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1 Introduction

Measurements [1, 2] of the muon anomalous magnetic moment, (g − 2)µ, are showing
a combined 4.2σ deviation from the consensus Standard Model (SM) prediction [3–24].1

1The issue of the SM prediction may not be completely settled. The lattice QCD determination of the
hadronic vacuum polarization contribution to (g− 2)µ by the BMW group reduces the tension between the
experimental world average and the SM (g − 2)µ prediction to less than two standard deviations [25]. It is
expected that other lattice groups will be able to weigh in on this issue in the near- to medium-term future.
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This may be pointing to the existence of new physics (NP) coupling to muons. Such
a possibility is especially intriguing in light of similar discrepancies in the b → sµ+µ−

observables: angular distributions [26, 27]; branching ratios [28–34]; and the theoretically
very clean lepton flavor universality (LFU) ratios, RK(∗) [35, 36] (for recent global fits see,
e.g., [37–41]). Global significance of the NP hypothesis in b→ s`+`− decays, including the
look-elsewhere effect, was estimated to be 4.3σ in ref. [42].

Any NP model explaining the muon anomalies faces nontrivial experimental con-
straints. Especially stringent are the constraints from lepton flavor-violating (LFV) tran-
sitions, such as µ → eγ. While the (g − 2)µ anomaly requires a relatively low effective
NP scale Λ22 ' 15 TeV, the bound on the flavor-changing µ → eγ transition requires
Λ12(21) & 3600 TeV [43].2 Viable NP explanations of (g − 2)µ, therefore, must have highly
suppressed LFV effects (as discussed in, e.g., refs. [44, 45]).

Strict flavor alignment between the dipole operator and the charged lepton mass matrix
may well point to the existence of a new underlying symmetry, which we assume to be a
spontaneously broken U(1)X gauge group. The neutral gauge vector boson associated
with the U(1)X is then a candidate for an explanation of the (g − 2)µ. One well-studied
example of this scenarios is U(1)Lµ−Lτ [46–61]. The U(1)Lµ−Lτ gauge symmetry forces
the dimension-4 charged lepton Yukawa interactions to be diagonal, ensuring an accidental
U(1)3 lepton flavor symmetry. The Lµ−Lτ gauge boson Xµ with massmX ∈ [10, 210]MeV
and a coupling to muons in the range gX ∈ [0.4, 1] × 10−3 gives a one-loop contribution
to (g − 2)µ of the right size to account for the experimental anomaly while not conflicting
with any of other measurements [52, 62–65].

There are two immediate questions pertaining to the anomaly-free U(1)X gauge ex-
tensions of the SM:

i) Is U(1)Lµ−Lτ the only phenomenologically viable possibility that can explain the
(g − 2)µ anomaly?

ii) If there are alternative models, can these be experimentally disentangled from
U(1)Lµ−Lτ ?

In this paper, we systematically explore the two questions, building on our previous
work, ref. [65]. The main result is that the only significant deviation of Lµ − Lτ allowed
by data is gauge groups where Le ' −2B and the kinetic mixing with the photon approxi-
mately cancels the electron charge. This conclusion is rather nontrivial since there exists an
extensive list of precise experimental probes constraining complementary combinations of
U(1)X gauge boson couplings, resulting in a limited number of phenomenologically viable
possibilities.

The main working assumptions for our analysis are i) the SM is minimally extended by
three right-handed neutrinos and a flavor-non-universal U(1)X gauge symmetry and ii) the

2Both transitions are due to dipole moment operators, Leff ⊃ −e v ¯̀i
Lσ

µν`jRFµν/(4πΛij)2 + H.c., where
v = 246 GeV is the electroweak vacuum expectation value. The NP contribution to (g − 2)µ is due to a
flavor-conserving dipole, i = j = 2, whereas µ→ eγ decay is from a flavor-changing dipole, i = 1, j = 2 or
i = 2, j = 1.
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theory is anomaly-free. The NP models also contain an SM singlet scalar field φ charged
under U(1)X , whose vacuum expectation value (VEV) vφ breaks the U(1)X . The solutions
to the (g − 2)µ anomaly typically require vφ around the electroweak scale if muons and φ
carry O(1) U(1)X gauge charges. The details about the source of U(1)X symmetry breaking
are not important for most of the phenomenology discussed in this paper, so our results
do not change if a different SM-singlet condensate breaks U(1)X (or several condensates).
Actually, viable neutrino masses and mixings typically require more than one scalar field.

Requiring the ratios between (non-zero) U(1)X charges for the chiral fermions to be at
most ten gives roughly 21.5 million inequivalent integer charge assignments, up to flavor
permutation [66]. We restrict our analysis to a subset of these, the 255 quark flavor-
universal vector-like U(1)X charge assignments [65]. Taking into account the flavor per-
mutations among charged SM fermions this gives 419 phenomenologically distinct U(1)X
models. Here, we assumed that the sterile neutrinos are heavy enough so as not to affect
the low-energy phenomenology, and, thus, different charge assignments for sterile neutrinos
lead to the phenomenologically equivalent U(1)X model in this counting. In section 5, we
furthermore comment on the 21 chiral U(1)X charge assignments. The choice of quark
flavor universality of U(1)X charges is phenomenologically well motivated, since flavor-
non-universal U(1)X charges of quarks lead to dangerous flavor-changing neutral currents
(FCNCs). As illustrated in ref. [65] by a benchmark example, even for the second-safest
option, a third-quark-family model with down-alignment, the CKM rotation induced up-
sector FCNCs effectively rule out the parameter space preferred by (g − 2)µ.3

While quark flavor-universal models avoid FCNCs, they are still severely constrained
through a combination of other measurements:

i) neutrino trident constraints [52, 53, 68, 69];

ii) electroweak precision observables [70–72];

iii) neutrino oscillation constraints on nonstandard neutrino interactions (NSI) [73, 74];

iv) measurements of coherent neutrino scattering on nuclei [75–77];

v) the Borexino measurement of the cross section for the elastic scattering of 7Be solar
neutrinos on electrons [78, 79] and other elastic neutrino-electron scattering experi-
ments [80–83];

vi) searches for new light resonances [62, 84].

In ref. [65], we studied the implications of these measurements for several selected bench-
marks. In this manuscript, we go well beyond the initial analysis of ref. [65] and assess
the constraints for the complete set of 419 distinct vector-like U(1)X models, focusing on

3Similarly, the anomalous U(1)X extensions of the SM with a light Xµ gauge boson are severely con-
strained due to the 1/m2

X enhanced rates for rare FCNC decays. The XWW anomalous triple gauge
couplings induce axial Xd̄idj flavor-violating couplings, which give rise to enhanced decays involving the
longitudinal mode of the X boson (see for example [67]).
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the parameter space region relevant for explaining (g − 2)µ. In several instances our phe-
nomenological analysis applies to the complete class of quark flavor-universal vector-like
charge assignment, even allowing for arbitrarily large charge assignments. We also com-
ment on the phenomenology of chiral charge assignments, working out the details of the
L̃µ−τ model in which the couplings of Xµ to electrons are purely axial, thus, eliminating
the very strict constraints on NSI from neutrino oscillations.

In the bulk of the paper, the analysis is kept as general as possible. In particular, we do
not impose any requirements regarding possible connections with the b → s`` anomalies.
This does not mean that such connections do not exist. On the contrary, lepton flavor-non-
universal U(1)X gauge symmetries can further support solutions of the B-physics anomalies
that rely on tree-level exchanges of leptoquarks (LQ). In general, TeV-scale LQs tend to
excessively violate the accidental symmetries of the SM — baryon and individual lepton
number symmetries — all of which are exquisitely tested experimentally. Charging the LQ
under a flavor-non-universal U(1)X gauge symmetry can reinstate the accidental symme-
tries while keeping the contributions to B-anomalies intact. Prominent examples of such
mediators are the muoquarks [85–89], LQs charged under a U(1)X such that they carry
global muon and baryon numbers. Both of these remain accidentally conserved at dimen-
sion 4, as they are in the SM. Out of 255+21 quark flavor universal charge assignments,
252+21 satisfy the muoquark criteria for the scalar weak triplet mediator [65].

The paper is organized as follows. In section 2, we introduce the anomaly-free U(1)X
models and the parameter space relevant for (g−2)µ bounded by cosmology (mX & 10MeV)
and perturbative unitarity (mX . 1TeV). Section 3 contains the discussion of the experi-
mental constraints relevant for vector-like quark universal U(1)X models. The phenomeno-
logical implications of these constraints are presented in section 4: in section 4.1, we use
the neutrino trident production, combined with the Z-pole constraints, to set a robust
upper limit on the X boson mass (mX . 4GeV) for all renormalizable models introduced
in section 2. In section 4.2, we perform a global analysis of experimental constraints and
identify seven viable vector-like models that can explain the (g − 2)µ anomaly. Section 5
contains a brief discussion of chiral models and a detailed phenomenological analysis of the
most promising example, the L̃µ−τ model. Possible connections with the B anomalies are
discussed in section 6, while section 7 contains conclusions. The details on the calculation
of neutrino oscillation bounds are given in appendix A, while appendix B contains details
on the construction of the global χ2 function used in the analysis.

2 Model framework

We start by reviewing the salient features of the gauged U(1)X models and how these can
address the (g − 2)µ.

2.1 Field content and U(1)X charges

The models we consider have the SM matter content extended by three sterile neutrinos
Ni while the SM gauge group is enlarged by an additional U(1)X factor. After electroweak
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symmetry breaking (EWSB), the part of the Lagrangian relevant to the phenomenology at
low energies (mX � mZ) is given by4

L ⊃ −1
4F

2
µν −

1
4X

2
µν + 1

2ε FµνX
µν + 1

2m
2
XX

2
µ + eAµJ

µ
EM + g′XXµJ

µ
X , (2.1)

where Fµν and Xµν are the electromagnetic and U(1)X field strength tensors, ε is the
kinetic mixing parameter, JµEM the electromagnetic current, and JµX = ∑

f xffγ
µf the

current associated with U(1)X , where xf are the U(1)X charges for the chiral field f . The
kinetic mixing term ε

2 FµνX
µν can be removed by performing a non-unitary transformation

of the Abelian gauge fields [90], after which the U(1)X Lagrangian is given by setting ε→ 0,
g′X → gX = g′X/

√
1− ε2 in eq. (2.1) and shifting the charges according to

xf → xf + ε√
1− ε2

e

gX
QEM
f (2.2)

in the expression for JµX (QEM
f is the electric charge of the SM fermion f).

2.2 Charge assignments

The U(1)X charges of quarks are assumed to be universal, such that the quark Yukawa
interactions are given by the usual dimension-4 operators. Without loss of generality, we
can set the U(1)X charge of the SM Higgs to zero, xH = 0. This leaves 276 inequivalent
charge assignment, not counting flavor permutations, with integer charges for the SM
fields in the range from -10 to 10, as listed in [85]. Shifting all the xf charges by a multiple
of the hypercharge Yf gives physically equivalent models that would have xH 6= 0, see
appendix A.1 of ref. [85].

The above quark flavor-universal U(1)X charge assignments fall into one of two cate-
gories. The 255 charge assignment in the vector category have vector-like U(1)X charges for
both the quarks and the charged leptons, xLi = xEi , i = 1, 2, 3. The charged lepton masses
are thus also generated via dimension-4 SM Yukawa interactions. Viable neutrino masses
and mixings usually require additional U(1)X -breaking scalars (SM singlets), which lead to
Majorana masses through NiNjφij interactions. We assume that the sterile neutrinos are
heavy enough that they are not relevant for the low energy phenomenology. Taking into
account the flavor permutations of the vector-like U(1)X charge assignments this leaves
us with 419 phenomenologically distinct vector-like U(1)X models.5 The possible charge
assignments for the models in the vector category are given by [85, 91]

xf = ceLe + cµLµ + cτLτ −
(
ce + cµ + cτ

3

)
B +

∑
i

cNiLNi , (2.3)

where {B,Le, Lµ, Lτ} are the usual values of baryon and lepton numbers for the SM fermion
f , while LNi are the right-handed neutrino numbers (Ni are not charged under B,L`i).

4In section 3.1, we write up the underlying theory in the unbroken-phase of the SM to allow for all values
of mX and be able to describe electroweak precision tests.

5Permutations of the right-handed charge assignments (in the charge lepton mass basis) are in principle
possible. However, this requires higher-dimensional effective operators to generate the SM charged lepton
Yukawa couplings while at the same time the renormalizable operators need to be suppressed. We ignore
this rather artificial possibility.
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The coefficients {ce, cµ, cτ , cN1 , cN2 , cN3} in eq. (2.3) need to satisfy the Diophantine equa-
tions [66, 92] (ce + cµ + cτ = ∑

i cNi and c3
e + c3

µ + c3
τ = ∑

i c
3
Ni
) giving a 4 parameter family

of models valid beyond the restriction to charges less than 10. In particular, there are valid
solutions for any set of ce, cµ, cτ : cNi = (−ce, −cµ, −cτ ). The parameterization in eq. (2.3)
will be exploited in section 3.3 to asses NSI constraints on a large set of models.

The charge assignments cN1 = −cN2 , cN3 = ce,µ,τ = 0 (and permutations thereof)
correspond to the dark photon type solutions to (g−2)µ [93]. In this case, the X couplings
to the SM fermions are exclusively due to kinetic mixing with the photon — typically
radiatively induced from X interacting with some hidden sector particles also charged
under the SM gauge group. This scenario has been ruled out as the solution of the (g−2)µ
anomaly, both when X decays visibly [94] or invisibly [95, 96], with the possible exception
of a combined decay [97].

There are additional 21 charge assignments for which there is no permutation such
that xLi = xEi for every i = 1, 2, 3. These models constitute the chiral category and are
listed in section 2.2.2 of [85]. We examine their phenomenology and possible relevance for
(g−2)µ separately, in section 5. In chiral models at least some of the charged lepton Yukawa
couplings to the Higgs are forbidden at dimension four, leading to Yukawa matrices of rank
less than three. Hence, some of the charged lepton masses are generated through higher-
dimension operators. We assume that these operators are either generated by integrating
out vector-like fermions (which do not change the conditions for anomaly cancellation),
or by integrating out heavy scalars. We discuss this in more detail for the L̃µ−τ model,
including the phenomenological constraints, in section 5.

2.3 Matter unification

Interestingly, some of the above U(1)X extensions of the SM can be unified into a larger
semi-simple gauge group at higher energies. As an example consider the vector category
charge assignments with x`i = xNi . Ref. [88] showed that in that case the U(1)Y × U(1)X
can be unified into SU(2)R×U(1)B−L× SU(3)lep. Starting from this group the unification
can proceed further (see figure 1 of ref. [88]).

2.4 Explanation of (g − 2)µ

A massive vector Xµ coupling to muons with interaction

L ⊃ gX µ /X(qV − qAγ5)µ, (2.4)

gives rise to a one-loop radiative correction to the anomalous magnetic moment of the
muon:

∆aµ = g2
X

8π2


q2
V − 2 r2

µ q
2
A, mX � mµ,

2
3r

2
µ

[
q2
V − 5 q2

A

]
, mX � mµ,

(2.5)

where rµ = mµ/mX . For the full 1-loop expressions see, e.g., refs. [65, 98, 99]. Correc-
tion (2.5) is of the right sign to explain the difference between the measured and predicted
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anomalous magnetic moment of the muon, ∆aµ = aavg
µ − aSM

µ = (251± 59) × 10−11 [2], if
Xµ couples mainly vectorially to muons.

Requiring that ∆aµ is explained by a massive vector Xµ at one-loop order translates to
an upper bound on the U(1)X breaking VEV

√
2〈φ〉 = mX/(gXxφ) < 260 GeV× (qV /xφ),

which is saturated for qA = 0. Perturbative unitarity, gXqV ≤
√

4π, then implies an upper
bound on the Xµ mass, mX . 1.0 TeV (see ref. [100] for a more detailed discussion). This
is a rather restrictive bound, the origin of which can be traced back to the fact that in the
one-loop Xµ contribution to (g − 2)µ, the required chirality flip necessarily occurs on the
muon leg and, thus, is suppressed by the small muon mass.

2.5 Cosmology

A robust lower limit on the gauge boson mass mX follows from the agreement between
observations of primordial light element abundances and the predictions within standard
cosmology Big Bang Nucleosynthesis (BBN). The gauge coupling gX required to explain
the (g − 2)µ anomaly is large enough that the gauge boson Xµ efficiently thermalises with
the SM plasma in the early universe, i.e., for temperatures T > mX . A light Xµ contributes
with additional relativistic degrees of freedom during BBN, changing the predictions for
light element abundances. This is avoided for mX & 10MeV, in which case Xµ decays
quickly, before the onset of BBN. The precise bound on mX was derived for the U(1)Lµ−Lτ
model in ref. [101] (see also [63]), and holds approximately also for all the other U(1)X
models considered here.

3 Experimental constraints

As a next step in the analysis, we discuss all the various constraints on the U(1)X models.
They include EW precision tests, a variety of neutrino interactions, and finally resonance
searches.

3.1 Electroweak precision tests

After EWSB the U(1)X gauge boson Xµ mixes both with the photon, Aµ, and the Z boson.
The mixing with photon is important for low energy constraints, while the mixing with the
Z is severely constrained by the electroweak precision tests.

Electroweak symmetry breaking. In the models we consider, the source of the EWSB
is the same as in the SM — the VEV of the SM Higgs. Above the electroweak scale the
kinetic mixing Lagrangian between Xµ and the photon, eq. (2.1), is replaced by the kinetic
mixing between Xµ and Bµ, parametrized by the parameter εY :

L ⊃ −1
4B

2
µν −

1
4X

2
0,µν + 1

2εY BµνX
µν
0 −

1
4(W a

µν)2 + |DµH|2 + 1
2m

2
X0X

2
0,µ, (3.1)

where DµH = (∂µ + ig′XxHX0,µ)H. In writing the above Lagrangian we remain agnostic
about the origin of the X boson mass. The mass term mX0 could be due to a VEV of a
single SM singlet scalar or due to a more complicated condensate in the SM singlet sector.

– 7 –
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The U(1)X charge of the SM Higgs, xH , can be absorbed in the other parameters by
performing the shift {

g′X , εY
}
−→ 1√

1 + 2εY ξ + ξ2

{
g′X , εY + ξ

}
, (3.2)

where ξ = 2xHg′X/g1. This shift changes the charges xf of the matter fields, f , by

xf −→ xf − 2xHYf , (3.3)

with Yf the hypercharge of fermion f . Without loss of generality, we can, therefore, take
xH = 0, which is what we will assume from now on.

Expressing Bµ and W 3
µ in eq. (3.1) in terms of the photon, Aµ, and the Z boson field,

Zµ, gives the kinetic mixing Lagrangian after EWSB:

L ⊃ −1
4
(
A2
µν +X2

0,µν + Z2
0,µν

)
+ 1

2m
2
Z0Z

2
0,µ + 1

2m
2
X0X

2
0,µ

+ 1
2εY

(
cwAµν − swZ0,µν

)
Xµν

0 ,
(3.4)

where mZ0 = gZ〈H〉/
√

2 is the SM Z mass. In eq. (3.4) we do not write down the
terms involving dynamical Higgs field. We also used the shorthand notation sw = sin θw,
cw = cos θw, and tw = tan θw, where θw is the weak mixing angle.

A simultaneous diagonalization of the kinetic and mass terms is achieved by a combi-
nation of a non-unitary field redefinition and a rotation,

Aµ

Zµ0

Xµ
0

=


1 cwε̂Y

1 −swε̂Y
∆ε




1
cθ sθ

−sθ cθ



Aµ

Zµ

Xµ

 , (3.5)

where ∆2
ε = 1/(1− ε2

Y ). The mixing angle θ between Z and X is given by

tθ =


swε̂Y

1− r2
X

, |swε̂Y | < |1− r2
X |,

1− r2
X

swε̂Y
, |swε̂Y | > |1− r2

X |,
(3.6)

where
rX = mX

mZ0
, and ε̂Y = εY√

1− ε2
Y

, (3.7)

with mX the physical X boson mass.
The diagonalization of the gauge fields changes their effective currents. From eq. (3.5),

we find that

L ⊃ eJµAAµ + gZJ
µ
ZZ0,µ + g′XJ

µ
XX0,µ = eJµAAµ + gZJ

µ
Z,effZµ + gXJ

µ
X,effXµ, (3.8)

with

JµZ,eff = cθ

[
JµZ − cw tθ ε̂Y J

µ
Y − tθ

gX
gZ
JµX

]
, (3.9)

JµX,eff = JµX + cw cθε̂Y
e

gX
JµA + cθ

gZ
gX

(tθ − swε̂Y )JµZ , (3.10)

where gX = cθ∆εg
′
X is the physical X gauge coupling.

– 8 –
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Z mass constraint. The kinetic mixing between Xµ and Bµ introduces a mass mixing
between Z and X gauge bosons, resulting in a shift of the physical Z mass mZ and cor-
rections to Z couplings to SM fermions. While a global fit to the electroweak precision
data would be required to capture all the resulting experimental constraints on Xµ–Bµ
mixing, it suffices for our purposes to consider just the T parameter (marginalized over
other electroweak observables), mainly because the measurements of SM fermion couplings
to Z have larger relative errors, see also discussion in ref. [102], as well as refs. [103–106],
and section 3.1 below.

We find that
ρ0 =

m2
Z,SM

m2
Z,obs

'
m2
Z0

m2
Z

= 1− r2
X

1− r2
X + s2

wε̂
2
Y

, (3.11)

where mZ,SM is the SM prediction for the Z mass (from the W mass including radiative
corrections), whereas mZ,obs is the measured Z mass so that in the SM ρ0 = 1. Since we
are interested in the NP constraints, we can use the tree-level relations, giving the second
(approximate) equality. ρ0 is related to the oblique parameter T through ρ0 − 1 = 1/(1−
α̂(mZ)T ) − 1 ' α̂(mZ)T , where experimentally from the electroweak fit T = 0.03± 0.12,
when the S,U parameters are allowed to float freely [70] (see also [107]). The Z mass shift
in our model results in

T = − 1
α(mZ)

s2
wε̂

2
Y

1− r2
X + s2

wε̂
2
Y

. (3.12)

In the limit of small X mass and small kinetic mixing parameter, we have

T = −s
2
w

α
ε2
Y

[
1 +O

(
ε2
Y , m

2
X/m

2
Z

)2] ' −30 ε2
Y . (3.13)

This provides a relatively weak bound for the region of light X masses (mX < 2mµ)

|εY | < 0.076, (3.14)

well above the typical expectation εY ∼ O(egX/16π2) for radiatively induced kinetic mix-
ing. Nevertheless, the T parameter bound in eq. (3.14) is phenomenologically quite impor-
tant, since it does not allow for arbitrarily large kinetic mixings. Combined with constraints
from neutrino trident production, it translates to a model-independent requirement that
X needs to be lighter than a few GeV (see section 3.2 for details).

For X masses comparable to mZ , the bound in eq. (3.14) becomes more stringent and
then progressively weaker for mX � mZ . Throughout this region, the mixing angle θ
between X and Z is given by the upper expression in eq. (3.6), except for the very small
region where X and Z are almost mass degenerate, such that |swε̂Y | > |1 − r2

X |. In this
mass degenerate regime, the constraint on the T parameter leads to

|swε̂Y | <
α|T |

1− α|T | =⇒ |εY | < 4.7× 10−3. (3.15)

As anticipated, in this region, the constraint on |εY | is significantly more stringent than it
is for the light X mass limit, eq. (3.14). From the T bound, it follows that this case is only
relevant for |1− r2

X | < 2.2× 10−3, i.e., when the X and Z are degenerate to within 0.2%.
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Lepton universality in Z decays. The mixing between X and Z also results in non-
universal Z boson couplings to the SM leptons, eq. (3.9), which were measured to high
precision at LEP [72]. We expect the strongest constraint to come from the lepton flavor
universality ratio for first two generations of leptons [72],

Rµe = Γ(Z → µ+µ−)
Γ(Z → e+e−) = 1.0009± 0.0028. (3.16)

Using eq. (3.9), we obtain

δRµe '
4

1− 4s2
w + 8s4

w

tθgX
gZ

[
xL2 − xL1 + 2s2

w(xL1 + xE1 − xL2 − xE2)
]
. (3.17)

for the leading new physics contributions to flavor universality ratio. This bound is more
model-dependent than the T bound, since it depends on the U(1)X charges of the leptons
that change from one U(1)X model to another. To be completely consistent, one would
in principle have to perform a global electroweak fit for every U(1)X model. However, we
estimate the typical non-universal effects to be sub-leading and, thus, their inclusion would
only marginally improve on the constraint obtained from the T parameter in section 3.1.

Effective X current. After EWSB the effective couplings of X boson (the mass eigen-
state mostly composed of X0) are encoded in the effective current JX,eff , eq. (3.10). In the
limit |swε̂Y | < |1− r2

X | the current takes a simpler form:

JµX,eff = JµX + cθswε̂Y
gZ
gX

[
c2
wJ

µ
A + r2

X

1− r2
X

JµZ

]
. (3.18)

For small masses, mX � mZ , the last term is power suppressed and we find agreement
with the low-energy description of X mixing with the photon, given in section 2.1. A
comparison with eq. (2.2) yields

ε = cw εY . (3.19)

3.2 Neutrino trident production

The ∆aµ anomaly points to a vector boson in the mass range 10MeV. mX . 1TeV. The
viable mass window is set by cosmology (lower limit, see section 2.5) and perturbative
unitarity (upper limit, see section 2.4). An efficient complementary constraint, which cuts
significantly into this parameter range, is due to limits on nonstandard neutrino trident
production, i.e., the scattering of a muon neutrino on a nucleus, producing a pair of charged
muons, νµN → νµNµ

+µ−. In combination with the constraints from the electroweak T

parameter, section 3.1, it limits the X mass to mX . 4GeV, as we show below.
Neutrino induced production of a µ+µ− pair in the Coulomb field of a heavy nucleus

is a rare electroweak process in the SM. In U(1)X models, there is an additional tree-
level contribution from the diagram with an Xµ gauge boson exchanged between νµ and µ
legs. The strongest bound on this contribution is due to the CCFR experiment [68], which
reported the measurement

σCCFR

σSM
= 0.82± 0.28 . (3.20)
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for a trident cross section normalized to the SM prediction.6 This imposes constraints on
the vector and axial vector couplings of Xµ to muons. We derive the resulting bounds on
the gauge coupling gX as a function of mX for the U(1)X models using the public code of
ref. [53] (further details can be found in ref. [65]). In the EFT region, mX & 1 GeV, this
bound is approximated by [53]

σCCFR

σSM
'
(1

2 + 2s2
w + CV

)2 + 1.13
(1

2 + CA
)2(1

2 + 2s2
w

)2 + 1.13/4
, (3.21)

where
CV,A = g2

X√
2GFm2

X

qνqV,A (3.22)

are the normalized NP coefficients of the effective 4-fermion interactions between muon
neutrinos and vector and axial muons, respectively. GF is the Fermi constant, controlling
the overall strength of the SM contribution, while qV,A and qν are the effective U(1)X vector
and axial charges of muons and the charge of muon neutrinos, respectively (cf. eq. (2.4)):

L ⊃ gX µ /X(qV − qAγ5)µ+ gX νµ qν /XPLνµ. (3.23)

3.3 Neutrino oscillations and coherent elastic neutrino-nucleus scattering

Beyond the trident production, discussed in section 3.2, the U(1)X solutions to the (g−2)µ
anomaly also lead to two other types of nonstandard neutrino interactions (NSI): the
modified matter effects in neutrino oscillations and the additional contributions to coherent
elastic neutrino-nucleus scattering.

The matter effects in neutrino oscillations are given by the forward scattering am-
plitude, i.e., at zero momentum transfer. Accordingly, the NSI contributions are well
described by the EFT Lagrangian (f = {e, p, n}) [74, 109–112],

LNSI = −2
√

2GF
∑
f,αβ

εfαβ(fγµf)(ναPLνβ) , (3.24)

even for mX well below the mass window of interest, mX & 10MeV. In our setup, the NSI
are generated at tree level by integrating out the gauge field Xµ. We use the results of a
global EFT fit to the neutrino oscillations data [73, 74, 113] to set constraints on Xµ cou-
plings to u and d quarks and to electrons (cf. appendix A). The constraints are numerically
important for the (g − 2)µ compatible parameter space. For instance, the upper limit on
gX/mX from neutrino oscillations rules out U(1)B−3Lµ as a possible solution to the (g−2)µ
anomaly, despite relatively small couplings to quarks, xq/xµ � 1 (see figure 3 in ref. [65]).

The bounds on NSI from neutrino oscillations, eq. (3.24), are sensitive to the average
U(1)X charge of the material the neutrinos propagate through, either the Earth’s mantel
and core or the sun. Among other implications, this means that the value of the kinetic
mixing ε has no effect on the neutrino oscillation bounds, since the matter is electrically

6The CHARM-II [108] and the NuTeV [69] bounds are weaker; however, the NuTeV experiment identified
an additional background not included in the CCFR analysis, raising some concerns that the errors quoted
in eq. (3.20) may be underestimated.
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neutral. The bounds from neutrino oscillations are relaxed for a particular set of U(1)X
models, such as B − 2Le − Lτ and B − 2Le − Lµ, for which the average U(1)X charge
of normal matter is almost zero (nuclei have, on average, roughly as many protons as
neutrons, i.e., B ' 2Le for normal matter).

A complementary set of constraints on NSI is due to coherent elastic neutrino-nucleus
scattering [75, 76], which was observed by the COHERENT experiment [77]. In this case,
the EFT description in eq. (3.24) is not valid for the full range of X masses of interest to
our analysis, 10MeV. mX . 4GeV. Following ref. [65], we instead keep Xµ as a dynamical
field when setting the bounds on gX , using the likelihood from ref. [114] (see also [115, 116]).

3.4 Elastic neutrino-electron scattering

The Borexino experiment measured the cross section for elastic scattering of solar neutrinos
on electrons [78, 79], which constrains possible new Xµ mediated interactions between
neutrinos and electrons. The strongest bound on light vector boson interactions is obtained
from 7Be neutrinos, which have an energy of 862 keV. The direct X coupling to electrons
can significantly change the scattering cross section of solar neutrinos, especially due to
many U(1)X models having large couplings to muon and tau neutrinos. The νµ and ντ
neutrino flavors are present in the solar flux on Earth, since the initial νe neutrinos oscillate
during propagation from the Sun. We follow the analysis of ref. [53] to place bounds on gX
while requiring that the scattering cross section remains within 2σ of the measurement.

The reactor experiments TEXONO [80] and GEMMA [81] measured the related cross
section for elastic scattering of electron anti-neutrinos on electrons, while the high-energy
beam experiment CHARM-II at CERN measured the cross sections for elastic νµe− and
ν̄µe
− scattering [82, 83]. These bounds can be as relevant as Borexino and will be discussed

in the context of the chiral L̃µ−τ model in section 5, where the electron coupling is purely
axial avoiding bounds from NSI oscillations.

Finally, the future projections for the neutrino-electron scattering at the DUNE near
detector were investigated in ref. [117].

3.5 Resonance searches

Several intensity-frontier collider experiments [62, 84] have directly searched for a produc-
tion of a vector resonance X in the mass range of interest, 10MeV . mX . 4GeV.

In a fixed target experiment such as NA64 [118], the vector boson is produced via
bremsstrahlung process eN → eNX, where N is a nucleus. The most relevant decay mode
is X → invisible, which is typically dominant below the dimuon threshold. The events are
reconstructed from the missing energy measurements. The NA64 search [118] constrains
the X couplings to electrons, which enter the prediction for the X production rates. Future
NA64µ [119, 120] and M3 [121] experiments will feature muons in the incoming beam and
will have the potential to cover the entire parameter space of the Lµ−Lτ model, see figure 2
in ref. [65]. The fixed target experiments are effective only for mX . 1GeV.

Another important set of direct searches was performed at B-factories and probed X
masses up to 10GeV. The BaBar search for e+e− → µ+µ−X in the 4µ final state [122]
(labeled in figures as BaBar 2016) sets fairly stringent constraints above the dimuon thresh-
old. BaBar also searched for a radiative return process e+e− → γX with X decaying to
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e+e− or µ+µ− [123] (BaBar 2014 and LHCb) or to invisible [96] (BaBar 2017). The
LHC searches extend the exclusion to even larger X masses, such as the LHCb search for
X → µ+µ− [124, 125] and the CMS search for Z → µ+µ−X → 4µ [126].

In all the aforementioned searches, the X decays are prompt in the parameter space
relevant for (g − 2)µ. We use the DarkCast code [84], which comes with the compilation
of relevant bounds, to set limits on the gauge coupling gX as a function of the mass mX .
Crucially, the above bounds are model dependent; for instance, the constraints from dimuon
resonance searches could be removed by introducing additional invisible X decays to a light
dark sector.

4 Phenomenological implications

We explore next the phenomenological implications of experimental constraints on minimal
anomaly-free U(1)X models as candidates for explaining the (g−2)µ anomaly. In section 4.1,
we show that a combination of trident and electroweak precision tests, assuming the SM is
the only source of EWSB, i.e., that U(1)X is broken by SM singlet scalar(s), leads to the
upper bound mX . 4GeV. In section 4.2, we include other experimental constraints that
are particularly relevant for this low X mass region and perform a global analysis of the
complete set of 419 phenomenologically distinct vector-like U(1)X models with charges up
to 10. The discussion of chiral models is relegated to section 5.

4.1 Generic upper bound on mX

Ref. [57] demonstrated that the trident production sets stringent constraints on the viable
parameter space of the (g − 2)µ solution in the U(1)Lµ−Lτ model, limiting

mX . 0.5GeV (trident). (4.1)

The above constraint was shown in ref. [65] to hold for all the U(1)X models in the limit
of vanishingly small kinetic mixing (ε = 0), where the muon couplings to Xµ are due to
muon U(1)X charges. This was achieved by marginalizing the trident constraint over all
values of xL2 and xE2 — the U(1)X charges of the second generation left-handed lepton
doublet and right-handed lepton singlet, respectively — with the results of the analysis
shown in figure 1 of ref. [65]. In the ε = 0 limit, the vector and axial couplings of Xµ to
muons are directly correlated to the U(1)X charges of left- and right-handed muons, with
the vector charge given by (xL2 + xE2)/2 and the axial charge by (xL2 − xE2)/2. This is
the reason why the trident bound so efficiently constrains the possible U(1)X solutions of
(g− 2)µ. Since (g− 2)µ requires near-vectorial couplings, that is, comparable xL2 and xE2 ,
a considerable xL2 is required.7 This, in turn, implies similar couplings of Xµ to muons

7In the renormalizable, anomaly-free U(1)X vector models, the Xµ couplings to charged leptons are
diagonal in the mass basis and do not lead to cLFV. The new physics contribution to (g − 2)µ is due to a
muon and an Xµ running in the loop. The bottom-up phenomenological vector model of ref. [127], in which
the new physics contribution to (g − 2)µ is due to a tau and an Xµ running in the loop, is difficult to UV
complete in a gauged U(1)X . Such a solution requires, for instance, an extended scalar sector beyond our
minimal setup (see, e.g., ref. [128]).
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and muon neutrinos, the upper components of the L2 doublet, and, thus, a sizable neutrino
trident production νµN → νµNµ

+µ−.
When ε 6= 0, the direct correlation between the NP shift in (g − 2)µ and the trident

production no longer applies. The kinetic mixing between Xµ and the photon in the low-
energy Lagrangian (2.1) shifts the coupling of upper and lower components of the isospin
doublets independently and decorrelates muon and neutrino couplings to Xµ. An instruc-
tive example is the B−2Le−Lτ model solution to (g−2)µ, in which the muon couplings to
Xµ are generated entirely through its mixing with the photon, while there are no couplings
to muon neutrinos and, thus, essentially no trident bounds on Xµ.8 Alternatively, for
mX comparable to mZ , one might imagine a scenario where the JX and JZ contributions
to JX,eff (3.18) conspire to a similar effect. To account for these possibilities, we include
EWPT as a complementary constraint to set a model-independent upper bound on mX

for viable (g − 2)µ solutions.
Given mX , the X boson couplings to second generation leptons (3.18) are determined

through a known combination of parameters gXxL2 , gXxE2 , and εY . These determine the
U(1)X shifts in T (3.12), the neutrino trident cross section (3.21), and (g−2)µ (2.5). We use
these observables to construct a combined χ2. For each mX in 1 GeV − 300 GeV, we then
find the χ2 minimum by varying gXxL2 , gXxE2 , εY , shown as the orange line in figure 1, to
be compared with the SM value in green. The case of no kinetic mixing, εY = 0, is shown
with the red line, while the blue line shows the case where the couplings to Xµ are entirely
due to kinetic mixing.

We observe that at low mX masses, the best fit is similar to the solution where the
Xµ couplings are exclusively generated by the kinetic mixing. However, as the mX mass
increases there is a growing tension between a large value of εY , which would minimize the
size of the Xµ couplings to neutrinos and the effect of the trident constraints, and a small
value as preferred by EWPT constraints. The net effect is that a combination of trident
production and EWPT constraints limit the X boson solutions to (g−2)µ to be rather light:

mX . 4GeV (trident+T ). (4.2)

It is worth reiterating that the only assumptions entering this bound are that the
U(1)X model is renormalizable. Higher-dimensional operators could be added to the
Lagrangian (3.1) to modify the bound; however, this goes beyond the minimality assumed
in this paper.

4.2 Global constraints on anomaly-free vector-like U(1)X models

Having set an overall upper bound on mX , we perform a scan over all vector-like models
in order to determine those that can account for the (g− 2)µ discrepancy and at the same
time satisfy all the constraints discussed in section 3. We assume that the sterile neutrinos
are heavy enough so as not to affect the low energy phenomenology. The U(1)X charges in

8The typical flavor composition of the initial neutrino flux in these experiments is dominantly νµ, whereas
the next-largest, νe, constitutes less than a percent of the neutrino flux (see, e.g., ref. [129]). Suppressing
the X coupling to νµ is sufficient to make the CCFR bound irrelevant in the parameter region that leads
to the solution of (g − 2)µ.
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Minimum χ2 from (g − 2)µ, CCFR, and EW T parameter

SM
εY = 0

xL2
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Figure 1. Minimum χ2 values in a model with a new Xµ vector boson coupling to second generation
leptons with charges xL2 and xE2 and a kinetic mixing with the hypercharge gauge boson εY from
a fit to experimental data taking into account (g − 2)µ, CCFR, and the EW T parameter (see the
text for details). The orange curve is the global best fit χ2, the blue is the best fit in the absence of
muon charges (dark photon), the red is the best fit for vanishing kinetic mixing, and the green line
is the SM χ2. In the shaded grey region, (g−2)µ cannot be explained by any values of xL2 , xE2 , and
εY while at the same time satisfying the constraints from CCFR and the electroweak T parameter.

the vector-like models then constitute a 3-parameter family of possible charge assignments,
with the charges xf for each SM fermion given by

xf = cBB − ceLe − cµLµ − cτLτ , where cB = ce + cµ + cτ
3 , (4.3)

with B, Le,µ,τ the baryon and individual lepton numbers and ce,µ,τ continuous parameters.
For the 419 vector-like models with |xf | ≤ 10, these take specific rational values that can
be found in ref. [65]. An overall factor can be absorbed into the gauge coupling gX , which
reduces the number of independent physical parameters to two. Since it is well-known
that the Lµ − Lτ model can explain (g − 2)µ while passing all constraints, we express the
two-dimensional model space in eq. (4.3) in a way that makes it apparent how closely a
given model resembles the Lµ − Lτ charge assignments,

xf ∝ sin(α)
(
Le − Lµ) + cos(α)

(
B/3− Lµ

)
+R

(
Lµ − Lτ

)
. (4.4)

The polar angle α determines the ratio of baryon and electron charges, while the radial
parameter R gives the “closeness” to Lµ − Lτ , with R → ∞ corresponding to the exact
Lµ − Lτ limit. Note that Le and B, with coefficients proportional to sin(α) and cos(α),
respectively, enter the parameterization in a combination with Lµ in such a way that models
given by eq. (4.4) are anomaly-free for arbitrary values of α and R.

We use the parametrization (4.4) to systematically treat the experimental constraints
on the vector-like models. Since only low X mass explanations of (g−2)µ are still possible,
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R = 25
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B − 2Le − Lµ

tan(α) = −1

tan(α) = −2/3

∆χ2 > 4 (without COHERENT)

model with integer charges |xf | ≤ 10
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sin(α)(Le − Lµ) + cos(α)(B/3− Lµ) + R (Lµ − Lτ )

Figure 2. Bounds on vector-like gauge model solutions to (g − 2)µ, parameterized by eq. (4.4), at
mX = 200 MeV. Inside the grey region, an explanation of (g−2)µ is excluded by the combination of
data from neutrino oscillations in matter, NA64, Borexino, BaBar 2014 (see text for details). The
blue crosses correspond to models with integer charges |xf | ≤ 10. Linear and logarithmic scales are
used for R < 1 and R > 1, respectively.

cf. eq. (4.2), we can focus on the low-energy Lagrangian (2.1). For each vector-like model,
the physics is determined by the X mass mX , the gauge coupling gX , and the kinetic
mixing parameter ε. To reduce the complexity of the analysis, we identify mX ' 200 MeV
as the mass with the best possibility of explaining (g − 2)µ: for masses above the di-muon
threshold the resonance searches at LHCb and Babar provide very strong constraints. All
the remaining important bounds, in particular the bounds on NSI from neutrino oscilla-
tions, Borexino, NA64, and COHERENT, limit the X mass from below, and thus taking
mX close to the di-muon threshold minimizes their importance.

To narrow down the possible candidates for explaining (g− 2)µ, we scan over α and R
in eq. (4.4). For each point in the (α,R) model space, we construct a ∆χ2 function that
takes into account the bounds from ∆aµ, Borexino, and NSI osc. and minimize it with
respect to (gX , ε) at mX = 200 MeV. As an additional constraint, we require (gX , ε) to
be in the range allowed by NA64 and BaBar2014 searches, as implemented in DarkCast.
We deem a model to be excluded as a viable explanation of the (g − 2)µ anomaly, if the
minimum ∆χ2 value is above 4. This is to be compared with the SM value for ∆χ2, which
is ∆χ2∣∣

SM = 18.3), i.e., we discard models that are in tension with either (g − 2)µ or any
individual constraint by more than 2σ. Further details on the construction of ∆χ2 are
given in appendix B.
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In the left panel of figure 2, we show the entire excluded region in the model space.
For illustration, we mark all the models with integer charges |xf | ≤ 10 with small blue
crosses and the three benchmark models B − 3Le, B − 2Le − Lτ , and B − 2Le − Lµ by
orange, purple, and green tripods. As expected, for large values of the radial parameter,
R & 50, all the models are viable, irrespective of the value of α. All such models closely
resembles the Lµ − Lτ model with only small deviations.

For smaller R values the viability of the models is strongly α dependent, i.e., depen-
dent on the baryon-to-electron charge ratio. For small values of R, the viable models are
restricted to a narrow region around tan(α) = −2/3 (depicted as the black dashed line in
figure 2 left) so that the U(1)X electron charge is roughly −2 times the baryon charge.
For such charge assignments, normal planetary matter, which has on average about as
many protons as neutrons, is almost neutral under U(1)X . As discussed in section 3.3, this
results in the reduced relevance of neutrino oscillation constraints. By contrast, the U(1)X
models in which normal matter carries a considerable U(1)X charge are ruled out as an
explanation of (g − 2)µ precisely because of the excessive contributions to the NSI. There
are only two ways for a model to both explain (g − 2)µ and predict the atoms of the most
common elements to be essentially U(1)X -neutral. Either tan(α) ≈ −2/3 so the electron
and nucleon charges approximately cancel, or R � 1 so the electron and nucleon charges
are small compared to the muon charge. The only model in which all atoms are exactly
U(1)X -neutral is the Lµ−Lτ model, i.e., R→∞. For models that differ considerably from
Lµ − Lτ , i.e., for R � 1, the cancellation of U(1)X charges in normal matter is the only
way to avoid the stringent NSI bounds.

In the right panel of figure 2, we show the region around tan(α) ≈ −2/3 for R < 1.
Again, we mark the models with integer charges |xf | ≤ 10 with small blue crosses and the
three sample models B − 3Le, B − 2Le− Lτ , and B − 2Le− Lµ with orange, purple, and
green tripods, respectively. In the lower half of the plot α is shifted by π compared to the
upper half of the plot, and R is always positive.9 We observe that for small values of R,
the only models that can pass the neutrino oscillation bounds either lie in a very narrow
region close to tan(α) = −2/3, where nucleon and electron U(1)X charges cancel inside
atoms, or at around R ≈ 0.1 in the region −1 . tan(α) . −2/3.

The constraints from neutrino oscillations on NSI already exclude most of the parame-
ter space for R . 10. Another potentially relevant constraint in this region of model space
is due to coherent elastic neutrino-nucleus scattering as measured by the COHERENT ex-
periment. We impose this bound on all the models with integer charges |xf | ≤ 10 that are
not already excluded by the neutrino oscillation data. (Since deriving the COHERENT
bound is computationally expensive this constraints was not include in figure 2.) All the
models that are not yet excluded before applying the COHERENT constraint appear in the
right panel of figure 2 as small blue crosses on white background, apart from the Lµ − Lτ
model, which is not shown, since it corresponds to R→∞ limit. For all these models, we
add the contribution from COHERENT to the previous ∆χ2 function and minimize the

9We can restrict ourselves to positive values of R, since taking R → −R in eq. (4.4) is equivalent to
taking α→ α+ π.
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Charges Best-fit values for mX = 200MeV Figure
cB ce cµ cτ ε e/gX gX ∆χ2 panel

0 0 1 −1 0.01 1.44× 10−3 0.41 Figure 3
3 −7 −1 −1 −6.97 2.17× 10−4 2.00 Figure 5 f)
3 −6 7 −10 −6.26 1.02× 10−4 2.60 Figure 5 e)
3 −6 6 −9 −6.21 9.90× 10−4 2.84 Figure 5 d)
3 −6 5 −8 −6.16 1.19× 10−4 3.13 Figure 5 c)
3 −6 4 −7 −6.11 1.31× 10−4 3.47 Figure 5 b)
3 −6 3 −6 −6.08 1.30× 10−3 3.90 Figure 5 a)

Table 1. The U(1)X charges parametrized by cB,e,µ,τ in (4.3) (first four columns), and the best-fit
values of the mixing parameter (fifth column) and gauge coupling (sixth column), as well as the χ2

value at the minimum taking mX = 200MeV, for vector-like U(1)X models that can explain the
measurement of (g − 2)µ within 2σ and pass the bounds from NSI osc., COHERENT, Borexino,
NA64, and BaBar.

10−2 10−1 100

mX [GeV]

10−3

10−2

g X

Lµ − Lτ , µ/τ -loop effective kinetic mixing

(g − 2)µ

CCFR

Borexino

NA64

BaBar 2016

LHCb

BaBar 2014

Figure 3. Parameter space of the Lµ−Lτ model with the parameter space that explains the central
value of ∆aµ denoted with dashed black line (the 2σ band by solid black lines). The exclusions by
different measurements are color coded as given in the legend.

newly obtained ∆χ2 function at mX = 200 MeV with respect to (gX , ε). The charges and
best-fit values of the models with ∆χ2 < 4 are shown in table 1. This table shows models
belonging to three distinct classes, which we discuss separately next.
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The Lµ−Lτ model. The Lµ−Lτ model has the lowest ∆χ2 value. It is able to explain
(g − 2)µ comfortably without causing tensions with other experimental constraints. The
best-fit point is found for vanishing kinetic mixing ε, however even for kinetic mixing values
that one would typically obtain if this were generated at one loop, ε ∼ gX e/(16π2), the
Lµ − Lτ model can still explain (g − 2)µ without being excluded by other constraints. In
figure 3 we show an example where the kinetic mixing is assumed to be induced by the
muon and tau running in the loop.

The class 3B − 6Le − 3Lτ + N(Lµ − Lτ ) with N ∈ {3, 4, 5, 6, 7}. These models
satisfy tan(α) = −2/3, i.e., they lie on the dashed vertical line in figure 2 and are all within
the narrow region of model space where the U(1)X charges of electrons and nucleons in
atoms approximately cancel. In figure 2, only the models with N < −2 were excluded.
The addition of the COHERENT constraint now leads to the exclusion of all models with
N < 3. As shown in table 1, larger values of N generically correspond to lower ∆χ2

values, that is, they can satisfy the constraints more easily. This is visualized in the left
panel of figure 4, where we show the ∆χ2 values for N ≥ 0 with the grey shaded region
corresponding to ∆χ2 > 4. The reason for the decrease in ∆χ2 as N increases is that
the muon charge increases as well and thus a smaller gauge coupling is requires to explain
(g− 2)µ. This can be seen in the sixth column of table 1 and in the right panel of figure 4.
Since an increase in N does not affect electron and baryon charges, the smaller values of
the gauge coupling lead to weaker constraints from NSI. Ultimately, the models become
more similar to the Lµ − Lτ model as N increases.

At the best-fit point, not only the ∆χ2 value and the gauge coupling gX but also the
kinetic mixing ε is correlated with N , which can be understood as follows: the COHERENT
bound is due to a measurement of the coherent elastic neutrino-nucleus scattering in cesium
iodide (CsI). Accordingly, the COHERENT bound becomes less constraining if the U(1)X
charges of protons and neutrons in CsI approximately cancel. Cesium and iodine have
neutron-to-proton ratios 78/55 and 74/53, respectively, such that the average neutron-to-
proton ratio in CsI is 1.4 to a very good approximation. In the 3B−6Le−3Lτ +N(Lµ−Lτ )
class of models, the effective U(1)X charge of neutron and proton (taking into account the
kinetic mixing ε) is 3 and 3 + ε e/gX , respectively. CsI therefore becomes approximately
U(1)X -neutral for

3 + ε
e

gX
≈ −(1.4× 3) =⇒ ε

e

gX
≈ −7.2 . (4.5)

The Borexino bound, on the other hand, is due to a measurement of elastic neutrino-
electron scattering and vanishes if the effective U(1)X charge of the electron is zero, i.e.,
when

− 6− ε e
gX

= 0 =⇒ ε
e

gX
= −6 . (4.6)

For small N , the relatively large gauge coupling needed to explain (g − 2)µ makes the
Borexino bound very sensitive to deviations from eq. (4.6).10 As N increases and the

10An exception is the model space close to N = 0, where the U(1)X -coupling of the muon neutrino
vanishes, which weakens the Borexino bound.
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gX (best-fit)

3B − 6Le − 3Lτ +N(Lµ − Lτ ), mX = 200 MeV

Figure 4. The comparison of minimal ∆χ2 values (left panel), as well as best-fit values for the
kinetic mixing parameter (middle) and the gauge coupling (right) for the vector-like U(1)X models
with the SM fermion charges parametrized as xf = 3B − 6Le − 3Lτ + N(Lµ − Lτ ), with N ∈
{0, 1, 2, 3, 4, 5, 6, 7}. The ∆χ2 function takes into account the measurement of (g − 2)µ and the
bounds from NSI osc., COHERENT, Borexino, NA64, and BaBar while the X mass was set to
200MeV. The grey shaded region corresponds to ∆χ2 > 4. The five models with ∆χ2 < 4 are also
listed in table 1.

gauge coupling decreases, larger deviations from eq. (4.6) are allowed by Borexino and the
best fit value of ε e/gX moves closer to eq. (4.5) in order to better satisfy the COHERENT
bound. This also means that the COHERENT bound is considerably more constraining
at the best fit point for smaller N , which in turn leads to a larger ∆χ2 value.

The bounds on 3B−6Le−3Lτ+N(Lµ−Lτ ) withN ∈ {3, 4, 5, 6, 7} are shown in figure 5
in panels a) through e), in the plane of the X mass mX and the gauge coupling gX , while
for each plot the kinetic mixing ε is set to its best-fit value shown in table 1. In these plots,
we can observe the interplay of Borexino and COHERENT constraints described above.
For small N , e.g., for N = 3 shown in panel a), gX has to be relatively large in order to
explain (g − 2)µ. Consequently, the Borexino bound (shown in dark purple) requires ε to
be very close to eq. (4.6). This in turn leads to a relatively strong COHERENT bound
(shown in red), which then excludes part of the parameter region preferred by (g − 2)µ in
the mX mass range between 100 MeV and 200 MeV. Comparing this to the models with
increasing N in panels b) through e), one observes that the size of gX preferred by (g−2)µ
decreases due to the increasing muon charge, the Borexino bound allows for smaller ε, and
the COHERENT bound becomes less and less important until it becomes weaker than the
bound from the neutrino oscillations for N = 7, cf. panel e).

The plots in figure 5 also demonstrate that for mX above the dimuon threshold, res-
onance searches, in particular from BaBar and LHCb, prevent an explanation of (g − 2)µ,
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10−4

10−3

g X

3B − 6Le − 3Lτ + 3(Lµ − Lτ ), ε = −6.08 gX/e

a)

3B − 6Le − 3Lτ + 4(Lµ − Lτ ), ε = −6.11 gX/e

b)

10−4

10−3

g X

3B − 6Le − 3Lτ + 5(Lµ − Lτ ), ε = −6.16 gX/e

c)

3B − 6Le − 3Lτ + 6(Lµ − Lτ ), ε = −6.21 gX/e

d)

10−1 100

mX [GeV]

10−4

10−3

g X

3B − 6Le − 3Lτ + 7(Lµ − Lτ ), ε = −6.26 gX/e

e)

10−1 100

mX [GeV]

3B − 7Le − 2Lτ − 1(Lµ − Lτ ), ε = −6.97 gX/e

f)

(g − 2)µ

LHCb

BaBar 2016

CCFR

COHERENT

NSI osc.

Borexino

NA64

BaBar 2014

BaBar 2017

EW T parameter

Figure 5. Parameter space of viable vectorlike U(1)X models that can explain (g − 2)µ (the
parameter space for Lµ − Lτ is shown in figure 3). The central value of ∆aµ is indicated by a
dashed black line (the 2σ band by solid black lines). The exclusions by different measurements are
color coded as given in the legend.
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whereas for lower values of mX , neutrino oscillation data provides the strongest bound.
This justifies the choice of mX = 200 MeV used in figures 2 and 4 and table 1.

It is interesting that the CCFR bound from neutrino trident production (shown in
orange) becomes less constraining for smaller values of N and even completely disappears
for N = 0. The reason is that the effective U(1)X couplings of the charged muon and muon
neutrino are N − ε e/gX and N , respectively. For sizable ε and decreasing N , the region in
parameters space where (g − 2)µ can be explained is, therefore, less and less excluded by
the CCFR bound. In the large N limit, on the other hand, the model is closer and closer
to the Lµ − Lτ model and the CCFR constraint becomes increasingly important.

The class 3B − 7Le − 2Lτ + N(Lµ − Lτ ) with N = −1. These models satisfy
tan(α) = −7/9 so that the cancellation of U(1)X charges inside atoms is less efficient
than in the models with tan(α) = −2/3. Nevertheless, there is a window roughly around
N = −1 where the bound from neutrino oscillations is relatively weak and an explanation
of (g − 2)µ is possible (cf. right panel of figure 2). The virtue of this class of models is
that both the Borexino and the COHERENT bounds can be comfortably satisfied. This
is apparent from the constraints displayed in figure 5, panel f), which show that for mX

below the dimuon threshold the neutrino oscillations provide the most relevant bound in
the (g − 2)µ band, whereas COHERENT and Borexino are far less important. While
the COHERENT bound vanishes for ε e/gX ≈ −7.2, as in eq. (4.5), the effective U(1)X
charge of the electron in the present class of models is −7− ε e/gX such that the Borexino
bound disappears for ε e/gX = −7. Consequently, values of ε e/gX ≈ −7 lead to very weak
bounds for both Borexino and COHERENT. The best fit values for ε e/gX are indeed
found to be very close to −7 by the global scan (see table 1). The only model in the class
3B − 7Le − 2Lτ + N(Lµ − Lτ ) that enters the list of viable models in table 1 is the one
with N = −1, but it actually reaches the second lowest ∆χ2 of all the models in this list.
This model is also notable for particularly weak bounds from neutrino trident production.

5 Chiral models

There are 21 chiral charge assignments in the charge range [−10, 10] (not counting permu-
tations) in which lepton masses cannot be fully realised at the renormalizable level [85].
Upon careful inspection of the charge assignments in the entire class of the chiral U(1)X
models, we focus on one of the best performing models, the model L̃µ−τ . Quite generally,
for these types of models the constraints in the parameter region relevant for (g − 2)µ will
be minimized, if the U(1)X charges of the quarks vanish, and the electron coupling is purely
axial, in order to avoid the NSI bounds, while the vector-like muon charge is as large as pos-
sible. The L̃µ−τ model satisfies all of the above requirements. Even so, the L̃µ−τ model is
excluded as the explanation of the (g−2)µ anomaly by a set of complementary constraints,
as we show below, and we expect the same to be true for the other chiral models.
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In the L̃µ−τ model, the U(1)X charges of the fermions are given by [65]

(xL1 , xL2 , xL3) = (−1, 7,−6), (5.1a)
(xE1 , xE2 , xE3) = (1, 6,−7), (5.1b)
(xN1 , xN2 , xN3) = (−7,−2, 9), (5.1c)

xQi,Di,Ui = 0, (5.1d)

where the first line is for the left-handed leptons, the second and the third lines are for the
right-handed charged leptons and neutrinos, respectively, while the quarks do not carry a
U(1)X charge.

Due to the U(1)X charge assignment, the charged lepton Yukawas are forbidden at
the renormalizable level and only arise once the U(1)X gauge symmetry is spontaneously
broken. For concreteness let us consider the minimal possibility — that it is due to a
SM-singlet scalar φ with U(1)X charge xφ = 1 that develops a VEV 〈φ〉 6= 0. The diagonal
entries of the charged lepton Yukawa matrix are populated by the dimension-5 operators
L̄iHφ

†Ei for muons and taus, i = 2, 3, and by the dimension-6 operator L̄1Hφ
2E1 for the

electrons. This is consistent with the smallness of the charged lepton masses and with the
hierarchy between electron and muon and tau Yukawas. Such higher-dimension operators
can be generated, for instance, by integrating out a set of heavy vector-like leptons at tree
level with masses M � 〈φ〉 well above the EW scale. The muon and tau Yukawas are then
suppressed by 〈φ〉/M and the electron Yukawa by (〈φ〉/M)2.

The off-diagonal terms in the Yukawa matrix are predicted to be zero up to corrections
from operators of dimension 10 or higher, assuming that the necessary fields required to
mediate such off-diagonal operators are even present in the UV theory. The suppressed
mixing provides the needed protection against cLFV constraints. A phenomenologically
viable realization of the neutrino masses and mixings, on the other hand, requires additional
scalars. Thanks to the smallness of the neutrino masses, this can be done consistently
without introducing sizeable cLFV.

The 2σ band in parameter space of L̃µ−τ that explains (g − 2)µ is denoted with solid-
black lines in figure 6 (dashed black line denotes the central value), while the colored
regions are excluded. The neutrino trident CCFR bound (orange) limits the L̃µ−τ solution
of (g−2)µ tomX . 400 MeV. In figure 6 the kinetic mixing parameter was set to ε = gX/10,
comparable to the IR contribution from muon and tau running in the loop, cf. eq. (5.5)
below. For larger values of ε, the atomic parity violation constraints (dark purple) become
more stringent (see section 5.1). The upper limit on ε from atomic parity violation makes
the CCFR bound very robust, i.e., the trident can not be removed by choosing ε as in the
vector category.

The Borexino bound on neutrino-electron scattering (dark green) limits the L̃µ−τ so-
lution of (g − 2)µ to the X masses above mX & 60 MeV. The NSI oscillation bounds,
on the other hand, are not relevant for the L̃µ−τ model, since in L̃µ−τ the couplings of
Xµ to electrons are purely axial and, thus, induce only suppressed, spin-dependent effects.
Furthermore, in L̃µ−τ the X boson does not couple to quarks. These two features of L̃µ−τ
couplings mean that the NSI oscillation bounds are completely avoided in this model.
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L̃µ−τ , ε = gX/10
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(g − 2)e
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COHERENT
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Figure 6. Parameter space for the light X solution to the (g − 2)µ anomaly in the L̃µ−τ model.
The shaded regions are excluded by various experiments, while the region between the black lines
is preferred by (g − 2)µ at 2σ. See section 5 for details.

The constraints from the resonant searches are obtained using the DarkCast code
which by default supports only vector couplings. We approximate the L̃µ−τ bounds with
those for a vector model with charges xL1,L2,L3 = (1, 13

2 , −
13
2 ). For processes where the

mass can be neglected, such as NA64, there is no difference between the axial and the
vectorial couplings. Also for the BaBar search, the above vector model reinterpretation
still approximates rather well the actual bounds [130, 131]. Below the di-muon threshold,
the dominate decay channel of X is to invisible final states, while above the di-muon
threshold there is a sizeable branching ratio for X → µ+µ−. The e+e− decay mode is
suppressed because of the charge hierarchy and gives a sub-leading constraint. In all cases,
the X decays are prompt in the targeted parameter space. The resonance searches rule
out the L̃µ−τ solution to (g− 2)µ for mX > 2mµ (BaBar) and for mX . 100MeV (NA64).

Since L̃µ−τ has chiral couplings, there are also observables that are only important for
such cases of combined vector and axial vector couplings to SM fermions, which we discuss
next.

5.1 Atomic parity violation

Parity-violating atomic transitions can determine whether X couples axially to electrons.
For typical momentum transfers in atomic interactions q2 � m2

X (for the mass range
considered here) and the tree-level exchange of X leads to an effective interaction,

Leff ⊃
ε e gX
m2
X

(ēγµγ5e)
(2

3 ūγ
µu− 1

3 d̄γ
µd

)
, (5.2)
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where the couplings to quarks are due to kinetic mixing. The effect of X on the Hamiltonian
of atomic systems is, thus, modeled with a parity-violating point-like interaction between
the electric charge of the nucleus and electrons and mimics the parity-violating interaction
between the nucleus and electrons mediated by the exchange of the SM Z boson. Hence,
the new muonic force can be seen as a modification of the weak charge of the nucleus [132],

∆Qweak = Z ε e gX
2
√

2
GFm2

X

, (5.3)

where Z is the atomic number.
The parity-violating transition has been measured to percent-level precision in

133
55 Cs [133], with the latest analysis finding Qexp

weak − QSM
weak = 0.65± 0.43 [134]. We can

use this to place the 95% CL bound on the atomic parity violating (APV) couplings of the
X boson,

gX <
mX

1 GeV

( |ε|e
gX

)−1/2{3.4× 10−4 for ε > 0
1.3× 10−4 for ε < 0

. (5.4)

With no particular UV theory in mind, ε is treated as a free parameter, and the APV
bound can be evaded by sufficiently reducing the value of ε.11 Nevertheless, the running of
ε can be used to set an approximate lower bound on |ε| in the absence of tuning. Assuming
no other BSM particles below the scale of electroweak symmetry-breaking and working
in the limit ε � gX , the 1-loop running of ε receives its dominant contribution from
renormalization group running between the muon and tau mass [65], resulting in

ε(mµ)− ε(mτ ) ' 13e gX
12π2 ln mτ

mµ
= 0.31e gX . (5.5)

For processes with small momentum transfers, we therefore expect ε & gX/10. At high
scales, where other states, such as the putative S3 muoquark, are dynamical, these can also
contribute to the running of ε, which should be taken into account in any UV completion
of the model.

The presence of a rather stringent APV bound, eq. (5.4), has important phenomenolog-
ical implications. It excludes the possibility of the X coupling to muons being dominated
by the kinetic mixing, which could otherwise decorrelate the couplings to muons and muon
neutrinos, cf. section 3.2. This is not possible for L̃µ−τ . Since in this model the inter-
actions of Xµ with nucleus are induced by the kinetic mixing, the COHERENT bound in
figure 6 (light orange) can be directly compared with the one from APV (dark purple), the
latter being stronger.

5.2 Electron anomalous magnetic moment

The second observable for which the L̃µ−τ model is qualitatively different from a vector-like
model such as Lµ − Lτ is the electron anomalous magnetic moment, (g − 2)e. In Lµ − Lτ
the X coupling to electrons is exclusively due to a (presumed) small kinetic mixing with

11In case of gauge unification, ε vanishes above the breaking scale. It is then radiatively generated and
calculable.
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the photon, resulting in a similarly minute modification of (g − 2)e. In the L̃µ−τ model,
on the other hand, the electron carries a nonzero U(1)X charge and receives a much larger
contributions to (g−2)e (the contribution is also numerically larger because of the coupling
to electrons is axial, cf. eq. (2.5)).

The (g−2)e has been calculated to high precision in the SM [135] but crucially depends
on the exact value of the fine-structure constant. Recently, α has been measured precisely
in two experiments involving cesium [136] and rubidium [137] atoms, respectively; however,
the measurements are internally inconsistent at the level of 5.4σ. With these inputs, the
deviation of the measured (g − 2)e [138] from the SM theory prediction is found to be
aexp
e − aSM,Cs

e = (−8.8 ± 3.6) · 10−13 and aexp
e − aSM,Rb

e = (4.8 ± 3.0) · 10−13, with errors
dominated by the experimental measurement of (g − 2)e.

In the L̃µ−τ model, the axial coupling of X to the electron gives a negative correction
to (g − 2)e (see, e.g., refs. [98, 99]). Working in the limit mX � me, this translates into
95% CL bounds

gX < 9.5× 10−3 mX

1 GeV(−∆ae) =
{

1.2× 10−2 [Cs],
3.3× 10−3 [Rb].

(5.6)

A stronger bound is obtained using α from the rubidium measurement, which prefers a
positive contribution to (g − 2)e. However, even this constraint is still weaker than the
Borexino bound as shown in figure 6.

5.3 Neutrino-electron scattering

The reactor experiments TEXONO [80] and GEMMA [81] measured the neutrino scattering
on electrons and set competitive constraints on the Xµ couplings. The relevant bound
shown in figure 6 is extracted using the ν̄ee− → ν̄ee

− electron recoil energy spectrum
from figure 16(b) of the TEXONO analysis paper, ref. [80], closely following the procedure
described in [139]. For L̃µ−τ , we find the 95% CL bounds

gX < 1.7× 10−4 mX

100 MeV , (5.7)

and 2.8 × 10−4 < gX × 100 MeV/mX < 3.5 × 10−4, where the NP amplitude is roughly
twice the negative SM amplitude. The electron recoil energy is . 8MeV, thus, the above
EFT limit is valid for the mX range considered in figure 6. This bound is only slightly
worse than the Borexino bound.

The high-energy beam experiment CHARM-II at CERN measured elastic νµe− and
ν̄µe
− scattering [82, 83]. The target calorimeter was exposed to the horn-focused wide band

neutrino beam from the Super Proton Synchrotron with the mean muon neutrino (antineu-
trino) energy of Eν = 23.7±0.3GeV (Eν = 19.1±0.2GeV). The signature of this process is a
forward-scattered electron producing an electromagnetic shower measured by the calorime-
ter. The variable y is defined as the ratio of the electron recoil energy over the incident
neutrino energy. Neglecting the electron mass, the differential cross section is given by

dσ

dy
(νµe, ν̄µe) = 2G2

FEνme

π

(
g2

L,R + g2
R,L(1− y)2

)
, (5.8)
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where

gL = s2
w −

1
2 + g2

XxL2xL1

2
√

2GF (2Eνmey +m2
X)
, (5.9)

gR = s2
w + g2

XxL2xE1

2
√

2GF (2Eνmey +m2
X)
, (5.10)

where the X charges of the L̃µ−τ model are given in eq. (5.1).
The unfolded differential distributions in y for νµe and ν̄µe scattering were reported in

figure 1 of ref. [82], albeit in arbitrary units. This information was then used in ref. [82]
to determine the SM weak mixing angle by fitting to the shape of the distributions, while
requiring no knowledge of the overall normalization. Similarly, in L̃µ−τ we are able to set
an upper bound on gX for given mX by profiling over two arbitrary nuisance parameters
describing the absolute normalisations. The excluded region is shown with red color in
figure 6. This represents the most stringent limit on the model for mX . 100MeV.

The shape analysis is unfortunately ineffective for larger masses where the information
on the overall rate is needed. Although the SM prediction was overlaid in figure 1 of
ref. [82], the uncertainty on the prediction was not reported. The expected SM cross
section depends on the number of factors subject to systematic uncertainties such as the
neutrino flux determination. Conservatively assuming the error on the normalisation of
the SM prediction to be 30%, i.e., constraining the two nuisance parameters in the fit to be
1.0± 0.3, we find the exclusion shown with the red-hatched region in figure 6, covering the
remaining viable mass window for (g − 2)µ. While the estimate of a 30% error on overall
normalization seems plausible to us, if not even conservative (it is an order of magnitude
larger than the relative error in the determination of gνeA [83]), it is not sufficient to claim
a definitive exclusion of the L̃µ−τ model. A proper recast of the CHARM-II bound using
the detector level events shown in figure 1 of ref. [83] while accounting correctly for the
systematic effects could possibly achieve this, but it is beyond the scope of this work.

6 Possible connections to B-anomalies

We continue by commenting on the possibility that a single vector mediator is behind a
simultaneous solution of (g − 2)µ and B anomalies. As shown in section 4.1, there is a
generic upper bound on the vector mass from neutrino trident production and T parameter,
mX . 4GeV. In this situation, B → Kνν̄ provides an important bound since it receives
contributions from on-shell B → KX decay. Generically, X decays invisibly with a sizeable
branching ratio. As shown in ref. [65] (see also refs. [140, 141]), this puts an upper limit on
the effective gbs coupling for a given mX . Since the deviation in RK is proportional to the
product of gbs and the effective gµµ coupling, the two together imply a lower bound on gµµ
for given mX , restricting the viable parameter space to be in the orange region in figure 1
of ref. [65]. The range predicted for the effective gµµ coupling from the (g − 2)µ anomaly,
on the other hand, does not overlap with the orange band in figure 1 of ref. [65], apart
from the small region around mX ∼ 2.5GeV and qA/qV ' −0.4 (see also, e.g., ref. [142]).
This possibility is ruled out by the constraints on the trident production in the case of a
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small kinetic mixing. When the requirement of vanishingly small kinetic mixing is relaxed,
this conclusion no longer applies in full generality, since the kinetic mixing can be used
to remove the trident constraint. One then needs to invoke constraints from resonance
searches to rule out explicit models.

A better way to solve the B anomalies in this framework is to extend the field content
by a heavy scalar, a TeV-scale muoquark S3 in the (3, 3, 1/3)xS3

representation of the SM
gauge group SU(3)c × SU(2)L × U(1)Y and with the U(1)X charge xS3 = −xL2 − xq for
xL2 6= xL1,L3 . These charge assignments allow a Yukawa coupling (q̄c`S3) of the muoquark
to µ but not to e and τ . Furthermore, for xL2 6= −3xq, the dimension-4 diquark operators
qqS†3 are forbidden and proton decay is suppressed. In other words, a non-universal U(1)X
enhances the properties of a TeV-scale leptoquark by keeping the accidental symmetries of
the SM while still addressing B-anomalies [85–89]. Out of 276 quark-flavor universal U(1)X
charge assignments, 273 allow for the above conditions for inclusion of a muoquark [65]. The
three models which fail are: the dark photon model, which has xf = 0 for all fermions, and
the U(1)B−L and U(1)Ni−Nj models. The b → sµ+µ− anomaly is resolved by a tree-level
exchange of a TeV-scale S3 muoquark. This exchange leads to an additional V −A contri-
bution to the b→ sµ+µ− transitions, as required by data; see, e.g., refs. [85, 86, 143–154].
Another path to reconcile the two anomalies is to add extra vector-like matter, see e.g. [155].

7 Conclusions

A new massive spin-1 boson Xµ coupling vectorially to muons, L ⊃ gXqV µ̄γ
µµXµ, can

give a one-loop contribution of the right size to explain the 4.2σ discrepancy in (g − 2)µ.
Such a bottom-up simplified model is relatively poorly constrained experimentally. The
mass of the X boson can be anywhere from 10MeV (set by cosmological constraints, see
section 2.5) up to 1TeV (the perturbative unitarity limit, see section 2.4). Fully exploring
this mass window via direct searches may well require a dedicated future collider strategy
such as a muon collider [100].

However, additional theoretical inputs more often than not lead to correlations with
other phenomenological probes. In general, these either severely constrain the Xµ solution
to the (g − 2)µ anomaly or predict a signal in the next generation of experiments. For
instance, demanding electroweak gauge invariance, the renormalizable couplings of Xµ to
muons come from two sources: the kinetic mixing, L ⊃ εYBµνX

µν/2, and the covariant
derivative in the kinetic term, which gives couplings of the form L ⊃ gX

(
xL2L̄2γ

µL2 +
xE2Ē2γ

µE2
)
Xµ. Each of the two terms comes with a separate set of constraints. Due to

electroweak gauge invariance, the covariant derivative term generates couplings of the X
boson not just to muons but also to muon neutrinos. This then leads to constraints from
neutrino trident production, which is most relevant in the high X mass region. Meanwhile,
the kinetic mixing is constrained by electroweak precision data, which is also mostly relevant
for heavier X masses starting from around the GeV scale. Even before committing to a
specific gauged U(1)X model, the combination of the neutrino trident production and
electroweak precision tests, assuming U(1)X breaking by SM gauge singlets, already limits
any such solution of (g−2)µ to relatively lightX boson masses,mX . 4GeV, see section 4.1.
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Further phenomenological implications are obtained in specific complete theories that
contain the X boson. In this manuscript, we performed a comprehensive survey of spon-
taneously broken anomaly-free gauged U(1)X models in which the SM matter content is
minimally extended by three generations of right-handed neutrinos. Our results are inde-
pendent of how the U(1)X gauge group is broken, as long as the condensate is neutral under
the SM. In the mass window 10MeV . mX . 4GeV we perform a thorough investigation of
419 phenomenologically inequivalent renormalizable models with vector-like charge assign-
ments, allowing for arbitrary kinetic mixing, i.e., for the full set of quark flavor-universal
models that have vector-like U(1)X charge assignments for charged SM leptons, and a max-
imal (finite) U(1)X charge ratio of 10. We find that 7 such models, listed in table 1, avoid
the experimental constraints in a narrow mass window with mX just below 2mµ such that
the global tension with all the data, including (g− 2)µ, is less than 2σ. The viable models
have charge assignments that are either exactly Lµ−Lτ or, in most cases, deformations of
it in the B − 2Le − Lτ direction, which to a large extent avoids the stringent constraints
on nonstandard neutrino interactions from neutrino oscillations. The best agreement with
the data is obtained for Lµ − Lτ . The key complementary constraints on the models are
due to the searches for nonstandard neutrino interactions, either the bounds from neutrino
oscillations or from COHERENT and Borexino.

There are also 21 chiral anomaly-free U(1)X charge assignments with charges in the
range [−10, 10]. The contributions to (g−2)µ are maximized for muon couplings that are as
close to vector-like as possible, while the effect of bounds on nonstandard neutrino interac-
tions from neutrino oscillations is minimized for axial electron couplings and for vanishing
couplings to quarks. We performed a detailed analysis of a prime candidate of this type,
the L̃µ−τ model, and found that it is excluded in the region relevant for (g − 2)µ. We can
reasonably expect that the same is true for the other models with chiral charge assignments.

All of the above U(1)X solutions to the (g − 2)µ anomaly feature lepton flavor-non-
universal charge assignments. These imply selection rules on the charged lepton mass
matrix and force the interaction and mass bases to coincide up to small, potential correc-
tions from higher-dimensional effective operators. This provides a very effective mechanism
to suppress charged lepton flavor violation. Indeed, radiative muon and tau decays in gen-
eral present the biggest challenge for the new physics explanations of the (g−2)µ anomaly,
requiring a rather stringent flavor alignment [44]. In the above models, this protection
against such flavor constraints is built into their symmetry structure. Such setups are also
interesting in the context of the ongoing B-physics anomalies, allowing for the muoquark
mediators to be present [65, 85–88].
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A NSI oscillation bounds

Here we describe the construction of a χ2 function that approximates the results of a global
fit to the NSI oscillation data [74]. The starting point is an observation that neutrino oscil-
lations in matter depend on the effective parameters12 (for more details, see e.g. [73, 74])

Eα(~x) = εeα + εpα + Yn(~x) εnα , (A.1)

where α = {e, µ, τ} is the neutrino flavor index, Yn(~x) is the neutron-to-proton ratio in
matter at position ~x along the neutrino trajectory, while εfα are given by13

εfα = xf xα ε0, f ∈ {e, p, n}, α ∈ {e, µ, τ}, (A.2)

where xf,α are the corresponding U(1)X charges, and

ε0 = 1√
2GF

g2
X

m2
X

. (A.3)

The U(1)X models we consider have quark flavor-universal couplings, and, thus, the
proton and neutron charges are given by the common baryon charge,

xp = xn = xB. (A.4)

We make an additional assumption that the approximate χ2 function can be expressed
in terms of the ~x-independent average Eα, which depends on the averaged Y n and is given by

Eα =
(
xe + (1 + Y n)xB

)
xα ε0 , α ∈ {e, µ, τ}. (A.5)

We then define the approximate NSI χ2 function as

χ2
NSI =

(
~E − ~E0

)T
C−1

(
~E − ~E0

)
, (A.6)

where ~E =
(
Ee, Eµ, Eτ

)T
, while ~E0 =

(
E0
e , E0

µ, E0
τ

)T
denotes the minimum of the χ2

function. The components of the covariance matrix C are given by

Cαβ = σα σβ ραβ , (A.7)

with the standard deviations σα and the correlation coefficients ραβ , which satisfy

|ραβ | ≤ 1 , ραβ = ρβα , ραα = 1 . (A.8)

The parameters ~η that define the χ2 function,

~η = (E0
e , E0

µ, E0
τ , σe, σµ, στ , ρeµ, ρeτ , ρµτ )T , (A.9)

12We only need to consider U(1)X couplings that conserve neutrino flavour, and thus the more general
coefficients Eαβ reduce to just the diagonal entries, Eα = Eαα.

13We do not include the kinetic mixing contribution to the X coupling to the fermions, as these contri-
butions cancel in neutral matter.

– 30 –



J
H
E
P
0
7
(
2
0
2
2
)
0
9
8

are then determined from the fit results of ref. [74], which are provided for various model
parameters ~θ,

~θ = (xB, xe, xµ, xτ )T . (A.10)

The central quantity that was used to set the bounds in [74] is

∆χ2
NSI = χ2

NSI − χ2
NSI, SM , (A.11)

where χ2
NSI, SM is the value of the χ2 function at the SM point. Using the definition in

eq. (A.6), along with ε0|SM = 0 and ~E|SM = ~0, we thus have

∆χ2
NSI =

(
~E − ~E0

)T
C−1

(
~E − ~E0

)
− ~ET

0 C
−1 ~E0 . (A.12)

In order to determine the parameters ~η, we use two quantities that were provided
in ref. [74] for several different models, i.e., for several different values of ~θ (see the first
column in table 2):

• The first quantity is the 2σ bound on gX/mX in a given model, ~θi, which is obtained
when ∆χ2

NSI = 4. We convert this to a bound on ε0 using (A.3), giving the ε̂bnd
0,i

values listed in the last column of table 2. Ideally, these bounds would be reproduced
for each ~θi by minimizing the ∆χ2

NSI function, eq. (A.12), after a judicial choice of
the values for nuisance parameters ~η and Y n. To this end, we solve the equation
∆χ2

NSI(ε0, ~θ, ~η, Y n) = 4 for ε0, which results in a function

εbnd
0 (~θ, ~η, Y n) , (A.13)

that depends on the model parameters ~θ, as well as on the χ2 parameters ~η, and on
Y n. The nuisance parameters need to be chosen so as to minimize the differences
between ε̂bnd

0,i and εbnd
0 for each ~θi.

• The second set of quantities are ∆χ̂2
NSI,min,i, the minimum values of ∆χ2

NSI for each
model ~θi, listed in the second column of table 2. If the nuisance parameters are
chosen correctly, ∆χ̂2

NSI,min,i should be well reproduced by

∆χ2
NSI,min(~θi, ~η, Y n) . (A.14)

Here ∆χ2
NSI,min(~θ, ~η, Y n) is a function obtained by minimizing eq. (A.12) with respect

to ε0.

To find the best values for nuisance parameters we construct a loss function λ,

λ(~η, Y n) =
∑
i


(
εbnd

0 (~θi, ~η, Y n)− ε̂bnd
0,i

)2

σ2
ε,i

+

(
∆χ2

NSI,min(~θi, ~η, Y n)−∆χ̂2
NSI,min,i

)2

σ2
χ,i

 ,

(A.15)
where i is an index labelling the different models with parameters ~θi for which [74] provides
the bounds ε̂bnd

0,i and the minimum values ∆χ̂2
NSI,min,i, listed in table 2. The standard

deviations σε i and σχ i are chosen as follows:
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~θ Ti ∆χ̂2
NSI,min,i ε̂bnd

0,i

(1, −3, 0, 0) −1.4 0.242
(1, 0, −3, 0) 0 0.0128
(1, 0, 0, −3) −0.6 0.0134
(1, 0, −2/3, −2/3) −1.1 0.293
(0, 1, −1, 0) −1.3 0.0873
(0, 1, 0, −1) −1.0 0.0873
(0, 1, −1/2, − 1/2) −1.3 0.546
(1, 0, 1, 1) 0 0.136
(0, 1, 2, 2) −0.1 0.196
(1, −2, −1, 0) N/A 1.58

Table 2. Input data from ref. [74] used for fitting the parameters of the approximate ∆χ2
NSI.

The value of ε̂bnd
0,i for ~θ Ti = (1,−2,−1, 0) has been provided by the authors of [74] in private

communication in the context of [65].

E0
e E0

µ E0
τ σe σµ στ ρeµ ρeτ ρµτ Y n

−1.62 −10.00 −11.15 +5.56 +8.51 +9.59 +0.78 +0.79 +1.00 +1.04

Table 3. Fitted values of the parameters of the approximate ∆χ2
NSI.

• In reproducing the ε̂bnd
0,i bounds we allow a nominal 10% uncertainty on the value

of the approximate χ2 function, motivated by how large we expect the deviations
between the exact and the approximate χ2 values to be. We thus set

σε,i = 0.1 ε̂bound
0,i . (A.16)

• The exact χ2 function used in ref. [74] to obtain the minima ∆χ̂2
NSI,min,i is not Gaus-

sian. We therefore do not expect the approximate χ2 function to be able to reproduce
the values of minima with high accuracy. In fact, we observe that choosing too small
values of σχ,i results in a rather poor fitted ε̂bnd

0,i values. Allowing for very large
σχ,i uncertainties, on the other hand, results in a fit not converging at all. As a
compromise, we use the constant values

σχ,i = 2 . (A.17)

We minimize the loss function λ using the iminuit [156, 157] Python package and obtain
a good fit with λ|min = 1.43. This indicates that the approximate χ2 function reproduces
the bounds ε̂0

bound,i with a better accuracy than the assumed tentative uncertainty of 10%.
The results of this fit is shown in table 3. Note that the fitted average neutron-to-proton
ratio Y n in table 3 is very close to the neutron-to-proton ratio averaged over all the Earth
Y
⊕
n = 1.051 (but one does not expect to match it exactly, since the oscillation data also

include results from oscillation inside the sun).
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B Global χ2 function

In section 3.3 we use a χ2 function that combines bounds from various measurements:

∆χ2 = ∆χ2
aµ + ∆χ2

Borex. + ∆χ2
NSI osc. + ∆χ2

COHERENT + ∆χ2
reson.. (B.1)

The contribution ∆χ2
aµ is defined with respect to the ideal NP model, which would be able

to exactly reproduce the central value of ∆aµ,

∆χ2
aµ =

(∆aµ
∣∣
NP −∆aµ

∣∣
exp

σ(∆aµ)

)2

. (B.2)

Here ∆aµ
∣∣
NP is the shift in the anomalous magnetic moment of the muon due to NP, while

∆aµ
∣∣
exp = 251× 10−11 is the difference between the measured value and the consensus SM

predictions, with σ(∆aµ) = 59 × 10−11 the corresponding error (see also section [2]). For
the SM ∆aµ

∣∣
NP = 0, and thus ∆χ2

aµ = 17.8.
The contribution ∆χ2

Borex. is due to possible NP contributions to the cross section
for 7Be solar neutrinos scattering on electrons. Averaging the high and low metallicity
standard solar model predictions for the solar neutrino fluxes, treating the difference to the
two predictions as the systematic error, and adding it in quadrature to the experimental
error on the measured Borexino rate, gives RBe = σBorexino/σSM = 1.06± 0.09 for the ratio
of the measured and SM neutrino cross sections. From this we construct

∆χ2
Borex. =

(
RBe

∣∣
NP −RBe

∣∣
exp

σ(RBe)

)2

, (B.3)

where RBe
∣∣
NP = σSM+NP/σSM, while RBe

∣∣
exp and σ(RBe) are the central value and the

error of the RBe measurement, respectively. For the SM ∆χ2
Borex. = 0.44.

For NSI oscillations, we use ∆χ2
NSI described in appendix A. Since this is only an

approximation to the true χ2 for NSI oscillation bounds, ∆χ2
NSI can become negative

in regions where the approximations in appendix A become less reliable. We thus take
∆χ2

NSI osc. = ∆χ2
NSI if ∆χ2

NSI > 0, but set ∆χ2
NSI osc. = 0 if ∆χ2

NSI becomes negative
(signaling the breakdown of our approximations). For the SM ∆χ2

NSI osc. = 0.
The term ∆χ2

COHERENT encodes the constraints from the COHERENT measurement.
To obtain its value we use the code accompanying ref. [114], and calculate the χ2 statistics
for the 12T,12E binning. We define ∆χ2

COHERENT as the difference between the χ2 value
for a particular model and the SM χ2 value. For SM therefore ∆χ2

COHERENT = 0.
For all the models we require that they pass the bounds on resonance searches as

implemented in DarkCast. The term ∆χ2
reson. is therefore set to zero, if the model passes

the NA64 and BaBar 2014 bounds, and it set to a very high value if they do not (in the
code we use the numerical value ∆χ2

reson. = 100 in that case). For the SM ∆χ2
reson. = 0.
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