overall dataset and relatively small. Nevertheless, the fact that the mean difference was virtually 

zero and nonsignificant is in line with the mean effect sizes in the overall dataset reported above. 

Thus, the findings suggest that effect sizes from the CLPM and RI-CLPM did not differ 

systematically from each other, at least on average, and that the effect sizes were substantially 

correlated between the CLPM and RI-CLPM. 

To test for publication bias, we used Egger’s regression test (Egger et al., 1997). In these 

analyses, we again did not use absolute values but the originally observed values, which was 

required for a meaningful test of an asymmetric distribution of effect sizes. Moreover, because 
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Egger’s test is not available for the “rma.mv” function in metafor, we used the “rma” function, 

ignoring the multilevel structure of the data in these analyses. The tests were nonsignificant for 

both the CLPM (z = −1.148, p = .251) and RI-CLPM (z = −0.634, p = .526), suggesting that the 

cross-lagged effects were not influenced by publication bias. 

Moderator Analyses 

Next, we tested whether the cross-lagged effects differed across subfields. These analyses 

were conducted only for the CLPM, due to the lower number of RI-CLPM effect sizes. To 

examine differences across subfields, we followed the procedure described by Viechtbauer 

(2010). In the first model, the intercept was omitted, which allowed us to estimate weighted 

mean effect sizes for each of the four subfields. Table 3 shows the estimates, ranging from .092 

to .101 (all ps < .001). The second model included an intercept but used only three dummy 

variables for the four subfields, which allowed us to test for differences across subfields. The 

differences were nonsignificant, QModel = 0.646, df = 3, p = .886. Thus, the effect sizes did not 

differ significantly by subfield and the point estimates were very similar. 

We used a hierarchical strategy to test whether the cross-lagged effects were moderated 

by design characteristics and other coefficients in the models. In the first step, we tested for the 

effects of design characteristics (i.e., control of covariates, latent measurement, shared method 

variance, and time lag between assessments). In the second step, we added the effects of the 

other model coefficients (i.e., correlation at Time 1, stability of predictor, stability of outcome, 

and, for the RI-CLPM, the correlation between random intercepts). For time lag, we tested linear 

and quadratic effects to assess whether there was a curvilinear relation between time lag and the 

cross-lagged effects. To avoid collinearity between the linear and quadratic term, the quadratic 

effect was tested with an orthogonalized power polynomial (i.e., squared time lag residualized 
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for linear time lag; Little et al., 2006). With regard to the CLPM, the quadratic effect was 

nonsignificant in both steps of the hierarchical analyses (ps = .216 and .409). With regard to the 

RI-CLPM, the quadratic effect was nonsignificant in the first step (p = .236), but significant in 

the second step (p < .001). However, in the second step the estimate for the quadratic time lag 

was clearly untrustworthy (i.e., the regression coefficient was extremely large and the standard 

error was more than 10 times larger compared to the first step; moreover, the quadratic effect had 

a positive sign, implying a function opposite to what statistical theory would predict). We 

therefore did not interpret the findings from this second step and concluded that there was no 

reliable evidence for a curvilinear effect of time lag, for both the CLPM and RI-CLPM. In the 

remainder of the moderator analyses, we included only linear time lag but not quadratic time lag 

(for the results of the analyses with quadratic time lag, see Supplemental Tables S1 and S2). 

Table 4 shows the results for the CLPM. None of the design characteristics had a 

significant moderator effect. Thus, although theory might predict that cross-lagged effects are 

larger, for example, when shared method variance is present or when studies do not control for 

covariates, the results did not support these hypotheses. However, when adding other coefficients 

to the model, all of these variables significantly explained heterogeneity in the cross-lagged 

effect. Specifically, the cross-lagged effect was larger when the constructs showed a larger 

concurrent correlation and when the predictor showed higher stability across time. In contrast, 

the cross-lagged effect was smaller when the outcome showed higher stability. As discussed in 

the Introduction, however, the evidence that other coefficients from the CLPM moderate the size 

of the cross-lagged effect does not imply any causal effects, but simply indicates that these other 

coefficients covary with the cross-lagged effect. 
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Table 5 shows the results for the RI-CLPM. Again, none of the design characteristics had 

a significant effect. When adding other coefficients of the model, two of these variables showed 

significant effects. Specifically, as for the CLPM, the cross-lagged effect was larger when the 

concurrent correlation at Time 1 and the stability of the predictor were stronger (again, we note 

that the evidence that these coefficients moderate the size of the cross-lagged effect does not 

imply any causal effects). In contrast to the CLPM, the stability of the outcome was not 

significantly related to the size of the cross-lagged effect, even if the point estimate of this 

moderator effect was in the same direction as for the CLPM. Moreover, the correlation between 

the random intercepts did not show a significant moderator effect. 

Distributions of Correlations in the CLPM and RI-CLPM 

Finally, we examined the distribution of correlations in the CLPM and RI-CLPM, to put 

the size of cross-lagged effects in context. As reviewed in the Introduction, empirical research 

suggests that correlations of about .10 are at the 25th percentile, correlations of .20–.25 at the 50th 

percentile, and correlations of .30–.40 at the 75th percentile, indicating small, medium, and large 

effects (Gignac & Szodorai, 2016; Lovakov & Agadullina, 2021; Paterson et al., 2016). 

For the CLPM, we examined the concurrent correlation between the constructs at Time 1. 

The 25th, 50th, and 75th percentile corresponded to correlations of .12, .26, and .48; these values 

are slightly larger than empirical benchmarks reported in the literature. However, it should be 

noted that in about half of the studies the constructs were measured as latent variables, which 

typically increases the size of correlations between constructs. In fact, for studies in which the 

constructs were assessed as manifest variables, the 25th, 50th, and 75th percentile corresponded to 

correlations of .09, .20, and .40. Thus, we concluded that the concurrent correlations were overall 

as expected, which strengthens confidence in the representativeness of the present set of studies. 
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For the RI-CLPM, we examined the Time 1 correlation and the correlation between the 

random intercepts. For the Time 1 correlation, the 25th, 50th, and 75th percentile corresponded to 

values of .07, .16, and .38, and for the random intercept correlation to .10, .23, and .51. It should 

be noted that in the RI-CLPM the Time 1 correlation is the correlation between the residualized 

construct factors, and consequently is quite different conceptually from the typical cross-

sectional correlation between constructs. In contrast, the correlation between the random 

intercepts is more comparable to the typical cross-sectional correlation between constructs, 

except that the random intercepts are latent variables based on multiple assessments of the 

constructs, which likely increases the size of correlations compared to the typical cross-sectional 

correlation. Overall, these considerations suggest that the percentiles of correlations in the RI-

CLPM do not raise concerns that the present benchmarks for cross-lagged effects in the RI-

CLPM underestimate the true distribution of cross-lagged effects. 

Discussion 

The goal of this research was to establish empirical benchmarks for the size of cross-

lagged effects. We focused on the CLPM and RI-CLPM, given that these two cross-lagged 

models are the most frequently used in the field of psychology. To examine the distribution of 

effect sizes, we drew a quasi-representative sample of studies published in developmental, 

social–personality, clinical, and industrial–organizational psychology. The dataset included 

1,028 effect sizes for the CLPM and 302 effect sizes for the RI-CLPM. 

Effect Size Conventions Suggested by the Present Research 

We operationalized small, medium, and large effects as the 25th, 50th, and 75th percentile 

of the distribution of effect sizes, following the procedures used in prior studies on empirical 

benchmarks for effect sizes (e.g., Brydges, 2019; Gignac & Szodorai, 2016; Kinney et al., 2020; 
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Lovakov & Agadullina, 2021). The 25th, 50th, and 75th percentiles corresponded to values of .03, 

.07, and .12, respectively, for the CLPM, and .02, .05, and .11, respectively, for the RI-CLPM. 

Given that the effect sizes did not differ significantly between the CLPM and RI-CLPM, we 

suggest that the same set of values should be used as benchmarks for the CLPM and RI-CLPM. 

Moreover, given that a much larger number of effect sizes was available for the CLPM compared 

to the RI-CLPM, we suggest that researchers use the values obtained for the CLPM, that is, .03 

(small effect), .07 (medium effect), and .12 (large effect), regardless of whether the cross-lagged 

effects were estimated using the CLPM or the RI-CLPM. 

The empirical benchmarks determined in the present research may be smaller than many 

researchers would expect. However, as reviewed in the Introduction, the findings from meta-

analytic reviews of specific cross-lagged effects (e.g., the effect of self-beliefs on academic 

achievement) indicate that mean values of cross-lagged effects are typically in the range of .05 to 

.10. Thus, mean effect sizes from meta-analytic reviews of specific effects are comparable to the 

mean effect sizes found in the present research. 

The size of the cross-lagged effects did not differ significantly across developmental, 

social–personality, clinical, and industrial–organizational psychology. Consequently, the same 

effect size conventions can be used across these subfields. Moreover, the benchmarks identified 

in the present research may be useful for other disciplines, such as sociology, economics, 

education, medicine, and health sciences. As long as specific effect size benchmarks are missing 

for these disciplines, the conventional values suggested by the present research may provide a 

basis for interpreting the size of cross-lagged effects. 

It is important to note that cross-lagged effects correspond conceptually to regression 

coefficients from more basic statistical models. Specifically, when two-wave longitudinal data 
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are analyzed by multiple regression, using a predictor assessed at Time 1 to explain an outcome 

at Time 2, controlling for the outcome at Time 1, then the effect of the predictor is interpreted in 

the same way as a cross-lagged effect from the CLPM. Similarly, when the Time 1 predictor is 

used to explain change scores in the outcome between Times 1 and 2, then the effect also 

corresponds conceptually to the cross-lagged effect from the CLPM. Thus, in these situations, 

the benchmarks established in the present research can be used to interpret the size of the effects. 

The mean effect sizes (i.e., .095 for the CLPM and .083 for the RI-CLPM, see Table 2) 

were larger than the median effect sizes (i.e., the 50th percentiles). Specifically, for both the 

CLPM and RI-CLPM, the means were located approximately at the 65th percentile, 

corresponding to the positively skewed distributions (as illustrated in Figure 2). Readers might 

wonder whether it would be more appropriate to use these means as indicators of a medium 

effect size. However, we believe that it is preferable to follow the procedures used in prior 

studies on empirical benchmarks for effect sizes, which were typically based on percentiles 

(including the median) rather than on means (e.g., Brydges, 2019; Gignac & Szodorai, 2016; 

Kinney et al., 2020; Lovakov & Agadullina, 2021). 

Additional Implications of the Findings 

The results of the moderator analyses suggest that studies that control for covariates do 

not find smaller cross-lagged effects, and this finding holds for both the CLPM and RI-CLPM 

(as noted above, covariates were controlled for in 65% of the analyses with the CLPM and in 

53% of the analyses with the RI-CLPM). Theoretically, if an observed effect of a predictor is 

confounded by the predictor’s association with a covariate (i.e., if the true effect is smaller than 

the observed effect), then controlling for the covariate should reduce the cross-lagged effect 

(Rohrer, 2018). Thus, an important question is whether studies that controlled for covariates 
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actually controlled for theoretically-relevant confounding factors. It is beyond the scope of this 

article to determine whether this was the case, since it would require in-depth theoretical 

expertise to evaluate whether, in each study, the covariates were relevant confounding factors. 

This issue merits attention in future research. 

Cross-lagged effects did not differ between studies that used latent versus manifest 

construct factors in the analyses. Although latent (compared to manifest) measurement often 

leads to larger associations between variables, this is not necessarily the case for all path 

coefficients included in a model (Cole & Preacher, 2014). Thus, it is possible that cross-lagged 

effects are not generally underestimated when models use manifest variables. In future research, 

it would be interesting to examine this issue more systematically based on simulation studies. 

Moreover, we emphasize that it is generally recommended to measure constructs as latent 

factors, to control for measurement error and systematic biases. However, the present findings 

suggest that it is not necessary to take this design characteristic into account when interpreting 

the size of cross-lagged effects. 

Similarly, the size of cross-lagged effects was not influenced by shared method variance 

between the constructs. Although shared method variance often causes artificially inflated 

associations between variables when examining zero-order correlations (Podsakoff et al., 2012), 

the present findings suggest that this is not the case for cross-lagged effects. A possible 

explanation is that, when estimating cross-lagged effects, shared method variance is already 

controlled for to a great extent by inclusion of the concurrent correlation between the predictor 

and the outcome at Time 1 and the stability of the outcome between Times 1 and 2. Again, even 

if it is generally advised to control for shared method variance (e.g., by using multi-method 
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assessment), the present findings suggest that it is not necessary to take this design characteristic 

into account when interpreting the size of cross-lagged effects. 

Limitations and Strengths 

The effect sizes examined in this research were sampled exclusively from published 

studies. Thus, an important question is whether publication bias may have influenced the 

empirical benchmarks for cross-lagged effects. Generally, the literature on publication bias 

suggests that unpublished effect sizes tend to be smaller compared to published effect sizes 

(Sutton, 2009). Thus, if there is publication bias in research using cross-lagged models, then the 

empirical benchmarks determined in the present research would likely overestimate, not 

underestimate, the typical size of cross-lagged effects. Given that many researchers might feel 

that the conventional values proposed in this research are too small rather than too large, we 

believe that the possibility of publication bias is less problematic in the present context compared 

to other research contexts. Nevertheless, as reported above, we tested for publication bias but did 

not find significant evidence for either the CLPM or the RI-CLPM. Moreover, a recent meta-

analysis tested but failed to find evidence that published and unpublished evidence on cross-

lagged effects differed significantly from each other, in research on the effect of self-esteem on 

work outcomes (Krauss & Orth, 2021). In sum, these empirical findings do not support the 

hypothesis that the published evidence on cross-lagged effects is systematically inflated by 

publication bias. 

The present research used a quasi-representative sampling approach, by examining 

articles published in 12 different journals. Clearly, we do not know whether examining other 

journals would have yielded different findings. Nevertheless, the sampling approach covered 

four broad subfields of psychology and we assessed more than 1,000 articles for eligibility in the 
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dataset, which resulted in a relatively heterogeneous set of samples and a relatively large number 

of effect sizes. Thus, we believe that the present dataset provided an appropriate basis for 

examining the distribution of effect sizes. 

We did not code whether longitudinal measurement invariance was evaluated in the 

articles from which the effect sizes were obtained. However, cross-lagged models such as the 

CLPM and RI-CLPM require specific levels of longitudinal measurement invariance (Little et 

al., 2007; Schmitt & Kuljanin, 2008). If measurement invariance does not hold across waves, 

then this could reduce the magnitude of the stability coefficients, which could affect the cross-

lagged effects, depending on whether lack of measurement invariance was found for the 

predictor or the outcome. In future research, it would be useful to assess this issue in detail. 

When using a multilevel longitudinal model such as the RI-CLPM, standardized 

coefficients can be computed based on group or individual variances (Schuurman et al., 2016). In 

the present research, we used the standardized coefficients as reported in the published articles. 

However, in future research on the RI-CLPM, it would be interesting to test whether empirical 

benchmarks for effect sizes depend on the method of standardization used. 

Recommendations 

Based on the present findings, we propose the following guidelines for interpreting the 

size of cross-lagged effects. We suggest that .03 indicates a small effect, .07 a medium effect, 

and .12 a large effect. It is important to emphasize that these conventional values apply to 

standardized regression coefficients (i.e., beta coefficients or beta weights), not to 

unstandardized regression coefficients. We recommend that the conventional values are 

conceptualized as surrounding anchors rather than as cutoff values (Bosco et al., 2015). For 

example, if a cross-lagged effect is estimated as .10, it should be interpreted as a medium to large 
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effect. Given that the effect sizes did not differ significantly between the CLPM and RI-CLPM, 

we recommend using the same set of conventional values for these two models. Moreover, it is 

possible that the conventional values are also appropriate for cross-lagged effects estimated with 

other types of models, such as the latent curve model with structured residuals (Curran et al., 

2014), the STARTS model (Kenny & Zautra, 2001), and the latent change score model 

(McArdle, 2001). As long as empirical benchmarks are missing for other types of cross-lagged 

models, we tentatively suggest that the values above be used to gauge the magnitude of an effect. 

The values identified in the present research also apply to coefficients from multiple regression 

analyses of longitudinal data where prior levels of the outcome are controlled for. Finally, the 

present findings suggest that cross-lagged effects do not differ in size across four large subfields 

of psychology (developmental, social–personality, clinical, and industrial–psychology). We 

therefore suggest that researchers from all areas of psychology and related disciplines use the 

same benchmark values, which has the advantage that researchers can directly compare effect 

sizes across a wide range of research contexts. 
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Table 1 

Distribution Percentiles for Cross-Lagged Effects in the CLPM and RI-CLPM 

 

Percentile 

CLPM 

(k = 1,028) 

RI-CLPM 

(k = 302) 

5 .01 .01 

10 .01 .01 

15 .02 .01 

20 .03 .02 

25 .03 .02 

30 .04 .02 

35 .05 .03 

40 .05 .04 

45 .06 .04 

50 .07 .05 

55 .08 .06 

60 .09 .07 

65 .10 .08 

70 .11 .09 

75 .12 .11 

80 .14 .13 

85 .17 .14 

90 .20 .17 

95 .27 .20 

Note. The 25th, 50th, and 75th percentiles are shown in bold. CLPM = cross-lagged panel model; 

RI-CLPM = random intercept cross-lagged panel model; k = number of effect sizes. 
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Table 2 

Meta-Analytic Estimates of Weighted Mean Cross-Lagged Effects in the CLPM and RI-CLPM 

   Weighted mean   Variances 

Model k N effect size 95% CI Q σ1
2 σ2

2 

CLPM 1,028 198,446 .095* [.087, .102] 7112.5* .0013 .0033 

RI-CLPM 302 57,176 .083* [.066, .101] 2871.7* .0018 .0018 

Note. Computations were made with multilevel random-effects models. CLPM = cross-lagged 

panel model; RI-CLPM = random intercept cross-lagged panel model; k = number of effect sizes; 

N = number of participants, on which effect sizes are based; CI = confidence interval; Q = 

statistic used in heterogeneity test; σ1
2 = variance component corresponding to the level of the 

grouping variable (i.e., between samples); σ2
2 = variance component corresponding to the level 

nested within the grouping variable (i.e., within samples). 

* p < .001. 
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Table 3 

Meta-Analytic Estimates of Weighted Mean Cross-Lagged Effects in the CLPM by Subfield of 

Psychology 

   Weighted mean  

Subfield k N effect size 95% CI 

Developmental 464 96,719 .097* [.085, .110] 

Social–personality 330 42,634 .092* [.077, .106] 

Clinical 170 47,999 .092* [.075, .110] 

Industrial–organizational 64 11,094 .101* [.075, .126] 

Note. Cross-lagged effects by subfield were examined with two multilevel mixed-effects models, 

following the procedure described by Viechtbauer (2010). In the first model (shown in the table), 

the intercept is omitted, which allows to estimate weighted mean effect sizes for each of the four 

categories. The second model includes an intercept but uses only three dummy variables for the 

four categories, which allows to test the differences between subfields. The differences between 

subfields were nonsignificant, QModel = 0.646, df = 3, p = .886. CLPM = cross-lagged panel 

model; k = number of effect sizes; N = number of participants, on which effect sizes are based; 

CI = confidence interval. 

* p < .001. 
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Table 4 

Effects of Moderators on the Cross-Lagged Effect in the CLPM 

 Model 1 (k = 1,028)  Model 2 (k = 416) 

Moderator B SE p  B SE p 

Design characteristics        

Control of covariates −.002 .009 .830  −.006 .009 .533 

Latent measurement −.004 .008 .624  −.003 .009 .769 

Shared method variance .004 .009 .632  −.015 .010 .132 

Time lag −.005 .003 .101  −.004 .003 .103 

Other CLPM coefficients        

Correlation at Time 1 — — —  .133 .019 <.001 

Stability of predictor — — —  .086 .022 <.001 

Stability of outcome — — —  −.189 .022 <.001 

Note. Computations were made with multilevel mixed-effects models. Regression coefficients 

are unstandardized. Dash indicates that moderator was not included in the model. CLPM = cross-

lagged panel model; k = number of effect sizes. 
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Table 5 

Effects of Moderators on the Cross-Lagged Effect in the RI-CLPM 

 Model 1 (k = 278)  Model 2 (k = 120) 

Moderator B SE p  B SE p 

Design characteristics        

Control of covariates .018 .021 .399  −.085 .069 .222 

Latent measurement −.000 .020 .996  −.070 .081 .386 

Shared method variance −.005 .015 .724  −.015 .022 .513 

Time lag −.025 .019 .181  −.115 .158 .466 

Other RI-CLPM coefficients        

Correlation at Time 1 — — —  .147 .064 .021 

Correlation between 

random intercepts 

— — —  −.059 .053 .260 

Stability of predictor — — —  .151 .042 <.001 

Stability of outcome — — —  −.053 .042 .202 

Note. Computations were made with multilevel mixed-effects models. Regression coefficients 

are unstandardized. Dash indicates that moderator was not included in the model. RI-CLPM = 

random intercept cross-lagged panel model; k = number of effect sizes. 
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Figure 1 

Generic Illustrations of the CLPM and the RI-CLPM 

 

Note. The models differ with regard to the minimum number of waves required for estimation. 

The CLPM (Panel A) requires two waves of data and the RI-CLPM (Panel B) requires three 

waves. In the RI-CLPM, the wave-specific factors (i.e., residualized scores) of Constructs A and 

B are denoted as rA1–rA3 and rB1–rB3. CLPM = cross-lagged panel model; RI-CLPM = 

random intercept cross-lagged panel model. 
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Figure 2 

Distributions of Cross-Lagged Effects in the CLPM and RI-CLPM 

 

Note. CLPM = cross-lagged panel model; RI-CLPM = random intercept cross-lagged panel 

model. 


