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Abstract. This paper proposes a method for rainfall-runoff
model calibration and performance analysis in the wavelet-
domain by fitting the estimated wavelet-power spectrum (a
representation of the time-varying frequency content of a
time series) of a simulated discharge series to the one of the
corresponding observed time series. As discussed in this pa-
per, calibrating hydrological models so as to reproduce the
time-varying frequency content of the observed signal can
lead to different results than parameter estimation in the time-
domain. Therefore, wavelet-domain parameter estimation
has the potential to give new insights into model performance
and to reveal model structural deficiencies. We apply the pro-
posed method to synthetic case studies and a real-world dis-
charge modeling case study and discuss how model diagnosis
can benefit from an analysis in the wavelet-domain. The re-
sults show that for the real-world case study of precipitation
– runoff modeling for a high alpine catchment, the calibrated
discharge simulation captures the dynamics of the observed
time series better than the results obtained through calibra-
tion in the time-domain. In addition, the wavelet-domain
performance assessment of this case study highlights the fre-
quencies that are not well reproduced by the model, which
gives specific indications about how to improve the model
structure.

1 Introduction

Most hydrological models have parameters that cannot be
related to some measurable catchment characteristics and
have to be calibrated. Classically, this calibration determines
the best parameter values such as the simulations match as
closely as possible one or several observed system outputs

Correspondence to:B. Schaefli
(b.schaefli@tudelft.nl)

(for an overview of calibration methods, see, e.g. Gupta et
al., 2005). The uncertainties inherent in the simulations of
such calibrated models (e.g. Beven and Freer, 2001; Vrugt
et al., 2003; Kavetski et al., 2006a) and the question how to
reduce them are subject to intense research. Current strate-
gies include a better description and understanding of the
uncertainty inherent in the involved natural processes (e.g.
Zehe et al., 2005), in the observation of these processes (e.g.
Nicótina et al., 2008) or in the mathematical representation of
these processes (e.g. Kavetski et al., 2006b). In parallel, the
question how to increase the value of observed data through
an improved extraction of its information content receives a
constantly growing interest (e.g. Herbst and Casper, 2008;
Reusser et al., 2008; Yilmaz et al., 2008).

Model parameter estimation is linked to the question how
to measure model performance by suitable objective func-
tions. The majority of parameter estimation methods is based
on objective functions defined on the residuals, i.e. the dif-
ference between the observed and the simulated time series.
Most methods minimize the mean squared error, i.e. the sum
of the squared residuals (see, e.g. Gupta et al., 2005). By
construction, the resulting calibrated model simulation fits
well the individual values of the observed reference time se-
ries. Such an approach accounts only indirectly for differ-
ences in the autocorrelation of the observed and of the sim-
ulated times series. Assuming uncorrelated Gaussian resid-
uals and inferring their variance in a full Bayesian approach
(e.g. Kavetski et al., 2006a), for example, implicitly mini-
mizes the difference in autocorrelation between the observed
and the simulated series: if one of the time series shows a
strong autocorrelation, e.g. at lag-1, the residuals cannot be
uncorrelated and the assumptions are violated. At least par-
tial explicit assessment occurs in Bayesian methods that as-
sume correlated Gaussian residuals (e.g. Montanari and Toth,
2007; Schaefli et al., 2006) or in methods using calibration
objective functions that minimize temporal slope differences
between two time series (e.g. Reusser et al., 2008).
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As a good simulation should mimic the dynamics underly-
ing an observed time series, it is tempting to think that explic-
itly assessing how well a model reproduces the autocorrela-
tion properties of an observed system response is a promis-
ing choice for model calibration. Keeping, furthermore, in
mind that time series of hydrological signatures exhibit peri-
odicity at different time scales, model performance measures
that are based on spectral information appear rather appeal-
ing. A straight forward choice is of course the power-density
spectrum of a process which equals the Fourier transform of
its autocorrelation function (Priestley, 1981). This idea is in-
deed not new; Whittle (1953) proposed a method for parame-
ter estimation in the Fourier-domain matching the theoretical
power-density spectrum of the model to the estimated power-
density spectrum of the process observations. The Whittle
estimator has recently been applied to rainfall-runoff models
by Montanari and Toth (2007).

Whittle’s Fourier-domain estimator is a consistent approx-
imation of the classical time-domain likelihood. For in-
finitely long time series, it will, thus, yield the same result
as time-domain estimation (see, e.g. Hannan, 1973; Yao and
Brockwell, 2006). However, as shown by Contreras-Cristán
et al. (2006), it can produce unreliable estimates for non-
Gaussian processes or show an important loss of efficiency
if the autocorrelation of the process is high.

1.1 Objectives of this paper

The overall idea is to present a new performance measure
to assess how closely the time-varying frequency content of
a simulated time series matches the time-varying frequency
content of the observed series. This objective function is
based on a continuous wavelet transform that yields a rep-
resentation of the time-varying frequency content of an ob-
served time series – as opposed to a Fourier transform, where
the moment of occurrence of the different frequencies is not
preserved. The wavelet transform is particularly useful for
application to natural processes, such as discharge, that in-
tegrate various time-varying small scale processes at a larger
spatial scale and that, thus, have time-varying autocorrelation
properties. This time-variation of the hydrological response
of an ecosystem is, of course, partly induced by the time-
variation of the relevant input processes, e.g. precipitation
and temperature. Furthermore, the rainfall-runoff response is
essentially nonlinear, including threshold behavior (Zehe et
al., 2007; Bl̈oschl and Zehe, 2005). The input frequencies are
thus nonlinearly filtered by the catchment and its biotic (e.g.
vegetation) and abiotic characteristics. In glaciated catch-
ments, the real-world case study of this paper, the overall
time-variability is particularly pronounced since discharge is
induced by a combination of rainfall, ice and snowmelt (see
Fig. 1a).

We will give evidence that an objective function that mea-
sures explicitly how well the time-varying frequency content
of an observed series is reproduced can provide important
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Fig. 1. (a) Observed discharge time series of the Rhone River
at Gletsch and corresponding (time-domain) calibrated time series
(Nash valueLN =1-RN =0.94), for the years 1995 (top) and 1997
(bottom);(b) synthetic discharge time series generated with GSM-
SOCONT, unperturbed series for experiments 2 and 3 (top), per-
turbed series for experiment 2 (bottom).

and new pieces of information to the puzzle of understanding
performance and structural deficits of hydrological models.
Such an objective function allows, furthermore, estimation
of model parameters. We intend to show that such an ap-
proach represents a very valuable opportunity compared to
parameter estimation in the time domain. As the suggested
approach depends crucially on how similarity between es-
timated wavelet-power spectra is defined, this will be dis-
cussed in detail in Sect. 3 after an introduction to contin-
uous wavelet transform in Sect. 2. We then illustrate the
advantages and drawbacks of parameter estimation in the
wavelet-domain through simple examples and synthetic case
studies, i.e. using synthetic data generated either with a sim-
ple statistical model or with a conceptual, reservoir-based
rainfall-runoff transformation model (Sects. 4 and 5). Fi-
nally, we apply the wavelet-domain objective function to pa-
rameter estimation of the GSM-SOCONT (Schaefli et al.,
2005) model for a highly glacierized catchment in the Swiss
Alps. Based on this case study, we discuss the potential
of wavelet-domain calibration and performance analysis and
show how it can contribute to improve the structure of hy-
drological models (Sect. 5). The main conclusions and open
questions are summarized in Sect. 6.

2 Continuous wavelet spectral analysis

Wavelet analysis, initially formalized by Grossmann and
Morlet (1984), is the most recent solution to overcome the
main shortcoming of the Fourier transform that identifies
the frequencies present in a signal but not their moment
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of occurrence. Wavelet analysis, in turn, results in a time-
frequency (or time-scale) representation of the signal. In-
stead of decomposing a signal into constituent harmonic
functions as in Fourier analysis, wavelet analysis transforms
a signal into scaled and translated versions of an original
(mother) wavelet. Compared to a simple windowed Fourier
transform, as suggested by Gabor (1946), wavelet transform
has the main advantage of adjusting intrinsically the resolu-
tion to the analyzed scale (e.g. Daubechies, 1992).

In hydrology, continuous wavelet transform became popu-
lar in different types of applications; it is for example used to
characterize river regimes and to detect how discharge is re-
lated to climate variability indices (e.g. Labat, 2005) or to
qualitatively analyze how certain features of the meteoro-
logical input time series are transferred to the hydrological
system output (e.g. Gaucherel, 2002; Lafrenière and Sharp,
2003; Schaefli et al., 2008). Lane (2006) was the first to use
it to investigate rainfall-runoff models, namely to investigate
the impact of perturbing single model parameters on the re-
sulting hydrographs.

Even though wavelet spectral analysis has found a wide
spread application, few papers present all the mathematical
details which we judge to be necessary to understand this
paper and to interpret the results. Therefore, the following
section might seem rather detailed to the reader with a back-
ground in wavelet spectral analysis.

2.1 Continuous wavelet transform

Given a stochastic processX(t), its wavelet transform
Wg [τ, s|X(t)] at timeτ and scales with respect to the cho-
sen waveletg(t) is

Wg [τ, s|X(t)] =

∫
1

c(s)
g∗

(
t − τ

s

)
X(t)dt (1)

whereg∗ denotes the complex conjugate ofg and c(s) is
a normalization constant (see Sect.2.3). For a detailed
discussion of continuous wavelet transform (CWT) and for
example the requirements on the waveletg(t), we refer
the reader to the comprehensive literature (e.g. Daubechies,
1992; Holschneider, 1998).

The choice of the waveletg(t) depends on the type of ap-
plication. In geosciences applications, the Morlet wavelet
is frequently used (for a short discussion of how to choose
a wavelet for hydrological applications, see Schaefli et al.,
2008):

gm(θ) = exp(iω0θ) exp

(
−θ2

2

)
(2)

where i=
√

−1 andθ=(t−τ)/s. The parameterω0 adjusts
the time/scale resolution. In the present application, we use
ω0=6, a choice that has empirically been shown to work well
for geosciences applications (Labat, 2005; Si and Zeleke,
2005; Torrence and Compo, 1998).

For a Morlet wavelet, the relationship between the scales

and the frequencyf reads as (e.g. Holschneider, 1998):

1

f
=

4πs

ω0 +

√
2 + ω2

0

(3)

Therefore, forω0=6,f ≈1/s.
It is important to note that the CWT transforms a time

series from one to two dimensions (time and scale). This
transformation re-uses the same original information several
times and results, therefore, in a considerable amount of re-
dundancies. The inherent correlations of a CWT, given by
the reproducing kernel (e.g. Holschneider, 1998), make sta-
tistical analysis of wavelet-power spectra a non-trivial task
(Maraun et al., 2007; Schaefli et al., 2008). They represent
a fundamental difference to estimated Fourier power-density
spectra where neighboring frequencies are asymptotically in-
dependant.

2.2 Wavelet-power spectrum

Analogue to Fourier analysis, the wavelet-power spectrum
(WPS) is defined as the wavelet transform of the autocovari-
ance function, which for a nonstationary processX(t) can be
written as (e.g. Shumway and Stoffer, 2006):

acv[`, η|X(t)] ≡

E
[
(X(η) − E[X(η)]) conj(X(η + `) − E[X(η + `)])

]
(4)

whereη is the time argument of the autocovariance function
and` is the lag from timeη. E[·] is the expected value and
“conj” denotes here the complex conjugate (elsewhere de-
noted by *). For simplicity of notation, let’s assume in the
following that X(t) is a zero-mean process, i.e. E[X(t)]=0
for all t . The WPS does becomes (e.g. Holschneider, 1998):

Sg [τ, s|X(t)] ≡ Wg

{
τ, s

∣∣E[X(η)conj(X(η + `))
]}

= E
[
Wg [τ, s|X(η)] W ∗

g [τ, s|X(η + `)]
]

(5)

This last equation is often written in the following short form:

Sg [τ, s|X(t)] ≡ E
[∣∣Wg [τ, s|X(t)]

∣∣2] (6)

The exact WPS of observed or simulated processes is gen-
erally unknown; we can estimate it based on the CWT of
observed process realizations (observed time series):

Ŝg

[
τ, s|x(m)(t), µ̂(t)

]
=

〈∣∣∣Wg[τ, s|x
(m)(t) − µ̂(t)]

∣∣∣2〉 (7)

where Ŝg

[
τ, s|x(m)(t), µ̂(t)

]
is an estimator of

Sg [τ, s|X(t)]. 〈·〉 denotes the averaging operator, x(m)(t)

is a matrix containingm realizations (time series) of the
processX(t) andµ̂(t) is an estimator of the expected value
of X(t). In practice, an estimator of the true WPS is often
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obtained based on a single realizationx(t)=x(1)(t) of length
N :

Ŝg [τ, s|x(t)] =
∣∣Wg

[
τ, s|x(t) − µ̂

]∣∣2 (8)

where the estimator̂µ is obtained as the average of the real-

ization, i.e.µ̂=
1
N

N∑
k=1

x(k).

In analogy to Fourier analysis, this estimatorŜg [τ, s|x(t)]
is called the wavelet periodogram. It is computed at a finite
number of scales between the lowest and the highest resolv-
able scales that depend on the sampling time step and the
number of sampled time steps. The selected scales are usu-
ally:

si = s02
i−1

Nvoice (9)

with i=1,.., Nvoice×Noctave+1. The lowest calculated scale
is s0 corresponding to a frequency lower than or equal to the
Nyquist frequency (i.e. half the sampling frequency, see, e.g.,
Priestley, 1981) and the highest scale iss0×2Noctave where
Noctave denotes the number of octaves (i.e. powers of two),
andNvoice the number of voices (i.e. calculated scales) per
octave.

It is important to note that wavelet analysis has the sub-
tlety that, since neighboring points in time and scale are cor-
related, the wavelet periodogram looks smooth even if the
fluctuations around the true wavelet-power spectrum are not
smaller than for a (Fourier) periodogram (see Maraun and
Kurths, 2004). Accordingly, as for the Fourier periodogram,
the wavelet periodogram has to be smoothed to obtain a con-
sistent estimator of the true wavelet-power spectrum (see,
e.g. Maraun and Kurths, 2004). For the present application
that uses the difference between the wavelet periodograms of
two time series for model calibration, the consistency of the
estimator is, however, of no relevance.

2.3 Normalization of the wavelet transform

The choice of the normalization constant in Eq. (1) is not un-
ambiguous. It can in principle be chosen arbitrarily (Kaiser,
1994, p. 62) and just as in Fourier analysis, different conven-
tions are in use.

To compute the wavelet-power-based performance crite-
ria, we use theL2-norm preserving normalizationc(s)=

√
s,

which ensures that (Kaiser, 1994, p. 63)

∥∥∥∥ 1

c(s)
g

(
t − τ

s

)∥∥∥∥2

=

∞∫
−∞

∣∣∣∣ 1
√

s
g

(
u − τ

s

)∣∣∣∣2 du

=

∞∫
−∞

| g (v)|2 dv = ‖g (t)‖2
= cst (10)

3 Wavelet periodogram – based performance
assessment

3.1 Visual inspection

Wavelet periodograms (i.e. estimated wavelet-power spectra)
have the potential to efficiently distinguish between time se-
ries that seem to be similar in the time-domain but that have
a (locally) different frequency content and, thus, locally dif-
ferent autocorrelation properties. We illustrate this poten-
tial based on the wavelet periodograms of the simulated and
of the observed daily discharge series from the Rhone River
at Gletsch. Further details on these time series are given in
Sect. 4. The simulated series appears to be very similar to the
observed series (Fig.1a), with a linear correlation of 0.97 or,
using the classical hydrological performance criterion pro-
posed by Nash and Sutcliffe (1970), a Nash value of 0.94
(see Sect. 4).

The visual interpretation of the 2-D wavelet periodograms
(Fig. 2a and b) is difficult and error prone (Maraun and
Kurths, 2004; Maraun et al., 2007). Therefore, Fig.2c
and d show the so-called wavelet bands that correspond
to the scale-average wavelet-power over given ranges of
scales, where the scale-average power is defined as the scale-
weighted sum of the wavelet-power (Torrence and Compo,
1998). The bands are normalized by the variance of the time
series. As Fig.2c and d in conjunction with Fig.1a illustrate,
such a plot reveals differences that are not readily seen in the
original data. We see namely that for the band of scales 64
days to 128 days, the calibrated model does not correctly re-
produce the dynamics. These differences would also be vis-
ible in a detailed inspection of the time series, by comparing
the weekly, monthly and seasonal statistics or by subtracting
the series from each other and analyzing the obtained “resid-
uals”. However, inspecting wavelet bands provides several
views of the signal at the same time and has the main advan-
tage of yielding a rapid overview over the differences.

3.2 Wavelet performance measure

We propose a method for the estimation of model parame-
ters in the wavelet-domain. It is based on the following hy-
potheses: (i) the dynamics of two processes are similar if
their time-varying autocorrelation properties are similar; (ii)
these autocorrelation properties can be estimated based on
the wavelet periodograms of process realizations. For model
calibration, this translates into the assumption that the more
similar the wavelet periodograms of a simulated and an ob-
served time series are, the better the model mimics the be-
havior of the natural system.

Quantifying the similarity between the wavelet peri-
odograms requires the definition of a distance metric that
measures how different the periodograms are at a give time
step. The overall distance of the two periodograms can then
be expressed as the mean distance over all time steps. The
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Fig. 2. Estimated wavelet-power for the Rhone case study:(a) wavelet periodogram of the observed discharge (zoom on the 2nd half of the
available time series, black line: cone of influence),(b) wavelet periodogram of the simulated discharge,(c) average estimated wavelet-power
of both series between the scales of 16 days and 64 days,(d) same as (c) but between the scales of 64 days and 128 days.

choice of this distance metric has to take into account the
fact that in the wavelet periodogram neighboring scales and
neighboring time steps are correlated.

We use a metric similar to the Kolmogorov-Smirnov dis-
tance, which is classically used to measure the distance of the
probability distributions of two samples and which equals the
maximum distance between the cumulative distribution func-
tions. This metric is particularly useful to measure whether
at a given time stept , the power of the observed and of the
simulated wavelet periodogram is similarly distributed over
all scales: it is sensitive to the shape of the power distribu-
tion over the scales but compared to a squared error-based
metric, it is much less sensitive to slight shifts in peaks and
to the chosen normalization constant in Eq. (1).

The cumulative wavelet-periodogram̂Cg [τ, s|x(t)] is
computed as:

Ĉg [τ, s|x(t)] =

s∑
k=s0

Ŝg [τ, k|x(t)] (11)

wheres=s0, . . . , smax(τ ). smax is the maximum scale ana-
lyzed at each time step. This maximum scale varies from
time step to time step because of the edge effects. In CWT,
the area of the wavelet periodogram that is influenced by
edge effects is called “cone of influence”. In the present pa-
per, we exclude edge effects by fixing a cone of influence that
equals the e-folding time of the wavelet, which is defined as
the time at which the wavelet-power drops to 1/e2 and which
is a measure of the wavelet width at a given scale. For a Mor-
let wavelet, this equals

√
2s (for a discussion, see Torrence

and Compo, 1998).
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The Kolmogorov-Smirnov distanceDg [τ |x(t), y(t)] at
time stepτ between two process realizationsx(t) andy(t)

becomes:

Dg [τ |x(t), y(t)] = max∣∣∣∣∣ Ĉg [τ, s|x(t)]

Ĉg [τ, s = smax|x(t)]
−

Ĉg [τ, s|y(t)]

Ĉg [τ, s = smax|y(t)]

∣∣∣∣∣ (12)

where Ĉg [τ,s|x(t)]

Ĉg [τ,s=smax|x(t)]
=

s∑
k=s0

Ŝg [τ,k|x(t)]

smax∑
k=s0

Ŝg [τ,k|x(t)]
is the normalized cu-

mulative wavelet periodogram of the process realizationx(t)

at time stepτ .
A good simulation should have a wavelet periodogram that

fits the periodogram of the observed series at all time steps.
Accordingly, the overall wavelet periodogram efficiency cri-
terion, RW , averagesDg [τ |x(t), y(t)] over all time steps.
For an observed time seriesy(t) and the corresponding sim-
ulated seriesx(t |ϕ) this becomes

RW [ϕ|x(t |ϕ), y(t)] =
1

N

N∑
τ=1

Dg [τ |x(t |ϕ), y(t)] (13)

whereN is the total number of time steps andϕ a vector
containing all model parameters.RW takes values between 0
and 1 and has to be minimized during calibration.

In order to be applicable to parameter estimation, a dis-
tance metric has to fulfill formal requirements (e.g. Weis-
stein, 2008). For some general distance metricD(A,B) be-
tweenA andB it has to hold that (i)D(A, B)≥0, ∀A, B, ii)
D(A, B)=D(B, A) (iii) D(A, B)=0 if and only ifA=B and
(iv) D(A, C)≤D(A, B)+D(B, C). For the wavelet-based
distance measureDg [τ |x(t), y(t) ], it follows directly from
its definition that conditions (i) and (ii) hold. Condition
(iv), the so-called triangle inequality, holds since the maxi-
mum distance between two monotonically increasing func-
tions between 0 and 1 can never be bigger than the sum of
the maximum distances between these two functions and a
third function. SinceRW [·] results from a simple average of
Dg [τ |x(t), y(t) ] over allτ , conditions (i), (ii) and (iv) also
hold for RW [·]. Condition (iii) does not necessarily hold
for Dg [τ |x(t), y(t) ]: two process realizationsx(t) andy(t)

could, in theory, have locally exactly the same distribution of
wavelet-power without havingx(t)=y(t), ∀t . However, it
holds thatRW [·] =0 if and only if Dg [τ |x(t), y(t) ] =0 ∀τ

which impliesx(t)=y(t). We conclude thatRW [·] satisfies
the formal conditions of a distance metric.

RW measures whether the wavelet-power content at every
time-step is distributed similarly in a simulated series and a
reference series, i.e. it measures differences in the autocorre-
lation properties at a given time step. Accordingly, it does not
explicitly measure differences in the mean or in the variance
of two time series.

As in every parameter estimation procedure, preserving
the mean, or in physical terms the mass balance, is a very
important criterion to accept or reject simulations and the
underlying model. Traditional time-domain calibration en-
sures preservation of the mean either through the assump-
tions on the residual distribution (e.g. zero-mean Gaussian
residuals, Kavetski et al., 2006b) or through explicit exclu-
sion of parameter sets leading to a too high bias between
the observation and the simulation (see, e.g., Montanari and
Toth, 2007). We retain this last solution by deteriorating the
wavelet performance criterionRW of a given simulation if
its bias exceeds a certain tolerance factor. The exact value of
this tolerance factor has to be fixed empirically. For perfect
model situations where the true (and hence unbiased) simula-
tion exists, the tolerance factor does not affect the best iden-
tified parameter set but restrains the search space. For real-
world applications, this restriction of the search space might
influence the best identified parameter set since it excludes
not mass conservative, i.e. physically meaningless parameter
sets.

In the present study, we use a tolerance factor of 10% for
all case studies. For the real-world application, this choice is
in line with the semi-automatic calibration method suggested
by Schaefli et al. (2005). In general, the value of the toler-
ance factor should reflect the available information about the
observational uncertainties of the different terms of the wa-
ter balance. The exact penalization procedure based on this
tolerance factor is discussed in Sect.4.3.3.

For general stochastic processes with stationary mean,
variance and autocorrelation properties, these are a priori un-
related properties and a good process model should preserve
them. Discharge processes, on which we focus in the present
paper, have a time-variable mean, variance and autocorrela-
tion (see an example in Fig.1). Since discharge results from
a time-variable combination of different hydrological pro-
cesses (infiltration, snowmelt etc.), these statistical proper-
ties are strongly related. For such processes, as our empirical
results show, preserving the mean and the time-varying auto-
correlation properties ensures the preservation of the process
variance.

We would like to add here that in the statistics literature,
wavelet-based estimators have been proposed in the 1990s
to estimate long-memory parameters (see Velasco, 1999,
p. 107) but their statistical properties are analyzed only re-
cently (e.g. Moulines et al., 2008). As the corresponding es-
timation problems are very different from the scope of the
present paper, we do not discuss them here.

4 Case studies

4.1 Synthetic case studies

We designed a number of synthetic case studies to high-
light and discuss the potential of wavelet-domain calibration
and performance analysis. These case studies correspond to
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model calibration experiments where the reference discharge
series are generated with known parameter values. Three dif-
ferent sets of synthetic discharge series are used. For exper-
iment 1, we use the realization of an ARMAX process. For
experiments 2 and 3, we use a realization of the hydrological
model GSM-SOCONT, which is also used in the real-world
case study.

Experiment 2 uses the classical model structure, whereas
experiment 3 is based on a slightly modified model version
including a time-varying parameter. Details about all syn-
thetic experiments are given hereafter. Additional illustrative
toy examples as well as a synthetic case study with the well-
known HYMOD model (e.g. Schaefli and Gupta, 2007) can
be found in (Schaefli and Zehe, 2009).

4.1.1 Input time series

The synthetic experiments have been designed to illustrate
the differences between parameter estimation in the time-
domain and in the wavelet spectral domain. We therefore
use as external forcing a nonstationary precipitation series
which is obtained by joining two precipitation series that
have different statistical properties. To have a realistic sit-
uation, these two individual series are surrogate series gen-
erated based on the precipitation series observed at the sta-
tion Bourg St. Pierre between 1903 and 1999, located in
the Southern Swiss Alps (1620 m a.s.l., 7.21◦ E, 45.95◦ N),
which is also used also for the real-world case study. The pre-
cipitation in this area is known to have undergone a substan-
tial modification over the last century (Frei and Schär, 2001;
Schmidli and Frei, 2005). The generation of the nonstation-
ary rainfall series involves the following steps: (i) Gener-
ate a 250 days surrogate series based on the first 20 years of
observed precipitation. The surrogate series is generated us-
ing the so-called Iterative Amplitude Adjusted Fourier Trans-
form (IAAFT) algorithm (Schreiber and Schmitz, 2000).
This is a classical method to obtain surrogates by first taking
the Fourier transform of a time series, replacing the phases
by randomly drawn phases and then completing the inverse
Fourier transform. (ii) Generate a 250 days surrogate series
based on the last 20 years of observed precipitation. (iii)
Contract both series.

For experiments 2 and 3, we generate a longer series, 10
years, and use the first half for calibration and the second half
for validation.

4.1.2 Output time series

For experiment 1, the used ARMAX process is:

y(t) = a · y(t − 1) + b1 z(t − nk) + b2 z(t − 1 − nk) + b3 z(t − 2 − nk) (14)

where t is the time step,z(t) is the input variable (in our
case precipitation),nk is the delay parameter that is set to

4 andϕ=[a, b1, b2, b3] are the parameters to be inferred.
The reference exact series is generated using the following
parameters:ϕ=[a, b1, b2, b3]=[−0.85,0.080, 0.018, 0.029].
The resulting series is perturbed with uncorrelated Gaussian
noise having zero mean and standard deviation 0.4, corre-
sponding to 25% of the standard deviation of the generated
y(t).

Experiments 2 and 3 are based on a reference discharge se-
ries simulated with the hydrological model GSM-SOCONT
(Schaefli et al., 2005) (see also Sect. 4.) using the same pre-
cipitation series as in experiment 1. We assume that there
is no glacier cover and use a temperature time series cor-
responding to a low land station (the station called Grono,
380 m a.s.l., 9.15◦ E, 46.25◦ N). This makes the discharge
time series explicitly distinct from the real-world case study
(see Sect.4.2); in particular there is a less strong annual cycle
of the discharge (see Fig.1b).

For experiment 3, we generate a reference series with
GSM-SOCONT having a time-variable snowmelt parameter
(see Table 4) and then calibrate the model with a constant
snowmelt parameter on this reference series. This experi-
ment illustrates a typical example of model misspecification.

For both experiments 2 and 3, the synthetic realizations are
perturbed by adding white noise before the parameter cali-
bration process (see results section for details).

4.2 Real-world case study

For the real-world case study, we use the GSM-SOCONT
(Schaefli et al., 2005) model, which is a conceptual
precipitation-runoff transformation model for high moun-
tainous catchments having an ice-melt component. The dis-
charge is simulated separately for the glacier part and the
non-glacier part and within each part separately for 5 el-
evation bands. We apply it to a gauging station of the
Rhone River located in Gletsch, in the Southern Swiss Alps
(8.36◦ E, 46.56◦ N). This catchment is highly glacierized
(around 50% of the surface covered by glaciers) and has a
mean altitude of around 2700 m. For a more detailed de-
scription and the used meteorological input time series, see
(Schaefli et al., 2005). We use the period 1981 to 1990 for
calibration and 1991 to 1999 for validation. The meteoro-
logical conditions during these two periods where quite dif-
ferent. During the first period, there was in particular quite
extensive snowfall (during this period the number of increas-
ing glaciers in the Swiss Alps was much higher than during
the 1990s, e.g. Herren et al., 2002). As a result, the hydro-
logical regime of these two periods is quite distinct. The first
period has its maximum mean monthly discharge in July, the
second period in August.
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4.3 Parameter estimation

4.3.1 Reference performance criteria

For comparison purposes, we use the classical squared error-
based Nash-Sutcliffe efficiency measure (Nash and Sutcliffe,
1970), called hereafter Nash value:

LN [ϕ|x(t |ϕ), y(t)] = 1 −

N∑
t=1

[x(t |ϕ) − y(t)]2

N∑
t=1

[y(t) − E[y(t)]]2
(15)

wherey(t) is the observed discharge at time stept , x(t |ϕ)

is the simulated discharge given parameter setϕ andN the
number of observed and simulated time steps.

We define a Nash-based performance measure to be mini-
mized as follows

RN [ϕ|x(t |ϕ), y(t)] = 1 − LN [ϕ|x(t |ϕ), y(t)] (16)

For the synthetic case studies, where the (exact) best model
parameter set exists, we also use a Fourier-domain perfor-
mance measure based on the Whittle likelihood, computed
according to Montanari and Toth (2007) as:

LF

[
ϕ|Jx(λ|ϕ), Jy(λ)

]
= exp[

−

N/2∑
j=1

{
log

[
Jx(λj |ϕ)+fe(λj |ϕ)

]
+

Jy(λj )

Jx(λj |ϕ)+fe(λj |ϕ)

}]
(17)

whereλj =2πj /N are the Fourier frequencies.Jx is the pe-
riodogram of the simulated discharge time series andJy the
periodogram of the observed discharge time series.fe is the
Fourier-power spectrum of the modeling error (for details, re-
fer to Montanari and Toth, 2007). We define the performance
measureRF as

RF

[
ϕ|Jx(λ|ϕ), Jy(λ)

]
= − log

(
LF

[
ϕ|Jx(λ|ϕ), Jy(λ)

])
(18)

which has to be minimized.

4.3.2 Search algorithm

We use a global optimization algorithm for model calibra-
tion. The range of possible parameter values is fixed based on
a priori information. The used optimizer is a multi-objective
evolutionary algorithm called Queueing Multi-Objective Op-
timiser (QMOO) developed by Leyland (2002) for energy
system design. For an application of this optimizer to hy-
drology, see (Schaefli et al., 2004) and (Schaefli, 2005).

The algorithm has been designed to identify difficult-to-
find optima and to solve far more complex problems than the
ones presented here, involving much more decision variables
(parameter to identify) (see Leyland, 2002). We, therefore,
assume that all identified parameter sets correspond to the
best identifiable solutions of the optimization problem. The

stopping criterion for the search algorithm is fixed as fol-
lows: we assume that that the algorithm has converged to the
optimum solution if the objective function value of the best
found solution does not vary more than 5‰ between two suc-
cessively identified best solutions.

4.3.3 Penalization

As discussed in Sect.3.2, we penalize solutions (parameter
sets) that lead to a large bias between the observed and the
simulated time series. The penalization is completed based
on

R′

k =

Rk if B < 0.1
Rk + B if 0.4 > B > 0.1
Rk + 10 · B if B ≥ 0.4

(19)

whereRk, k={W ,F ,N} is the objective function value (to be
minimized) andB is the relative bias between the observed
and the simulated time series computed as

B [ϕ|x(t |ϕ), y(t)] =
1

N

N∑
k=1

[
|x(k, ϕ) − y(k)|

y(k)

]
(20)

This penalization has been chosen because for all used per-
formance criteria,B andRk have the same order of magni-
tude for good solutions. The penalization should not be too
strong for low biases because this would hinder the optimiza-
tion algorithm to explore the parameter space.

5 Results

5.1 Synthetic case studies

5.1.1 Experiment 1

The parameter ranges used as search space for model calibra-
tion as well as the identified best parameter sets under each
performance criterion are given in Table 1.

For the perturbed reference series for which the results are
reported here, none of the performance criteria leads to an
exact recovery of the ARMAX parameters. For the specific
realization of white noise, there is a parameter set that fits
the signal better in a least square sense (Table 1). As ex-
pected, for this theoretic Gaussian case with uncorrelated
error, the solution in the time-domain and in the Fourier-
domain is equivalent. The best parameter set underRW is
different,b2 even has a wrong sign. In fact, adding Gaussian
white noise adds power to all scales (recall that the Fourier
power-density spectrum of Gaussian white noise is constant
and equals its variance (see, e.g. Priestley, 1981). This in-
duces, thus, an offset between the wavelet-power spectrum
of the perturbed reference series and the exact series. As
a result, for the model of Eq. (14), there is a parameter set
with a closer match to the wavelet-power spectrum of the
perturbed reference series. This effect becomes even more

Hydrol. Earth Syst. Sci., 13, 1921–1936, 2009 www.hydrol-earth-syst-sci.net/13/1921/2009/



B. Schaefli and E. Zehe: Hydrological model performance in the wavelet-domain 1929

Table 1. Exact parameter values of the ARMAX process, inter-
vals delimiting the search space for parameter estimation and the
identified best parameter sets underRW , RF andRN (columns 5–
7). For each parameter set, the values of the performance criteria
are given (instead ofRN , the more familiarLN=1−RN is given).
The criteria values listed under “exact” are calculated between the
unperturbed (“unpert”) original series and the perturbed (“pert”) se-
ries; other abbreviations: corr: linear correlation; min; best possible
criterion value; max: worst possible criterion value; inf: no absolute
reference value; in bold: the best performance of each row.

Parameter Exact Min Max RW RF RN

a −0.850 −0.999 −0.001 −0.847 −0.860 −0.851
b1 0.080 −2.000 2.000 0.134 0.089 0.084
b2 0.018 −2.000 2.000 −0.040 0.012 0.013
b3 0.029 −2.000 2.000 0.032 0.017 0.028
corr pert 0.98 −1 1 0.96 0.98 0.98
RW pert 0.15 1 0 0.12 0.13 0.14
RF pert −1.69 + inf −inf −1.58 −1.70 −1.70
LN pert 0.95 −inf 1 0.92 0.95 0.95
corr unpert 1 −1 1 0.98 1.00 1.00
RW unpert 0 1 0 0.01 0.02 0.01
RF unpert NaN +inf −inf −2.23 −3.08 −3.18
LN unpert 1 −inf 1 0.96 1.00 1.00

important if we apply a stronger error (results not shown). In
the unperturbed case,RW enables an exact recovery of the
true parameter set.

The convergence criterion was reached for all ARMAX
experiments between 3500 and 4000 model evaluations.
There is no significant difference between the different per-
formance criteria. Another interesting question is whether
one criterion needs a longer time series to converge effi-
ciently. For all criteria, the convergence is slowed down if the
length of the calibration time series is reduced; forRW this
slowdown is more important because the data length limits
the number of resolvable scales. For this case study, below 50
data points, the convergence time becomes prohibitive (more
than 10 000 evaluations).

5.1.2 Experiment 2

The parameter set used for the generation of the synthetic
reference discharge series set is given in Table 3 and a zoom
on the time series is shown in Fig.1b. This exact series is
perturbed with a Gaussian white noise having zero mean and
a standard deviation of 0.44 (corresponding to 25% of the
standard deviation of the exact series). The parameter ranges
used as search space for calibration are given in Table 2 and
the identified best parameter sets under each performance cri-
terion are given in Table 3.

For the case where the perfect model exists but the series is
perturbed,RW as well as the other criteria recover the exact
value of the most sensitive parameter, the degree-day fac-
tor for snowmelt (for details about parameter sensitivity, see
Schaefli et al., 2005). For the 3 least sensitive parameter val-

ues, the identified values are less close to the real values than
for a calibration underRN or RF . The performance differ-
ence of the identified best simulations under all three calibra-
tion criteria is, however, hardly detectable. There is, nonethe-
less, an interesting difference: the optimum parameter values
under the two frequency-domain criteria are clearly much
better defined than underRN (Fig. 3a and b). This holds
in particular for the least sensitive parameter, the nonlinear
direct runoff parameterβ. It is noteworthy, however, that
this does not indicate a better identifiability in the wavelet-
domain in general but depends on the chosen formulation of
the time-domain objective function (for a discussion of the
shape of time-domain objective functions, refer to Beven and
Freer, 2001).

5.1.3 Experiment 3

If we try to estimate the model parameters on a reference
series that was generated with a different model structure,
i.e. with a variable degree-day factor for snowmelt, the per-
formances underRN andRW are very close but each of the
criteria lead to distinct solutions for the constant degree-day
factor (Table 4), both of which lead to good simulations. The
two solutions are hardly distinguishable based on the used
performance measures (Table 4) and are very close to the
generated reference series (see Fig.4). A look on the average
wavelet-power over certain ranges of scales, however, clearly
shows that the simulations having a constant degree-day fac-
tor do not reproduce the true dynamics (Fig.4), neither for
the best parameter set in the time-domain nor for the best
parameter set in the wavelet-domain.

5.2 Real-world case study

5.2.1 Parameter estimation in the wavelet-domain
versus in the time-domain

There is certain trade-off between the time-domain and the
wavelet-domain objective function. The optimum forRN

does not correspond to the optimum forRW (Table 5). It
is noteworthy that for this case study, the apparently high
Nash values (0.94 for the best simulation underRN , 0.91
underRW ) do not necessarily mean that the hydrological
model does a particularly good job, high Nash values are
easy to achieve for times series with a strong annual cycle
(see Schaefli and Gupta, 2007).

At a first glance, the optimal parameter sets do not seem
to be fundamentally different underRN and underRW (see
Table 5). A closer look shows however some notable dif-
ferences. Even if physically meaningless parameter sets are
penalized, the optimization underRN leads to a global op-
timal solution where the degree-day factor for ice is smaller
than for snow. This is physically highly questionable (e.g.,
Hock, 2003; Schaefli et al., 2005). The global optimal solu-
tion in the wavelet-domain respects this physical constraint.
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Fig. 3. Parameter sensitivity around the optimum value identified under the different calibration criteria; top: experiment 2, the most sensitive
parameterasnow(a), and the least sensitive parameterβ (b), the other parameters are kept constant to the values of Table 3; bottom: real-world
case study, the two least sensitive parameterslk (c) andA (d), the other parameters are kept constant to the values of Table 5.
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Fig. 5. Real-world case study:(a) zoom on the observed discharge
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on the average estimated wavelet-power between the scales of 128
days and 256 days for the observed discharge and the simulations
calibrated underRW , respectively underRN .

In addition, the parameters have (as for the synthetic case
study) a better identified optimum underRW than underRN ,
especially for the parameters with the lowest sensitivity, the
soil transfer parameters (Fig.3c and d).

Close inspection of the discharge simulations based on
the best parameters obtained in the time-domain and in
the wavelet-domain, respectively, shows that both parame-
ter sets yield rather different discharge dynamics (see zooms
on the simulations in Fig.5 and scatter-plots of observed
against simulated discharge in Fig.6). Without further cross-
validation data (e.g. observed ice melt data), it is difficult to
judge which parameter set captures the observed dynamics
better. An interesting hint is, however, given by the follow-
ing analysis: we build a prediction interval based on 90 of
the 100 best random simulations. UnderRN , this interval in-
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Fig. 6. Real-world case study: scatter-plot of observed discharge
(during calibration period) against best simulation under each of
the two calibration criteria.

Table 2. Parameter intervals delimiting the search space for the
real-world case study and for the synthetic experiments 2 and 3; pa-
rameter sets that do not respect the imposed physical conditions are
penalized during parameter set evaluation (for more details about
these parameters, see Schaefli et al., 2005).

Parameter Unit Min Max Significance Condition/penalty

aice mm/d/◦C 1.0 16.0 Degree factors for ice
resp. snow

aice>asnow
penalty =asnow−aice

asnow mm/d/◦C 0.5 12.0
kice d 0.5 45.0 Linear reservoir coeffi-

cient for ice resp. snow
melt

kice<ksnow
penalty=(kice−ksnow)/2

ksnow d 1.0 45.0
A mm 1 3000 Max. storage for linear

slow response reservoir
lk log(1/h) −12.0 −0.1 Coeff. for linear slow re-

sponse
β m4/3/s 1 30 000 Coeff. for nonlinear, fast

response
Tcrit

◦C 1.0 1.0 Threshold for snowfall Fixed

cludes around 80% of all observations for the calibration pe-
riod. This success rate decreases constantly if we evaluate it
for discharges above a certain threshold (Fig.7). ForRW , the
success rate, which is overall slightly lower than underRN ,
remains constant for all discharge thresholds. This clearly
suggests that for this case study, good simulations in the
wavelet-domain capture equally well all discharge ranges.
Good simulations underRN , however, capture particularly
well small discharges, i.e. the long periods of easy to predict
low flows, which, due to their temporal dominance, tend to
have a strong influence on the time-domain objective func-
tion for this case study.
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Fig. 7. Real-world case study: model performance for the best 100 random simulations (of 20 000 random parameter sets) underRW ,
respectivelyRN ; the success rate measures the relative number of observed daily discharges above a certain threshold that fall within the
90% prediction range of the retained 100 simulations; left calibration period, right entire period.

Table 3. Experiment 2: parameter values used to generate the syn-
thetic discharge time series and the identified optimal parameters
sets underRW , RF andRN ; the glacier surface is set to 0, which
eliminates the parametersaice, kice andksnow; calib: calibration pe-
riod; valid: validation period; for other abbreviations, see Table 1.

CalibrationRW CalibrationRN CalibrationRF

Parameter/criterion Exact Calib Valid Calib Valid Calib Valid

asnow 2.2 2.2 2.2 2.2
A 550 691 544 557
log(k) −9.1 −9.6 −9.1 −9.1
β 4500 4748 4546 4478
corr pert 0.97 0.97 0.96 0.97 0.97 0.97 0.97
RW pert 0.15 0.14 0.15 0.15 0.15 0.15 0.15
RF pert −1.01 −0.84 −0.37 −0.85 −0.38 −0.85 −0.38
LN pert 0.94 0.93 0.92 0.94 0.93 0.94 0.93
corr unpert 1 1.00 1.00 1.00 1.00 1.00 1.00
RW unpert 0 0.04 0.05 0.00 0.00 0.00 0.00
RF unpert NaN −1.44 −0.95 −1.51 −0.98 −1.51 −0.98
LN unpert 1 0.99 0.99 1.00 1.00 1.00 1.00

The above results suggest an important difference between
the best parameter sets in the time-domain and the best pa-
rameter sets in the wavelet-domain. A look on the parameter
space of the most sensitive parameters, the degree-day fac-
tors for snowmelt (asnow) and for ice melt (aice) illustrates
this difference: Fig.8 shows a scatter-plot ofasnow against
aice for all “physically feasible” parameter sets, i.e. parame-
ter sets that lead to a bias smaller than 10% (the visible de-
pendance between physically feasible snow and ice melt fac-
tors is a common result for this type of models, see Schaefli
et al., 2005). The 100 parameter sets that, among all physi-
cally feasible parameter sets, have the lowestRW values are
highlighted in red; the parameter sets with the lowestRN val-
ues are highlighted as triangles. These two groups show that
the best parameter sets underRN correspond to another area
of the physically feasible parameter space than the best pa-
rameter sets underRW . Retaining good solutions under the

Table 4. Experiment 3: parameters used to generate the synthetic
reference discharge time series and the identified optimal parame-
ters values using theRW andRN performance criteria; the refer-
ence time series has been generated using a variableasnowparame-
ter throughout the year; theasnowparameter values for each month
are {1.2, 1.4, 1.4, 2.0, 4.0, 5.0, 6.0, 7.0, 5.0, 2.0, 1.2 , 1.1}; for
abbreviations see Table 1.

Parameter Exact RW RN

asnow variable 2.2 2.4
A 550 584 438
lk −9.1 −9.5 −8.7
β 4500 4180 4731

ksnow 15.6 29.1 24.8
corr 1 0.94 0.95
RW 0 0.08 0.09
LN 1 0.88 0.90

quadratic error-based criteriaRN further reduces the phys-
ically feasible parameter space. In contrast, the group of
the best parameter sets underRW appears to show the same
dependance betweenasnow andaice as the overall group of
physically feasible parameter sets. This result suggests that:

1. The bias criterion could be sufficient to ensure solu-
tions that reproduce the dominant frequencies (which
is a very interesting result for snow- and ice melt mod-
eling).

2. The RN could be too restrictive and exclude solutions
that can reproduce the frequency content of the ob-
served time series. This means that for this particu-
lar case study, a parameter estimation based on theRN

could be misleading.
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This last hypothesis is supported by the fact thatRN only
leads to unbiased parameter estimates if the model residuals
are Gaussian with a constant variance (for a discussion, see
Kavetski et al., 2006a). For the present case study, the resid-
uals clearly have a different variance during the summer and
the winter season (see Schaefli et al., 2006).

5.2.2 Model diagnostics

A visual inspection of the average wavelet-power at bands
of scales ranging from weeks to a few months shows that
even the best models do not well capture the observed dy-
namics (see an example in Fig.5c): both best models (under
RW andRN ) do not well reproduce the frequency content
of the observed series. The models have a somewhat differ-
ent behavior but the plot of the average power at high scales
suggests that given the observed input and the current model
structure, the model cannot produce a closer fit to the esti-
mated wavelet-power of the observed series. The power con-
tent tends to be either largely over- or underestimated.

The model’s inability to reproduce the frequency content
at high scales (months) suggests that either a storage term
is missing or is not well parameterized in the current model
structure. In fact, the model does not simulate separately
the melt and the transfer of firn, i.e. of old snow that lasts
more than one season and that is a transition state between
ice and snow. Firn has a degree-day factor and melt water
transfer times that are between the ones of ice and of snow
(e.g. Klok et al., 2001) and induces a further partitioning of
the discharge during the melt season. Its contribution to the
total discharge depends on the annual snowfall.

The mismatch of the calibrated and observed wavelet pe-
riodograms at intermediate scales (weeks) could be a hint
that the model does not fully capture the relationship be-
tween temperature and snow- and ice melt. This relation-
ship is constant in the current model parameterization but it
is known to be variable throughout the melt season (for ex-
ample due to changes in the albedo, see, e.g. Rango and Mar-
tinec, 1995). But the models’ inability to reproduce these
scales could also indicate the need to improve the meltwa-
ter transfer through the glacier and the overlaying snowpack.
In the model, this transfer is encoded by a linear transfer
function having a constant parameter. In reality, the trans-
fer of melt water through a glacier is highly variable in time
since the glacier drainage system evolves throughout the melt
season (see, e.g. Willis, 2005). In warm years, it develops
and evacuates water much faster than during cold years. A
detailed analysis of the wavelet-power at different bands of
the observed and the simulated time series during years with
high snowfall and low snowfall, respectively during cold and
warm years could help gaining further insights into which of
the above model structural deficiencies are more important.
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Fig. 8. Real-world case study: relationship betweenasnowandaice
for the 100 best parameters sets (of 20 000 random parameter sets)
underRN , respectively underRW .

Table 5. Real-world case study: optimal parameter values identified
using global optimization andRW andRN as objective-functions;
calib=calibration period, valid=validation period, var. bias=relative
difference between variance of observed and simulated time series.

RW RN

aice 8.5 7.8
asnow 6.8 8.2
lk −8.8 −9.7
A 539 1014
β 6279 274
kice 1.5 2.1
ksnow 37.0 26.0
RW calib 0.086 0.088
RW valid 0.087 0.090
LN calib 0.91 0.94
LN valid 0.91 0.93
B −0.06 −0.05
Var. bias −0.09 −0.04

The next step would now be to improve the model struc-
ture. Monitoring the model performance in the wavelet-
domain will help to verify that a model modification really
acts on the dynamics at the assumed ranges of temporal
scales or whether an achieved performance increase is just
“pure chance”, due for example to compensations between
structural errors. This step requires a considerable reformu-
lation of the model and is left for future research.
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5.3 Computational costs

The computation of the wavelet-domain performance crite-
rion involves first of all the computation of the wavelet pe-
riodogram of the analyzed time series, which requires con-
volving the signal (observed or simulated times series) with
the wavelet at each scale. This implies a number of in-
verse Fast Fourier Transforms that equals the number of an-
alyzed scales. This “pre-treatment” of the time series before
the computation of the performance criterion increases the
computational cost by a factor at least equal to the num-
ber of scales. The Kolmogorov -Smirnov distance-based
performance criterion also involves more calculations than
the computation of a squared error-based distance measure.
In our case, using a Matlab® code on a laptop with a
Intel®Pentium® M 1.5 GHz processor, the computation of
the inverse Fast Fourier Transform for one scale is roughly
twice longer than the computation of a Nash criterion over
the entire time series. For a time series with 6939 time steps,
computing the Nash efficiency takes typically 0.01 s whereas
computing the wavelet periodogram for 122 scales takes 1.9 s
and computing the Kolmogorov-Smirnov distance takes an-
other 0.6 s.

6 Conclusions and outlook

The present paper discusses and illustrates parameter estima-
tion and model performance analysis of rainfall-runoff mod-
els in the wavelet-domain with the main purpose to show how
this could contribute to hydrological model diagnostics and
to model structure improvement.

As discussed based on theoretical considerations and
based on the presented examples, parameter estimation for
at least partly misspecified models in the wavelet-domain
can yield different results than parameter estimation in the
time-domain. Especially for observed time series having a
strongly time-varying frequency content, the suggested ap-
proach allows estimation of model parameter sets in the
wavelet-domain that are internally consistent and allow sim-
ulations with more plausible dynamics than a parameter esti-
mation in the time-domain. However, it is at the current stage
difficult to determine a priori in which cases a calibration in
the wavelet-domain could yield better representations of the
true system dynamics. Future case studies and theoretical
developments should provide insights into this question. A
key hereby will be the detailed study of the behavior of the
wavelet-domain performance criterion in presence of errors
in the input or output data.

In general, a detailed investigation of the origin of the dif-
ferences between the best solutions in the wavelet-domain
and in the time-domain can offer additional and new pieces
to the puzzle of understanding conceptual model behavior
and shortcomings. For the real-world case study presented in
this paper, the best parameter sets in the wavelet-domain do

for example not show the same dependence structure as the
best parameter sets in the time-domain. Such a result is a hint
that the model has structural deficiencies. These deficiencies
can then be further investigated by analyzing in detail how
the model performs over relevant ranges of temporal scales,
by visually inspecting the power content of the wavelet pe-
riodograms or by computing wavelet performance measures
over certain scales instead of over the entire range of resolv-
able scales. As illustrated for the real-world case study, this
can give valuable indications on model deficiencies and how
to overcome them.

Just as different objective functions can be formulated
in the time-domain, the presented wavelet-based criterion
corresponds to one possible performance measure in the
wavelet-domain. Other formulations (and other wavelets) are
possible and would potentially yield other optimal param-
eter sets. While the statistical properties of different time-
domain objective functions are well understood, applications
of wavelet spectral analysis to geosciences are still relatively
recent and statistical questions have to be further evaluated.
We would thus like to emphasize that the potential of param-
eter estimation in the wavelet-domain lies in the information
that it yields for model improvement.

For very long time series, the computational cost for the
evaluation of the wavelet criterion can become important.
This aspect is however counterbalanced by the gained in-
sights. We are confident that future case studies including
namely not only discharge data but also other sources of
validation data will provide additional evidence for the po-
tential of parameter estimation and model diagnostics in the
wavelet-domain.

A Matlab® code for the computation of the presented per-
formance measure can be obtained from the first author.
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Nicótina, L., Alessi Celegon, E., Rinaldo, A., and Marani, M.: On
the impact of rainfall patterns on the hydrologic response, Water
Resour. Res., 44, W12401, doi:10.1029/2007WR006654, 2008.

Priestley, M.: Spectral Analysis and Time Series, Academic Press,
London, UK, 884 pp., 1981.

Rango, A. and Martinec, J.: Revisiting the degree-day method for
snowmelt computations, Water Resour. Bull., 31, 657–669, 1995.

Reusser, D. E., Blume, T., Schaefli, B., and Zehe, E.: Analysing
the temporal dynamics of model performance for hydrological
models, Hydrol. Earth Syst. Sci. Discuss., 5, 3169–3211, 2008,
http://www.hydrol-earth-syst-sci-discuss.net/5/3169/2008/.

Schaefli, B., Hingray, B., and Musy, A.: Improved calibration of
hydrological models: use of a multi-objective evolutionary algo-
rithm for parameter and model structure uncertainty estimation,
Hydrology: Science and Practice for the 21st Century, London,
UK, 362–371, 2004.

Schaefli, B.: Quantification of modelling uncertainties in climate
change impact studies on water resources: Application to a
glacier-fed hydropower production system in the Swiss Alps,
Ecole Polytechnique F́ed́erale de Lausanne, Switzerland, avail-
able at:http://library.epfl.ch/theses, 209 pp., 2005.

Schaefli, B., Hingray, B., Niggli, M., and Musy, A.: A con-
ceptual glacio-hydrological model for high mountainous catch-
ments, Hydrol. Earth Syst. Sci., 9, 95–109, 2005,
http://www.hydrol-earth-syst-sci.net/9/95/2005/.

Schaefli, B., Balin Talamba, D., and Musy, A.: Quantifying hy-
drological modeling errors through a mixture of normal distribu-
tions, J. Hydrol., 332, 303–315, 2006.

Schaefli, B. and Gupta, H.: Do Nash values have value?, Hydrol.
Process., 21, 2075–2080, 2007.

Schaefli, B., Maraun, D., and Holschneider, M.: What
drives high flow events in the Swiss Alps? Recent de-
velopments in wavelet spectral analysis and their applica-
tion to hydrology, Adv. Water Resour., 30(12), 2511–2525,
doi:10.1016/j.advwatres.2007.06.004, 2008

Schaefli, B. and Zehe, E.: Hydrological model performance and
parameter estimation in the wavelet-domain, Hydrol. Earth Syst.
Sci. Disc., 6, 2451–2498, 2009.

Schmidli, J. and Frei, C.: Trends of heavy precipitation and wet
and dry spells in Swizterland during the 20th century, Intern. J.

www.hydrol-earth-syst-sci.net/13/1921/2009/ Hydrol. Earth Syst. Sci., 13, 1921–1936, 2009

http://www.hydrol-earth-syst-sci.net/12/657/2008/
http://library.epfl.ch/theses
http://www.nonlin-processes-geophys.net/11/505/2004/
http://www.hydrol-earth-syst-sci-discuss.net/5/3169/2008/
http://library.epfl.ch/theses
http://www.hydrol-earth-syst-sci.net/9/95/2005/


1936 B. Schaefli and E. Zehe: Hydrological model performance in the wavelet-domain

Climatol., 25, 753–771, 2005.
Schreiber, T. and Schmitz, A.: Surrogate time series, Physica D,

142, 346–382, 2000.
Shumway, R. H. and Stoffer, D. S.: Time Series Analysis and Its

Applications, With R Examples, 2nd edn., Springer, New York,
USA, 576 pp., 2006.

Si, B. C. and Zeleke, T. B.: Wavelet coherency analysis to relate
saturated hydraulic properties to soil physical properties, Water
Resour. Res., 41, W11424, doi:10.1029/2005WR004118, 2005.

Torrence, C. and Compo, G. P.: A practical guide to wavelet analy-
sis, B. Am. Meteorol. Soc., 79, 61–78, 1998.

Velasco, C.: Gaussian semiparametric estimation of non-stationary
time series, J. Time Ser. Anal., 20, 87–127, 1999.

Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian, S.: A shuf-
fled complex evolution Metropolis algorithm for optimization
and uncertainty assessment of hydrologic models, Water Resour.
Res., 39, 1201, doi:10.1029/2002WR001642, 2003.

Wagener, T., Boyle, D. P., Lees, M. J., Wheater, H. S., Gupta, H. V.,
and Sorooshian, S.: A framework for development and applica-
tion of hydrological models, Hydrol. Earth Syst. Sci., 5, 13–26,
2001,
http://www.hydrol-earth-syst-sci.net/5/13/2001/.

Weisstein, E. W.: Metric, From MathWorld-A Wolfram Web Re-
source,http://mathworld.wolfram.com/Metric.html, last access:
19 March 2009, 2009.

Whittle, P.: Estimation and information in stationary time series,
Ark. Mat., 2, 423–434, 1953.

Willis, I.: Hydrology of glacierized basins, in: Encyclopedia of Hy-
drological Sciences, edited by: Anderson, M. G., Wiley, Chich-
ester, UK, 2601–2631, 2005.

Winsemius, H., Schaefli, B., Montanari, A., and Savenije, H. H. G.:
On the calibration of hydrological models in ungauged basins:
a framework for integrating hard and soft hydrological informa-
tion, Water Resour. Res., doi:10.1029/2009WR007706, in press,
2009.

Yao, Q. and Brockwell, P. J.: Gaussian Maximum Likelihood Es-
timation For ARMA Models. I. Time Series, J. Time Ser. Anal.,
27, 857–875, 2006.

Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based di-
agnostic approach to model evaluation: Application to the NWS
distributed hydrologic model, Water Resour. Res., 44, W09417,
doi:10.1029/2007WR006716, 2008.

Zehe, E., Becker, R., Bardossy, A., and Plate, E.: Uncertainty of
simulated catchment runoff response in the presence of thresh-
old processes: Role of initial soil moisture and precipitation, J.
Hydrol., 315, 183–202, 2005.

Zehe, E., Elsenbeer, H., Lindenmaier, F., Schulz, K., and Blöschl,
G.: Patterns of predictability in hydrological threshold systems,
Water Resour. Res., 43, W07434, doi:10.1029/2006WR005589,
2007.

Hydrol. Earth Syst. Sci., 13, 1921–1936, 2009 www.hydrol-earth-syst-sci.net/13/1921/2009/

http://www.hydrol-earth-syst-sci.net/5/13/2001/
http://mathworld.wolfram.com/Metric.html

	1

