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1 Introduction

Our current understanding of particle physics is condensed into the Standard Model (SM).
It is a quantum field theory with Poincaré spacetime symmetry and SU(3)c×SU(2)L×U(1)Y
gauge invariance. The field content includes five different gauge representations of Weyl
fermions qi, `i, ui, di, ei each coming in three flavors (copies, i = 1, 2, 3) and a single
scalar field that condenses at the electroweak scale, breaking the gauge symmetry down to
SU(3)c×U(1)EM. The Lagrangian is constructed from all local operators consistent with the
gauge symmetries up to the mass dimension four, known as the renormalizable operators.
In the initial days of the SM, the renormalizability was considered to be an important
consistency condition for valid theories. With better understanding, it became clear that
this was only a low-energy property of an effective field theory [2–10]. With more precision
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and/or higher energy, we will eventually discover the leading higher-dimensional operators
in the infinite series organized in the inverse powers of the new physics (NP) cutoff Λ —
an almost inevitable consequence of the known shortcomings of the SM in explaining the
observed universe.

The SM effective field theory (SMEFT) is a framework, which has gained popularity in
recent years [11–27]. The Large Hadron Collider (LHC) discovered the Higgs boson h [28, 29]
completing the list of the light degrees of freedom in the SMEFT. The Higgs mechanism
with h embedded in an SU(2)L doublet (the linear realization) turned out to be a decent
leading-order description of the electroweak symmetry breaking. At the same time, direct
searches failed to discover any new particles despite tremendous efforts, suggesting a possible
mass gap between the NP and SM states: Λ > G−1/2

F . With this situation, the SMEFT
analyses have become standard across different sectors of high-pT phenomenology, including
top quark [30–39], electroweak vector bosons [38–47], Higgs [38–40, 48–51], jets [52–55], and
high-mass Drell-Yan [56–82], aiming at finding smooth and correlated deviations from the
SM predictions. To this end, a global SMEFT fit would optimally summarize the knowledge
about the ultraviolet physics (UV) accessible to us at low energies.

The largest obstacle to such an analysis is the proliferation in the number of independent
operators in the SMEFT. For instance, there are 2499 independent baryon and lepton
number-conserving SMEFT operators that arise at the leading order (dimension 6) [14].1

If the field content had included only a single generation instead of three, this number
would have been 59 [13]. This is not surprising, as most of the parameters are flavorful
already in the SM at dimension 4. While the gauge sector and the scalar potential have a
total of 4 parameters (modulo the strong CP-violating term), the Yukawa sector introduces
an additional 13 parameters to accommodate the charged fermion masses and the CKM
mixing matrix.

In this paper, we address the flavor structures of the baryon and lepton number-
conserving dimension-6 operators in the SMEFT suitable for global fits including high-pT
data. For an anarchic flavor structure, with all real and imaginary coefficients of order one,
charged lepton flavor violation, neutral meson oscillations, and electric dipole moments
set a lower bound on the NP scale many decades above the TeV scale [86–91]. Only a few
operators contributing to those rare transitions would be relevant for the phenomenology,
leaving no hope of seeing new effects in the high-pT collider physics. This would also be in
conflict with resolving the Higgs mass hierarchy problem at the TeV scale or, for instance,
the B-anomalies [92–104] and (g − 2)µ anomaly [105, 106] should those prove to originate
in new physics.

There is, however, no reason to expect flavor anarchy in the dimension-6 operators given
the peculiar form of the dimension-4 Yukawa interactions. Rather, we observe hierarchical
masses for different generations of charged fermions with Yukawa couplings spanning six
orders of magnitude and an almost diagonal CKM mixing matrix.2 The elusive why of

1These many new operators also results in a large number of new CP-invariants [83–85].
2In this work, we consider neutrinos to be massless. They obtain a mass from a different set of operators

from those considered here, such as the lepton number-violating, dimension-5 Weinberg operator. We
only consider symmetry-breaking spurions that always preserve the total lepton number, thus giving no
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these curious observations has long been sought after in the form of a theory of flavor.
Almost regardless of what the solution is, an explanation will endow a flavor structure on
the SMEFT above the EW scale.

The renormalizable SM without the Yukawa interactions has a large global U(3)5

flavor symmetry. The observed parameters break the symmetry in a particular way. The
largest breaking is due to the top quark Yukawa down to U(2)2 ×U(1)×U(3)3 subgroup.
This is a good approximate symmetry of the SM, which is further broken in steps by the
smaller Yukawas. Eventually, the exact (classical) accidental symmetry of the dimension-4
Lagrangian, U(1)B in the quark sector times U(1)3 for the leptons, is recovered. Higher-
dimensional operators typically contribute to the breaking of the aforementioned (exact or
approximate) accidental flavor symmetries.

Postulating a flavor symmetry and its breaking pattern (via a set of spurions) means
making a hypothesis about the UV physics. A flavor spurion can be viewed as a non-
dynamical (spurious) field that transforms under a nontrivial representation of the flavor
group and whose background value breaks the flavor symmetry. In other words, we imagine
that a UV theory will leave imprints on the flavor structure in the low-energy effective
theory. The selection rules implied by the flavor symmetry have the advantage of reducing
the number of important SMEFT operators (free parameters in the global fits) by truncating
the flavor-spurion expansion to a given order. Global flavor symmetries and their breaking
patterns, thus, provide a good organizing principle for the SMEFT, mapping the space of
theories beyond the SM into universality classes. The induced model dependence should
not be viewed as a drawback but rather as an opportunity to systematically learn about
the UV from the data.

The prototypical example is the minimal flavor violation (MFV) hypothesis [107], which
is a flavor structure based on the U(3)5 flavor symmetry broken by the SM Yukawa couplings
Yu, Yd, and Ye promoted to spurions. Numerous analysis of the low-energy flavor physics
data have shown that MFV allows for the NP cutoff as low as the TeV scale [108–117]. Such
a flavor structure naturally arises as the low-energy limit of large classes of models, including
supersymmetric models with anomaly or gauge mediation [118, 119]. The drawback of MFV
is the ambiguity in the power counting given that yt is a large parameter. A prominent
competitor to MFV is the U(2) [120] (or general MFV [121]) flavor structures, which also
provide a sufficient protection against dangerous flavor violation [122–126] and allow for
a low NP scale. U(2)5 is an excellent approximate symmetry of the SM broken only at
the level of O(10−2). The breaking spurions are already small parameters, thus, the power
counting is more transparent. Unlike MFV, it is also a good starting point for the combined
explanation of B-anomalies in charged and neutral currents, where the third family plays
a special role [127–133]. Other flavor structures are also studied in the literature, e.g.,
refs. [134, 135].

Building on the work of ref. [1], we identify several symmetry hypotheses capable,
in particular, of allowing new physics to be at the TeV scale. Apart from theoretical

contributions to the Weinberg operator. Neutrino masses can easily be accounted for by introducing additional
spurions fully contracting LiLj terms. Due to the smallness of the neutrino masses, the contribution from
these spurions to dimension-6 operators is negligible.
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SMEFT O(1) terms
(dim-6, ∆B = 0)

Lepton sector
MFVL U(3)V U(2)2×U(1)2 U(2)2 U(2)V U(1)6 U(1)3 No symm.

Quark
sector

MFVQ 41 6 45 9 59 6 62 9 67 13 81 6 93 18 207 132
U(2)2 ×U(3)d 72 10 78 15 95 10 100 15 107 21 122 10 140 28 281 169
U(2)3 ×U(1)d3 86 10 92 15 111 10 116 12 123 21 140 10 158 28 305 175

U(2)3 93 17 100 23 118 17 124 23 132 30 147 17 168 38 321 191
No symmetry 703 570 734 600 756 591 786 621 818 652 813 612 906 705 1350 1149

Table 1. Overview of the number of independent O(1) terms for the dimension-6 SMEFT operators
(∆B = 0) for different assignments of quark and lepton symmetries considered in the paper.
The left (right) entry in each column gives the number of CP even (odd) coefficients for each
symmetry combination.

motivations such as the Higgs hierarchy problem, we are aiming at having an interesting
interplay between low and high-pT physics, making the case for global fits. Our goal is
to explore a broad spectrum of flavor structures beyond MFV and U(2)5. We extend the
previous study [1] by including four structures in the quark sector and seven in the lepton
sector, for a total of 28 different flavor structures. The set of flavor-breaking spurions is
taken to be the minimal one needed to reproduce the observed charged fermion masses
and mixings (in some cases other interesting spurions have been included for completeness).
We benchmark the lepton sector densely compared to the quark sector. One motivation
to do so is to pave the path for exploration of a broader class of models addressing only
the neutral current B-anomalies and/or (g − 2)µ anomaly (see e.g. [136–139]). Unlike the
CKM matrix of the quark sector, the PMNS matrix has only been probed by neutrino
oscillation data and could come from physics at a very high scale completely decoupled
from the low-energy flavor structure of the charged leptons. Without any firm clues as to
the underlying flavor structure, we are open to many possibilities. For each of the flavor
structures, we determine and provide the full basis of dimension-6 SMEFT operators beyond
NLO in the spurion expansion.

A highlight of this work is table 1 summarizing the number of independent ∆B = 0
operators at dimension-6 in the SMEFT for different flavor symmetry assumptions in the
absence of spurions (i.e. O(1) terms). A general expectation is that low-energy flavor physics
will not be very sensitive to these O(1) operators thanks to the flavor symmetry protection
leaving room for high-pT phenomenology [140] (see, however, refs. [141, 142]). The other
operators, which come with the flavor-spurion suppression, will be constrained chiefly by
low-energy flavor physics. For any of the symmetries in table 1, if an operator containing
fermions turns out to be Hermitian, it is counted in the left column since it introduces a
single real parameter, otherwise it appears both in the left and right columns for the real
and imaginary parameters, respectively (some care has to be taken when connecting the
imaginary parameters with CP violation [83]). Additionally, there are always 9 CP-even
(added to the left column) and 6 CP-odd (added to the right column) parameters for the
pure bosonic dimension-6 operators, which do not carry any flavor. Table 1 illustrates how
the number of independent parameters gradually increases with smaller (less restrictive)
symmetries. Different flavor symmetries are considered to finely chart the space of SMEFT
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operators. For reference, these are compared with the no-symmetry case shown in the last
row and column for quarks and leptons, respectively. All the examples have considerably
less O(1) parameters than the anarchic case, making global fits more feasible. During this
project we developed a Mathematica package SMEFTflavor to automatically construct the
SMEFT operators given a flavor group (for details see appendix B). Should the user have a
different symmetry group or breaking spurions in mind, the package can be downloaded at
the github page https://github.com/aethomsen/SMEFTflavor.

The paper is organized as follows: in section 2, we first discuss the decomposition
and the counting of the pure quark operators, while in section 3, we consider pure lepton
operators. Along the way, we always present an explicit parametrization of the spurions
and Wilson coefficients ready to be employed in the phenomenological studies. The Warsaw
basis used throughout this work is summarized in appendix A. The Mathematica package
is documented in appendix B. Appendix C lists the counting of the mixed quark-lepton
operators for all 28 flavor structures, while appendix D is reserved for useful group identities.
We conclude in section 4.

2 Quark sector

The kinetic Lagrangian is invariant under flavor rotations of the matter, that is, unitary
transformation between fields in the same gauge and Lorentz representations. In the SM
quark sector, these transformations make up the group GQ = U(3)q × U(3)u × U(3)d.
Assuming/imposing a flavor structure of NP, then comes down to proposing a finite set of
spurions transforming in a subgroup of G ⊂ GQ, such that the whole SMEFT Lagrangian
is invariant under G. These assumptions can severely limit the number of operators, which
can occur to a given order in the spurion expansion and will, generically, impose correlation
between various operators.

In the SM, the GQ quark flavor symmetry is broken classically by the two quark Yukawa
coupling matrices Yu,d:

L ⊃ −q̄LYddRH − q̄LYuuRH̃ + H.c. (2.1)

Formally, these couplings can be considered spurions transforming as Yu ∼ (3,3,1) and
Yd ∼ (3,1,3), such as to leave the SM Lagrangian invariant under flavor rotations.3

MFV [107] is a popular framework, which assumes that the SM contains the full flavor
information of the underlying theory; no additional flavored spurions are introduced in
the UV and all other couplings are singlet under GQ. Accordingly, all flavor structure
is contained in Yu and Yd. In this framework, flavor violation in operators, whether
fundamental or effective, can only occur through some combination of the Yu, Yd spurions.
This strongly constrains flavor transitions due to NP and presents a mechanism to avoid
the strong flavor bounds from FCNC processes.

3Here we write only the SU(3) representation but assume that the global U(1) charges are also defined
by eq. (2.1). There is no difference between U(3) and its SU(3) subgroup for dimension-6 baryon number
conserving operators. The global U(1) charges will however play an important role for U(2) versus
SU(2) symmetries.

– 5 –
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If we wish to classify the SMEFT operators consistent with MFV, it is important to
consider an organizing principle. One challenge is that e.g. (Y †uYu)n≥0 all transform in a
similar manner, thus operators can always be dressed with higher powers of Y †uYu. However,
not all of these are independent. In fact three of these are enough to span the space, and
higher powers can be absorbed into the coefficients of the operators with lower powers: a
finite set is sufficient to capture all physics. A proper organizing principle exists when the
spurions are small (e.g., if Yu always comes with a small parameter εu � 1), and the MFV
operators can be organized by powers of the spurions. This naive expansion in powers of
Yu,d is not necessarily possible, since yt ∼ 1, and in 2HDM type models even yb can be
order 1. The authors of ref. [121] were able to show that non-linearly realized MFV, where
a power expansion is impossible, can be effectively captured as a special case of the later,
much acclaimed U(2)3 flavor symmetry [120].

Here we consider a spectrum of viable flavor symmetries:

i) G = U(2)3 decouples the third generation quarks entirely, yet it gives a decent
protection against FCNCs.

ii) G = U(2)3 ×U(1)b decouples only the third generation of down-quarks and keeps yb,
a spurion of U(1)b, perturbatively small.

iii) G = U(2)2×U(3)d for when there is no suppression of yt ' 1 in the SMEFT operators.
The enhanced symmetry allows for a spurion expansion of all but the top quark.

iv) G = U(3)3 linearly realized MFV, provides strong constraints on NP, and effectively
protects against NP contributions to rare SM processes.

In this section, we explore these 4 different flavor structures for the quark sector. In
each case, we will assume that a perturbative expansion in spurion insertions is possible.
For each symmetry, we provide a parametrization of the spurions, list all flavor contractions
that can occur up to dimension 6 in the SMEFT, and finally provide a counting of the
quark operators at dimension 6.

2.1 U(2)3 symmetry

We assume that the NP posses a symmetry G = U(2)q ×U(2)u ×U(2)d ⊂ GQ, under which
the SM quarks decompose as

q =
[
qa ∼ (2,1,1)
q3 ∼ (1,1,1)

]
, u =

[
ua ∼ (1,2,1)
u3 ∼ (1,1,1)

]
, d =

[
da ∼ (1,1,2)
d3 ∼ (1,1,1)

]
. (2.2)

The minimal set of spurions needed to reproduce the SM masses and CKM matrix is

Vq ∼ (2,1,1) , ∆u ∼ (2,2,1) , ∆d ∼ (2,1,2) . (2.3)

These spurions generally allow for a slew of Yukawa operators, which contributes to the
Yukawa coupling matrices as

Yu,d =
[
au,d1 ∆u,d + au,d2 ∆u∆†u∆u,d + . . . bu,d1 Vq + bu,d2 ∆u∆†uVq + . . .

cu,d1 V †q ∆u,d + . . . du,d1 + du,d2 V †q Vq + . . .

]
(2.4)

– 6 –
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for O(1) parameters au,dn , . . . du,dn , parametrizing all covariant combinations of the spurions
at each entry in the coupling matrix.

We now wish to point out a redundancy, which to our knowledge has been overlooked
in previous literature on the U(2)3 flavor symmetry: despite the assumption of the G
symmetry, the quark kinetic terms are, nevertheless, invariant under all GQ transformations.
In particular, rotations from the GQ/G coset space have not been utilized because generic
field transformations of this kind would ruin explicit G invariance of the model. The
spurions, however, allow for the construction of covariant GQ/G rotation matrices

Uq = exp
[

0 λq1Vq + λq2∆u∆†uVq + . . .

−(λq1)∗V †q − (λq2)∗V †q ∆u∆†u − . . . 0

]
,

Uu,d = exp
[

0 λu,d1 ∆†u,dVq + . . .

−(λu,d1 )∗V †q ∆u,d − . . . 0

]
.

(2.5)

For a suitable choice of λfn, a field transformation will bring the Yukawa couplings on the
form4

Y ′u =
[
au′1 ∆u + au′2 ∆u∆†u∆u + . . . bu′1 Vq + bu′2 ∆u∆†uVq + . . .

0 du′1 + du′2 V
†
q Vq + . . .

]
,

Y ′d =
[
ad′1 ∆d + ad′2 ∆u∆†u∆d + . . . 0

0 du′1 + du′2 V
†
q Vq + . . .

]
.

(2.6)

Finally, we can do a redefinition of the spurions (in the event that au′1 , ad′1 , bu′1 are not O(1),
it can be necessary to maintain explicit real coefficients multiplying the new spurions to
maintain the perturbative spurion expansion) to write

Y ′u =
[
∆u Vq
0 yt

]
, Y ′d =

[
∆d 0
0 yb

]
. (2.7)

This spurion redefinition shuffles the coefficients of the higher-dimension SMEFT operators
but otherwise does not change the spurions being generic matrices. GQ/G contains a final
phase transformation of the third generation quarks, which allows for setting yt, yb to be
real parameters. The Yukawa matrices (2.7) are, thus, completely generic representations
in the U(2)3 symmetry. This parametrization effectively breaks GQ → G×U(1)B, where
the spurions transform under the G symmetry.

We next consider how the spurions break the G symmetry and how the broken symmetry
allows us to choose a minimal parametrization of the spurions. For simplicity, we consider the
realistic case where the singular values of each of the spurions are finite and non-degenerate
in agreement with current data.5 First, fixing the U(2)q doublet gives6

Vq −→
[

0
εq

]
: U(2)q −→ U(1)q1 . (2.8)

4This can be seen order by order in the perturbative expansion.
5Such degeneracy could cause an enhanced remnant symmetry (see e.g. ref. [83]).
6To see what parameters can be removed from the spurions, it is useful to write them in terms of their

singular value decomposition such that the flavor rotations can directly remove phases and angles from the
left and right rotation matrices.
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Next ∆u, breaks

∆u −→
[
cu −su
su cu

] [
δu 0
0 δ′u

]
: U(1)q1 ×U(2)u −→ ∅, (2.9)

where we adopt the notation su, cu for sine and cosine of the same angle, and

∆d −→
[

cd −sdeiα

sde
−iα cd

] [
δd 0
0 δ′d

]
: U(2)d −→ ∅. (2.10)

The complete breaking of G→ ∅ by the spurions makes it possible to remove 12 unphysical
parameters from the spurions, reducing the naive 10 complex parameters down to a total of
5 real positive parameters, 2 mixing angles, and 1 phase. At dimension 4, together with yb
and yt, these give the quark masses and the CKM mixing matrix. The breaking pattern and
utilization of the full group of GQ transformations at dimension 4 means that all coefficients
of the baryon number-conserving SMEFT operators are physical.7

For convenience we compute numerical values for the relevant parameters reproducing
the observed CKM mixing matrix [143] and quark masses (taken from ref. [144] at the
renormalisation scale set to mt) from the Yukawa terms in eq. (2.7) at tree level:8

δd = 1.46× 10−5, δ′d = 2.91× 10−4, yb = 0.0155,
δu = 6.72× 10−6, δ′u = 3.38× 10−3, yt = 0.934, (2.11)
εq = 0.0380, θd = 0.210, θu = 0.0888, α = −1.57.

Although there are corrections from higher order terms and radiative corrections, this
provides a decent estimate. As already anticipated, the largest breaking of the symmetry
occurs at O(10−2) by εq, while the symmetry-allowed parameter yt is O(1). In other words,
the approximate U(2)3 successfully explains these features. However, it fails to explain the
smallness of yb and the hierarchy in ∆u,d. This flavour structure also gives a suppression
in FCNCs due to the smallness of spurions and allows for new physics scale not far above
the TeV scale [122–126]. Since this is the least restrictive symmetry in the quark sector we
consider, similar (stronger) conclusions will hold in the subsequent three sections as well.

We determine the dimension-6 SMEFT operators allowed by the flavor structure up to
several insertions of the spurions. We base this on the Warsaw basis for the SMEFT (cf.
appendix A), where we identify the unique fermion combinations that appear, the bilinear
and quartic structures. We present the possible flavor contractions (including spurions)
for these field combinations, and these, in turn, can be directly inserted back in to the
appropriate Waraw basis operators to recover the full set of SMEFT operators compatible

7Some of these coefficients are unphysical when using the redundant spurion parametrization of ref. [1].
With this is mind, the parametrization in ref. [1] can still be useful in model building.

8A suitable parameter point can be found by going to the down aligned basis, which allows for relating δ(′)
d

and yb directly to the down-type Higgs Yukawas. After this, the remaining parameters can be determined
from V †

CKMŶ
2
u VCKM = ΛYuY †

uΛ†. Here the left-hand side consists of the observed up-type Yukawa couplings
(diagonal) and the CKM matrix while the right-hand side consists of our Yukawa matrix in the down-aligned
basis and Λ = diag(eiθ, eiφ, e−i(θ+φ)) are additional unphysical phases. This provides a total of 9 constraints
fixing all 9 parameters of the right-hand side.
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U(2)q ×U(2)u ×U(2)d O(1) O(V ) O(V 2) O(V 3) O(∆) O(∆V )

ψ2H3 QuH 1 1 1 1 1 1 1 1
QdH 1 1 1 1 1 1 1 1

ψ2XH
Qu(G,W,B) 3 3 3 3 3 3 3 3
Qd(G,W,B) 3 3 3 3 3 3 3 3

ψ2H2D

Q
(1,3)
Hq 4 2 2 2

QHu,QHd 4 2 2
QHud 1 1 2 2

(LL)(LL) Q
(1,3)
qq 10 6 6 10 2 2 2

(RR)(RR)
Quu,Qdd 10 6 6
Q

(1,8)
ud 8 8 8

(LL)(RR) Q
(1,8)
qu ,Q(1,8)

qd 16 8 8 8 4 4 12 12
(LR)(LR) Q

(1,8)
quqd 2 2 4 4 2 2 8 8 12 12

Total 63 11 28 28 22 4 2 2 20 20 50 50

Table 2. Counting of the pure quark SMEFT operators (see appendix A) assuming U(2)q×U(2)u×
U(2)d symmetry in the quark sector. The counting is performed taking up to three insertions of
the Vq spurion, one insertion of ∆u,d and one insertion of the ∆u,dVq spurion product. The left
(right) entry in each column gives the number of CP even (odd) coefficients at the given order in
spurion counting.

with the flavor structure. We present the decompositions of the bilinear structures in
eqs. (2.13)–(2.18) and decompositions of the unique quartic structures in eqs. (2.19)–(2.24).
This also includes the expanded set of structures available in case the flavor symmetry
assumption is reduced to SU(2)3. The spurion counting of the pure quark SMEFT operators
assuming U(2)3 (SU(2)3) symmetry in the quark sector is presented in table 2 3.

Decomposition of bilinear structures. In this section, we present the construction
of bilinear structures invariant under the U(2)3 flavor symmetry, starting with the O(1)
structures. Since q, u and d all decompose as 2q,u,d ⊕ 1, respectively, under U(2)3 group,
the O(1) bilinears can be formed either by contracting two doublets or singlets of the same
field or by contracting singlets of the different fields. By doing this, we end up with nine
O(1) bilinears: (q̄q), (q̄3q3), (ūu), (ū3u3), (d̄d), (d̄3d3), (ū3d3), (q̄3u3) and (q̄3d3).

There are only three bilinears that can be formed with one insertion of the Vq spurion.
All of these include the singlet contraction with the quark doublet and one additional singlet
from the field decomposition: (q̄Vqq3), (q̄Vqu3) and (q̄Vqd3). However, in the case of SU(2)3,
there are additional bilinears, such as V a

q εab(q̄3q
b). Following analogous reasoning for the

case of O(V 2) bilinears, we obtain (q̄VqV †q q) structure for the U(2)3 case and εbc(q̄VqV c
q q

b)
for the SU(2)3.
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SU(2)q × SU(2)u × SU(2)d O(1) O(V ) O(V 2) O(V 3) O(∆) O(∆V )

ψ2H3 QuH 1 1 2 2 2 2 4 4

QdH 1 1 2 2 2 2 4 4

ψ2XH
Qu(G,W,B) 3 3 6 6 6 6 12 12

Qd(G,W,B) 3 3 6 6 6 6 12 12

ψ2H2D

Q
(1,3)
Hq 4 4 4 4 2

QHu,QHd 4 8 8

QHud 1 1 8 8

(LL)(LL) Q
(1,3)
qq 10 14 14 20 12 8 8

(RR)(RR)
Quu,Qdd 10 28 28

Q
(1,8)
ud 8 32 32

(LL)(RR) Q
(1,8)
qu ,Q(1,8)

qd 16 16 16 16 8 16 16 56 56

(LR)(LR) Q
(1,8)
quqd 4 4 8 8 8 8 16 16 60 60

Total 65 13 58 58 48 30 8 8 48 48 224 224

Table 3. Counting of the pure quark SMEFT operators (see appendix A) assuming SU(2)q ×
SU(2)u × SU(2)d symmetry in the quark sector. The counting is performed taking up to three
insertions of the Vq spurion, one insertion of ∆u,d and one insertion of the ∆u,dVq spurion product.
The left (right) entry in each column gives the number of CP even (odd) coefficients at the given order
in spurion counting. Due to the presence of the additional SU(2) structures in the decompositions,
the counting is different compared to table 2.

Before we proceed with our discussion about O(∆) andO(∆V ) bilinears, let us introduce
the shorthand notation

(∆̃u,d)ad = εab(∆∗u,d)bcεcd ∼ (2,2,1), (2,1,2), (2.12)

which proves to be useful in constructing SU(2)3 invariant structures. The O(∆) bilinears
are formed with the (q̄∆u,d)a contractions, which can then be contracted to ua or da yielding
two bilinears (q̄∆uu) and (q̄∆dd). In case of SU(2)3 we get two additional ones given by
(q̄∆̃uu) and (q̄∆̃dd).

For the remaining O(∆V ) bilinears, we observe that the contractions (V †q ∆u,d)a trans-
form in the anti-fundamental representation of U(2)u,d meaning they can form singlets when
contracted to ua or da. We find six such structures: (ū∆†uVqu3), (d̄∆†dVqd3), (ū∆†uVqd3),
(ū3V

†
q ∆dd), (q̄3V

†
q ∆uu) and (q̄3V

†
q ∆dd). The complete list of bilinears is presented below

and the new structures that appear in case of SU(2)3 symmetry are denoted in blue:
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(q̄q)

O(1) : (q̄q) , (q̄3q3) , O(V ) : (q̄Vqq3) , V aq εab
(
q̄3q

b
)
, H.c. ,

O
(
V 2) :

(
q̄VqV

†
q q
)
,
[
εbc
(
q̄VqV

c
q q

b
)
, H.c.

]
.

(2.13)

(ūu)

O(1) : (ūu) , (ū3u3) ,

O(∆V ) :
(
ū∆†uVqu3

)
, (ūau3) εab

(
V †q ∆u

)
b
, εadεbc

[
ūaV bq (∆u) cdu3

]
, H.c. ,

εbc
[
ū3V

b
q (∆u) caua

]
, H.c. .

(2.14)(
d̄d
)

O(1) :
(
d̄d
)
,
(
d̄3d3

)
,

O(∆V ) :
(
d̄∆†dVqd3

)
,
(
d̄ad3

)
εab
(
V †q ∆d

)
b
, εadεbc

[
d̄aV bq (∆d) cdd3

]
, H.c. ,

εbc
[
d̄3V

b
q (∆d) cada

]
, H.c. .

(2.15)

(ūd)

O (1) : (ū3d3) ,

O (∆V ) :
(
ū∆†uVqd3

)
,
(
ū3V

†
q ∆dd

)
, (ūad3) εab

(
V †q ∆u

)
b
, (ū3d

a) εab
(
Vq∆†d

)b
,

εadεbc
[
ūaV

b
q (∆u) cdd3

]
, εbcεad

[
ū3
(
V ∗q
)
b

(∆∗d) cdda
]
,

εbc
[
ūa
(
V ∗q
)
b

(∆∗u) cad3

]
, εbc

[
ū3V

b
q (∆d) cada

]
.

(2.16)

(q̄u)

O(1) : (q̄3u3) , O(V ) : (q̄Vqu3) ,
(
V ∗q
)
a
εab (q̄bu3) ,

O(∆) : (q̄∆uu) ,
(
q̄∆̃uu

)
,

O(∆V ) :
(
q̄3V

†
q ∆uu

)
,
(
q̄3V

†
q ∆̃uu

)
, εbc

[
q̄3V

b
q (∆u) caua

]
, εac

[
q̄3V

b
q (∆∗u) bcua

]
.

(2.17)

(q̄d)

O(1) : (q̄3d3) , O(V ) : (q̄Vqd3) ,
(
V ∗q
)
a
εab (q̄bd3) ,

O(∆) : (q̄∆dd) ,
(
q̄∆̃dd

)
,

O(∆V ) :
(
q̄3V

†
q ∆dd

)
,
(
q̄3V

†
q ∆̃dd

)
, εbc

[
q̄3V

b
q (∆d) cada

]
, εac

[
q̄3V

b
q (∆∗d) bcda

]
.

(2.18)
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Decomposition of quartic structures. Let us continue with the construction of the
quartic structures. In what follows, we focus on the unique, non-factorizable9 structures
only. Starting with O(1) structures, we follow the similar reasoning as in the case of
bilinears, obtaining six structures: (q̄aqb)(q̄bqa), (q̄aq3)(q̄3q

a), (ūaub)(ūbua), (ūau3)(ū3u
a),

(d̄adb)(d̄bda) and (d̄ad3)(d̄3d
a). In the case of SU(2)3 symmetry, only one additional O(1)

structure appears: (q̄au3)εab(q̄bd3).
At O(V ), the U(2)3 and SU(2)3 unique structures are (q̄aq3)(q̄Vqqa), (q̄3q

a)(q̄aεbcV c
q q

b)
and (q̄3q

a)(q̄Vqεacqc), while at O(V 2) there is only one structure of the form (q̄aV †q q)(q̄Vqqa).
With one insertion of ∆ spurion, there are four U(2)3 unique ones: (q̄aV †q q)(∆u)ab(ū3u

b),
(q̄aq3)(∆d)ab(d̄3d

b), (q̄au3)(∆d)ab(q̄3d
b) and (q̄3u

a)(∆u)ba(q̄bd3).
With the insertion of both ∆u,d and Vq spurions, we obtain six O(∆V ) U(2)3 structures

given by (ūau3)(ū∆†uVqua), (d̄ad3)(d̄∆†dVqda), (q̄aV †q q)(∆u)ab(ū3u
b), (q̄aV †q q)(∆d)ab(d̄3d

b),
(q̄au3)(∆d)ab(q̄Vqdb) and (q̄Vqua)(∆u)ba(q̄bd3). There are, however, plenty of new SU(2)3

unique structures that emerge at both O(∆) and O(∆V ). The complete list is presented
below and the SU(2)3 structures are denoted in blue:

(q̄q)(q̄q)

O(1) :
(
q̄aq

b
)

(q̄bqa) , (q̄aq3)(q̄3q
a) ,

O(V ) : (q̄aq3)(q̄Vqqa) , (q̄3q
a)
(
q̄aεbcV

c
q q

b
)
, (q̄3q

a)(q̄Vqεacqc) , H.c. ,

O
(
V 2) :

(
q̄aV

†
q q
)

(q̄Vqqa) .
(2.19)

(ūu)(ūu)

O(1) :
(
ūau

b
)

(ūbua) , (ūau3)(ū3u
a) ,

O(∆V ) : (ūau3)
(
ū∆†uVqua

)
, (ūau3)εabεde

[
ūbV

d
q (∆u)ecuc

]
, εbeεcd (ūau3)

[
ūbV

c
q (∆u)deua

]
, H.c. ,

(ū3u
a)
[
ūaV

c
q εcd (∆u)dbub

]
, (ū3u

a)
[
ūaεbdV

c
q (∆∗u) cdub

]
, εac (ū3u

a)
[
ūbV

d
q (∆∗u)dbuc

]
, H.c. .
(2.20)(

d̄d
)(
d̄d
)

O(1) :
(
d̄ad

b
)(
d̄bd

a
)
,
(
d̄ad3

)(
d̄3d

a
)
,

O(∆V ) :
(
d̄ad3

)(
d̄∆†dVqd

a
)
,
(
d̄ad3

)
εabεde

[
d̄bV

d
q (∆d)ecdc

]
, εbeεcd

(
d̄ad3

)[
d̄bV

c
q (∆d)deda

]
, H.c. ,(

d̄3d
a
)[
d̄aV

c
q εcd (∆d)dbdb

]
,
(
d̄3d

a
)[
d̄aεbdV

c
q (∆∗d) cddb

]
, εac

(
d̄3d

a
)[
d̄bV

d
q (∆∗d)dbdc

]
, H.c. .

(2.21)

9Epithets ‘unique’ and ‘non-factorizable’ are used interchangeably when dealing with the quartic structures.
This nomenclature refers simply to the quartic structures that cannot be formed as a product of two factorizing
bilinears fully invariant under the discussed flavor group. Needless to say, the final spurion counting of the
SMEFT operators is performed taking the full set of quartic structures.
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(q̄q)(ūu)

O(∆) : (q̄aq3)(∆u)ab
(
ū3u

b
)
, εbc (q̄aq3)(∆u)ac

(
ūbu

3) , εbdεac (q̄3q
a)(∆u) cd (ūbu3) , H.c. ,

εac (q̄3q
a)
[
ū3 (∆u) cbub

]
, H.c. ,

O(∆V ) :
(
q̄aV

†
q q
)

(∆u)ab
(
ū3u

b
)
, εceεbd

(
q̄Vqq

b
)

(∆u)de (ūcu3) , εceεbd
(
q̄aV

d
q q

b
)

(∆u)ae (ūcu3) , H.c. ,

εbd
(
q̄Vqq

b
)

(∆u)dc (ū3u
c) , εbd

(
q̄aV

d
q q

b
)

(∆u)ac (ū3u
c) , εcd

(
q̄Vqq

b
)

(∆∗u) bd (ū3u
c) , H.c. .

(2.22)

(q̄q)
(
d̄d
)

O(∆) : (q̄aq3)(∆d)ab
(
d̄3d

b
)
, εbc (q̄aq3)(∆d)ac

(
d̄bd

3) , εbdεac (q̄3q
a)(∆d) cd

(
d̄bd3

)
, H.c. ,

εac (q̄3q
a)
[
d̄3 (∆d) cbdb

]
, H.c. ,

O(∆V ) :
(
q̄aV

†
q q
)

(∆d)ab
(
d̄3d

b
)
, εceεbd

(
q̄Vqq

b
)

(∆d)de
(
d̄cd3

)
, εceεbd

(
q̄aV

d
q q

b
)

(∆d)ae
(
d̄cd3

)
, H.c. ,

εbd
(
q̄Vqq

b
)

(∆d)dc
(
d̄3d

c
)
, εbd

(
q̄aV

d
q q

b
)

(∆d)ac
(
d̄3d

c
)
, εcd

(
q̄Vqq

b
)

(∆∗d) bd
(
d̄3d

c
)
, H.c. .

(2.23)

(q̄u)(q̄d)

O(1) : (q̄au3)εab (q̄bd3) ,

O(∆) : (q̄au3)(∆d)ab
(
q̄3d

b
)
, (q̄3u

a)(∆u) ba (q̄bd3) , (q̄au3)
(

∆̃d

)
a
b

(
q̄3d

b
)
, (q̄3u

a)
(

∆̃u

)
b
a (q̄bd3) ,

O(∆V ) : (q̄au3)(∆d)ab
(
q̄Vqd

b
)
, (q̄Vqua)(∆u) ba (q̄bd3) , εacεbe

(
q̄au

b
)
V dq (∆∗u)de (q̄cd3) ,(

q̄Vqu
b
)(

∆̃u

)
c
b (q̄cd3) , εac

[
q̄a
(
V †q ∆u

)
b
ub
]
(q̄cd3) , εad

[
q̄a
(
V ∗q
)
d
ub
]
(∆u) cb (q̄cd3) ,

εac
[
q̄a

(
V †q ∆̃u

)
b
ub
](
q̄cd

3) , εad [q̄a (V ∗q )dub](∆̃u

)
c
b

(
q̄cd

3) , εabεce (q̄au3)V dq (∆∗d)de (q̄bdc) ,

(q̄au3)
(

∆̃d

)
a
c (q̄Vqdc) , εab (q̄au3)

[
q̄b
(
V †q ∆d

)
c
dc
]
, εbd

[
q̄a
(
V ∗q
)
d
u3
]
(∆d)ac (q̄bdc) ,

εab (q̄au3)
[
q̄b

(
V †q ∆̃d

)
c
dc
]
, εbd

[
q̄a
(
V ∗q
)
d
u3
]
(∆̃d)ac(q̄bdc) .

(2.24)

2.2 U(2)3 × U(1)d3 symmetry

If the NP possesses a G = U(2)q ×U(2)u ×U(2)d ×U(1)d3 ⊂ GQ, it is possible to introduce
the b Yukawa as a spurion for the perturbative counting. Under this symmetry, the quark
fields decompose as10

q =
[
qa ∼ (2,1,1|0)
q3 ∼ (1,1,1|0)

]
, u =

[
ua ∼ (1,2,1|0)
u3 ∼ (1,1,1|0)

]
, d =

[
da ∼ (1,1,2|0)
d3 ∼ (1,1,1|1)

]
, (2.25)

and the minimal set of spurions required to write the Yukawa matrix is given as:

∆u ∼
(
2, 2̄,1|0

)
, ∆d ∼

(
2,1, 2̄|0

)
, Vq ∼ (2,1,1|0), Xb ∼ (1,1,1|−1).

(2.26)
10The representations of the fields and spurions with respect to this particular group are labeled as

(U(2)q,U(2)u,U(2)d|U(1)d3 ).
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U(2)3 ×U(1)d3 O(1) O(V ) O(V 2) O(V 3) O(∆) O(∆V ) O(X) O(V X) O(V 2X) O(∆X) O(∆V X)

ψ2H3 QuH 1 1 1 1 1 1 1 1

QdH 1 1 1 1 1 1 1 1

ψ2XH
Qu(G,W,B) 3 3 3 3 3 3 3 3

Qd(G,W,B) 3 3 3 3 3 3 3 3

ψ2H2D

Q
(1,3)
Hq 4 2 2 2

QHu 2 1 1

QHd 2 1 1

QHud 1 1 1 1 1 1

(LL)(LL) Q
(1,3)
qq 10 6 6 10 2 2 2

(RR)(RR)

Quu 5 3 3

Qdd 5 3 3

Q
(1,8)
ud 8 4 4 4 4

(LL)(RR)
Q

(1,8)
qu 8 4 4 4 2 2 6 6

Q
(1,8)
qd 8 4 4 4 2 2 6 6

(LR)(LR) Q
(1,8)
quqd 4 4 6 6 2 2 4 4 2 2 4 4 6 6

Total 56 4 20 20 20 2 2 2 14 14 29 29 7 7 8 8 2 2 6 6 21 21

Table 4. Counting of the pure quark SMEFT operators (see appendix A) assuming U(2)3 ×U(1)d3

symmetry in the quark sector. The counting is done up to three insertions of the Vq spurion and
one insertion of ∆u,d or Xb. For spurion products, the counting is presented for ∆u,dVq, VqXb, and
∆u,dXb as well as for V 2

q Xb and ∆u,dVqXb insertions. The left (right) entry in each column gives
the number of CP even (odd) coefficients at the given order in spurion counting.

Transforming the fields with GQ/G rotations and redefining the spurions as in section 2.1,
the Yukawa matrices can generically be written as:

Yu =
[
∆u Vq
0 yt

]
, Yd =

[
∆d 0
0 Xb

]
, (2.27)

for yt > 0. The complete breaking of G by the spurions proceeds in the same way, leading
to the parametrization of the ∆u,d and Vq spurions of eqs. (2.8)–(2.10). The only novelty
compared to the U(2)3 case is the introduction of the Xb spurion, which breaks the U(1)d3

symmetry, allowing us to remove an extra phase from Xb and make it real and positive.
In total, we end up parametrizing spurions with 6 real and positive parameters, 2 mixing
angles and 1 phase. The numerical values of the parameters are as in eq. (2.11) but with
the replacement yb = Xb explaining the smallness of the bottom Yukawa.

The spurion counting of the pure quark operators is presented in the table 4,
while the bilinear and unique quartic structures are listed in eqs. (2.28)–(2.33) and
eqs. (2.34)–(2.39) respectively.

Decomposition of bilinear structures. We follow the analysis of section 2.1 to obtain
all SMEFT structures in the presence of the U(2)3 × U(1)d3 symmetry. The only difference
is that when the U(1)d3 charge of a structure is nonzero, powers of the Xb spurion need
to be included, giving further spurion suppression. The list of all invariant bilinears is
presented below:
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(q̄q)

O(1) : (q̄q) , (q̄3q3) , O(V ) : (q̄Vqq3) , H.c. , O
(
V 2
)

:
(
q̄VqV

†
q q
)
. (2.28)

(ūu)

O(1) : (ūu) , (ū3u3) , O(∆V ) :
(
ū∆†uVqu3

)
, H.c. . (2.29)

(
d̄d
)

O(1) :
(
d̄d
)
,
(
d̄3d3

)
, O(∆V X) :

(
d̄∆†dVqXbd3

)
, H.c. . (2.30)

(ūd)

O (X) : (ū3Xbd3) , O (∆V ) :
(
ū3V

†
q ∆dd

)
, O (∆V X) :

(
ū∆†uVqXbd3

)
.

(2.31)

(q̄u)

O(1) : (q̄3u3) , O(V ) : (q̄Vqu3) , O(∆) : (q̄∆uu) , O(∆V ) :
(
q̄3V

†
q ∆uu

)
.

(2.32)

(q̄d)

O(X) : (q̄3Xbd3) , O(V X) : (q̄VqXbd3) , O(∆) : (q̄∆dd) ,

O(∆V ) :
(
q̄3V

†
q ∆dd

)
.

(2.33)

Decomposition of quartic structures. Again following the construction of quartic
SMEFT structures in section 2.1 and with suitable insertions of Xb, the complete list of
U (2)3 ×U(1)d3 unique quartic structures is presented below:

(q̄q)(q̄q)

O(1) :
(
q̄aq

b
)

(q̄bqa) , (q̄aq3)(q̄3q
a) , O(V ) : (q̄aq3)(q̄Vqqa) , H.c. ,

O
(
V 2) :

(
q̄aV

†
q q
)

(q̄Vqqa) .
(2.34)

(ūu)(ūu)

O(1) :
(
ūau

b
)

(ūbua) , (ūau3)(ū3u
a) , O(∆V ) : (ūau3)

(
ū∆†uVqua

)
, H.c. . (2.35)

(
d̄d
)(
d̄d
)

O(1) :
(
d̄ad

b
)(
d̄bd

a
)
,
(
d̄ad3

)(
d̄3d

a
)
, O(∆V X) :

(
d̄aXbd3

)(
d̄∆†dVqd

a
)
, H.c. .

(2.36)
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(q̄q)(ūu)

O(∆) : (q̄aq3)(∆u)ab
(
ū3u

b
)
, H.c. , O(∆V ) :

(
q̄aV

†
q q
)

(∆u)ab
(
ū3u

b
)
, H.c. . (2.37)

(q̄q)
(
d̄d
)

O(∆X) : (q̄aq3)(∆d)ac
(
d̄3X

∗
b d
c
)
, H.c. , O(∆V X) :

(
q̄aV

†
q q
)

(∆d)ac
(
d̄3X

∗
b d
c
)
, H.c. .
(2.38)

(q̄u)(q̄d)

O(∆) : (q̄au3)(∆d)ab
(
q̄3d

b
)
, O (∆X) : (q̄3u

a)(∆u) ca (q̄cXbd3) ,

O(∆V ) : (q̄au3)(∆d)ab
(
q̄Vqd

b
)
, O (∆V X) : (q̄Vqua)(∆u) ca (q̄cXbd3) .

(2.39)

2.3 U(2)2 × U(3)d symmetry

We consider the quark symmetry G = U(2)q × U(2)u × U(3)d ⊂ GQ, which is the flavor
symmetry of the SM when only the top quark has a Yukawa coupling to the Higgs. This
is also a good approximate symmetry of the realistic Yukawa sector. Here, q and u

decompose as

q =
[
qa ∼ (2,1,1)
q3 ∼ (1,1,1)

]
, u=

[
ua ∼ (1,2,1)
u3 ∼ (1,1,1)

]
, (2.40)

under G, while d transforms as di ∼ (1,1,3). The minimal set of spurions needed to
produce realistic Yukawa matrices for the quarks are

∆u ∼ (2, 2̄,1), Σd ∼ (2,1, 3̄), Λd ∼ (1,1,3), (2.41)

but we will also allow for Vq ∼ (2,1,1) to allow for further mixing between top quarks
and light generations. In the minimal analysis, one can simply set Vq = 0. In either
case, a combination of rotations in GQ/G and redefinitions of the spurions, as detailed in
section 2.1, allows for the generic Yukawa matrices to be parametrized as

Yu =
[
∆u 0
0 yt

]
, Yd =

[
Σd

Λ†d

]
, (2.42)

with a real coefficient yt.
To see how the spurions break G, we begin with ∆u, which, after a suitable rotation,

can be parametrized as

∆u −→
[
δu 0
0 δ′u

]
: U(2)q ×U(2)u −→ U(1)2

q+u. (2.43)

Meanwhile, a U(3)d rotation can be used to align Λb to the 3rd generation:

Λd −→
[
0 0 yb

]ᵀ
: U(3)d −→ U(2)d. (2.44)
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The last part of the symmetry is used to parametrize

Σd −→
[

cd −sdeiα

sde
−iα cd

][
δd 0 0
0 δ′d 0

] c13 0 −s13
−s13s23 c23 −c13s23
s13c23 s23 c13c23

 : U(1)2
q+u ×U(2)d −→ ∅.

(2.45)
The singular values can always be taken to be δ(′)

u , δ
(′)
d , yb > 0. The complete breaking of G

by the spurions makes it possible to remove 17 unphysical parameters from the spurions,
reducing the naive 13 complex parameters down to a total of 5 real positive parameters,
3 mixing angles, and a phase. In case Vq is included, both of its complex parameters are
physical.

Following a similar procedure to eq. (2.11), the observed CKM matrix and quark masses
are reproduced for

δd = 5.70× 10−5, δ′d = 6.91× 10−4, yb = 0.0155,
δu = 6.72× 10−6, δ′u = 3.38× 10−3, yt = 0.934, (2.46)
θd = 0.096, θ13 = 0.412, θ23 = 1.453, α = −1.19.

The absolute value of all symmetry-breaking parameters (including yb) is small compared
with the symmetry-allowed yt.

The spurion counting of the pure quark SMEFT operators assuming U(2)2 × U(3)d
symmetry is presented in table 5. The decompositions of the bilinear structures are listed
in (2.47)–(2.52) and the unique quartic structures are given in (2.53)–(2.58).

Decomposition of bilinear structures. For the O(1) bilinear structures, since di ∼
(1,1,3), there is only one O(1) bilinear with two appearances of d given as (d̄d) and
four with two appearances of q and u: (q̄q), (q̄3q3), (ūu) and (ū3u3). One additional O(1)
structure can be formed with two singlets: (q̄3u3).

We proceed with the bilinear structures containing one insertion of the Vq or Λd spurion.
Since Vq ∼ (2,1,1), the only possible singlet is formed contracting Vq and the quark doublet.
There are two such structures of the form (q̄Vqq3) and (q̄Vqu3). Similar reasoning holds for
Λd, yielding two more bilinear structures: (q̄3Λ†dd) and (ū3Λ†dd).

For bilinear structures at O(V 2) and O(Λ2
d), we have two structures formed by con-

tracting the insertion of the spurion with the appropriate field: (q̄VqV †q q) and (d̄ΛdΛ†dd). At
O(∆) there is only one structure allowed: (q̄∆uu), and similar conclusion holds for O(Σd)
with one structure: (q̄Σdd).

In order to construct structures with two insertions of different spurions, let us first
note the transformation properties of the relevant spurion products. At O(ΛdΣd), we
have ΣdΛd ∼ (2,1,1) transformation, which, being the same as for the Vq spurion, gives
two structures: (q̄ΣdΛdq3) and (q̄ΣdΛdu3). The analogous product we have is V †q Σd ∼
(1,1,3), which can be utilized to construct two more structures of the form (q̄3V

†
q Σdd) and

(ū3V
†
q Σdd). There is also one structure at O(VqΛd) given as (q̄VqΛ†dd). Finally, we note the

transformation V †q ∆u ∼ (1,2,1), which can be used to construct the remaining O(∆Vq)
structures: (ū∆†uVqu3) and (q̄3V

†
q ∆uu). The complete list of bilinears is presented below:
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U(2)q ×U(2)u ×U(3)d O(1) O(Vq) O(V 2
q ) O(V 3

q ) O(∆) O(∆Vq) O(Λd) O(Σd) O(VqΛd) O(Λ2
d) O(VqΣd) O(ΛdΣd)

ψ2H3 QuH 1 1 1 1 1 1 1 1 1 1

QdH 1 1 1 1 1 1 1 1

ψ2XH
Qu(G,W,B) 3 3 3 3 3 3 3 3 3 3

Qd(G,W,B) 3 3 3 3 3 3 3 3

ψ2H2D

Q
(1,3)
Hq 4 2 2 2 2 2

QHu 2 1 1

QHd 1 1

QHud 1 1 1 1

(LL)(LL) Q
(1,3)
qq 10 6 6 10 2 2 2 6 6

(RR)(RR)
Quu 5 3 3

Qdd 2 2

Q
(1,8)
ud 4 2 2 4

(LL)(RR)
Q

(1,8)
qu 8 4 4 4 2 2 6 6 4 4

Q
(1,8)
qd 4 2 2 2 4 4 4

(LR)(LR) Q
(1,8)
quqd 2 2 4 4 4 4 6 6

Total 44 4 18 18 18 2 2 2 6 6 16 16 7 7 8 8 8 8 11 11 11 20 20

Table 5. Counting of the pure quark SMEFT operators (see appendix A) assuming U(2)q×U(2)u×
U(3)d symmetry in the quark sector. The counting is performed taking up to three insertions of Vq,
one insertion of ∆u or Σd, and two insertions of Λd as well as one insertion of ∆uVq, VqΛd, VqΣd,
and ΛdΣd products each. The left (right) entry in each column gives the number of CP even (odd)
coefficients at the given order in spurion counting.

(q̄q)

O (1) : (q̄q) , (q̄3q3) , O(Vq) : (q̄Vqq3) , H.c. , O
(
V 2
q

)
:
(
q̄VqV

†
q q
)
,

O (ΛdΣd) : (q̄ΣdΛdq3) , H.c. .
(2.47)

(ūu)

O(1) : (ūu) , (ū3u3) , O(∆Vq) :
(
ū∆†uVqu3

)
, H.c. . (2.48)

(
d̄d
)

O (1) :
(
d̄d
)
, O

(
Λ2
d

)
:
(
d̄ΛdΛ†dd

)
. (2.49)

(ūd)

O (Λd) :
(
ū3Λ†dd

)
, O (VqΣd) :

(
ū3V

†
q Σdd

)
. (2.50)

(q̄u)

O(1) : (q̄3u3) , O(Vq) : (q̄Vqu3) , O(∆) : (q̄∆uu) , O(∆Vq) :
(
q̄3V

†
q ∆uu

)
,

O (ΛdΣd) : (q̄ΣdΛdu3) .
(2.51)
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(q̄d)

O (Λd) :
(
q̄3Λ†dd

)
, O (Σd) : (q̄Σdd) , O (VqΛd) :

(
q̄VqΛ†dd

)
,

O (VqΣd) :
(
q̄3V

†
q Σdd

)
.

(2.52)

Decomposition of quartic structures. At O(1) there is only one unique structure
containing four appearances of d, (d̄idj)(d̄jdi), two with four instances of q, (q̄aqb)(q̄bqa)
and (q̄aq3)(q̄3q

a), and two similar ones with u. One insertion of Vq yields only one unique
O(Vq) quartic structure (q̄aq3)(q̄Vqqa), and there are no structures with one insertion of
Λd only. There is one O(∆) structure (q̄aq3)(∆u)ab(ū3u

b) and one at O(Σd) given as
(q̄au3)(Σd)aj(q̄3d

j).
With two insertions of Vq or Λd, there are only two unique structures: (q̄aV †q q)(q̄Vqqa)

and (d̄Λddj)(d̄jΛ†dd). We also get two structures with one insertion of the ΛdΣd product,
(q̄ΣdΛdqb)(q̄bq3) and (q̄aq3)(Σd)aj(d̄Λddj), and one at O(VqΣd) given as (q̄au3)(Σd)aj(q̄Vqdj).
At O(∆Vq) we have two structures, (ūau3)(ū∆†uVqua) and (q̄aV †q q)(∆u)ab(ū3u

b), and there
is one at O(∆Λd): (q̄3u

a)(∆u)ba(q̄bΛ†dd). We list all the quartic structures below:

(q̄q) (q̄q)

O(1) :
(
q̄aq

b
)

(q̄bqa) , (q̄aq3) (q̄3q
a) , O(Vq) : (q̄aq3) (q̄Vqqa) , H.c. ,

O
(
V 2
q

)
:
(
q̄aV

†
q q
)

(q̄Vqqa) , O (ΛdΣd) :
(
q̄ΣdΛdqb

)
(q̄bq3) , H.c. .

(2.53)

(ūu) (ūu)

O(1) :
(
ūau

b
)

(ūbua) , (ūau3) (ū3u
a) , O(∆Vq) : (ūau3)

(
ū∆†uVqua

)
, H.c. .

(2.54)(
d̄d
) (
d̄d
)

O (1) :
(
d̄id

j
) (
d̄jd

i
)
, O

(
Λ2
d

)
:
(
d̄Λddj

) (
d̄jΛ†dd

)
. (2.55)

(q̄q) (ūu)

O(∆) : (q̄aq3) (∆u) ab
(
ū3u

b
)
, H.c. , O(∆Vq) :

(
q̄aV

†
q q
)

(∆u) ab
(
ū3u

b
)
, H.c. .

(2.56)

(q̄q)
(
d̄d
)

O (ΛdΣd) : (q̄aq3) (Σd)aj
(
d̄Λddj

)
, H.c. . (2.57)

(q̄u) (q̄d)

O (Σd) : (q̄au3) (Σd)aj
(
q̄3d

j
)
, O (VqΣd) : (q̄au3) (Σd)aj

(
q̄Vqd

j
)
,

O (∆Λd) : (q̄3u
a) (∆u) ba

(
q̄bΛ†dd

)
.

(2.58)
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2.4 MFVQ symmetry

Minimal flavor violation assumes that the only spurions of the GQ = U(3)q ×U(3)u×U(3)d
symmetry in the quark sector are the SM Yukawa couplings. The quarks transform as

q ∼ (3,1,1), u ∼ (1,3,1), d ∼ (1,1,3) (2.59)

under GQ. As the Yukawa couplings are the sources of the symmetry breaking, they are
promoted into spurions with the transformations assigned as

Yu ∼
(
3, 3̄,1

)
, Yd ∼ (3,1, 3̄). (2.60)

Fixing the parameters of the SM, i.e., the values of the Yu,d,e spurions, breaks GQ.
With no degenerate or vanishing eigenvalues nor any accidental alignment of Yu and Yd, Yu
can be parametrized exclusively with the diagonal matrix of its singular values, Ŷu:

Yu −→ Ŷu : U(3)q ×U(3)u −→ U(1)3
q+u. (2.61)

The remaining quark sector symmetry can then be used to partially diagonalize Yd, writing

Yd −→ V Ŷd : U(1)3
q+u ×U(3)d −→ U(1)B. (2.62)

Here V is a special unitary matrix with 3 rotation angles but only 1 phase, as the others
have been successfully factored out: V is nothing but the CKM matrix. Only the vectorial
baryon number symmetry U(1)B remains unbroken after the inclusion of the quark Yukawa
couplings. Only 9 real parameters and 1 phase are physical; a total of 26 unphysical
parameters have been removed. The remnant flavor symmetry of the quark sector is U(1)B ,
which is consistent with 26 broken generators. No additional phases can be removed from
the baryon number-conserving SMEFT operators with the remnant symmetry.

The spurion counting of the pure quark operators is presented in table 6, while the
decompositions of the bilinear and quartic structures are listed in eqs. (2.63)–(2.68) and
eqs. (2.69)–(2.74).

Decomposition of bilinear structures. We present the decompositions of the bilinear
structures with up to three insertions of the spurions. O(1) structures can be formed only
by contracting a field with its conjugate. This gives the three distinct structures (q̄q), (ūu),
and (d̄d).

At O(Yu,d), we get only two bilinears: (q̄Yuu) and (q̄Ydd). Meanwhile, the O(Y 2)
structures can be obtained by contracting one index of the Yukawas with each other and the
remaining two open indices with fields. There are five such structures: (q̄YuY †u q), (q̄YdY †d q),
(ūY †uYuu), (d̄Y †d Ydd), and (ūY †uYdd). Note that the singlets formed by tracing over the
Yukawas, e.g., (Y †uYu)(q̄q) drop from the counting, since contractions like this give bilinears,
which are structurally the same as the O(1) ones.

Lastly, there are four O(Y 3) structures, which can be formed by inserting the prod-
ucts Yu,dY †u,d and Y †u,dYu,d in the O(Y ) bilinears. These four structures are (q̄YdY †d Yuu),
(q̄YuY †uYuu), (q̄YuY †uYdd) and (q̄YdY †d Ydd). The full list of bilinears follows below:
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MFVQ O(1) O(Yu) O(Y 2
u ) O(Yd) O(Y 2

d ) O(YuYd) O(Y 2
u Yd, Y

2
d Yu) O(Y 3

u , Y
3
d )

ψ2H3 QuH 1 1 1 1 1 1

QdH 1 1 1 1 1 1

ψ2XH
Qu(G,W,B) 3 3 3 3 3 3

Qd(G,W,B) 3 3 3 3 3 3

ψ2H2D

Q
(1,3)
Hq 2 2 2

QHu 1 1

QHd 1 1

QHud 1 1

(LL)(LL) Q
(1,3)
qq 4 4 4

(RR)(RR)
Quu 2 2

Qdd 2 2

Q
(1,8)
ud 2 2 2

(LL)(RR) Q
(1,8)
qu 2 6 2

Q
(1,8)
qd 2 2 6

(LR)(LR) Q
(1,8)
quqd 4 4

Total 18 4 4 19 4 4 19 5 5 8 8 8 8

Table 6. Counting of the pure quark SMEFT operators (see appendix A) assuming MFV symmetry
in the quark sector and taking the combinations up to three insertions of Yu and Yd spurions in the
decompositions. The left (right) entry in each column gives the number of CP even (odd) coefficients
at the given order in spurion counting.

(q̄q)

O (1) : (q̄q) , O
(
Y 2
u

)
:
(
q̄YuY

†
u q
)
, O

(
Y 2
d

)
:
(
q̄YdY

†
d q
)
. (2.63)

(ūu)

O (1) : (ūu) , O
(
Y 2
u

)
:
(
ūY †uYuu

)
. (2.64)

(
d̄d
)

O (1) :
(
d̄d
)
, O

(
Y 2
d

)
:
(
d̄Y †d Ydd

)
. (2.65)

(ūd)

O (YuYd) :
(
ūY †uYdd

)
. (2.66)

(q̄u)

O (Yu) : (q̄Yuu) , O
(
Y 2
d Yu

)
:
(
q̄YdY

†
d Yuu

)
, O

(
Y 3
u

)
:
(
q̄YuY

†
uYuu

)
. (2.67)

(q̄d)

O (Yd) : (q̄Ydd) , O
(
Y 2
u Yd

)
:
(
q̄YuY

†
uYdd

)
, O

(
Y 3
d

)
:
(
q̄YdY

†
d Ydd

)
. (2.68)
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Decomposition of quartic structures. At O(1) in the spurion counting, there are only
three unique structures that can be formed: (q̄iqj)(q̄jqi), (ūiuj)(ūjui) and (d̄idj)(d̄jdi). All
the remaining unique quartic structures contain two insertions of Yu,d spurions and can
be formed accounting for the transformation properties of the bilinears, e.g., q̄i (Yu)ij qk ∼
(3,3,1) and q̄k(Y †u )j`q` ∼ (3,3,1), and contracting the two. Examining and counting these
combinations, we conclude that there are in total seven unique O(Y 2) quartic structures,
which we list below:

(q̄q) (q̄q)

O (1) :
(
q̄iq

j
) (
q̄jq

i
)
,

O
(
Y 2
u

)
:
(
q̄iq

j
) (
YuY

†
u

)
i
k

(
q̄jq

k
)
, O

(
Y 2
d

)
:
(
q̄iq

j
) (
YdY

†
d

)
i
k

(
q̄jq

k
)
.

(2.69)

(ūu) (ūu)

O (1) :
(
ūiu

j
) (
ūju

i
)
, O

(
Y 2
u

)
:
(
ūiu

j
) (
Y †uYu

)
i
k

(
ūju

k
)
. (2.70)

(
d̄d
) (
d̄d
)
O (1) :

(
d̄id

j
) (
d̄jd

i
)
, O

(
Y 2
d

)
:
(
d̄id

j
) (
Y †d Yd

)
i
k

(
d̄jd

k
)
. (2.71)

(q̄q) (ūu)

O
(
Y 2
u

)
: (Yu) i`

(
Y †u

)
k
j

(
q̄iq

j
) (
ūku

`
)
. (2.72)

(q̄q)
(
d̄d
)

O
(
Y 2
d

)
: (Yd) ik

(
Y †d

)
`
j

(
q̄iq

j
) (
d̄`d

k
)
. (2.73)

(q̄u) (q̄d)

O (YuYd) : (Yd) ij (Yu) `k
(
q̄iu

k
) (
q̄`d

j
)
. (2.74)

3 Lepton sector

Similarly to quarks, leptons come in three flavors, allowing for flavor transformations,
which leaves physics unchanged. The lepton kinetic terms are symmetric under flavor
transformations from the group GL = U(3)` ×U(3)e. In the SM, this symmetry is broken
explicitly by the Yukawa term

L ⊃ −¯̀LYeeRH + H.c. , (3.1)

leaving an accidental U(1)3 symmetry conserving the individual lepton numbers. Clearly, the
observation of neutrino oscillations indicates that BSM physics must necessarily violate this
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accidental symmetry at some level. On the other hand, the non-observation of any charged
lepton flavor-violating decays indicates that TeV-scale NP must suppress contribution to
such processes.

In contrast to the quark Yukawa matrices, from which derives the CKM matrix, the
charged lepton Yukawa matrix is not fixed by the PMNS mixing matrix, which could come
from the neutrino sector. Neutrino masses in the SMEFT originate from lepton number-
violating operators, such as the dimension-5 Weinberg operator. All flavor symmetries we
consider here contain the usual lepton number symmetry as a subgroup, and this symmetry
is preserved by the spurions populating the Yukawa matrix. The inclusion of neutrino
masses, therefore, necessitates new lepton number-violating spurions. Due to the smallness
of the neutrino masses these additional spurions must be vanishingly small (for TeV-scale
NP) and can be neglected.11 In extreme examples where the neutrino mass operators are
highly suppressed by loop factors and/or operator dimension rather than the size of the
spurions, the relevant spurions can simply be included to the symmetries.

In this work, we identify several viable scenarios for the lepton flavor structure of the
SMEFT that can accommodate hierarchical Yukawa couplings while suppressing charged
lepton flavor-violating contributions from the dimension-6 operators. Accordingly, we
consider a variety of different options for a flavor symmetry G ⊂ GL:

i) G = U(1)3 vectorial provides lepton flavor conservation but does not allow for any
spurions providing a perturbative suppression of the electron mass;

ii) G = U(1)6 is also compatible with exact lepton number conservation but allows for a
controlled expansion in lepton masses;

iii) G = U(2) vectorial symmetry gives additional correlation between the light leptons
but no LFV;

iv) G = U(2)2 decouples the 3rd generation from the first two generations of leptons
while completely forbidding LFV depending with the minimal set of spurions;

v) G = U(2)2 × U(1)2 decouples the 3rd generation from the first two generations of
leptons and allows for a perturbative expansion in all lepton masses;

vi) G = U(3) vectorial symmetry is compatible with exact lepton flavor conservation;

vii) G = U(3)2, linearly realized MFV symmetry gives lepton flavor conservation but only
SM-like violation of lepton flavor universality.

11Furthermore, for the lepton number-conserving operators we consider here, the neutrino mass spurions
must combine in lepton number-conserving combinations requiring at least two such. This further suppresses
the relevance of such insertions.
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3.1 U(1)3 vectorial symmetry

The first symmetry of the lepton sector we consider is the vectorial G = U(1)3 = U(1)e ×
U(1)µ ×U(1)τ ⊂ GL symmetry, under which the ` and e fields decompose as

` =

`1 ∼ (1, 0, 0)
`2 ∼ (0, 1, 0)
`3 ∼ (0, 0, 1)

 , e =

e1 ∼ (1, 0, 0)
e2 ∼ (0, 1, 0)
e3 ∼ (0, 0, 1)

 , (3.2)

with the U(1) charges indicated in the brackets. Since the U(1)3 vectorial symmetry is
exact, there are no spurions present. The Yukawa matrix can be written as

Ye =

ye yµ
yτ

 . (3.3)

These coefficients break the axial U(1)3
A ⊂ GL symmetry, which can be used to rotate away

unphysical phases from ye,µ,τ . Accordingly, they can be chosen to be real and positive. The
numerical values of these parameters are

ye = 2.793× 10−6, yµ = 5.884× 10−4, yτ = 9.994× 10−3. (3.4)

The smallness (y` � 1) and the hierarchy among different generations is an open question.
In section 3.2, these parameters are actually spurions, which explains their smallness but
not the hierarchy. The motivation to consider this flavor structure comes from stringent
experimental constraints on charged lepton flavor-violating processes.

The neutrino masses can be minimally accounted for by the dimension-5 Weinberg
operator and three additional spurions with the opposite charge to the leptons in eq. (3.2).
The PMNS mixing matrix is accommodated by assuming no hierarchy in the three spurions.
Note that, for the TeV-scale cutoff, these spurions take extremely small values in order
to reproduce the observed neutrino masses. Therefore, their effect on charged lepton
flavor-violating processes is negligible. For these reasons, we omit them from the counting
of dimension-6 operators.

The counting of the pure lepton SMEFT operators is presented in the table 7 and the
decompositions of the bilinear and unique quartic structures are listed in eqs. (3.5)–(3.9).

Decomposition of bilinear and quartic structures. Constructing bilinear and quartic
structures is straightforward in the case of U(1)3 vectorial symmetry, since only O(1)
structures are present. These are given by (¯̀

i`i), (ēiei) and (¯̀
iei). Similarly, the only

possible non-factorizable quartic structures are given by (¯̀
i`j)(¯̀

j`i) and (¯̀
i`j)(ējei).

The structures of the form (ēiej)(ējei) are identical to (ēiei)(ējej) due to the Fierz
identity for vector currents in the underlying operators. This is valid not only here but for
all lepton symmetries we consider, that is, there are no unique (ēe)(ēe) structures. Thus, the
quartic structures with four insertions of e are formed solely by multiplying (ēe) bilinears.
We list the decompositions of the bilinear and unique quartic structures below:
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)
0
0
5

U(1)e ×U(1)µ ×U(1)τ O(1)
ψ2H3 QeH 3 3
ψ2XH Qe(W,B) 6 6

ψ2H2D
Q

(1,3)
H` 6
QHe 3

(LL)(LL) Q`` 9
(RR)(RR) Qee 6
(LL)(RR) Q`e 12 3

Total 45 12

Table 7. Counting of the pure lepton SMEFT operators (see appendix A) assuming U(1)3
V symmetry

in the lepton sector. Since the U(1)3
V symmetry is exact (no spurions), the counting is presented for

the O(1) operators only. The left (right) entry in each column gives the number of CP even (odd)
coefficients at the given order in spurion counting.

(
¯̀e
)

O (1) :
(

¯̀1e1
)
,
(

¯̀2e2
)
,
(

¯̀3e3
)
. (3.5)

(
¯̀̀
)

O (1) :
(

¯̀1`1
)
,
(

¯̀2`2
)
,
(

¯̀3`3
)
. (3.6)

(ēe)
O (1) : (ē1e1) , (ē2e2) , (ē3e3) . (3.7)(

¯̀̀
) (

¯̀̀
)

O (1) :
(

¯̀1`2
) (

¯̀2`1
)
,
(

¯̀1`3
) (

¯̀3`1
)
,
(

¯̀2`3
) (

¯̀3`2
)
. (3.8)

(
¯̀̀
)

(ēe)

O (1) :
(

¯̀1`2
)

(ē2e1) ,
(

¯̀2`3
)

(ē3e2) ,
(

¯̀3`1
)

(ē1e3) , H.c. . (3.9)

(ēe) (ēe)
No unique structures present due to Fierz identities.

3.2 U(1)6 symmetry

For a G = U(1)6 = U(1)`1 ×U(1)e1 ×U(1)`2 ×U(1)e2 ×U(1)`3 ×U(1)e3 ⊂ GL symmetry of
the lepton sector, we have the field decompositions and U(1)6 charge assignments

` =

`1 ∼ (1, 0, 0, 0, 0, 0)
`2 ∼ (0, 0, 1, 0, 0, 0)
`3 ∼ (0, 0, 0, 0, 1, 0)

 , e =

e1 ∼ (0, 1, 0, 0, 0, 0)
e2 ∼ (0, 0, 0, 1, 0, 0)
e3 ∼ (0, 0, 0, 0, 0, 1)

 . (3.10)
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U(1)6 O(1) O(y)
ψ2H3 QeH 3 3
ψ2XH Qe(W,B) 6 6

ψ2H2D
Q

(1,3)
H` 6
QHe 3

(LL)(LL) Q`` 9
(RR)(RR) Qee 6
(LL)(RR) Q`e 9

Total 33 9 9

Table 8. Counting of the pure lepton SMEFT operators (see appendix A) assuming U(1)6 symmetry
in the lepton sector. The counting is performed taking up to one insertion of ye,µ,τ spurion. The
left (right) entry in each column gives the number of CP even (odd) coefficients at the given order
in spurion counting.

The minimal set of spurions required to write the Yukawa matrix is

ye ∼ (1,−1, 0, 0, 0, 0), yµ ∼ (0, 0, 1,−1, 0, 0), yτ ∼ (0, 0, 0, 0, 1,−1), (3.11)

which we use to write the Yukawa matrix

Ye =

ye yµ
yτ

 , (3.12)

The flavor symmetry breaking pattern is given by:

ye : U(1)eL ×U(1)eR −→ U(1)Le ,
yµ : U(1)µL ×U(1)µR −→ U(1)Lµ ,
yτ : U(1)τL ×U(1)τR −→ U(1)Lτ ,

(3.13)

yielding a total of 3 broken generators. This allows for the elimination of redundant phases
from ye,µ,τ , which can all be taken to be positive, real numbers.

We present the spurion counting of the leptonic operators assuming U(1)6 flavor
symmetry in table 8. The decompositions are listed in eqs. (3.14)–(3.17).

Decomposition of bilinear and quartic structures. In this case, the O(1) bilinear
structures can only be constructed with two appearances of the same field. These structures
are (¯̀

i`i) and (ēiei). Matching the charges, the bilinear structure with one insertion of a
spurion (Ye)ii can only be of the form [¯̀i(Ye)iiei]. The set of unique quartic structures is
comprised of three O(1) structures of the form (¯̀1`2)(¯̀2`1), (¯̀2`3)(¯̀3`2) and (¯̀3`1)(¯̀1`3),
whereas there are no unique (¯̀̀ )(ēe) structures present. We list the decompositions below:(

¯̀e
)

O (y) :
(

¯̀1yee1
)
,
(

¯̀2yµe2
)
,
(

¯̀3yτe3
)
. (3.14)
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(¯̀̀ )
O(1) : (¯̀1`1) , (¯̀2`2) , (¯̀3`3) . (3.15)

(ēe)
O(1) : (ē1e1) , (ē2e2) , (ē3e3) . (3.16)

(¯̀̀ )(¯̀̀ )

O(1) : (¯̀1`2)(¯̀2`1) , (¯̀2`3)(¯̀3`2) , (¯̀3`1)(¯̀1`3) . (3.17)

(¯̀̀ )(ēe)
No unique structures present.

(ēe)(ēe)
No unique structures present due to Fierz identites.

3.3 U(2) vectorial symmetry

Next, we consider a U(2) ⊂ GL vectorial flavor symmetry, under which the fields decompose
as

` =
[
`a ∼ 2
`3 ∼ 1

]
, e=

[
ea ∼ 2
e3 ∼ 1

]
. (3.18)

The minimal choice of spurion necessary to produce a realistic Yukawa coupling is ∆` ∼ 3,
which we take to be real.12 We use the simplifying notation

∆I
` (T I)ab = (∆`)ab. (3.19)

With this spurion, the Yukawa matrix generically takes the form

Ye =
[
∆` + s`1 0

0 yτ

]
. (3.20)

∆` breaks the U(2)V symmetry as

∆` −→
[
−δ` 0
0 δ`

]
: U(2)V −→ U(1)2

`+e, (3.21)

where we use the general properties of the special unitary matrices along with the flavor
symmetry breaking pattern to parametrize the ∆` spurion with 1 real parameter. The
Yukawa matrix (3.20) also preserves an accidental U(1)`3+e3 symmetry, while it breaks axial
U(1)′s, which can be used to remove phases from the coefficients s` and yτ . The numerical
values of the relevant parameters are

s` = 2.956× 10−4, δ` = 2.928× 10−4, yτ = 9.994× 10−3. (3.22)

This flavor structure fails to explain the hierarchy among generations. Furthermore, a
tuning is needed between s` and (the symmetry-breaking) δ` in order to accommodate for
the observed e and µ masses.

The spurion counting of the pure lepton operators assuming U(2)V symmetry is given
in table 9 and we list the decompositions in eqs. (3.24)–(3.28).

12A slightly less minimal choice would be to introduce a V` ∼ 2 in place of ∆`.
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U(2)V O(1) O(∆`)
ψ2H3 QeH 2 2 1 1
ψ2XH Qe(W,B) 4 4 2 2

ψ2H2D
Q

(1,3)
H` 4 2
QHe 2 1

(LL)(LL) Q`` 5 3
(RR)(RR) Qee 3 2
(LL)(RR) Q`e 6 1 5 2

Total 26 7 16 5

Table 9. Counting of the pure lepton SMEFT operators (see appendix A) assuming U(2) vectorial
symmetry in the lepton sector. The counting is performed taking up to one insertion of ∆` spurion.
The left (right) entry in each column gives the number of CP even (odd) coefficients at the given
order in spurion counting.

Decomposition of bilinear and quartic structures. O(1) bilinear structures can
only be constructed by directly contracting the doublets or the singlets of the ` and e fields.
There are six such structures: (¯̀e), (¯̀3e3), (¯̀̀ ), (¯̀3`3), (ēe), and (ē3e3). To form the O(∆`)
bilinears, the ∆` has to be contracted to `a and ea, giving three bilinears: (¯̀∆`e), (¯̀∆``),
and (ē∆`e).

Analyzing the possible contractions involving four field appearances in an analogous way,
we obtain fourO(1) quartic structures: (¯̀

a`
b)(¯̀

b`
a), (¯̀

a`3)(¯̀3`
a), (¯̀

a`)(ēea), and (¯̀
a`3)(ē3e

a).
Similarly, we find that there are three O(∆`) structures given by (¯̀

a`3) (∆`)ab (¯̀3`
b),

(¯̀
a`
b) (∆`)ac (ēbec), and (¯̀

a`3) (∆`)ab (ē3e
b).

We remark that there is a overcounting if we include all the (¯̀̀ )(ēe) factorizing
quartic structures contain only the U(2)V doublets ` and e. Having the O(1) and O(∆`)
decompositions of the bilinear structures, the factorizing O(∆`) quartic structures are
formed simply by multiplying the corresponding bilinears. Applying this recipe trivially
gives two O(∆`) structures of the form (¯̀̀ )(ē∆`e), (¯̀∆``)(ēe). It turns out that due to
the group identity (D.6), one of these structures can be expressed in terms of the other
factorizing quartic structure and the unique contraction (¯̀

a`
b) (∆`)ac (ēbec) and its Hermitian

conjugate:

( ¯̀̀ )(ē∆`e) = ∆I
`

(
tI
)
a
bδ
c
d

(
¯̀
c`
d
)(
ēae

b
)

= ∆I
`

[(
tI
)
c
bδ
a
d−
(
tI
)
c
dδ
a
b+
(
tI
)
a
dδ
c
b

](¯̀
c`
d
)(
ēae

b
)

=
[(

¯̀
a`
b
)

(∆`)ac (ēbec)+H.c.
]
−
(¯̀∆``

)
(ēe) .

(3.23)
The (¯̀̀ )(ē∆`e) structure, therefore, drops from the counting. We list the complete decom-
positions below:(

¯̀e
)

O (1) :
(

¯̀e
)
,
(

¯̀3e3
)
, O (∆`) :

(
¯̀∆`e

)
. (3.24)
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(
¯̀̀
)

O (1) :
(

¯̀̀
)
,
(

¯̀3`3
)
, O (∆`) :

(
¯̀∆``

)
. (3.25)

(ēe)
O (1) : (ēe) , (ē3e3) , O (∆`) : (ē∆`e) . (3.26)

(
¯̀̀
) (

¯̀̀
)

O (1) :
(

¯̀
a`
b
) (

¯̀
b`
a
)
,
(

¯̀
a`3
) (

¯̀3`
a
)
, O (∆`) :

(
¯̀
a`3
)

(∆`)ab
(

¯̀3`
b
)
. (3.27)

(
¯̀̀
)

(ēe)

O (1) :
(¯̀
a`
)

(ēea) ,
[(¯̀

a`3
)

(ē3e
a) , H.c.

]
,

O (∆`) :
(¯̀
a`
b
)

(∆`)ac (ēbec) ,
(¯̀
a`3
)

(∆`)ab
(
ē3e

b
)
, H.c. .

(3.28)

(ēe) (ēe)
No unique structures present due to Fierz identities.

3.4 U(2)2 symmetry

We consider the case where NP is invariant under G = U(2)` ×U(2)e ⊂ GL. In this case,
the fields decompose as

` =
[
`a ∼ (2,1)
`3 ∼ (1,1)

]
, e =

[
ea ∼ (1,2)
e3 ∼ (1,1)

]
. (3.29)

In order to write a realistic the lepton Yukawa matrix, a spurion

∆e ∼ (2, 2̄) (3.30)

is required. It is then possible to write the Yukawa matrix

Ye =
[
∆e 0
0 yτ

]
. (3.31)

We also allow for the non-minimal inclusion of the spurion V` ∼ (2,1) to allow for a mixing
of third generation leptons with the light generations. Note that V` will be included in the
decompositions (SMEFT operators), but it is absent from the Yukawa matrix, since the
inclusion of V` leads to a non-minimal parametrization of Yukawa.

We determine the breaking pattern of the U(2)2 flavor symmetry by the spurions.
Fixing the ∆e bi-doublet, we have

∆e −→
[
δ` 0
0 δ′`

]
: U(2)` ×U(2)e −→ U(1)2

`+e. (3.32)
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U(2)` ×U(2)e O(1) O(V ) O(V 2) O(V 3) O(∆) O(∆V )
ψ2H3 QeH 1 1 1 1 1 1 1 1
ψ2XH Qe(W,B) 2 2 2 2 2 2 2 2

ψ2H2D
Q

(1,3)
H` 4 2 2 2
QHe 2 1 1

(LL)(LL) Q`` 5 3 3 5 1 1 1
(RR)(RR) Qee 3 2 2
(LL)(RR) Q`e 4 2 2 2 1 1 3 3

Total 21 3 10 10 9 1 1 1 4 4 9 9

Table 10. Counting of the pure lepton SMEFT operators (see appendix A) assuming U(2)`×U(2)e
symmetry in the lepton sector. Analogously to the counting performed in the quark sector assuming
the same symmetry (see table 2), we once again take up to three insertions of V` spurion, one
insertion of ∆e and one insertion of the ∆eV` spurion product. The left (right) entry in each column
gives the number of CP even (odd) coefficients at the given order in spurion counting.

In the second step, V` breaks

V` −→
[
ε`
ε′`

]
: U(1)2

`+e −→ ∅, (3.33)

for ε(′)` > 0. Thus, we conclude that these spurions completely break the flavor U(2)2

symmetry, making it possible to remove 8 unphysical parameters from the parametrization
of the spurions. yτ breaks a third generation axial U(1) symmetry, and its unphysical phase
can be removed. The numerical values of the relevant parameters for the Yukawa matrix
are

δ` = 2.793× 10−6, δ′` = 5.884× 10−4, yτ = 9.994× 10−3. (3.34)

This flavor structure provides a rationale for why the tau is much heavier than the other
two leptons. The light lepton masses can be accommodated without tuning in contrast to
the previous section; however, the hierarchy among them is left unexplained.

The spurion counting of the pure lepton operators assuming U(2)2 symmetry of the
lepton sector is presented in table 10. The decompositions of bilinear and quartic structures
are listed in eqs. (3.35)–(3.39).

Decomposition of bilinear and quartic structures. Forming the structures invariant
under U(2)2 symmetry follows the same approach as in the case of U(2)3 symmetry in the
quark sector (see eqs. (2.13)–(2.24)). Therefore, in order to obtain the invariant structures
it is sufficient to take the corresponding structures in the quark sector (either q and u or
q and d structures) and do a relabeling q → ` and u/d → e. The decompositions of the
bilinear and quartic structures are listed below:
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(¯̀e)

O (1) :
(

¯̀3e3
)
, O (V ) :

(
¯̀V`e3

)
, O (∆) :

(
¯̀∆ee

)
, O (∆V ) :

[
¯̀3
(
V †` ∆e

)
e
]
.

(3.35)(
¯̀̀
)
O (1) :

(
¯̀̀
)
,
(

¯̀3`3
)
, O (V ) :

(
¯̀V``3

)
, H.c. , O

(
V 2
)

:
(

¯̀V`V †` `
)
. (3.36)

(ēe)

O (1) : (ēe) , (ē3e3) , O (∆V ) :
(
ē∆†eV`e3

)
, H.c. . (3.37)

(
¯̀̀
)(

¯̀̀
)

O (1) :
(

¯̀
a`
b
)(

¯̀
b`
a
)
,
(

¯̀̀ 3
)(

¯̀3`
)
, O (V ) :

(
¯̀V``b

)(
¯̀
b`3
)
, H.c. ,

O
(
V 2
)

:
(

¯̀V``b
)(

¯̀
bV
†
` `
)
.

(3.38)

(
¯̀̀
)

(ēe)

O (∆) :
(

¯̀
a`3
)

(∆e)ab
(
ē3e

b
)
, H.c. , O (∆V ) :

(
¯̀V``b

)
(∆e) cb (ēce3) , H.c. . (3.39)

(ēe)(ēe)
No unique structures present due to Fierz identities.

3.5 U(2)2 × U(1)2 symmetry

If we wish to include the τ Yukawa as a spurion in our expansion, we can consider extending
the lepton symmetry to G = U(2)2 ×U(1)2 ⊂ GL (a similar construction is possible with
one U(1) factor). Under this symmetry, the fields decompose as13

` =
[
`a ∼ (2,1|0, 0)
`3 ∼ (1,1|1, 0)

]
, e =

[
ea ∼ (1,2|0, 0)
e3 ∼ (1,1|0, 1)

]
, (3.40)

and the minimal set of spurions required to produce a realistic Yukawa matrix is given by

∆e ∼ (2, 2̄|0, 0), X` ∼ (1,1|1,−1). (3.41)

With these spurions, the Yukawa matrix can be written as

Ye =
[
∆e 0
0 X`

]
. (3.42)

13The representations under the flavor group are indicated in the (U(2)`,U(2)e|U(1)`3 ,U(1)e3 ) format.
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We will also include V` ∼ (2,1|0,−1) and Ve ∼ (1,2|−1, 0) spurions in the decompositions
of the bilinear and quartic structures, but these spurions can be set to 0 in the minimal
parametrization of the Yukawa matrix (see section 2.1 for details).

Let us take a look at how this set of spurions breaks the flavor symmetry. First, ∆e

breaks

∆e −→
[
δ` 0
0 δ′`

]
: U(2)` ×U(2)e −→ U(1)2

`+e. (3.43)

In the next step, X` breaks

X` −→ χ` : U(1)`3 ×U(1)e3 −→ U(1)`3+e3 . (3.44)

Furthermore, inclusion of V` breaks the flavor symmetry down to global lepton number

V` −→
[
ε`
ε′`

]
, U(1)2

`+e ×U(1)`3+e3 −→ U(1)L, (3.45)

with ε
(′)
` > 0. Ve does not break the symmetry further and has 2 complex parameters.

We are left with 5 real, positive parameters and 2 complex parameters in the spurion
parametrization. The numerical values of the spurion parameters appearing in the Yukawa
matrix are given by

δ` = 2.793× 10−6, δ′` = 5.884× 10−4, χ` = 9.994× 10−3. (3.46)

The added advantage with respect to the previous section is the explanation of the small yτ .
The flavor spurion counting of the leptonic operators assuming U(2)2×U(1)2 symmetry

is presented in table 11, and the flavor decompositions of the bilinear and unique quartic
structures are listed in eqs. (3.47)–(3.51).

Decomposition of bilinear and quartic structures. Decomposing O(1) bilinear struc-
tures proceeds in a similar way as in the case of quark U(2)3 symmetry. We obtain following
O(1) structures: (¯̀̀ ), (ēe), (¯̀3`3) and (ē3e3). At O(∆) there is only one bilinear structure
allowed: (¯̀∆`e). There are two O(V ) bilinears of the form (¯̀V`e3) and (¯̀3V

†
e e). Two

doublets of ` or e can also be contracted to two insertions of V` or Ve respectively, giving
(¯̀V`V †` `) and (ēVeV †e e) structures. We also get one O(X) structure of the form (¯̀3X`e3).

More interesting bilinears emerge for two or three spurion insertions. Two O(XV )
structures can be written based on X∗` V` ∼ (2,1|−1, 0) and X`Ve ∼ (2,1|0,−1): [¯̀(X∗` V`)`3]
and [ē(X`Ve)e3]. Similarly, at order O(∆V ), we have ∆eVe ∼ (2,1|−1, 0) and ∆†eV` ∼
(1,2|0,−1), giving two bilinears of the form [¯̀(∆eVe) `3] and [¯̀(∆eVe) `3]. At order ∆XV ,
we have the transformations X`V

†
` ∆e ∼ (1,2|1, 0) and X`∆eVe ∼ (2,1|0,−1), yielding two

additional bilinears:
[¯̀3(X`V

†
` ∆e)e

]
and [¯̀(X`∆eVe)e3].

The unique O(1) quartic structures with four instances of ` include (¯̀
a`
b)(¯̀

b`
a) and

(¯̀̀ 3)(¯̀3`). Using the transformation properties of the X∗` V` product, we can construct one
more structure: (¯̀

a`3)[¯̀b(X∗` V`)b`a]. Analogously, we deduce that there are three O(∆V )
structures, [¯̀a(Ve∆e)a`b](¯̀

b`3), (¯̀V``a) (∆∗e) ab(ēbe3), and (¯̀
a`

3) (∆e) ab(ēVeeb), and three
O(V 2) ones, (¯̀

aV
†
` `)(¯̀V``a), (¯̀3V

†
` `)(¯̀V``3), and

(
¯̀V``3

)
(ēVee3). We present the complete

list below:
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U(2)2 ×U(1)2 O(1) O(V ) O(V 2) O(∆) O(X) O(XV ) O(∆V ) O(XV∆)
ψ2H3 QeH 2 2 1 1 1 1 2 2
ψ2XH Qe(W,B) 4 4 2 2 2 2 4 4

ψ2H2D
Q

(1,3)
H` 4 2 2 2 2 2
QHe 2 1 1 1 1 1

(LL)(LL) Q`` 5 4 3 3 3 3
(RR)(RR) Qee 3 2 2 2 2 2
(LL)(RR) Q`e 4 5 1 4 4 6 6

Total 18 6 6 14 1 3 3 3 3 12 12 14 14 6 6

Table 11. Counting of the pure lepton SMEFT operators (see appendix A) assuming U(2)2×U(1)2

symmetry in the lepton sector. The counting is performed up to two insertions of V and one insertion
of ∆e and X` spurion. Moreover, the counting is presented taking two (X`Ve,`, ∆eVe,`) and three
(X`Ve,`∆e) insertions in the spurion product. The left (right) entry in each column gives the number
of CP even (odd) coefficients at the given order in spurion counting.

(¯̀e)

O(∆) : (¯̀∆ee) , O(V ) : (¯̀V`e3) , (¯̀3V
†
e e) , O(X) : (¯̀3X`e3) ,

O(∆XV ) :
[¯̀3(X`V

†
` ∆e)e

]
,
[
¯̀(X`∆eVe)e3

]
.

(3.47)

(¯̀̀ )

O(1) : (¯̀̀ ) , (¯̀3`3) , O(XV ) :
[¯̀(X∗` V`)`3

]
, H.c. , O(∆V ) :

[¯̀(∆eVe)`3
]
, H.c. ,

O(V 2) : (¯̀V`V †` `) .
(3.48)

(ēe)

O(1) : (ēe) , (ē3e3) , O(XV ) : [ē(X`Ve)e3] , H.c. , O(∆V ) :
[
ē(∆†eV`)e3

]
, H.c. ,

O(V 2) :
(
ēVeV

†
e e
)
.

(3.49)

(¯̀̀ )(¯̀̀ )

O(1) : (¯̀
a`
b)(¯̀

b`
a) , (¯̀̀ 3)(¯̀3`) , O(V 2) : (¯̀

aV
†
` `)(¯̀V``a) , (¯̀3V

†
` `)(¯̀V``3) ,

O(∆V ) : [¯̀a(Ve∆e)a`b](¯̀
b`3) , H.c. , O(XV ) : (¯̀

a`3)[¯̀b(X∗` V`)b`a] , H.c. .
(3.50)

(¯̀̀ )(ēe)

O(V 2) :
(¯̀V``3

)
(ēVee3) , H.c. , O(∆V ) : (¯̀V``b)(∆∗e) ba(ēae3) , (¯̀

a`
3)(∆e)ab(ēVeeb) , H.c. .

(3.51)

(ēe)(ēe)
No unique structures present due to Fierz identities.
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3.6 U(3) vectorial symmetry

In this section, we take a look at the G = U(3) ⊂ GL vectorial symmetry, under which the
fields transform as

` ∼ 3, e ∼ 3. (3.52)

The minimal spurion required in this case, similar to the U(2)V case, is ∆` ∼ 8, which
we take to be real. For simplicity, we once again use the implicit contraction with the
generator:

∆A
`

(
TA
)
i
j = (∆`) ij . (3.53)

With the ∆` spurion, the Yukawa matrix is parametrized by

Ye = ∆` + x`1. (3.54)

∆` breaks the U(3)V flavor symmetry as

∆` −→

−δ` −δ′`
δ` + δ′`

 : U(3)V → U(1)3
`+e. (3.55)

The flavor symmetry, thus, removes 6 unphysical parameters from ∆`, leaving δ
(′)
` > 0.

Furthermore x` breaks a U(1) axial symmetry, which allows us to remove an unphysical
phase. We observe that the realistic lepton masses require a high degree of tuning between
x` and δ

(′)
` , naturally of the order of the tau Yukawa coupling, to produce the small electron

and muon Yukawa couplings. The numerical values of the relevant parameters are given by

δ` = 3.526× 10−3, δ′` = 2.940× 10−3, x` = 3.529× 10−3. (3.56)

Note that one needs a tuning among parameters to accommodate for the smallness of ye
and yµ with respect to yτ .

We present the spurion counting in table 12 and list the flavor decompositions of the
bilinear and unique quartic structures in eqs. (3.57)–(3.61).

Decomposition of bilinear and quartic structures. The O(1) bilinears are given by
(¯̀̀ ), (ēe) or (¯̀e). Bilinears containing one insertion of ∆` are formed similarly to the U(2)V
case and are given by (¯̀∆``), (ē∆`e) and (¯̀∆`e). The O(1) unique quartic structures we
obtain are (¯̀

i`
j)(¯̀

j`
i) and (¯̀

i`
j)(ējei). Considering quartic structures with one insertion of

∆`, there are two allowed structures: (¯̀
i`
j) (∆`) ik(¯̀

j`
k) and (¯̀

i`
j) (∆`) ik(ējek). Allowed

O(1) and O(∆`) structures are presented below:(
¯̀e
)

O (1) :
(

¯̀e
)
, O (∆`) :

(
¯̀∆`e

)
. (3.57)

(
¯̀̀
)

O (1) :
(

¯̀̀
)
, O (∆`) :

(
¯̀∆``

)
. (3.58)
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U(3)V O(1) O(∆`)
ψ2H3 QeH 1 1 1 1
ψ2XH Qe(W,B) 2 2 2 2

ψ2H2D
Q

(1,3)
H` 2 2
QHe 1 1

(LL)(LL) Q`` 2 2
(RR)(RR) Qee 1 1
(LL)(RR) Q`e 2 3 1

Total 11 3 12 4

Table 12. Counting of the pure lepton SMEFT operators (see appendix A) assuming U(3) vectorial
symmetry in the lepton sector. The counting is performed up to one insertion of ∆` spurion. The
left (right) entry in each column gives the number of CP even (odd) coefficients at the given order
in spurion counting.

(ēe)
O (1) : (ēe) , O (∆`) : (ē∆`e) . (3.59)

(
¯̀̀
) (

¯̀̀
)

O (1) :
(

¯̀
i`
j
) (

¯̀
j`
i
)
, O (∆`) :

(
¯̀
i`
j
)

(∆`) ik
(

¯̀
j`
k
)
. (3.60)

(
¯̀̀
)

(ēe)

O (1) :
(

¯̀
i`
j
) (
ēje

i
)
, O (∆`) :

(
¯̀
i`
j
)

(∆`) ik
(
ēje

k
)
, H.c. . (3.61)

(ēe) (ēe)
No unique structures present due to Fierz identities.

3.7 MFVL symmetry

Lastly, let us take a look at minimal flavor violation in the lepton sector, with the full
symmetry G = U(3)` ×U(3)e = GL. The leptons are in the representations

` ∼ (3,1), e ∼ (1,3), (3.62)

and the leptonic Yukawa matrix, which serves as the sole spurion transforms as

Ye ∼
(
3, 3̄

)
. (3.63)

As in the SM, the Yukawa matrix breaks the symmetry according to

Ye −→ Ŷe : U(3)` ×U(3)e −→ U(1)3
`+e, (3.64)
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MFVL O(1) O(Ye)
ψ2H3 QeH 1 1
ψ2XH Qe(W,B) 2 2

ψ2H2D
Q

(1,3)
H` 2
QHe 1

(LL)(LL) Q`` 2
(RR)(RR) Qee 1
(LL)(RR) Q`e 1

Total 7 3 3

Table 13. Counting of the pure lepton SMEFT operators (see appendix A) assuming MFVL
symmetry in the lepton sector. The counting is performed up to one insertion of Ye spurion. The
left (right) entry in each column gives the number of CP even (odd) coefficients at the given order
in spurion counting.

where Ŷe is a real, positive, diagonal matrix. 15 unphysical parameters are removed from
the spurion in this manner, and the remnant symmetry ensures conservation of individual
lepton numbers.

The flavor spurion counting of the pure lepton operators is presented in table 13 and
the decompositions are listed in eqs. (3.65)–(3.68).

Decomposition of bilinear and quartic structures. At O(1), we get two structures
of the form (¯̀

i`
i) and (ēiei). Using one insertion of Ye we obtain one structure given by

(¯̀Yee). Regarding the non-factorizing quartic structures, there is only one that can be
formed with four appearances of ` of the form (¯̀

i`
j)(¯̀

j`
i). There are no unique structures

of the form (¯̀̀ )(ēe). Taking these remarks into account, the list of the O(1) and O(Ye)
structures is presented below:(

¯̀e
)

O (Ye) :
(

¯̀Yee
)
. (3.65)

(
¯̀̀
)

O (1) :
(

¯̀̀
)
. (3.66)

(ēe)
O (1) : (ēe) . (3.67)(

¯̀̀
) (

¯̀̀
)

O (1) :
(

¯̀
i`
j
) (

¯̀
j`
i
)
. (3.68)
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(
¯̀̀
)

(ēe)
No unique structures present.

(ēe) (ēe)
No unique structures present due to Fierz identities.

4 Conclusions

The hierarchical pattern of charged fermion masses and mixings observed in nature craves an
explanation: the dimension-4 Yukawa interactions in the SM provide only a parametrization
but not an understanding of flavor. To make progress in addressing this long-standing
puzzle, we must uncover new, flavored interactions beyond the SM. The SMEFT is a
powerful framework that can capture the low-energy physics of a high-energy model. There
are 2499 leading dimension-6 baryon and lepton number-conserving operators, the great
majority of which are flavorful. The hope is that experiments will observe some of these
interactions and start clarifying their flavor patterns. This might provide a crucial clue
towards solving the puzzle. Perhaps the ongoing flavor anomalies are the first step in
this direction.

Patterns are closely related to symmetries. In this paper, we systematically explored
the flavor structure of ∆B = 0 dimension-6 SMEFT operators using flavor symmetries
as an organizing principle in an extension of ref. [1]. Our underlying assumption is that
short-distance physics will leave a global flavor symmetry and a breaking pattern in the
effective operators at low energies. From the IR perspective, postulating different flavor
structures in the effective field theory means mapping the space of physics beyond the
SM into the universality classes. These assumptions impose correlations among operators,
which can be tested in experiments, providing a systematic way to learn about BSM.

Concretely, working in the Warsaw basis (appendix A), we imposed a variety of
different global flavor symmetry assumptions in both the quark and the lepton sectors. The
symmetries are carefully chosen to allow for new physics at (not far beyond) the TeV scale
while respecting the experimental bounds from FCNC, LFV, and EDMs. In particular,
they allow for potential new physics effects in the high-pT experiments and motivate global
SMEFT fits in the top, Higgs, and EW sectors. The symmetry breaking spurions are
non-dynamical objects formally transforming in a non-trivial representation of the imposed
flavor group. For each flavor structure, we construct the basis of dimension-6 operators
compatible with the flavor symmetry and breaking spurions.

As a supplement to this work, we also provide a Mathematica package SMEFTflavor
for automatic generation of the operators should the user have a different symmetry group
or breaking spurions in mind (appendix B).

As shown in table 1, the number of leading flavor-symmetric operators without spurion
insertions, which are important for the high-pT fits, is significantly reduced from the initial
2499 when no symmetries are imposed. In section 2, we explicitly construct independent
operators for U(2)3, U(2)3×U(1), U(2)2×U(3), and U(3)3 quark flavor symmetries, focusing
on the quark-only operators. We pay special attention to the SU(2) subgroup invariants.
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We also derive minimal spurion parametrizations, which can be directly employed in the
phenomenological studies. The novelty here is the use of the full U(3)3 field redefinitions
consistent with the imposed symmetry to avoid overparametrizations often found in the
literature. In section 3, we repeat the analysis for the lepton-only operators and lepton
symmetries U(1)6, U(1)3

V , U(2)V , U(2)2, U(2)2 ×U(1)2, U(3)V , and U(3)2. The counting
of the mixed quark-lepton operators is worked out in appendix C for each combination of
the four quark and the seven lepton symmetries.

Our methodology can be extended to the dimension-8 operators in the SMEFT, which
will be presented in a separate publication. We hope the flavor structures proposed in this
work will find its place in the future phenomenological studies of low and high-pT data.

Acknowledgments

We acknowledge with thanks the discussions held within the LHC EFT WG. We also thank
Gino Isidori, Felix Wilsch, and Javier Fuentes-Martín, for useful discussions. This work
received funding from the Swiss National Science Foundation (SNF) through the Eccellenza
Professorial Fellowship “Flavor Physics at the High Energy Frontier” project number 186866.
AG is also partially supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme, grant agreement 833280 (FLAY).

A Warsaw basis

Here we list the ∆B = 0 dimension-6 fermionic SMEFT operators in the Warsaw basis [13]
with division into classes as presented in [14].

5–7: Fermion Bilinears

non-hermitian (L̄R)

5: ψ2H3 6: ψ2XH

QeH (H†H)(¯̀
perH) QeW (¯̀

pσ
µνer)τ IHW I

µν QuG (q̄pσµνTAur)H̃GAµν QdG (q̄pσµνTAdr)HGAµν
QuH (H†H)(q̄purH̃) QeB (¯̀

pσ
µνer)HBµν QuW (q̄pσµνur)τ IH̃W I

µν QdW (q̄pσµνdr)τ IHW I
µν

QdH (H†H)(q̄pdrH) QuB (q̄pσµνur)H̃Bµν QdB (q̄pσµνdr)HBµν

hermitian (+ QHud) ∼ 7: ψ2H2D

(L̄L) (R̄R) (R̄R′)

Q
(1)
H` (H†i←→D µH)(¯̀

pγ
µ`r) QHe (H†i←→D µH)(ēpγµer) QHud i(H̃†DµH)(ūpγµdr)

Q
(3)
H` (H†i←→D I

µH)(¯̀
pτ
Iγµ`r) QHu (H†i←→D µH)(ūpγµur)

Q
(1)
Hq (H†i←→D µH)(q̄pγµqr) QHd (H†i←→D µH)(d̄pγµdr)

Q
(3)
Hq (H†i←→D I

µH)(q̄pτ Iγµqr)
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8: Fermion Quadrilinears

hermitian

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Q`` (¯̀
pγµ`r)(¯̀

sγ
µ`t) Qee (ēpγµer)(ēsγµet) Q`e (¯̀

pγµ`r)(ēsγµet)

Q
(1)
qq (q̄pγµqr)(q̄sγµqt) Quu (ūpγµur)(ūsγµut) Q`u (¯̀

pγµ`r)(ūsγµut)

Q
(3)
qq (q̄pγµτ Iqr)(q̄sγµτ Iqt) Qdd (d̄pγµdr)(d̄sγµdt) Q`d (¯̀

pγµ`r)(d̄sγµdt)

Q
(1)
`q (¯̀

pγµ`r)(q̄sγµqt) Qeu (ēpγµer)(ūsγµut) Qqe (q̄pγµqr)(ēsγµet)

Q
(3)
`q (¯̀

pγµτ
I`r)(q̄sγµτ Iqt) Qed (ēpγµer)(d̄sγµdt) Q

(1)
qu (q̄pγµqr)(ūsγµut)

Q
(1)
ud (ūpγµur)(d̄sγµdt) Q

(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q
(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q

(1)
qd (q̄pγµqr)(d̄sγµdt)

Q
(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

non-hermitian

(L̄R)(R̄L) (L̄R)(L̄R)

Q`edq (¯̀j
per)(d̄sqtj) Q

(1)
quqd (q̄jpur)εjk(q̄ksdt)

Q
(8)
quqd (q̄jpTAur)εjk(q̄ksTAdt)

Q
(1)
`equ (¯̀j

per)εjk(q̄ksut)

Q
(3)
`equ (¯̀j

pσµνer)εjk(q̄ksσµνut)

B SMEFTflavor

In this section we briefly outline the details of the Mathematica package developed during
this project, which has played an important, twofold role: first, it has been used to perform
the cross-checks of all the decompositions and counting tables. Second, the code has been
developed to allow for implementation of other flavor symmetries than those analyzed here
to determine the SMEFT operators and corresponding spurion counting tables. The package
can be downloaded from the github page https://github.com/aethomsen/SMEFTflavor.
It can then be run from a notebook located in the base directory of the package (the one
with the ‘Tutorial.nb’ notebook) by setting the directory to that of the notebook with
SetDirectory@ NotebookDirectory[] and then running « SMEFTflavor`.

Let us now present the main functions of the program and describe their output.
SMEFTflavor comes with implementations of the 4 quark and 7 lepton symmetries considered
in this paper ready to use, and more symmetries can be added by the user. The details of the
implemented symmetries can be found in the association $flavorSymmetries . The keys
of this association, Keys@ $flavorSymmetries , are all the names of symmetries (strings)
with the indicative labels, e.g., ‘3U2’ for U(2)3, ‘6U1’ for U(1)6, ‘2U2xU3’ for U(2)2 × U(3)
etc. To access the details (groups, representations, spurions) of a particular combination of
quark and lepton symmetry assignment, one simply picks out the element of the association,
e.g., $flavorSymmetries@ {"quark:MFV", "lep:2U2"} for the MFV in quark and U(2)2
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in the lepton sector. Similarly, details of the SMEFT operators (Warsaw basis) are found
in the association $smeftOperators and the keys Keys@ $smeftOperators constitute a
list of all the operators. As the pure quark, pure lepton and mixed quark-lepton operators
are analyzed separately in this work, these subsets of the SMEFT operators are listed in the
program using leptonicOperators , quarkOperators and semiLeptonicOperators

The main function of the package is DetermineOperatorBasis[symmetry, options]
and it is used to construct the operator basis provided the symmetry (input as a string or a
list of strings if mixed quark-lepton operators are considered) along with other options. The
options this function can take are SpurionCount (taking an integer value — default 3 — and
used to indicate the order in the counting of the spurions based on the corresponding input
in the FlavorSymmetries) and SMEFToperators (defining the set SMEFT operators to
consider — default All —e.g., one of the three subsets of the SMEFT operators mentioned
above). An illustrative example of this command is

DetermineOperatorBasis["lep:2U2",
SpurionCount-> 1,
SMEFToperators->leptonicOperators]

The output of this function consists of an association of the pure lepton operator
basis (organized by SMEFT operator and spurion insertions) up to order 1 in the specified
spurion counting. In order to present operators in a more legible form with the contractions
explicitly indicated, //OpForm can be added to the end of the previous line. OpForm
generally formats all the operators to make them legible to humans.

The second important function we point out is the
CountingTable[symmetry, options] function, which also takes SpurionCount
and SMEFToperators for options. This function returns the spurion counting table
for particular symmetry based on the operator basis. Let us present three illustrative
examples of this function. In order to return the spurion counting table for the
pure quark MFV case (table 6) up to order 3 in the spurion counting one can call
CountingTable["quark:MFV", SpurionCount→ 3] . Similarly, to get the spurion
counting table for the pure lepton U(1)3 case (table 7) one can run the analogous command
CountingTable["lep:3U1", SpurionCount→ 1] Lastly, to obtain the full spurion
counting table for all operators assuming, MFV in the quark and U(1)3 in the lepton sector
one can run CountingTable[{"quark:MFV", "lep:3U1"}, SpurionCount→3]

The last function we would like to point out is AddSMEFTSymmetry , which enables
user to implement a new quark, lepton, or mixed quark-lepton symmetry. The syntax
of this function is AddSMEFTSymmetry["Type", "Name"→ GroupInfoAssociation] The first
argument can either be "Lepton" , "Quark" , or "Mixed" , designating which sector the
newly added symmetry is associated to. Name refers to the string introduced as the name of
the added symmetry and the GroupInfoAssociation associates all the symmetry properties
(similar to those contained in $flavorSymmetries ) to the new symmetry. To illustrate
how this function is used, let us imagine that we would like to introduce a U(2)diag symmetry
group in the lepton sector with a real spurion transforming in the adjoint:
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AddSMEFTSymmetry["Lepton", "U2diag"-> <|
Groups-> <|"U2l"-> SU@ 2|>,
Spurions-> {"∆l"},
Charges-> <|"l12"-> {1}, "l3"-> 0, "e12"-> {1}, "e3"-> 0, "∆l"-> 0,

"Vl"-> {1}|>,
Representations-> <|"l12"-> {"U2l"@ fund}, "e12"-> {"U2l"@ fund},
"∆l"-> {"U2l"@ adj}|>,
FieldSubstitutions-> <|"l"-> \{"l12", "l3"\}, "e"-> \{"e12", "e3"\}|>,
SpurionCounting-> <|"∆l"-> 2|>,
SelfConjugate-> {"∆l"}|>]

Note that only SU(2) and SU(3) factors are supported. This should cover the vast
majority of cases. All the aforementioned functions and their outputs along with additional
practical examples have been presented in the tutorial notebook provided in the package.

C Mixed quark-lepton operators

The mixed quark-lepton four-fermion operators change for every combination of the 4 quark
and 7 lepton flavor structures we have considered (for a total of 28 unique cases). In each
case, the flavor structure factorizes straight-forwardly into a quark and a lepton bilinear, all
of which we have presented in the main text. Here we report in tables below the counting
for all 28 cases while the exhaustive results, including the explicit forms for the operators,
can be generated using the SMEFTflavor package.

MFVQ × MFVL

MFVQ ×MFVL O(1) O(Y 2
u ) O(Y 2

d ) O(YeYu) O(YeYd)
(LL)(LL) Q

(1,3)
`q 2 2 2

(RR)(RR) Qeu 1 1
Qed 1 1

(LL)(RR)
Q`u 1 1
Q`d 1 1
Qqe 1 1 1

(LR)(RL) Q`edq 1 1
(LR)(LR) Q

(1,3)
`equ 2 2

Total 7 5 5 2 2 1 1

MFVQ × U(3)V,L

MFVQ ×U(3)V,L O(1) O(Yu) O(Y 2
u ) O(Yd) O(Y 2

d ) O(Y 2
u Yd) O(YuY 2

d ) O(∆`) O(∆`Yu) O(∆`Yd)
(LL)(LL) Q

(1,3)
`q 2 2 2 2

(RR)(RR) Qeu 1 1 1
Qed 1 1 1

(LL)(RR)
Q`u 1 1 1
Q`d 1 1 1
Qqe 1 1 1 1

(LR)(RL) Q`edq 1 1 1 1 1 1
(LR)(LR) Q

(1,3)
`equ 2 2 2 2 2 2

Total 7 2 2 5 1 1 5 1 1 2 2 7 2 2 1 1
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MFVQ × (U(2)2 × U(1)2)L

MFVQ × (U(2)2 ×U(1)2)L O(1) O(Y 2
u ) O(Y 2

d ) O(XV`,e) O(∆V`,e) O(V 2
`,e) O(∆Yd,∆Yu) O(V`,eYd, V`,eYu) O(XYd, XYu)

(LL)(LL) Q
(1,3)
`q 4 4 4 2 2 2 2 2

(RR)(RR)
Qeu 2 2 1 1 1 1 1

Qed 2 2 1 1 1 1 1

(LL)(RR)
Q`u 2 2 1 1 1 1 1

Q`d 2 2 1 1 1 1 1

Qqe 2 2 2 1 1 1 1 1

(LR)(RL) Q`edq 1 1 2 2 1 1

(LR)(LR) Q
(1,3)
`equ 2 2 4 4 2 2

Total 14 10 10 7 7 7 7 7 3 3 6 6 3 3

MFVQ × U(2)2
L

MFVQ ×U(2)2
L O(1) O(Yu) O(Yd) O(Y 2

u ) O(Y 2
d ) O(V ) O(V 2) O(∆V ) O(V Yd, V Yu) O(∆Yu,∆Yd)

(LL)(LL) Q
(1,3)
`q 4 4 4 2 2 2

(RR)(RR)
Qeu 2 2 1 1
Qed 2 2 1 1

(LL)(RR)
Q`u 2 2 1 1 1
Q`d 2 2 1 1 1
Qqe 2 2 2 1 1

(LR)(RL) Q`edq 1 1 1 1 1 1
(LR)(LR) Q

(1,3)
`equ 2 2 2 2 2 2

Total 14 2 2 1 1 10 10 4 4 4 3 3 3 3 3 3

MFVQ × U(2)V,L

MFVQ ×U(2)V,L O(1) O(Yu) O(Y 2
u ) O(Yd) O(Y 2

d ) O(∆`) O(∆`Yu) O(∆`Yd)
(LL)(LL) Q

(1,3)
`q 4 4 4 2

(RR)(RR) Qeu 2 2 1
Qed 2 2 1

(LL)(RR)
Q`u 2 2 1
Q`d 2 2 1
Qqe 2 2 2 1

(LR)(RL) Q`edq 2 2 1 1
(LR)(LR) Q

(1,3)
`equ 4 4 2 2

Total 14 4 4 10 2 2 10 7 2 2 1 1
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MFVQ × U(1)6
L

MFVQ ×U(1)6
L O(1) O(Y 2

u ) O(Y 2
d ) O(yYu) O(yYd)

(LL)(LL) Q
(1,3)
`q 6 6 6

(RR)(RR)
Qeu 3 3
Qed 3 3

(LL)(RR)
Q`u 3 3
Q`d 3 3
Qqe 3 3 3

(LR)(RL) Q`edq 3 3
(LR)(LR) Q

(1,3)
`equ 6 6

Total 21 15 15 6 6 3 3

MFVQ × U(1)3
L

MFVQ ×U(1)3
L O(1) O(Yu) O(Yd) O(Y 2

u ) O(Y 2
d ) O(Y 2

u Yd) O(Y 2
d Yu)

(LL)(LL) Q
(1,3)
`q 6 6 6

(RR)(RR) Qeu 3 3
Qed 3 3

(LL)(RR)
Q`u 3 3
Q`d 3 3
Qqe 3 3 3

(LR)(RL) Q`edq 3 3 3 3
(LR)(LR) Q

(1,3)
`equ 6 6 6 6

Total 21 6 6 3 3 15 15 3 3 6 6

(U(2)2 × U(3))Q × MFVL

(U(2)2 ×U(3))Q ×MFVL O(1) O(Vq) O(Ye) O(Λ2
d) O(V 2

q ) O(ΛdΣd) O(ΛdYe) O(VqYe) O(Vq∆) O(Σ2
d) O(ΣdYe) O(Y 2

e ) O(Ye∆)

(LL)(LL) Q
(1,3)
`q 4 2 2 2 2 2 2 4

(RR)(RR)
Qeu, 2 1 1 2

Qed 1 1 1 1

(LL)(RR)
Q`u 2 1 1 2

Q`d 1 1 1 1

Qqe 2 1 1 1 1 1 1 2

(LR)(RL) Q`edq 1 1 1 1

(LR)(LR) Q
(1,3)
`equ 2 2 2 2 2 2

Total 12 3 3 2 2 2 3 3 3 1 1 2 2 2 2 5 1 1 12 2 2
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(U(2)2 × U(3))Q × U(3)V,L

(U(2)2 ×U(3))Q ×U(3)V,L O(1) O(Λd) O(Vq) O(Σd) O(∆`) O(∆) O(Λ2
d, V

2
q ,ΛdVq) O(ΛdΣd, VqΣd) O(Λd∆`, Vq∆`) O(Vq∆)

(LL)(LL) Q
(1,3)
`q 4 2 2 4 2 2 2 2 2

(RR)(RR)
Qeu, 2 2 1 1

Qed 1 1 1

(LL)(RR)
Q`u 2 2 1 1

Q`d 1 1 1

Qqe 2 1 1 2 1 1 1 1 1

(LR)(RL) Q`edq 1 1 1 1 1 1 1 1 1 1

(LR)(LR) Q
(1,3)
`equ 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Total 14 2 1 1 5 5 1 1 14 2 2 2 6 1 6 6 6 6 4 4

(U(2)2 × U(3))Q × (U(2)2 × U(1)2)L

(U(2)2 ×U(3))Q × (U(2)2 ×U(1)2)L O(1) O(Ve,`,q) O(X) O(∆e) O(V 2
e,`,q,Λ2

d,ΛdVe,`, Ve,`Vq) O(XVe,`,q)
(LL)(LL) Q

(1,3)
`q 8 4 4 8 4 4

(RR)(RR)
Qeu, 4 2 2 2
Qed 2 3 1 1

(LL)(RR)
Q`u 4 2 2 2
Q`d 2 3 1 1
Qqe 4 2 2 4 2 2

(LR)(RL) Q`edq 2 2
(LR)(LR) Q

(1,3)
`equ 4 4 2 2 2 2 4 4 2 2

Total 24 10 10 2 2 2 2 28 6 14 14

(U(2)2 × U(3))Q × U(2)2
L

(U(2)2 ×U(3))Q ×U(2)2
L O(1) O(Λd, V`,q) O(Σd) O(∆e,u) O(Λ2

d, V
2
`,q) O(ΛdV`,ΛdVq, V`Vq)

(LL)(LL) Q
(1,3)
`q 8 8 8 8 4 4

(RR)(RR)
Qeu, 4
Qed 2 2

(LL)(RR)
Q`u 4 2 2 2
Q`d 2 1 1 3
Qqe 4 2 2 2

(LR)(RL) Q`edq 1 1 1 1 2 2
(LR)(LR) Q

(1,3)
`equ 2 2 4 4 4 4 2 2

Total 26 2 18 18 1 1 4 4 17 8 8
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(U(2)2 × U(3))Q × U(2)V,L

(U(2)2 ×U(3))Q ×U(2)V,L O(1) O(Λd) O(Vq) O(Σd) O(∆`) O(∆) O(Λ2
d, V

2
q ,ΛdVq)

(LL)(LL) Q
(1,3)
`q 8 4 4 4 4

(RR)(RR)
Qeu, 4 2
Qed 2 1 2

(LL)(RR)
Q`u 4 2
Q`d 2 1 2
Qqe 4 2 2 2 2

(LR)(RL) Q`edq 2 2 2 2 2 2
(LR)(LR) Q

(1,3)
`equ 4 4 4 4 2 2 4 4

Total 28 4 2 2 10 10 2 2 14 2 4 4 12 2

(U(2)2 × U(3))Q × U(1)6
L

(U(2)2 ×U(3))Q ×U(1)6
L O(1) O(Vq) O(y) O(Λ2

d, V
2
q ) O(yΛd) O(yVq) O(ΛdΣd) O(Vq∆)

(LL)(LL) Q
(1,3)
`q 12 6 6 6 6 6

(RR)(RR)
Qeu, 6 3 3
Qed 3 3

(LL)(RR)
Q`u 6 3 3
Q`d 3 3
Qqe 6 3 3 3 3 3

(LR)(RL) Q`edq 3 3
(LR)(LR) Q

(1,3)
`equ 6 6 6 6

Total 36 9 9 6 6 15 3 3 6 6 9 9 6 6

(U(2)2 × U(3))Q × U(1)3
L

(U(2)2 ×U(3))Q ×U(1)3
L O(1) O(Λd) O(Vq) O(Σd) O(∆) O(Λ2

d, V
2
q ,ΛdVq) O(ΛdΣd, VqΣd) O(Vq∆)

(LL)(LL) Q
(1,3)
`q 12 6 6 6 6 6

(RR)(RR)
Qeu, 6 3 3
Qed 3 3

(LL)(RR)
Q`u 6 3 3
Q`d 3 3
Qqe 6 3 3 3 3 3

(LR)(RL) Q`edq 3 3 3 3 3 3 3 3
(LR)(LR) Q

(1,3)
`equ 6 6 6 6 6 6 6 6 6 6

Total 42 6 3 3 15 15 3 3 6 6 18 3 18 18 12 12
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(U(2)3 × U(1))Q × MFVL

(U(2)3 ×U(1))Q ×MFVL O(1) O(Vq) O(Ye) O(V 2
q ) O(VqYe) O(Vq∆) O(XbYe)

(LL)(LL) Q
(1,3)
`q 4 2 2 2

(RR)(RR) Qeu, 2 1 1
Qed 2

(LL)(RR)
Q`u 2 1 1
Q`d 2
Qqe 2 1 1 1

(LR)(RL) Q`edq 1 1
(LR)(LR) Q

(1,3)
`equ 2 2 2 2

Total 14 3 3 2 2 3 2 2 2 2 1 1

(U(2)3 × U(1))Q × U(3)V,L

(U(2)3 ×U(1))Q ×U(3)V,L O(1) O(Vq) O(Xb) O(∆) O(∆`) O(V 2
q ) O(VqXb) O(Vq∆) O(Vq∆`) O(Xb∆`)

(LL)(LL) Q
(1,3)
`q 4 2 2 4 2 2 2

(RR)(RR) Qeu, 2 2 1 1
Qed 2 2

(LL)(RR)
Q`u 2 2 1 1
Q`d 2 2
Qqe 2 1 1 2 1 1 1

(LR)(RL) Q`edq 1 1 1 1 1 1 1 1 1 1
(LR)(LR) Q

(1,3)
`equ 2 2 2 2 2 2 2 2 2 2 2 2

Total 16 2 5 5 1 1 3 3 16 2 3 1 1 5 5 5 5 1 1

(U(2)3 × U(1))Q × (U(2)2 × U(1)2)L

(U(2)3 ×U(1))Q × (U(2)2 ×U(1)2)L O(1) O(Ve,`,q) O(X) O(∆e) O(V 2
e , VeVq) O(VeX,VeXb) O(V 2

` , V`Vq) O(V`X,V`Xb) O(V 2
q ) O(XXb)

(LL)(LL) Q
(1,3)
`q 8 4 4 4 4 4 4

(RR)(RR)
Qeu, 4 2 2 2

Qed 4 2 2 2

(LL)(RR)
Q`u 4 2 2 2

Q`d 4 2 2 2

Qqe 4 2 2 2 2 2 2

(LR)(RL) Q`edq 1 1 1 1 1 1

(LR)(LR) Q
(1,3)
`equ 4 4 2 2 2 2 2 2 2 2

Total 28 10 10 2 2 2 2 8 2 7 7 10 2 9 9 6 1 1

(U(2)3 × U(1))Q × U(2)2
L

(U(2)3 ×U(1))Q × (U(2)2)L O(1) O(V`) O(Vq) O(Xb) O(∆) O(∆e) O(V 2
` ) O(V 2

q ) O(V`Vq) O(XbV`,q)
(LL)(LL) Q

(1,3)
`q 8 4 4 4 4 4 4 4 4

(RR)(RR) Qeu, 4
Qed 4

(LL)(RR)
Q`u 4 2 2 2
Q`d 4 2 2 2
Qqe 4 2 2 2

(LR)(RL) Q`edq 1 1 1 1 2 2
(LR)(LR) Q

(1,3)
`equ 2 2 2 2 2 2 2 2 2 2 2 2

Total 30 2 10 10 8 8 1 1 3 3 2 2 8 6 6 6 2 2
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(U(2)3 × U(1))Q × U(2)V,L

(U(2)3 ×U(1))Q ×U(2)V,L O(1) O(Vq) O(Xb) O(∆) O(∆`) O(V 2
q ) O(XbVq)

(LL)(LL) Q
(1,3)
`q 8 4 4 4 4

(RR)(RR) Qeu 4 2
Qed 4 2

(LL)(RR)
Q`u 4 2
Q`d 4 2
Qqe 4 2 2 2 2

(LR)(RL) Q`edq 2 2 2 2 2 2
(LR)(LR) Q

(1,3)
`equ 4 4 4 4 4 4 2 2

Total 32 4 10 10 2 2 6 6 16 2 6 2 2

(U(2)3 × U(1))Q × U(1)6
L

(U(2)3 ×U(1))Q ×U(1)6
L O(1) O(Vq) O(V 2

q ) O(y) O(Vqy) O(yXb) O(Vq∆u, VqXb∆d)
(LL)(LL) Q

(1,3)
`q 12 6 6 6

(RR)(RR) Qeu, 6 3 3
Qed 6 3 3

(LL)(RR)
Q`u 6 3 3
Q`d 6 3 3
Qqe 6 3 3 3

(LR)(RL) Q`edq 3 3
(LR)(LR) Q

(1,3)
`equ 6 6 6 6

Total 42 9 9 9 6 6 6 6 3 3 12 12

(U(2)3 × U(1))Q × U(1)3
L

(U(2)3 ×U(1))Q ×U(1)3
L O(1) O(Vq) O(Xb) O(∆) O(V 2

q ) O(XbVq) O(Vq∆)
(LL)(LL) Q

(1,3)
`q 12 6 6 6

(RR)(RR) Qeu, 6 3 3
Qed 6

(LL)(RR)
Q`u 6 3 3
Q`d 6
Qqe 6 3 3 3

(LR)(RL) Q`edq 3 3 3 3 3 3 3 3
(LR)(LR) Q

(1,3)
`equ 6 6 6 6 6 6 6 6

Total 48 6 15 15 3 3 9 9 9 3 3 15 15

U(2)3
Q × MFVL

U(2)3
Q ×MFVL O(1) O(V ) O(V 2) O(∆V ) O(Ye) O(YeV ) O(Ye∆) O(Ye∆V )

(LL)(LL) Q
(1,3)
`q 4 2 2 2

(RR)(RR) Qeu, Qed 4 2 2

(LL)(RR) Q`u, Q`d 4 2 2
Qqe 2 1 1 1

(LR)(RL) Q`edq 1 1 1 1 1 1 1 1
(LR)(LR) Q

(1,3)
`equ 2 2 2 2 2 2 2 2

Total 14 3 3 3 4 4 3 3 3 3 3 3 3 3
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U(2)3
Q × U(3)V,L

U(2)3
Q ×U(3)V,L O(1) O(V ) O(V 2) O(∆) O(∆V ) O(∆`) O(∆`V ) O(∆`∆)

(LL)(LL) Q
(1,3)
`q 4 2 2 2 4 2 2

(RR)(RR) Qeu, Qed 4 2 2 4

(LL)(RR) Q`u, Q`d 4 2 2 4
Qqe 2 1 1 1 2 1 1

(LR)(RL) Q`edq 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(LR)(LR) Q

(1,3)
`equ 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Total 17 3 6 6 3 3 3 7 7 17 3 6 6 3 3

U(2)3
Q × (U(2)2 × U(1)2)L

U(2)3
Q × (U(2)2 ×U(1)2)L O(1) O(V ) O(V 2) O(V 3) O(∆) O(X) O(∆V ) O(XV ) O(X∆) O(XV∆)

(LL)(LL) Q
(1,3)
`q 8 4 4 8 2 2 4 4 4 4

(RR)(RR) Qeu, Qed 8 4 8 8 4 4

(LL)(RR)
Q`u, Q`d 8 4 8 8 4 4
Qqe 4 2 2 4 1 1 2 2 2 2

(LR)(RL) Q`edq 2 2 2 2 1 1 1 1 3 3 1 1 1 1 3 3
(LR)(LR) Q

(1,3)
`equ 4 4 4 4 2 2 2 2 6 6 2 2 2 2 6 6

Total 28 12 12 26 6 3 3 3 3 3 3 31 31 17 17 3 3 9 9

U(2)3
Q × U(2)2

L

U(2)3
Q ×U(2)2

L O(1) O(V ) O(V 2) O(V 3) O(∆) O(∆V )
(LL)(LL) Q

(1,3)
`q 8 8 8 12 4 4 4

(RR)(RR) Qeu, Qed 8 8 8

(LL)(RR) Q`u, Q`d 8 4 4 4 4 4
Qqe 4 2 2 2 2 2

(LR)(RL) Q`edq 1 1 2 2 1 1 2 2 4 4
(LR)(LR) Q

(1,3)
`equ 2 2 4 4 2 2 4 4 8 8

Total 31 3 20 20 21 7 4 4 6 6 26 26

U(2)3
Q × U(2)V,L

U(2)3
Q ×U(2)V,L O(1) O(Vq) O(∆) O(∆`) O(V 2

q ) O(Vq∆) O(Vq∆`)
(LL)(LL) Q

(1,3)
`q 8 4 4 4 4 2 2

(RR)(RR) Qeu, Qed 8 4 4 4

(LL)(RR) Q`u, Q`d 8 4 4 4
Qqe 4 2 2 2 2 1 1

(LR)(RL) Q`edq 2 2 2 2 2 2 1 1 2 2 1 1
(LR)(LR) Q

(1,3)
`equ 4 4 4 4 4 4 2 2 4 4 2 2

Total 34 6 12 12 6 6 17 3 6 14 14 6 6
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U(2)3
Q × U(1)6

L

U(2)3
Q ×U(1)6

L O(1) O(V ) O(V 2) O(∆) O(∆V ) O(y) O(yV ) O(y∆) O(y∆V )
(LL)(LL) Q

(1,3)
`q 12 6 6 6

(RR)(RR) Qeu, Qed 12 6 6

(LL)(RR)
Q`u, Q`d 12 6 6
Qqe 6 3 3 3

(LR)(RL) Q`edq 3 3 3 3 3 3 3 3
(LR)(LR) Q

(1,3)
`equ 6 6 6 6 6 6 6 6

Total 42 9 9 9 12 12 9 9 9 9 9 9 9 9

U(2)3
Q × U(1)3

L

U(2)3
Q ×U(1)3

L O(1) O(V ) O(V 2) O(∆) O(∆V )
(LL)(LL) Q

(1,3)
`q 12 6 6 6

(RR)(RR) Qeu, Qed 12 6 6

(LL)(RR) Q`u, Q`d 12 6 6
Qqe 6 3 3 3

(LR)(RL) Q`edq 3 3 3 3 3 3 3 3
(LR)(LR) Q

(1,3)
`equ 6 6 6 6 6 6 6 6

Total 51 9 18 18 9 9 9 21 21

D Group identities

In SU(2) the following identities hold:

εijεk` = δi`δ
j
k − δikδj` (D.1)

using the convention ε12 = −ε12.
In SU(N) the following identities hold:

taijt
ak
` = 1

2δ
i
`δ
k
j −

1
2N δijδ

k
`, (D.2)

fabctbijt
ck
` = i

2
(
tai`δ

k
j − takjδi`

)
, (D.3)

dabctbijt
ck
` = 1

2
(
tai`δ

k
j + takjδ

i
`

)
− 1
N

(
taijδ

k
` + tak`δ

i
j

)
, (D.4)

where the defining identity for the symmetric tensor is

tatb = 1
2

[ 1
N
δab1 +

(
dabc + ifabc

)
tc
]
. (D.5)

In the case of SU(2) there is no 3-index symmetric tensor and eq. (D.4) implies the identity

tai`δ
k
j + takjδ

i
` = taijδ

k
` + tak`δ

i
j . (D.6)
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