Two temperate super-Earths transiting a nearby late-type M dwarf

Delrez, L.; Murray, C. A.; Pozuelos, F. J.; Narita, N.; Ducrot, E.; Timmermans, M.; Watanabe, N.; Burgasser, A. J.; Hirano, T.; Rackham, B. V.; Stassun, K. G.; Van Grootel, V.; Aganze, C.; Cointepas, M.; Howell, S.; Kaltenegger, L.; Niraula, P.; Sebastian, D.; Almenara, J. M.; Barkaoui, K.; ... (2022). Two temperate super-Earths transiting a nearby late-type M dwarf. Astronomy and astrophysics, 667, A59. EDP Sciences 10.1051/0004-6361/202244041

[img]
Preview
Text
aa44041-22.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (9MB) | Preview

In the age of JWST, temperate terrestrial exoplanets transiting nearby late-type M dwarfs provide unique opportunities for characterising their atmospheres, as well as searching for biosignature gases. We report here the discovery and validation of two temperate super-Earths transiting LP 890-9 (TOI-4306, SPECULOOS-2), a relatively low-activity nearby (32 pc) M6V star. The inner planet, LP 890-9b, was first detected by TESS (and identified as TOI-4306.01) based on four sectors of data. Intensive photometric monitoring of the system with the SPECULOOS Southern Observatory then led to the discovery of a second outer transiting planet, LP 890-9c (also identified as SPECULOOS-2c), previously undetected by TESS. The orbital period of this second planet was later confirmed by MuSCAT3 follow-up observations. With a mass of 0.118$\pm$0.002 $M_\odot$, a radius of 0.1556$\pm$0.0086 $R_\odot$, and an effective temperature of 2850$\pm$75 K, LP 890-9 is the second-coolest star found to host planets, after TRAPPIST-1. The inner planet has an orbital period of 2.73 d, a radius of $1.320_{-0.027}^{+0.053}$ $R_\oplus$, and receives an incident stellar flux of 4.09$\pm$0.12 $S_\oplus$. The outer planet has a similar size of $1.367_{-0.039}^{+0.055}$ $R_\oplus$ and an orbital period of 8.46 d. With an incident stellar flux of 0.906 $\pm$ 0.026 $S_\oplus$, it is located within the conservative habitable zone, very close to its inner limit. Although the masses of the two planets remain to be measured, we estimated their potential for atmospheric characterisation via transmission spectroscopy using a mass-radius relationship and found that, after the TRAPPIST-1 planets, LP 890-9c is the second-most favourable habitable-zone terrestrial planet known so far. The discovery of this remarkable system offers another rare opportunity to study temperate terrestrial planets around our smallest and coolest neighbours.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences
08 Faculty of Science > Physics Institute
10 Strategic Research Centers > Center for Space and Habitability (CSH)
08 Faculty of Science > Physics Institute > NCCR PlanetS

UniBE Contributor:

Demory, Brice-Olivier Denys, Heng, Kevin, Schroffenegger, Urs Andreas

Subjects:

500 Science > 520 Astronomy
500 Science > 530 Physics
500 Science

ISSN:

0004-6361

Publisher:

EDP Sciences

Language:

English

Submitter:

Danielle Zemp

Date Deposited:

29 Mar 2023 12:07

Last Modified:

02 Apr 2023 02:15

Publisher DOI:

10.1051/0004-6361/202244041

ArXiv ID:

2209.02831

BORIS DOI:

10.48350/180949

URI:

https://boris.unibe.ch/id/eprint/180949

Actions (login required)

Edit item Edit item
Provide Feedback