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Abstract

Fail-prone systems, and their quorum systems, are useful tools for the design of distributed
algorithms. However, fail-prone systems as studied so far require every process to know the
full system membership in order to guarantee safety through globally intersecting quorums.
Thus, they are of little help in an open, permissionless setting, where such knowledge may not
be available. We propose to generalize the theory of fail-prone systems to make it applicable
to permissionless systems. We do so by enabling processes not only to make assumptions
about failures, but also to make assumptions about the assumptions of other processes. Thus,
by transitivity, processes that do not even know of any common process may nevertheless
have intersecting quorums and solve, for example, reliable broadcast. Our model generalizes
existing models such as the classic fail-prone system model [Malkhi and Reiter, 1998] and the
asymmetric fail-prone system model [Cachin and Tackmann, OPODIS 2019]. Moreover, it
gives a characterization with standard formalism of the model used by the Stellar blockchain.

Keywords. Permissionless systems, fail-prone system, quorum system

1 Introduction

A common problem in distributed computing is to implement synchronization abstractions such as reliable
broadcast, shared memory, or consensus, given some assumptions about the possible Byzantine failures
that may occur in an execution.

A fail-prone system F [13] is a set of sets of processes, called fail-prone sets, where no fail-prone set
is a subset of another. A fail-prone system F denotes the assumption that the set of processes A that
may suffer Byzantine failures is contained in one of the fail-prone sets. For example, in a system of n
processes, it is common to assume that less than a third will fail, i.e., the fail-prone sets are the sets of
cardinality exactly ⌊(n− 1)/3⌋.

Fail-prone systems are useful because of their relationship to quorum systems [13]. A Byzantine
quorum system Q for F is a collection of subsets of processes, called quorums, such that for every two
quorums Q1 and Q2 in Q and for every fail-prone set F ∈ F it holds that Q1 and Q2 have a common
member outside F (Consistency) and for every fail-prone set F ∈ F , there exists a quorum disjoint from
F (Availability).

Many distributed algorithms (implementing, e.g., Byzantine reliable broadcast or consensus) are
parameterized by a quorum system Q and their guarantees hold under the assumptions of a fail-prone
system F if and only if Consistency and Availability of Q hold. This allows the designers of a distributed
system to make assumptions about failures, pick a corresponding quorum system, and then choose among
existing algorithms to solve the desired synchronization problem.

Traditionally, such fail-prone systems have been used in closed systems with assumptions of the form
“less than on third of the processes are faulty”. This can work even in permissionless systems using
Proof-of-Stake, e.g., assuming that less than one third of the stake-holders are faulty, or Proof-of-Work,
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e.g., assuming that the faulty set of processes holds less than one third of the mining power [16]. Proof-
of-Stake and Proof-of-Work however have their disadvantages, e.g., long-range attacks in Proof-of-Stake,
or excessive energy consumption in Proof-of-Work. Both may also suffer from the “rich getting richer”
problem, leading to very few entities eventually controlling the system.

Instead of Proof-of-Stake and Proof-of-Work, one can envision letting every participant make its own,
subjective failure assumptions. Distributed computing models based on this idea was first investigated by
Damg̊ard et al. [7], followed by Sheff et al. [17], and more recently by Cachin and Tackmann [4] with the
asymmetric-trust model, Malkhi et al. [12] with flexible quorums, and Sheff et al. [18] with Heterogeneous
Paxos. On the practical side, Ripple (https://ripple.com) deployed a permissionless consensus protocol
based on subjective quorums in 2012, in every process declares a Unique Node List (UNL) of processes
that it trusts. Stellar (https://stellar.org, [15]) later followed suite with a different permissioness model
based on subjective trust.

One problem is that, in all the models cited above, even though participants are free to make their
own failure assumptions or choose their own quorums, maintaining consistency requires compatible as-
sumptions (in the sense that the resulting quorums will sufficiently intersect) and thus prior common
knowledge or prior synchronization, which is not desirable in a permissionless system.

For example, Cachin and Tackmann [4] assume that for every two participants pi and pj , for every
two quorums Qi of pi and Qj of pj , if F is a set that can fail according to the assumptions of both pi
and pj , then (Qi ∩Qj) \ F 6= ∅; this is called the consistency property. Together with an availability
property, this defines an asymmetric quorum system. Consistency ensures that if both pi and pj make
correct assumptions, then they can avoid disagreeing in, e.g., a reliable broadcast protocol. Achieving
liveness additionally requires the availability property, i.e., that a group of participants, called a guild,
whose assumptions are correct and which do not fail, satisfy the consistency property (pairwise) and
additionally that every member of the guild has a quorum in the guild.

Maintaining safety in such a model requires a strong form of a-priori coordination. Indeed, two
participants cannot be prevented from disagreeing unless every two of their quorums have at least one non-
faulty participant in common. Thus participants must coordinate beforehand in order to pick sufficiently
overlapping survivor sets, and corresponding quorums. In the model of Ripple, for instance, every two
processes must have UNLs that overlap by some sufficient fraction [1].

Global assumptions implying the intersection of survivor sets and quorums, as in the two preceding
examples, are problematic in a permissionless setting because they postulate some form of pre-agreement
or common knowledge, which might be hard to achieve in practice.

Interestingly, the Stellar network (https://stellar.org, [15]), a deployed blockchain system based on
quorums, is able to maintain safety and liveness without requiring that participants choose intersecting
quorums. Instead, participants choose quorum slices that need not intersect, and the quorums of a
participant are defined in terms of the slices of other participants. Consensus can then be solved within
an intact set I, a set of correct processes such that every two processes pi and pj in I have all their
own quorums that intersect in at least a member of I and such that I is itself a quorum for every of its
members.

We observe that quorum slices can be interpreted as a new kind of failure assumptions: a participant
assumes that at least one of its quorum slices is made exclusively of participants that do not fail and
make correct assumptions. In other words, a participant’s assumption are not only about failures, but
also about whether other participants make correct assumptions. In practice, the Stellar model makes
it easier for participants to achieve quorum intersection by relying on the failure assumptions of other
participants that might have more knowledge about the system than they have.

The main contribution of this paper is to show that this new kind of failure assumptions yield a
generalization of the theory of fail-prone systems (i.e., classic fail-prone systems are a special case) which
allows to obtain intersecting quorums even when participants do not know any common third party.

Moreover, based on this, we introduce the notion of permissionless fail-prone system from which it
is possible to derive a permissionless quorum system.

This paper is structured as follows. In Section 2 we formally define the assumptions of a process;
each process assumes that one of its slices S will not fail and, additionally, that the assumptions of every
process in S will be satisfied too. Then, we introduce the notion of permissionless fail-prone system.
This extends and generalizes the asymmetric fail-prone system [4, 7]. Crucially, we note that the new
meaning of the assumptions of the processes allows processes to transitively rely on the assumptions of
other processes. However, this in turn enables malicious processes to lie about their assumptions.

In Section 3, we propose a computation model, based on the notion of view, that takes this phe-
nomenon into account. Moreover, always in Section 3, we derive from the permissionless fail-prone
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system the notion of permissionless Byzantine quorum system.
In Section 4 we introduce the notion of league, which is a set of processes L that enjoys Consistency

(quorums intersection) and Availability (existence of a quorum in L consisting of correct processes) among
the correct members of L even when faulty processes lie about their configuration.

We compare our permissionless model with the classic model based on fail-prone systems [13], with
the asymmetric model [4, 7], with the federated Byzantine agreement system [15] and with the personal
Byzantine quorum system model [11] in Section 5. Interestingly we show that classic fail-prone systems
can be understood as a special case of our model.

In Section 6 we present a first application of permissionless quorum systems through the emulation
of shared memory, represented by a register. In particular we show how to implement a single-writer
multi-reader register with permissionless quorum systems.

In Section 7 we show how a traditional synchronization protocol, i.e., Bracha broadcast [2], can be
adapted to work in our model, thereby offering a new toolbox for the design of permissionless distributed
systems.

Related work and conclusions are presented in Section 8 and Section 9, respectively. Finally, our
model also leads to a characterization of the Stellar model with standard formalism [4, 7, 13].

2 Model

We consider an unbounded set of processes Π = {p1, p2, ...} that communicate asynchronously with each
other by sending messages. We assume that processes do not necessarily know which other processes are
in the system (i.e., each process only knows a subset of Π).

Processes are assigned a protocol to follow. Protocols are presented in a modular way using the
event-based notation of Cachin et al. [3]. A process that follows its algorithm during an execution is
called correct. Initially, all processes are correct, but a process may later fail, in which case it is called
faulty. We assume Byzantine failures, where a process that fails thereafter behaves arbitrarily.

We assume that point-to-point communication between any two processes (that know each other) is
available, as well as a best-effort gossip primitive that will reach all processes. In a protocol, this primitive
is accessed through the events “sending a message through gossip” and “receiving a gossiped message.”
We assume that messages from correct processes to correct process are eventually received and cannot be
forged. The system itself is asynchronous, i.e., the delivery of messages among processes may be delayed
arbitrarily and the processes have no synchronized clocks.

Processes make failure assumptions about other processes. However, since a process does not know
exactly who is part of the system, it cannot make failure assumptions about the whole system. Instead,
each process pi makes assumptions about a set Pi ⊆ Π, called pi’s trusted set, using a fail-prone system Fi

over Pi (Section 1). Here, Fi is a collection of subsets of Pi and pi believes that up to any set F ∈ Fi

may jointly fail. We say that Pi and Fi constitute pi’s assumptions and they remain fixed during an
execution.

Note that assuming that the assumptions of the processes are fixed is a simplification. In practice,
the system may experience churn, i.e., processes frequently entering and departing the system. Processes
that remain in the system can adjust their assumptions in response to churn: for example, if a process
stops responding (maybe because it has left the system), then other processes can remove it from their
assumptions. Conversely, if a new process joins the system, existing processes may adjust their assump-
tions to include that process. However, analyzing the system under churn is out of the scope of this
paper.

Definition 1 (Fail-prone system). A fail-prone system F over P ⊆ Π is a set of subsets of Π called
fail-prone sets, none of which contain the other (i.e., if F ∈ F and F ′ ⊂ F , then F ′ 6∈ F).

A permissionless fail-prone system (abbreviated PFPS) describes the assumptions of all the processes:

Definition 2 (Permissionless fail-prone system). A permissionless fail-prone system is an array
F = [(P1,F1) , (P2,F2) , . . .] that associates each process pi to a trusted set Pi ⊆ Π and a fail-prone
system Fi over Pi. We refer to (Pi,Fi) as the configuration of process pi.

We now consider a fixed PFPS F.

Definition 3 (Tolerated execution and tolerated set). We say that the assumptions of a process pi
are satisfied in an execution if the set A of processes that actually fail is such that there exists a fail-prone
set F ∈ Fi and:
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1. A ∩ Pi ⊆ F ; and

2. the assumptions of every member of Pi \ F are satisfied.

If pi ∈ Π has its assumptions satisfied in an execution e, we say that pi tolerates the execution e.
Finally, a set of processes L tolerates a set of processes A if and only if every process pi ∈ L \ A

tolerates an execution e with set of faulty processes A.

Example 1. Consider a set of processes Π = {p1, p2, p3, p4} and a permissionless fail-prone system
F = [(Π,F1), (Π,F2), (Π,F3), (Π,F4)] with F1 = {{p3, p4}}, F2 = {{p1, p4}}, F3 = {{p1, p4}}, and
F4 = {{p1, p2}}. Then, Π tolerates the sets ∅, {p1}, {p4} and {p1, p4}. To see this, let us assume an
execution e with set of faulty processes A = {p1, p4}. Then, for every pi ∈ Π \A, there exists a fail-prone
set F ∈ Fi such that A ∩ Π ⊆ F . In particular, Π \ A = {p2, p3} and {p1, p4} ∈ F2 and {p1, p4} ∈ F3.
The same reasoning can be applied for the other sets.

Note that here we depart significantly from the traditional notion of fail-prone systems [4, 13]: in
a PFPS, a process not only makes assumptions about failures, but also makes assumptions about the
assumptions of other processes.

Next we define survivor sets analogously to Junqueira and Marzullo [10]. In the traditional literature,
a survivor set of pi is the complement, within Π, of some fail-prone set. However, defining them as the
complement of fail-prone sets within Pi does not work because of Item 2 in Definition 3. To obtain this
definition, we first define a slice.

Definition 4 (Slice). A set F ⊆ Π is a slice of pi if and only if pi has a fail-prone set F ∈ Fi such that
F = Pi \ F .

For any S ⊆ Π we often say pi has a slice in S when a slice of pi is contained in S or when S contains
a superset of a slice of pi.

Definition 5 (Survivor-set system). A survivor-set system Si of pi is the minimal set of subsets S of
Π such that:

1. pi has a slice in S; and

2. every member of S has a slice in S.

Each S ∈ Si is called a survivor set of pi.

Example 2. Continuing from Example 1, process p1 has only one slice consisting of {p1, p2}, processes
p2 and p3 have the set {p2, p3} as slice, and process p4 has the set {p3, p4} as slice. Moreover, the
survivor-set systems are S1 = {{p1, p2, p3}, {p1, p2, p3, p4}} for process p1, S2 = {{p2, p3}, {p1, p2, p3, p4}}
for process p2, S3 = {{p2, p3}, {p1, p2, p3, p4}} for process p3, and S4 = {{p2, p3, p4}, {p1, p2, p3, p4}} for
process p4. This follows from Definition 5: given a survivor set S ∈ Si for pi, process pi must have a slice
in S and every member of S must have a slice in S. So, for example, given the survivor set {p1, p2, p3}
in the survivor set system S1 for p1, process p1 has a slice in {p1, p2, p3}, i.e., {p1, p2}, and every process
pi ∈ {p1, p2, p3} has a slice in {p1, p2, p3}, i.e., {p2, p3}.

Lemma 1. The assumptions of a process pi ∈ Π are satisfied in an execution e with set of faulty processes
A if and only if there exists a survivor set S ∈ Si of pi such that S does not fail.

Proof. Let pi be a process such that, given an execution e with set of faulty processes A, the assumptions
of pi are satisfied in e. This implies that, by Definition 3, there exists a set of processes such that each
of these processes has its assumptions satisfied. Moreover, by Definition 4, each of these processes has a
slice F j such that F j ∩A = ∅. This leads to have a set S obtained as union of all of these slices such that
S ∩ A = ∅ and such that S is minimal with respect to this union, in the sense that is the minimal set of
processes such that every process in S has its assumptions satisfied. The set S is a survivor set of pi.

Conversely, we show that given a survivor set S of pi, given a process pi ∈ S and given an execution
e with set of faulty processes A, if S ∩ A = ∅, then the assumptions of pi are satisfied in e. Observe
that, from the assumptions, we have that every process in S has a slice F in S such that F ∩ A = ∅.
This means that for every process pi in S, there exists a fail-prone set F ∈ Fi such that Pi ∩ A ⊆ F .
This implies that every process in S has its assumptions satisfied and, in particular, that pi ∈ S has its
assumptions satisfied in e.
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3 Permissionless Quorum Systems

A classic (or symmetric) fail-prone system [13] determines a canonical quorum system known to all
processes through the Q3-condition. Specifically, given a fail-prone system F , the Q3-condition requires
that no three fail-prone sets of F cover the complete set of processes and this condition holds if and only if
there exists a quorum system for F [9,13]. Such a quorum system could be, for example, the complement
of every fail-prone set of F , which we call the canonical quorum system. Traditional algorithms such as
read-write register emulations [13], Byzantine reliable broadcasts [2,19] or the PBFT algorithm [6] make
use of quorums.

In the model of asymmetric trust [7] the assumptions of the processes may differ, and asymmetric
quorum systems [4,5] allow to implement the above-mentioned algorithms in a more flexible way. However,
they still require a system that is known to every process.

In a permissionless system, processes do not know the membership and have different, partial, and
potentially changing views of its composition.

Given a PFPS, we would therefore like to obtain a quorum system to implement algorithms for register
emulation, broadcast, consensus and more, while allowing the processes to have different assumptions in
an open network.

We are therefore interested in defining a notion of quorums for open systems where:

1. each process has its own quorum system; and

2. the quorums of a process pi depend on the assumptions of other processes, which pi learns by
communicating with them.

In other words, we consider scenarios in which each process pi communicates with other processes,
continuously discovers new processes and learns their assumptions. During this execution, pi determines
its current set of quorums as a function of what it has learned so far. Importantly, this means that
the quorums of a process evolve as the process learns new assumptions, and that faulty processes can
influence pi’s quorums by lying about their assumption.

We now formalize this model using the notions of a view and a quorum function.

Definition 6 (View). A view V = [V1,V2, . . .] is an array with one entry V[j] = Vj for each process pj
such that:

1. either Vj is the special value ⊥; or

2. Vj = (Pj ,Fj) consists of a set of processes Pj and a fail-prone system Fj over Pj .

Observe that every process pi has its local view V, whose non-⊥ entries represent the assumptions
that pi has learned at some point in an execution. Every other process pj such that V[j] = ⊥ is a process
that pi has not heard from. We denote with Υ the set of all the possible views.

We assume that, for every process pj , a process pi’s view contains the assumption that pi has most
recently received from pj . Finally, note that F is a view in which no process is mapped to ⊥. In particular,
F represents the global view if the system could be entirely observed. Since processes cannot observe the
complete system, they normally only have partial knowledge of F. Moreover, this knowledge evolves over
time.

Definition 7 (Domain of a view). For a view V, the set of processes pi such that V[i] 6= ⊥ is the
domain of V.

Next, we assume that every process determines its quorums according to its view using a function
Q called a quorum function. We assume that all correct processes use the same Q and that they do not
change it during an execution. We then have the following definition.

Definition 8 (Quorum function). The quorum function Q : Π × Υ → 2Π maps a process pi and a
view V to a set of sets of processes such that Q ∈ Q(pi,V) if and only if:

1. a slice of pi is contained in Q; and

2. for every process pj ∈ Q with V[j] 6= ⊥ and V[j] = (Pj ,Fj), there exists F ∈ Fj such that
Pj \ F ⊆ Q.

Every element of Q(pi,V) is called a quorum for pi (in V).
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Notice that in the first condition, the quorum Q may itself be a slice of pi. Moreover, Q is a quorum
for every one of its members and it is defined by slices of every pi ∈ Q. As shown in the following lemma,
a quorum for pi in view V for pi is a survivor set of pi.

Lemma 2. For every view V for pi ∈ Π, every quorum Qi ∈ Q(pi,V) is a survivor set of pi. Moreover,
given S a survivor set of pi, there exists a view V for pi such that S ∈ Q(pi,V).

Proof. Let Qi ∈ Q(pi,V) be a quorum for pi with V a view for pi. By Definition 8, all processes in Q
including pi have a slice in Q. From Definition 5, this implies that Q is a survivor set of pi.

Moreover, given a survivor set S of pi, the set S consists of slices of every member of S. This means
that there exists a view V for pi in which S satisfies Definition 8 and it is a quorum for pi. This is the
view V defined as follows:

1. for every pj ∈ S, V′[j] = F[j], and

2. for every pj 6∈ S, V′[j] = (∅, {∅}).

Example 3. Let us consider Example 1 with survivor-set systems as shown in Example 2. Since all the
processes already know all the configurations of every other process, we have that Si = Q(pi,F), with F

the permissionless fail-prone system.

Combining the quorum sets of all processes, we now obtain a permissionless quorum system for F.

Definition 9 (Permissionless quorum system). A permissionless quorum system for Π and F is an
array of collections of sets Qperm = [Q(p1,F),Q(p2,F), . . .], where Q(pi,F) is called the quorum system
for pi and is determined by the quorum function Q.

Observe that our notion of a quorum system differs from that in the existing literature [4, 13, 14].
In particular, standard Byzantine quorum systems are defined through a pair-wise intersection among
quorums. This is possible in scenarios where the full system membership is known to every process.
However, in permissionless settings, this requirement cannot as clearly be achieved globally.

Definition 10 (Current quorum system). Let V be the view representing the assumptions that a
process pi has learned so far. Then the current quorum system of pi is the set Q(pi,V). Moreover, a set
of processes Q is a current quorum of pi if and only if Q ∈ Q(pi,V); we also say that pi has a quorum Q.

Note that, in this model, each process has its own set of quorums and the set of quorums of a process
changes throughout an execution as the process learns the assumptions of more processes. Importantly,
note that faulty processes may lie about their configuration and influence the quorums of correct processes.
In an execution e with faulty set A, a correct process pi might have a view in which the assumptions
of processes in A are arbitrary because processes in A lied about their assumptions. However, processes
outside A do not lie about their assumptions. We capture this with the following definition.

Definition 11 (T-resilient view). Given a set of processes T , we say that a view V is T -resilient if
and only if for every process pi 6∈ T , either V[i] = ⊥ or V[i] = F[i].

Intuitively, a correct process pi will either not have heard from pj 6∈ A or it will have the correct
assumption for pj. Thus, pi’s view is A-resilient at all times in execution e.

As we said, processes in A may lie about their assumptions causing quorums to contain unreliable
slices. Moreover, processes in A may aim at preventing intersection among quorums of correct processes.
In the following definition we characterize the notion of worst-case view, i.e., when faulty processes
gossip only empty configurations. By doing so, quorums of correct processes will contain fewer members,
increasing the chances of an empty intersection among them.

Definition 12 (Worst-case view). Given a set of processes T , the worst-case view with respect to T
is the view V∗

T such that:

1. for every pi ∈ Π \ T , V∗

T [i] = F[i], and

2. for every pi ∈ T , V∗

T [i] = (∅, {∅}).

Finally, every quorum for a process pi 6∈ A in a A-resilient view contains a quorum for pi in a
worst-case view with respect to A. This is shown in the following lemma.
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Lemma 3. Consider a set of processes T , a T -resilient view V, and a process pi 6∈ T . Moreover, let
us assume that processes in T may lie about their assumptions. For every quorum Qi ∈ Q(pi,V), there
exists a quorum Q′

i ∈ Q(pi,V
∗

T ) such that Q′

i ⊆ Qi.

Proof. Let T be a set of processes, V be a T -resilient view, pi a process not in T . Since V is a T -resilient
view, for every pj 6∈ T it holds either V[j] = ⊥ or V[j] = F[j]. However, processes in T may lie about
their assumptions and, because of that, the view of process pi 6∈ T may contain arbitrary configurations
received from processes in T .

If Qi ∈ Q(pi,V) is a quorum for pi in V, then Qi might contain slices of processes in T which are
derived from false assumptions. One can easily show that by starting from a T -compatible view and
by removing the configurations received by processes in T , it is possible to obtain the corresponding
worst-case view. By removing configurations from V, also Qi becomes smaller, i.e., with less members,
obtaining a quorum Q′

i ⊆ Qi. In fact, by removing from Qi a slice F j of a process pj ∈ T , also slices of
other processes in F j might get removed in order for Definition 8 to be satisfied on Q′

i. This proves the
lemma.

4 Leagues

We now define the notion of a league. In Section 7 we show how a league allows to implement Bracha
broadcast.

Definition 13 (League). set of processes L is a league for the quorum function Q if and only if the
following property holds:

Consistency: For every set T ⊆ Π tolerated by L, for every two T -resilient views V and V′, for every
two processes pi, pj ∈ L \T , and for every two quorums Qi ∈ Q(pi,V) and Qj ∈ Q(pj ,V

′) it holds
(Qi ∩Qj) \ T 6= ∅.

Availability: For every set T ⊆ Π tolerated by L and for every pi ∈ L \ T , there exists a quorum
Qi ∈ Q(pi,F) for pi such that Qi ⊆ L \ T .

If we consider an execution e tolerated by a league L, where A is the set of faulty processes, the
consistency property of L implies that, at any time, any two quorums of correct processes in L have some
correct process in common. This is similar to the consistency property of symmetric and asymmetric
Byzantine quorum systems [4, 13].

Moreover, since the set of faulty processes A is tolerated by L, by the availability property of L, every
correct process in L has a quorum in F consisting of only correct processes.

Example 4. Observe that the set Π as introduced in Example 1 is a league. In fact, for every set T
tolerated by Π, i.e., ∅, {p1}, {p4} and {p1, p4}, for every two processes pi, pj ∈ Π \ T and for every two
quorums Qi ∈ Si and Qj ∈ Sj as in Example 3, it holds (Qi∩Qj)\T 6= ∅, and for every pi ∈ Π\T , there
exists a quorum Qi ∈ Si such that Qi ⊆ Π \ T.

The following lemma shows that the union of two intersecting leagues L1 and L2 is again a league,
assuming that for every set T tolerated by both the leagues, L1 and L2 have a common process not in T .

Lemma 4. If L1 and L2 are two leagues such that L1 ∩ L2 6= ∅ and such that for every set T tolerated
by L1 ∪ L2, there exists a process pk ∈ (L1 ∩ L2) \ T , then L1 ∪ L2 is a league.

Proof. Let L1 and L2 be two leagues such that L1 ∩ L2 6= ∅. For every T tolerated by L1 ∪ L2 (and so,
tolerated by L1 and L2, independently), for every pi ∈ L1 \ T and pj ∈ L2 \ T , for every two T -resilient
views V and V′ for pi and pj, respectively, let Qi ∈ Q(pi,V) and Qj ∈ Q(pj ,V

′) be two quorums for
pi and pj, respectively. Observe that, by assumption, for every tolerated set T by L1 ∪ L2 there exists
a process pk ∈ (L1 ∩ L2) \ T . Let pk ∈ L1 ∩ L2 and let Qk ∈ Q(pk,V) be a quorum for pk such that
Qk ⊆ L1, according to availability property of L1. From consistency property of L2, (Qk∩Qj)\T 6= ∅ and
every process in this intersection belongs to L1. Observe that, Qj is a quorum for every of its member.
This implies that Qj is a quorum for every process in (Qk ∩Qj) \ T and every process in (Qk ∩Qj) \ T
has quorum in L1. Moreover, (Qk ∩Qi) \ T 6= ∅. It follows that (Qi ∩Qj) \ T 6= ∅.

Finally, by availability property of L1 and L2, for every tolerated set T by L1 and L2 and for every
process pi ∈ L1 \ T and pj ∈ L2 \ T , eventually there exists a quorum Qi ∈ (pi,F) for pi and a quorum
Qj ∈ Q(pj ,F) for pj such that Qi ⊆ L1 \ T and Qj ⊆ L2 \ T , respectively. If pi = pj ∈ L1 ∩ L2, then
there exists a quorum Qi for pi such that Qi ⊆ (L1 ∪ L2) \ T .
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In the following lemma we show that we can characterize the consistency property of a league just by
considering worst-case views. Intuitively, this result relies on the observation that every T -resilient view
can be seen as extensions of worst-case views with respect to T ⊆ Π, in the sense that a T -resilient view
can be obtained by starting from a worst-case view with respect to T and by considering the non-empty
configurations received by processes in T .

Lemma 5. The consistency property a league L holds if and only if for every set T ⊆ Π tolerated by L,
for every two worst-case views V∗

T and V′∗

T with respect to T , for every two processes pi, pj ∈ L \ T , and
for every two quorums Qi ∈ Q(pi,V

∗

T ) and Qj ∈ Q(pj ,V
′∗

T ) it holds (Qi ∩Qj) \ T 6= ∅.

Proof. Let us assume that the consistency property of a league L holds. Since the property holds for
every pair of views, it must hold also for worst-case views. The implication easily follows.

Let us now assume that for every set T ⊆ Π tolerated by L, for every two worst-case views V∗

T and
V′∗

T with respect to T , for every two processes pi, pj ∈ L \ T , and for every two quorums Qi ∈ Q(pi,V
∗

T )
and Qj ∈ Q(pj ,V

′∗

T ) it holds (Qi ∩Qj) \T 6= ∅. Observe that, given a quorum Qi ∈ Q(pi,V
∗

T ) for pi in a
worst-case view V∗

T , all the quorums obtained by also considering all the possible configurations received
from processes in T that are not in V∗

T do contain Qi. Moreover, there cannot exist a T -resilient view
that does not consist of configurations of a worst-case view with respect to T . If this was the case, then
by removing configurations received from processes in T one would obtain a worst-case view with respect
to T , reaching a contradiction. So, all the quorums obtained from T -resilient views will also intersect in
processes that are not contained in T .

Now we show how a league can be abstracted and defined without considering views. This will be
useful in Section 5 when we compare our model with other permissionless models. First, we introduce
the following definitions.

Definition 14 (Inclusive up to). A set I ⊆ Π is inclusive up to a set T ⊆ Π if and only if for every
pi ∈ I \ T , process pi has a slice in I.

If we consider an execution e with set of faulty processes A then a set of processes I is inclusive up
to A if and only if every correct process in I has a slice contained in I.

Definition 15 (Rooted at). A set R ⊆ Pi is rooted at a process pi if and only if pi has a slice in R. A
set R ⊆ Π is rooted in a set T ′ ⊆ Π whenever R is rooted at a member of T ′.

Lemma 6. If V is a T -resilient view and Qi ∈ Q(pi,V) for some process pi, then Qi is inclusive up to
T and rooted at pi.

Proof. If V is a T -resilient view then, by Definition 11, processes outside T do not lie about their
assumptions. By definition of a quorum Qi for a process pi in a view V, every process in Qi, and so in
Qi \ T , has a slice in Qi. This implies that Qi is inclusive up to T and rooted at pi.

In the following lemma we show that given a set of processes T tolerated by L ⊆ Π, for every set of
processes I inclusive up to T and rooted at pi ∈ L \ T it is possible to find a T -resilient view in which I
is a quorum for pi. This view is a worst-case view with respect to T .

Lemma 7. Let L be a set of processes. For every set T ⊆ Π tolerated by L, if I ⊆ Π is a set inclusive
up to T and rooted at pi ∈ L \ T , then there is a T -resilient view in which I is a quorum for pi.

Proof. Let T ⊆ Π be a tolerated set by a set of processes L and let I ⊆ Π be a set inclusive up to T and
rooted at pi ∈ L \ T . This implies that pi and every other process pj ∈ I \ T have a slice in I. Let us
consider the worst-case view V∗

T with respect to T . Clearly, V∗

T is T -resilient. This implies that, in V∗

T ,
the set I is a quorum for pi, i.e., I ∈ Q(pi,V

∗

T ).

Remark 1. Observe that given a set of processes L and a worst-case view V∗

T with respect to a set T ⊆ Π
tolerated by L, every quorum Qi ∈ Q(pi,V

∗

T ) for pi ∈ L \ T is inclusive up to T and rooted at pi.
Moreover, given the set I of all the sets I ⊆ Π inclusive up to T and rooted at pi ∈ L \ T , the set

I contains all the quorums Qi ∈ Q(pi,V) for every T -resilient view V. In fact, by Definition 14, given a
set of processes I inclusive up to a set of processes T , the requirement of having a slice in I is only for
processes in I \ T , leaving processes in T ∩ I with no requirements on the choice of their slices.

However, given a T -resilient view V, by Definition 8, a quorum Qi for pi requires instead every process
in Qi to have a slice contained in Qi. This means that given a T -resilient view V, quorum Qi for pi is
contained in I, being a special case of inclusive set up to T .

8



Lemma 8. The consistency property of a league L holds if and only if for every set T ⊆ Π tolerated
by L, and for every two sets I ⊆ Π and I ′ ⊆ Π that are rooted at L \ T and inclusive up to T it holds
(I ∩ I ′) \ T 6= ∅.

Proof. Let us assume that the consistency property of a league L holds. Suppose by contradiction that
there is a set T ⊆ Π tolerated by L and two sets I ⊆ Π and I ′ ⊆ Π that are inclusive up to T and rooted
at L \ T in pi and pj , respectively, such that (I ∩ I ′) \ T = ∅.

By Lemma 7, there are a T -resilient view V in which I is a quorum for pi and a T -resilient view V′

in which I ′ is a quorum for pj and we reached a contradiction.
Let us now assume that for every set T ⊆ Π tolerated by L, and for every two sets I ⊆ Π and I ′ ⊆ Π

that are inclusive up to T and rooted at L \ T it holds (I ∩ I ′) \ T 6= ∅.
Let I and I ′ be the sets of all the sets I ⊆ Π and I ′ ⊆ Π inclusive up to T and rooted at pi ∈ L \ T

and pj ∈ L \T , respectively. The proof follows from the reasoning in Remark 1: for every two T -resilient
views V and V′, every quorum Qi ∈ Q(pi,V) for pi is contained in I and every quorum Qj ∈ Q(pj ,V)
for pj is contained in I ′.

Lemma 9. The availability property of a league L holds if and only if for every set T ⊆ Π tolerated by
L, every member of L \ T has a survivor set in L \ T .

Proof. Let us assume that the availability property of a league L holds, i.e., for every set of processes T
tolerated by L and for every pi ∈ L \T , there exists a quorum Qi ∈ Q(pi,F) for pi such that Qi ⊆ L \T .
This means that, by Definition 5, every process in L \ S has a survivor set in L \ S.

Let us now assume that for every set T ⊆ Π tolerated by L, every member of L \ T has a survivor
set S in L \ T . Let pi be a process in L, by Definition 8 we have that S ∈ Q(pi,F) for pi. The proof
follows.

5 Comparison with Other Models

In this section we compare our model with the classic model based on fail-prone systems [13], with the
asymmetric model [4,7], with the federated Byzantine agreement system model [15], and with the personal
Byzantine quorum system model [11].

5.1 Comparison with Fail-Prone Systems

We show that classic fail-prone systems and quorums can be understood as a special case of our model,
when every process knows the entire system and assumes the same, global fail-prone system.

Let Π = {p1, . . . , pn} be a set of processes. A Byzantine quorum system for a fail-prone system
F (Definition 1) satisfies (Consistency) ∀Q1, Q2 ∈ Q, ∀F ∈ F : Q1 ∩ Q2 6⊆ F ; and (Availability)
∀F ∈ F : ∃ Q ∈ Q : F ∩ Q = ∅. Moreover, a Byzantine quorum system Q for F exists if and only
if the Q3-condition holds [9, 13], which means that for every F1, F2, F3 ∈ F : Π 6⊆ F1 ∪ F2 ∪ F3. In
particular, if Q3(F) holds, then F , the bijective complement of F , is a Byzantine quorum system; this
is the Byzantine quorum system consisting of survivor sets [10]. Notice that, in a classic system, the
failures that are tolerated by the processes are all possible subsets of fail-prone sets in F and we have
Pi = Π for every pi ∈ Π. Every process also knows the global quorum system.

We define a bijective function f between the set of fail-prone systems and a subset of PFPS such
that f(F) = [(Π,F), . . . , (Π,F)] with n repetitions and we notice that in classic fail-prone systems there
is only one view, namely V = f(F).

We define the quorum function Q : Π×Υ→ 2Π such that for every process pi ∈ Π, Q(pi, f(F)) = F .
Observe that any set in F is a slice of every process pi ∈ Π according to Definition 4. In the next theorem
we consider this quorum function and show that, given some assumptions on F , any set in F is also a
quorum for every process pi ∈ Π according to Definition 8.

Theorem 10. Let Π be the set of all processes and F the fail-prone system for Π. Then Q3(F) holds if
and only if Π is a league for the quorum function Q in f(F).

Proof. Let us first assume that Q3(F) holds. This means that for every F1, F2, F3 ∈ F , Π 6⊆ F1∪F2∪F3.
It follows that F is a quorum system for F . Consistency property of F implies that for every tolerated
set F , for every two processes pi and pj in Π \ F and for every two quorums Qi ∈ Q(pi, f(F)) and
Qj ∈ Q(pj , f(F)) for pi and pj , respectively, it holds that (Qi ∩Qj) \ T 6= ∅.
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The availability property of F implies that for every set F ∈ F tolerated by Π, every process pi ∈ Π\F
has a quorum in Π\F : given F , there exists a quorumQ ∈ Q(pi, f(F)) such that Q∩F = ∅ and Q ⊆ Π\F .
It follows that Π is a league for the quorum function Q in f(F).

Let us now assume that Π is a league for the quorum function Q in f(F). The consistency property
of Π implies that for every T tolerated by Π (which are all the sets in F), for every two processes pi and pj
in Π\T , for every two quorums Qi ∈ F and Qj ∈ F for pi and pj, respectively, it holds (Qi∩Qj)\T 6= ∅.
Moreover, by availability property of Π there exists a quorum in Π\T (which is the same for every process
pi 6∈ T ). This implies that, for every fail-prone set F ∈ F , there is a quorum Qi such that Qi ∩ F = ∅.

These two facts imply that F is a classic Byzantine quorum system for F and so Q3(F) holds.

5.2 Comparison with Asymmetric Fail-Prone Systems

In the asymmetric model [7], every process is free to express its own trust assumption about the processes
in one common globally known system through a subjective fail-prone system.

An asymmetric fail-prone system F′ = [F ′

1, . . . ,F
′

n] consists of an array of fail-prone systems, where
F ′

i ⊆ 2Π denotes the trust assumption of pi.
An asymmetric Byzantine quorum system for F′ [4], is an array of collections of setsQ′ = [Q′

1, . . . ,Q
′

n],
where Q′

i ⊆ 2Π for i ∈ [1, n]. The set Q′

i ⊆ 2Π is called the quorum system of pi and any set Qi ∈ Q′

i is
called a quorum (set) for pi. Moreover, defining F ′∗ = {F ′|F ′ ⊆ F, F ∈ F ′}, the following conditions hold:
(Consistency) ∀i, j ∈ [1, n], ∀Qi ∈ Q′

i, ∀Qj ∈ Q′

j , ∀Fij ∈ F ′

i
∗ ∩ F ′

j
∗

: Qi ∩ Qj 6⊆ Fij ; and (Availability)
∀i ∈ [1, n], ∀Fi ∈ F

′

i : ∃ Qi ∈ Q
′

i : Fi ∩Qi = ∅.
The Q3-condition in the classic model can be generalized as follows: we say that F′ satisfies the B3-

condition [7], abbreviated as B3(F′), whenever it holds for all i, j ∈ [1, n] that ∀Fi ∈ F ′

i , ∀Fj ∈ F ′

j , ∀Fij ∈

F ′

i
∗ ∩ F ′

j
∗

: Π 6⊆ Fi ∪ Fj ∪ Fij .

An asymmetric fail-prone system F′ satisfying the B3-condition is sufficient and necessary [4] for the
existence of a corresponding asymmetric quorum system Q′ = [Q′

1, . . . ,Q
′

n], with Q
′

i = F
′
i. Processes

in this model are classified in three different types, given an execution e with faulty set A: a process
pi ∈ A is faulty, a correct process pi for which A 6∈ F ′

i
∗

is called naive, while a correct process pi for
which A ∈ F ′

i
∗

is called wise.
Finally, a guild G for A is a set of wise processes that contains at least one quorum for each member.
Let Π be a set of processes in the asymmetric model and F′ = [F ′

1, . . . ,F
′

n] be an asymmetric fail-
prone system. Define the function g from asymmetric fail-prone systems to PFPS such that g(F′) =
[(Π,F ′

1), . . . , (Π,F
′

n)]. Observe that, in an asymmetric system, the failures that may be tolerated by
the processes are possible subsets of fail-prone sets in the fail-prone systems of F′ and Pi = Π for every
pi ∈ Π. Moreover, as in the classic model, there is only one view, which is V = g(F′).

We define the quorum function Q : Π × Υ → 2Π such that for every guild G ⊆ 2Π, if pi ∈ G then
Q(pi, g(F

′)) = {G,Π}, otherwise Q(pi, g(F
′)) = {Π}.

Observe that a quorum in the asymmetric model is a slice according to Definition 4 and, for every
process pi ∈ Π, every set in Q(pi, g(F

′)) is a quorum according to Definition 8.
Through the following theorem we establish the relationship between the asymmetric model and the

permissionless model.

Theorem 11. Let us consider an asymmetric model among a set Π of processes with asymmetric fail-
prone system F′. If B3(F′) holds and Π tolerates some sets T ⊆ Π, then there exists a quorum function
Q such that Π is a league in g(F′).

Proof. Let us assume that Π tolerates some sets T ⊆ Π and let us consider the quorum function Q define
in this section in the context of the asymmetric model. This means that, for every set T tolerated by Π,
every process pi ∈ Π \ T has a slice contained in Π \ T . This implies that in every execution in which T
is the set of faulty processes, every process in Π \ T is wise and Π \ T is a guild.

Moreover, let us also assume that B3(F′) holds. This implies the existence of an asymmetric Byzantine
quorum system Q′ such that for every set T tolerated by Π, for every two processes pi and pj in Π\T and
for every two quorums Qi ∈ Q′

i and Qj ∈ Q′

j for pi and pj , respectively, it holds that (Qi ∩Qj) \ T 6= ∅.
Observe that the set Π \ T ∈ Q(pi, g(F

′)) is a quorum in the permissionless model for every pi ∈ Π \ T
according to Definition 8. This implies that Π satisfies availability property of a league.

Finally, for the consistency property observe that for every process pi ∈ Π, the set system Q(pi, g(F
′))

satisfies Definition 8; by construction we have at most only two quorums for every pi which are Π and Π\T
both satisfying Definition 8. Consistency of Q′ implies intersection among the quorums in Q(pi, g(F

′)),
for every process in Π \ T .

10



It follows that Π is a league for the quorum function Q in g(F′).

Theorem 11 shows a relation between the asymmetric model and the permissionless model. In par-
ticular, if B3(F′) holds and Π tolerates some sets T , then the quorum function Q makes Π a league.
However, we could have scenarios in which only a subset of Π tolerates some sets T . In particular, we
have the following result.

Lemma 12. Let Π = {p1, . . . , pn} be a set of processes, F′ be an asymmetric fail-prone system over Π
and g(F′) the corresponding PFPS as described in the text. Moreover, let us consider an execution e with
set of faulty processes A with guild G. Then, G is the only set that tolerates e.

Proof. By definition of guild, every process in G is wise and has a quorum contained in G. Observe that,
given a wise process pi, there exists a fail-prone set F ∈ F ′

i in F′ such that A ⊆ F . Moreover, a quorum
Qi for pi in the asymmetric model satisfies Definition 4 and it is then a slice of pi. This implies that
every process in G has its assumptions satisfied according to Definition 3. Moreover, every process in G
has a slice contained in G.

In the following lemma we characterize a link between the notion of a guild, in a given execution,
and a league.

Lemma 13. Let us consider an asymmetric Byzantine quorum system Q′ and a guild G in any execution
with set of faulty processes A. Then, G is a league for the quorum function Q in g(F′).

Proof. The result follows from Theorem 11 by applying the same reasoning with G instead of Π \ T as a
guild.

In the following lemma we show a scenario where no asymmetric Byzantine quorum systems exist
but it is possible to find a league for Q in g(F′).

Lemma 14. There exists an asymmetric fail-prone system F′ such that:

• there is no asymmetric Byzantine quorum system for F′, but

• there exists a quorum function Q that make Π a league in g(F′).

Proof. We prove this lemma through an example with four processes. Consider an asymmetric fail-prone
system F′

4 over four processes p1, p2, p3, and p4 with F ′

1 = {{p3, p4}}, F ′

2 = {{p1, p4}}, F ′

3 = {{p1, p4}},
and F ′

4 = {{p1, p2}}, as in Example 1.
Observe that, by the availability property of an asymmetric Byzantine quorum system, p1 must

have a quorum in {p1, p2} and p4 must have a quorum in {p3, p4}. Since {p1, p2} and {p3, p4} are
disjoint, it is impossible to satisfy the consistency property. Thus, there does not exist any asymmetric
Byzantine quorum system for F′

4. Another way to see this is by observing that B3(F′

4) does not hold:
{p3, p4} ∪ {p1, p2} = Π.

However, as shown in Example 4, Π is a league in g(F′

4). So, there is no asymmetric Byzantine
quorum system for F′

4 but Q makes Π a league in g(F′

4).

5.3 Comparison with Federated Byzantine Agreement Systems

The federated Byantine agreement system (FBAS) model has been introduced by Mazières [15] in the
context of the Stellar white paper. Differently from the models presented before in this section, the
FBAS model is a permissionless model, where processes, each with an initial set of known processes,
continuously discover new processes. In a FBAS, every process pi chooses a set of slices, which are sets of
processes sufficient to convince pi of agreement and a set of processes Qi is a quorum for pi whenever pi
has at least one slice inside Qi and every member of Qi has a slice that is a subset of Qi. In particular,
a quorum Qi is a quorum for every of its members. However, despite the permissionless nature of a
FBAS, a global intersection property among quorums is required for the analysis of the Stellar Consensus
Protocol (SCP), and the scenario with disjoint quorums is not considered by Mazières.

A central notion in FBAS is that of intact set; given a set of processes Π, an execution with set
of faulty processes A and a set of correct processes W = Π \ A, a set of processes I ⊆ W is an intact
set [8, 11] when the following conditions hold: (Consistency) for every two processes pi and pj in I and
for every two quorums Qi and Qj for pi and pj , respectively, Qi ∩ Qj ∩ I 6= ∅; and (Availability) I is a
quorum for every of its members.
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Every process in I is called intact, while every process in Π \ I (correct or faulty) is called befouled
and some properties of the Stellar Consensus Protocol are guaranteed only for intact processes. Moreover,
the union of two intersecting intact sets is an intact set. Finally, by requiring a system-wide intersection
among quorums (as in the case of the SCP) one obtains an unique intact set (Lemma 34, [8]).

We first show that our model generalizes the FBAS model by showing that a quorum in FBAS satisfies
Definition 8.

In FBAS a notion of fail-prone system is missing and definitions are given with respect to an execution
with a fixed set of faulty processes A. However, because processes define slices, an implicit fail-prone
system for every process can be derived.

In particular, given a set of processes Π = {p1, p2, . . .}, every process in Π defines its slices based on a
known subset Pi ⊆ Π by pi and Si is a slice for pi ∈ Π if and only if pi ∈ Si and Si ⊆ Pi [8]. Let Si ⊆ 2Π

be the set of slices of pi, we can derive the following definition.

Definition 16. (Federated fail-prone system) A set F ⊆ Π is a fail-prone set of pi if and only if there
exists a slice Si ∈ Si of pi such that F = Pi \ Si. The set F ′′

i ⊆ 2Π of all the fail-prone sets of pi is
called fail-prone system of pi. Finally, we call the set F

′′ = [(P1,F ′′

1 ), (P2,F ′′

2 ), . . .] the federated fail-prone
system.

In a FBAS, processes discover other processes’ slices during an execution and so pi implicitly learns
other processes’ federated fail-prone sets. Moreover, correct processes do not lie about their slices [8,15].

It easy to observe that given different sets of slices received from different processes, Definition 16
implies Definition 6, obtaining a notion of view V in the FBAS model, and, because correct processes do
not lie about their slices, Definition 11. We define the set Υ′ to be the set of all the possible views in the
FBAS model.

Given the notion of view in the FBAS model, we define the quorum function Q : Π×Υ′ → 2Π such
that Q(pi,V) contains all the sets Qi, called quorums, with pi ∈ Qi and such that every process pj ∈ Qi

has a slice in Qi. So, a quorum as defined by Mazières [15] satisfies Definition 8. Finally, in the FBAS
model we introduce the notion of survivor set as defined in Definition 5.

In the following theorem we show that, by assuming a stronger consistency property for a league L,
i.e., that the intersection among any two quorums of any two correct processes in the league contains
some correct member of the league, then L is an intact set in every execution tolerated by L.

Theorem 15. Let L be a league for the quorum function Q and let us assume that for every set T ⊆ Π
tolerated by L, for every two T -resilient views V and V′, for every two processes pi, pj ∈ L \ T , and for
every two quorums Qi ∈ Q(pi,V) and Qj ∈ Q(pj ,V

′) it holds (Qi ∩Qj ∩ L) \ T 6= ∅, then L is an intact
set for every every set T ⊆ Π tolerated by L.

Proof. Let L be a league for the quorum function Q and let T be a set of processes tolerated by L. If for
every two T -resilient views V and V′, for every two processes pi, pj ∈ L \ T , and for every two quorums
Qi ∈ Q(pi,V) and Qj ∈ Q(pj ,V

′) it holds (Qi ∩Qj ∩ L) \T 6= ∅, then the consistency property of intact
sets follows. The availability property of an intact set follows by observing that, in F, the set L \ T is a
quorum for every of its members.

Observe that without the stronger consistency property assumed in Theorem 15, since quorums of
correct processes in L may intersect in correct processes (not necessarily in L), it may be the case that
L is not an intact set.

5.4 Comparison with Personal Byzantine Quorum Systems

The personal Byzantine quorum system (PBQS) model has been introduced by Losa et al. [11] in the
context of Stellar consensus aiming at removing the system-wide intersection property among quorums
required by Mazières [15] for the SCP.

In the PBQS model a quorum for pi is a non-empty set of processes Qi such that if Qi is a quorum
for pi and pj ∈ Qi, then there exists a quorum Qj for pj such that Qj ⊆ Qi. In other terms, a quorum
Qi for some process pi must contain a quorum for every one of its members. Losa et al. point out that a
global consensus among processes may be impossible since the full system membership is not known by
the processes, and define the notion of consensus cluster as a set of processes that can instead solve a
local consensus, i.e., consensus among the processes in a consensus cluster can be solved. In particular,
given an execution with set of faulty processes A, a set of correct processes C is a consensus cluster when
the following conditions hold: (Consistency) for every two processes pi and pj in C and for every two

12



quorums Qi and Qj for pi and pj, respectively, Qi ∩ Qj 6⊆ A; and (Availability) for every pi ∈ C there
exists a quorum Qi for pi such that Qi ⊆ C. Losa et al. prove that the union of two intersecting consensus
clusters is a consensus cluster and that maximal consensus clusters are disjoint. The latter implies that
maximal consensus clusters might diverge from each other.

In the following we show a relationship between the notions of league and consensus cluster. To do
so, we first show that a quorum Qi for pi as defined in Definition 8 is also a quorum for pi in the PBQS
model.

Lemma 16. Let Qi ∈ Q(pi,V) be a quorum for a process pi in a view V according to Definition 8. Then
Qi is a quorum for pi in the PBQS model.

Proof. Definition 8 implies that Qi is a quorum for every of its members. This means that for every
process pj ∈ Qi, the set Qi is a quorum for pj such that Qi ⊆ Qi. The result follows.

In the following result we show that, given a league L, for every set T ⊆ Π tolerated by L, the set
L \ T is a consensus cluster.

Theorem 17. Let L be a league for the quorum function Q. Then, for every set T ⊆ Π tolerated by L,
the set L \ T is a consensus cluster.

Proof. Let L be a league for the quorum function Q and let T be a set of processes tolerated by L.
Lemma 16 implies that for every process pi and for every view V, all the quorums in Q(pi,V) for pi
are quorums in the PBQS model. So, the consistency and availability properties of a league imply that
L\T satisfies the consistency and availability properties of a consensus cluster, making L\T a consensus
cluster.

6 Permissionless Shared Memory

In this section we present a first application of permissionless quorum systems by showing how to emulate
shared memory, represented by a register.

A register stores values and can be accesses through two operations: write(v), parameterized by a
value v belonging to a domain V , and outputs a token ack when it completes; and read, which takes
no parameter and outputs a value v ∈ V upon completion. In this work we consider only a single-writer
register, where only a designated process pw may invoke write, and allow multiple readers, i.e., every
process may execute a read operation. After a process has invoked an operation, the register may trigger
an event that carries the reply from the operation. We say that the process completes the operation when
this event occurs. Moreover, after a process has invoked an operation on a register, the process does not
invoke any further operation on that register until the previous operation completes and we say that a
correct process accesses the registers in a sequential manner. An operation o precedes another operation
o′ in a sequence of events whenever o completes before o′ is invoked. Two operations are concurrent if
neither one of them precedes the other.

Definition 17 (Permissionless SWMR). A protocol for permissionless single-writer multi-reader reg-
ister satisfies the following properties. For every league L and every execution tolerated by L:

Termination: If a correct process pi ∈ L invokes an operation on the register, pi eventually completes
the operation.

Validity: Every read operation of a correct process in L that is not concurrent with a write returns the
last value written by a correct process in L; a read of a correct process in L concurrent with a
write of a correct process in L may also return the value that is written concurrently.

In Algorithm 1, the writer pw waits until receiving ack messages from all processes in a quorum
Qw ∈ Q(pw,V). The reader pr waits for a value message with a value/timestamp pair from every
process in a quorum Qr ∈ Q(pr,V).

The function highestval(S) takes a set of timestamp/value pairs S and returns the value of the pair
with the largest timestamp.

Finally, the protocol uses digital signatures, with operations signi, invoked by process pi, and verifyi.
In particular, signi takes a message m ∈ {0, 1}∗ as input and returns a signature σ ∈ {0, 1}∗, while verifyi
takes as input a signature σ and a message m ∈ {0, 1}∗ and returns true if and only if pi signed the
message m and obtained σ, or false otherwise.
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Algorithm 1 Emulation of a permissionless SWMR regular register (process pi).

State
tsw: sequence number of write operations, stored only by writer pw
idr: identifier of read operations, used only by reader
ts, v, σ: current state stored by pi: timestamp, value, signature

upon invocation write(v) do // if pi = pw
tsw ← tsw + 1
σ ← signw(write‖w‖tsw‖v)
send message [write, tsw, v, σ,Fi] through gossip
wait for receiving a gossiped message [ack, (Pj ,Fj)]

from all processes in Q(pw,V)
V[j]← (Pj ,Fj)

upon receiving a gossiped message [write, ts′, v′, σ′, (Pw,Fw)]
from pw do // every process

if ts′ > ts then
V[w]← (Pw,Fw)
(ts, v, σ)← (ts′, v′, σ′)

send message [ack,F[i]] through gossip to pw

upon invocation read do // if pi = pr
idr ← idr + 1
send message [read, idr,F[i]] through gossip
wait for receiving gossiped messages [value, rj , tsj , vj , σj , (Pj ,Fj)]

from all processes in Q(pr,Vr)
such that rj = idr and verifyw(σj ,write‖w‖tsj‖vj)

V[j]← (Pj ,Fj)
return highestval({(tsj , vj)| j ∈ Qr}

upon receiving a gossiped message [read, r, (Pr ,Fr)]
from pr do // every process

Vi[r]← (Pr ,Fr)
send message [value, r, ts, v, σ,Fi] through gossip to pr

Theorem 18. Algorithm 1 implement permissionless SWMR.

Proof. Let us consider a league L and a tolerated execution e with set of faulty processes A. To prove
the termination property, let us consider a writer pw. By assumption, process pw is correct in the league
L and, by the availability property of L, eventually there exists a quorum Qw ∈ Q(pw,F) contained in
L \ A. Therefore, pw will receive sufficiently many ack messages and the write will return. Let pr be a
reader in L \ A. As above, eventually there exists a quorum Qr ∈ Q(pr,F) contained in L \ A. Because
the writer is correct and in the league, all the responses from processes in Qr satisfy the checks and read
returns.

For the validity property, observe that by assumption both the writer pw and the reader pr are correct
processes in L \A. If the writer pw writes to a quorum Qw ⊆ Q(pw,V) for itself, and the reader pr reads
from a quorum Qr ⊆ Q(pr,V

′) for itself, with V and V′ two A-resilient views, by the consistency property
of L it holds (Qw ∩ Qr) \ A 6= ∅. Hence, there is some correct process pi ∈ Qw ∩ Qr that received the
most recently written value from pw and returns it to pr.

Observe that, from the properties of the signature scheme, any value output by read has been written
in some preceding or concurrent write operation.

7 Permissionless Reliable Broadcast

In this section we show how the Bracha broadcast [2], protocol that implements Byzantine reliable
broadcast, can be adapted to work in our model. First, we introduce the following definitions and results.
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Definition 18 (Blocking set). A set B ⊆ Π is said to block a process pi if B intersects every slice of
pi.

Definition 19 (Inductively blocked). Given a set of processes B, the set of processes inductively
blocked by B, denoted by B+, is the smallest set closed under the following rules:

1. B ⊆ B+; and

2. if a process pi is blocked by B+, then pi ∈ B+.

As a consequence of Definition 19, given an execution, the set B+ can be obtained by repeatedly
adding to it all the processes that are blocked by B+ ∪ B. Eventually no more processes will be added
to B+.

Moreover, given an execution e with set of faulty processes A, if a league L tolerates A, then processes
in L \A cannot be inductively blocked by A. This is shown in the following lemma.

Lemma 19. Let L be a league and T be a set tolerated by L. Then, no process in L \ T is inductively
blocked by T , i.e., T+ ∩ (L \ T ) = ∅.

Proof. Let us assume that T+ ∩ (L \ T ) 6= ∅. This means that there exists a process pi ∈ L \ T that is
blocked by T+, i.e., T+ intersects every slice of pi, including the slice contained in the quorum Qi ⊆ L\T
for pi. Clearly, (L \ T ) ∩ T = ∅, and this means that there exists a set T ′ with T ′ ⊆ T+ \ T such that T ′

intersects every slice of pi, including the slice contained in the quorum for pi consisting only of correct
processes in L. This means that we can find a process pj ∈ T ′ with pj ∈ L \ T and pj blocked by T .
Since L is a league, process pj must have a slice in L \ T . However, T cannot intersect every slice of pj
because L \ T is disjoint from T . We reached a contradiction.

Intuitively, starting from A+ = ∅, we first consider the processes that are blocked by A. Trivially,
every process in A is blocked by A, and so A+ = A. Moreover, no process in L \A can be blocked by A.
If this was the case, then there would exist a process pi ∈ L \ A such that A intersected all of its slices,
including the slice contained in the quorum Qi ⊆ L \ A, which we know to exist due to the availability
property of L. So, only processes pj not in L\A can be blocked by A. Let pj be such process. This means
that A∪{pj} ⊆ A+. Now, we can repeat the same reasoning, by considering all the processes blocked by
A∪ {pj}. Again, no processes in L \A can be blocked by A∪ {pj}. In fact, if A∪ {pj} blocked a process
pk ∈ L \A, then every slice of pk would contain pj , including the slice contained in L \A. However, this
would imply that pj ∈ L \A which would contradict the fact that pj is a process not in L \A.

In the following theorem we show that if a correct process pi in a league L is blocked by a set B,
then B = B ∪ {pi} blocks another process pj 6∈ B ∪ A. Then, B′ = B ∪ {pj} blocks another process
pk 6∈ B′ ∪A and so on, until, eventually, every correct process in the league is blocked.

Theorem 20 (Cascade theorem). Consider the quorum function Q, a league L, and a set T ⊆ Π
tolerated by L. Moreover, let us consider a process pi ∈ L \ T , a T -resilient view V for pi, a quorum
Qi ∈ Q(pi,V), and a set B ⊆ Π disjoint from T such that Qi \ T ⊆ B. Then, either L \ T ⊆ B or there
exists a process pj 6∈ B ∪ T that is blocked by B.

Proof. It suffices to assume by contradiction that L \ (B ∪T ) 6= ∅ and that, for every pj 6∈ B ∪T , process
pj has a slice disjoint from B. This implies that S = B ∪ T is a survivor set of every process pj ∈ S;
since L \ (B ∪ T ) 6= ∅ , this includes also at least one process pj ∈ L \ (B ∪ T ).

Let us consider such a process pj ∈ L \ (B ∪ T ) and consider the view V′ for pj such that: (1) for
every pk 6∈ T , V′[k] = F[k]; and (2) for every pk ∈ T , V′[k] = (∅, {∅}). Observe that V′ is a T -resilient
view for pj. By Lemma 2, we have that S ∈ Q(pj ,V

′) . This implies that S ∩ Qi ⊆ T . But combined
with the fact that pj ∈ L \ (B ∪ T ), this contradicts the consistency property of L.

We will see how this theorem has a direct effect on the liveness of permissionless Byzantine reliable
broadcast.

In a Byzantine reliable broadcast, the sender process may broadcast a value v by invoking r-braodcast(v).
The broadcast primitive outputs a value v through an r-deliver(v) event. Moreover, the broadcast prim-
itive presented in this section delivers only one value per instance. Every instance has an implicit label
and a fixed, well-known sender ps.

Definition 20 (Permissionless Byzantine reliable broadcast). A protocol for permissionless Byzan-
tine reliable broadcast satisfies the following properties. For every league L and every execution tolerated
by L:
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Validity: If a correct process ps r-broadcasts a value v, then all correct processes in L eventually r-deliver
v.

Integrity: For any value v, every correct process r-delivers v at most once. Moreover, if the sender ps
is correct and the receiver is correct and in L, then v was previously r-broadcast by ps.

Consistency: If a correct process in L r-delivers some value v and another correct process in L r-delivers
some value v′, then v = v′.

Totality: If a correct process in L r-delivers some value v, then all correct processes in L eventually
r-deliver some value.

We implement this primitive in Algorithm 2, which is derived from Bracha broadcast [2] but differs
in some aspects.

In principle, the protocol follows the original one, but does not use one global quorum system known
to all processes. Instead, the correct processes implicitly use the same quorum function Q (Definition 8),
of which they initially only know their own entry in Q. They discover the quorums of other processes
during the execution.

Because of the permissionless nature of our model, we consider a best-effort gossip primitive to
disseminate messages among processes instead of point-to-point messages.

A crucial element of Bracha’s protocol is the “amplification” step, when a process receives f + 1
ready messages with some value v, with f the number of faulty processes in an execution, but has not
sent a ready message yet. Then it also sends a ready message with v. This generalizes to receiving
the same ready message with value v from a blocking set for pi and is crucial for the totality property.

Finally, we introduce the any message as a message sent by a process pi that is blocked by two sets
carrying two different values v and v′. The reason for this new message lies in the consistency property of
L: given an execution e with set of faulty processes A tolerated by L, the consistency property of L implies
that any two quorums of any two correct processes in L have some correct process in common. Quorum
intersection is then guaranteed only for correct processes in L and nothing is assured for correct processes
outside L, which might gossip different values received by non-intersecting quorums. In particular, if a
correct process pi is blocked by a set containing a value v and later is blocked by a set containing a value
v′ 6= v, then pi gossips an any message containing ∗. any messages are then ignored by correct processes
in L. As we show in the Theorem 21, correct process in L cannot be blocked by sets containing different
values.

Theorem 21. Algorithm 2 implements permissionless Byzantine reliable broadcast.

Proof. Observe that all the properties assume the existence of a league L and an execution e with set of
faulty processes A tolerated by L.

Let us start with the validity property. Since the sender ps is correct and from the availability
property of L, every correct process pi in L eventually receives a quorum Qi for itself of echo messages
containing the value v sent from ps and updates its view V according to the views received from every
process in Qi.

Then, pi gossips [ready, v, F[i]] containing the value v and its current view F[i] unless sent-ready =
true. If sent-ready = true then pi already gossiped [ready, v, F[i]].

Observe that there exists a unique value v such that if a correct process in L sends a ready message,
this message contains v. In fact, if a process pi ∈ L \ A sends a ready message, either it does so after
receiving a quorum Qi for itself of echo messages containing v or after being blocked by a set of processes
that received ready messages containing v.

In the first case, if a correct process pi in L receives a quorumQi for itself of echomessages containing
v and another correct process pj in L receives a quorum Qj for itself of echo messages containing v′, by
the consistency property of L, v = v′ and both send a ready message containing the same v.

In the second case, first observe that by Lemma 19 we know that pi ∈ L \ A cannot be inductively
blocked by processes in A. Moreover, correct processes in L cannot be blocked by sets containing different
values. If this was the case, then there would exist two correct processes pi and pj in L and two slices of
pi and pj, respectively, in L \ A containing two correct processes in L that received two different values
v after echo. Again, by the consistency property of L, this is not possible. Hence, every correct process
pj in L gossips [ready, v, F[j]]. Eventually, every correct process pi in L receives a quorum for itself
containing [ready, v, (Pj ,Fj)] messages and r-delivers v.

The first part of the integrity property is ensured by the delivered flag. For the second part observe
that, by assumption, the receiver pi is correct and in L. This implies that the quorum for pi used to reach
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Algorithm 2 Permissionless Byzantine reliable broadcast protocol for process pi, with sender ps
State

sent-echo← false: indicates whether pi has gossiped echo

echos[j]← [⊥]: collects the received echo messages from other processes
sent-ready← false: indicates whether pi has gossiped ready

readys[j]← [⊥]: collects the received ready messages from other processes
sent-any← false: indicates weather pi has gossiped [any, ∗, F[i]]
delivered← false: indicates whether pi has delivered a value
V[j]← if i = j then F[i] else ⊥: the current view of pi

upon invocation r-broadcast(v) do
send message [send, v, F[s]] through gossip // only sender ps

upon receiving a gossiped message [send, v, (Ps,Fs)] from ps and ¬sent-echo do
sent-echo← true

V[s]← (Ps,Fs)
send message [echo, v, F[i]] through gossip

upon receiving a gossiped message [echo, v, (Pj ,Fj) from pj do
if echos[j] =⊥ then

V[j]← (Pj ,Fj)
echos[j]← v

upon exists v 6=⊥ such that {pj ∈ Π| echos[j] = v} ∈ Q(pi,V) and ¬sent-ready do
sent-ready← true

send message [ready, v, F[i]] through gossip

upon receiving a gossiped message [ready, v, (Pj ,Fj)] from pj do
if readys[j] =⊥ then

V[j]← (Pj ,Fj)
readys[j]← v

upon exists v 6=⊥ such that {pj ∈ Π| readys[j] = v} blocks pi and ¬sent-ready do
sent-ready← true

send message [ready, v, F[i]] through gossip

upon exists v′ 6=⊥ such that {pj ∈ Π| readys[j] = v′} blocks pi and readys[i] = v and
v 6= v′ and sent-ready and ¬sent-any do

sent-any← true

send message [any, ∗, F[i]] through gossip

upon receiving a gossiped message [any, ∗, (Pj ,Fj)] from pj do
V[j]← (Pj ,Fj)
readys[j]← ∗

upon exists v 6=⊥ such that {pj ∈ Π| readys[j] = v} ∈ Q(pi,V) and ¬delivered do
delivered← true

output r-deliver(v)

a decision contains some correct processes that have gossiped echo containing a value v they received
from ps.

For the totality property, let us assume that a correct process pi ∈ L r-delivered some value v. If
pi ∈ L \A r-delivered some value v, then it has received ready messages containing v from a quorum Qi

for itself. From Theorem 20 we know that exists a set B such that Qi \A ⊆ B and either L \A ⊆ B or B
blocks at least a process pj ∈ L \ (B ∪A) in an A-resilient view V′ for pj . In the latter case, pj gossips a
ready message containing v and B becomes B ∪ {pj}. Observe that, by assumption, if a correct process
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receives a gossiped message, then eventually every other correct process receives it too. Eventually, L \A
is covered by B and this means that every correct process in L is blocked with the same value v.

Moreover, observe that given two correct processes not in L, they may become ready for different
values received from non-intersecting quorums of echo messages. Because of this, if a correct process
pj 6∈ L observes a blocking set B containing a value v′ different from a value v that has previously gossiped
in a ready message and such that sent-any = false, process pj gossips an any message containing the
value ∗. Eventually every correct process pi in L receives a quorum Qi for itself of [ready, v, (Pj ,Fj)]
messages and it r-delivers v.

Finally, for the consistency property notice that by the consistency property of L, every two quorums
Qi and Qj of any two correct processes pi and pj in L intersect in some correct process pk. Process pk
could then be outside L. If pk 6∈ L then, as seen for the totality property, it can be blocked by sets
containing different values. If this is the case then pk gossips an any message. Correct processes in L
then ignore the values received from pk and wait until receiving a quorum unanimously containing the
same value v. Observe that, because L tolerates A, by availability property of L every correct process in L
eventually receives a quorum made by correct processes in L. The consistency property then follows.

8 Related Work

A fail-prone system [13], also called adversary structure [9], is a well-adopted way to describe the failure
assumptions in a distributed system. This is a collection of subsets of participants in the system that
may fail together, and that are tolerated to fail, in a given execution. Fail-prone systems implicitly define
Byzantine quorum systems [13] which are used to ensure consistency and availability to distributed fault-
tolerant protocols in the presence of arbitrary failures.

Originally, fail-prone systems have been expressed globally, shared by every participant in the system.
Damg̊ard et al. [7] introduce the notion of asymmetric fail-prone system in which every participant
in the system subjectively selects its own fail-prone system, allowing for a more flexible model and
where the guarantees of the system are derived from personal assumptions. This is the asymmetric-trust
model [4]. Processes in this model are classified in three different types, faulty, naive, and wise and this
characterization is done with respect to an execution. In particular, given an execution e with faulty set
F , a process pi is faulty if it belongs to F , pi is naive if it does not have F in its subjective fail-prone
system and pi is wise if F is contained in its subjective fail-prone system. Properties of protocols are
then guaranteed for wise processes and, in some cases [4,5], for a subset of the wise processes called guild.

Cachin and Tackmann [4] introduce asymmetric Byzantine quorum systems, a generalization of the
original Byzantine quorum in the asymmetric-trust model. They show how to implement register ab-
straction and broadcast primitives using asymmetric Byzantine quorum systems. An asynchronous con-
sensus protocol has subsequently been devised by Cachin and Zanolini [5]. Moreover, they extended the
knowledge about the guild and about the relation between naive and wise processes in protocols with
asymmetric trust.

As a basis for the Stellar consensus protocol, Mazières [15] introduces a new model called federated
Byzantine agreement (FBA) in which participants may also lie. Here, every participant declares quorum
slices – a collection of trusted sets of processes sufficient to convince the particular participant of agree-
ment. These slices make a quorum, a set of participants that contains one slice for each member and
sufficient to reach agreement. All quorums constitute a federated Byzantine quorum system (FBQS). In
this model, even if the processes do not a priori choose intersecting quorums as in the classic model [13] or
as in the asymmetric one [4,7], an intersection property among quorums is later required for the analysis
of the Stellar consensus protocol.

Garćıa-Pérez and Gotsman [8] study the theoretical foundations of a FBQS, build a link between
FBQS and the classical Byzantine quorum systems and show the correctness of broadcast abstractions
over federated quorum systems. Moreover, they investigate decentralized quorum constructions by means
of FBQS. Finally, they propose the notion of subjective dissemination quorum system, where different
participants may have different Byzantine quorum systems and where there is a system-wide intersection
property. FBQS are a way towards an extension of quorum systems in a permissionless setting.

Losa et al. [11] introduce personal Byzantine quorum systems (PBQS) by removing from FBQS the
requirement of a system-wide intersection among quorums. This might lead to disjoint consensus clusters
in which safety and liveness are guaranteed in each of them, separately, in a given execution. Moreover,
they abstract the Stellar Network as an instance of PBQS and use a PBQS to solve consensus.
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9 Conclusions

This work introduces a new way of specifying trust assumptions among processes in a permissionless
setting: processes not only make assumptions about failures, but also make assumptions about the as-
sumptions of other processes. This leads to formally define the notions of permissionless fail-prone system
and permissionless quorum system and to design protocols to solve known synchronization problems such
as Byzantine reliable broadcast.

We introduce the notion of league, a set of processes for which consistency and availability properties
hold for a given quorum function. Properties of our protocols are guaranteed assuming the existence of
a league.

As a future work we plan to generalize known consensus protocols such as, for example, PBFT [6], to
work in our permissionless model. We believe that, by assuming the existence of a league L, properties
of consensus protocols can be guaranteed to every correct process in L.
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