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1. Introduction

The discovery of the muon in 1936 sparked the beginning of modern particle physics. It is,
thus, almost poetic that experimental evidence is hinting at new physics coupled precisely to the
muon. While nothing is conclusive as of yet, it would indeed be fitting if once again the muon were
to spark a new era in physics, this time the era of physics Beyond the Standard Model (BSM).

A whole class of rare B meson decay measurements, through b — su*u~ transitions, seem
to deviate from SM theory predictions. Most prominent among these results are the theoretically
clean [2, 3] lepton flavor universality ratios, Rg ), indicating a deficit of muons compared to
electrons [4, 5]. Notably, the most recent Rx measurement deviates from the SM with 3.10 [6].
Also the world average of BR(By — u*u™) [7] and various less theoretically clean angular
observables deviate from the SM [8]. A coherent picture emerges from all of these observables
showing a strong preference for new physics, in the form of an effective left-handed semi-leptonic
current, over the SM [9].

The measurement of the anomalous magnetic moment of the muon has long been in tension with
the SM theory prediction. The first result from the Fermilab Muon g-2 experiment [ 10] confirms the
old Brookhaven result [11] and yields a combined tension of 4.2¢0- with the improved SM prediction
from the Muon g-2 Theory Initiative [12] (a recent lattice study suggests a significantly smaller
tension [13] but has yet to be verified by other groups). Proceeding under the assumption that the
deviations presented here are due to genuine new physics (NP) beyond the SM, the (g —2),, tension
suggests an emphasis on muons, and we consider (g —2), and b — su*u~ a combined set of muon
anomalies.

Much has been made of the muon anomalies, but just as important, albeit less glamorous, are all
the processes we do not observe. The vanilla SM has an accidental U(1) gxU(1), XU(1), XU(1)L,
symmetry, ensuring conservation of baryon number and individual lepton numbers for all three
generations. The non-observation of proton decay is famously enough to push the GUT scale
to 10" GeV in grand unified theories. The situation is slightly less severe for lepton number
conservation. Nevertheless, the effective dipole operator
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is severely constrained, in particular from the non-observation of u — ey, ensuring A., >
3-10*TeV [14].! This is to be compared to the best fit value Apy = 14TeV for (g - 2),. Itis
quite clear from this that a heavy NP explanation cannot be flavor anarchic. Rather, it could have
hierarchical couplings to the lepton generations (although the 7 flavor violation is constraining,
Aur > 30TeV) or, as we explore here, muon-specific NP.

An undeniable solution to these constraints is to equip the BSM model with a symmetry that
ensures that the resulting low-energy effective theory possesses the same accidental symmetries as
the SM. Our philosophy here is to construct a simple UV model, even an entire class of models, to
explain the muon anomalies while preserving the accidental symmetries of the SM.

IConsidering the SM as an effective theory, the observation of neutrino oscillations requires some small lepton-number
and flavor violation easily consistent with these bounds.
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2. Introducing the Muoquark

Leptoquarks (LQ) have long been considered as explanations for flavor anomalies, e.g. in
Refs. [15-20]. They can mediate the semileptonic transitions at tree-level, whereas the heavily
constrained AF = 2 transitions are loop suppressed. Loops with LQs and top quarks can also
facilitate lepton dipoles with chiral enhancement, suggesting a common NP scale for both b —
su*p~ and (g — 2), anomalies of order 10 TeV.

2.1 Scalar leptoquarks

No single scalar LQ representation can account for the b — su*u~ and (g — 2),, anomalies
simultaneously. S3 ~ (3, 3, 1/3) is unique among the scalar LQs in that it can mediate the left-
handed semileptonic current needed for b — su*u~ at tree level. Either S| ~ (3, 1, 1/3) or
Ry ~ (3, 2, 7/6) are separately able to account for (g —2), [21, 22]. S1/R> and S3 give sub-leading
contributions to Rx and (g — 2),, respectively.

One of the main issues with scalar LQs is that they tend to violate the global symmetries of the
SM. Schematically, the Yukawa couplings

£ > —y(0OLS) —z(00S") (2)

are generically possible for the scalar LQs under consideration. Here Q and L denote generic quarks
and leptons, respectively. One will quickly find that it is impossible to assign a baryon number
to S, that is, integrating out S will give rise to a B-violating 4-fermion operator mediating proton
decay [23, 24]. In fact, even a suppression by the Planck scale, z ~ v/Mpy, is typically insufficient.
Invoking global symmetries in the LQ theory to exclude z might well be insufficient given that
gravity is commonly held to violate global symmetries [25].

Compared to B violation, LFV processes are less constraining, nevertheless, they limit how
strongly any one LQ can couple to multiple generations of leptons. The idea is now to introduce a
new gauge symmetry along with the LQs to ensure that the low-energy theory reproduces the global
symmetries of the SM.

2.2 U(1) symmetry

As a minimal symmetry, we impose a U(1)x gauge symmetry to rescue the scalar LQ mod-
els [26, 27]. Seeing as we do not observe any new massless gauge-boson coupling to ordinary
matter fields, we will assume a new SM-singlet scalar field @ to break the U(1)x symmetry.

We require that the U(1)x symmetry satisfy the conditions:

i) the leptonic X charges should be generation-dependent allowing for the coupling QL;S for
i=pubutnotfori=e,rt;

ii) the charges of S and Q must forbid all 00Ss°* operators;
iii) the charge of ® should forbid the dimension-5 operators QQST®™*);
iv) aremnant (approximate) individual LF symmetry.

These conditions ensure the restoration of the accidental symmetries of the SM and have been
explored in full detail in Ref. [28]. Furthermore the LQs couple exclusively to muons, and we may
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Fields SU(3). SUQ2)L U(l)y U(1)p-3L,
qL 3 2 'f6 '3
UR 3 2/3 1/
dr 3 -1/ s
49 2 -k {0, -3, 0}
erR -1 {0, -3, 0}
VR 0 {0, -3, 0}
H 2 1h 0
S3 3 3 13 83
Sy 3 1/ 8/3
) 0 3

Table 1: Field content of the U(1)g-31,, muoquark model with their representation under the gauge groups.

properly refer to them as muoquarks. There are additional properties we might wish for the U(1)x
symmetry to posses to ensure a simple UV model, namely,

v) universal quark charges (proportional to B) to allow directly for the full SM quark Yukawa
matrices and avoid flavor-violating X, currents;

vi) a @ charge allowing for Yukawa couplings v vr®™ to populate otherwise forbidden Majo-
rana mass entries and produce the full PMNS matrix with no additional fields.

The U(1)p-31, symmetry emerges as a candidate satisfying all of the conditions listed here.

2.3 Model

We proceed to introduce a simple muoquark models with a gauged U(1)g-31,, symmetry. The
model consists of the SM extended with right-handed neutrinos, S1 and S3 LQs, an SM singlet
scalar @, and the gauge field X, of the new symmetry. The charges of the fields are shown in
Table 1, while the full Lagrangian is given by

L =Lsmovy + VRiBvi + D@ + Dy S11* + |DySs|* = 1 X5, + 368x Buy X

— (P gE I Sz + g S + I RuS g Sy + 7Ry v, rS1 + Hoc.) 3)

— (W8 AV] + M55V + yg @ vgvl + Hee) = V(H, @, ), S3),
for a suitable scalar potential V.

We take the scalar potential to be such that ® develops a VEV, ve = (®). Aslong as we arrange
for V to reproduce the standard Higgs potential to recover ordinary electroweak symmetry breaking,
the remaining part of the potential is of limited phenomenological relevance. Here we will pursue
the decoupling limit gx — 0 and mx — oo, so as not to consider the X, phenomenology explicitly.

After U(1) -3, symmetry breaking, there are remnant U(1).,, and U(1) g global symmetries,
the latter of which is exact (but anomalous).? The U.(.l) L, symmetry is explicitly broken by the
right-handed neutrino Majorana mass term due to the yg ve term; however, with heavy right-handed

neutrino masses at the multi-TeV scale, this is mediated only to the effective Weinberg operator at
low scales.

2All terms in the potential involve ® only through the combination |®|2.
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Figure 1: The preferred muoquark Yukawa couplings from the global fit to low-energy data, with the colored
bands corresponding to best fit regions of individual observables. Here we choose 7" = (Vig, Vs, 1) 3~
n" = (Via, Vis, ) mi=, and p/® = (0, 0, 1) 3R, The muoquark masses are set to M| = M3 = 3 TeV.

24 Fit

Whereas the lepton couplings to the muoquarks are completely fixed by the U(1)p-31,, sym-
metry, there is no a priori structure to the quark couplings. Nevertheless, a reasonable structure can
be assigned from a supposition that the LQ couplings are generated by the same UV physics that is
responsible for the structure of the SM Yukawa couplings. That is, we proceed with the assumption
that the approximate U(2)? symmetry of the SM quark sector [29, 30] is broken by the minimal set
of spurions also in the LQ couplings.

To verify that our proposed model provides a good explanation of the muon anomalies while
not running afoul of any other EW or flavor physics constraints, we perform a global fit in a subspace
of the Yukawa couplings. To this end, we employ the full 1-loop matching of S; + S3 LQs [31]
to obtain the low-energy effective theory of the model (in the limit of decoupled ® and X,,). We
implement the result in a code that interfaces with the smelli package [32, 33]. The SM effective
theory is run down to the EW scale, matched to the low-energy EFT, and run to the QCD scale thanks
to the wilson package [34]; and flavio [35] is used to compute a large number of electroweak
and flavor observables (see Ref. [36] for a complete list).

As a benchmark we take both muoquarks to have mass M; 3 = 3TeV, well beyond current
direct searches [37, 38]. This constitutes a rather pessimistic scenario (from the perspective of NP
searches) that is even beyond projections for HL-LHC searches in the high-pr lepton tails [39].
One might be lucky that nature realizes this scenario with low LQ masses, but our point here is to
emphasize that NP explanations of the muon anomalies reproducing the SM global symmetries can
come with no further signs of NP at LHC energies. We plot the best-fit regions to the muoquark
Yukawa couplings in Fig. 1, showing a best fit favored with Ay? ~ 62 over the SM. The vertical
bands show the 1o range for Ry (), BR(Bs — p~u*), and the less theoretically clean b — su~u*
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branching ratios and angular observables, while the horizontal band is the preferred region for
(8 = 2)u- The plot indicates a clear factorization of the role of the muoquarks in explaining the
anomalies. We find no strong constraints from any other flavor observables even when varying
order-1 coefficients in front of the spurion couplings of the muoquarks to lighter generation quarks.

2.5 Theory constraints

The muoquark model presented here is renormalizable, and the RG flow is free from Landau
poles up to the Planck scale. The potential can also be made stable all the way up to the Planck
scale, so there is no sign of the theory breaking down before then, giving no further signs of NP.

Theory constraints do, however, play an important role in setting a soft upper limit on the
muoquark scale. The NP contribution to the muon dipole has a chiral enhancement due to the top
quark entering the loop. The same chiral enhancement can be found in the S; matching correction
to the muon Yukawa [31, 40, 41]:

Sv., = 3 11/‘%\4 L+ ij IR 4
y‘u_—(4ﬂ_)2 +HV12 n; yuT]J . ()
The same combination of couplings is found in the S; contribution to (g — 2),; only the S; mass
determines the relative size of the contributions. At the best fit point of Fig. 1, the correction
to y, 18 50% of its SM value, and finite naturalness indicates an upper bound of M| ~ 5TeV.
Finite naturalness of the Higgs mass indicates a similar scale on each of the muoquark masses
but is ultimately determined by parameters of the scalar potential that are mostly irrelevant to the
low-energy phenomenology.

3. Conclusion

NP explanations of the muon anomalies, b — su*u~ and (g — 2),, are severely constrained
by the non-observation of several processes as predicted with the SM. New gauged lepton flavor
symmetries provide a good organizing principle for LQ explanations, ensuring the recovery of the
SM global symmetries at low energies. Here we demonstrate the feasibility with a simple model
with two muoquarks mediating the anomalies, however, the ideas extend much beyond this one
realization. Further directions to take these ideas include the use of the new vector boson as a Z’
mediator for b — su*u~ and the use of alternative symmetries. Recent studies in Ref. [28] explore
the space of U(1)x symmetries with the required properties and the possibility of using a light
vector boson for (g —2), [42-44].
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