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Natural killer cell plasticity and diversity in antiviral immunity
Summary

Natural killer (NK) cells are a type of cytotoxic innate immune cells that recognize and

kill virus-infected cells and cancer cells. NK cells are composed of multiple subsets, each

with a high degree of diversity based on their expression of various inhibitory-activating

receptors, chemokine receptors and transcriptional factors. During virus infection,

exposure of NK cells to different cytokines and interaction with infected cells promote

alteration in their NK cell receptor repertoire and differentiation into a new or merge with

an existing subset, demonstrating their plastic nature. Such NK cell plasticity can have a

significant impact on NK cell phenotypic and functional diversity, potentially promoting

antiviral immunity or resulting in virus immune evasion, ultimately influencing disease

outcomes. In this Research Topic, we present and discuss the latest research on NK cell

plasticity and diversity in viral infections, as well as its therapeutic implications.
NK cell diversity

NK cells were previously considered a homogeneous population of lymphocytes with

limited diversity and fixed phenotypic and functional properties in both humans and mice.

The peripheral blood of healthy patients comprises a main subset of cytotoxic CD56Dim

cells and a smaller fraction of CD56Bright cells with limited cytotoxicity (Abel et al.).

However, recent developments in NK cell biology have revealed a higher diversity of NK

cells based on receptor repertoire, transcription factors, tissue distribution, and

functionality, which indicate multiple NK cell subsets (1, 2). NK cell diversity depends

on several factors, including host genetic composition such as mutations in killer-cell

immunoglobulin-like receptors (KIRs) and human leukocyte antigens (HLA) genes,

epigenetic regulators, interactions with other cell types, and environmental factors such

as viral infections (3, 4). The degree of diversification in NK cells varies from individual to
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individual and is responsible for variable disease susceptibility

against a variety of pathogens.
NK cell plasticity in viral infections
During vaccination and viral infections, NK cells undergo

phenotypic and functional changes and differentiation, resulting in

the emergence of new types of NK cell subsets such as highly cytotoxic

CD56DimCD57+ mature, CD56DimCD57+NKG2C+Fcϵr1g+/– adaptive-
like or CD56-CD57+ exhausted NK cells (4, 5). For instance, acute viral

infections with viral pathogens such as influenza, dengue,West Nile, or

SARS-CoV-2 virus increase the level of several cytokines such as IL-12,

IL-18, and type I interferons in the host, which trigger activation and

expansion of circulatory CD56Bright and CD56Dim NK cells and

promote their homing to affected organs (4). On the other hand,

chronic viral infections induce significant alterations in NK cell

phenotype, composition, and distribution. In chronic human

cytomegalovirus (HCMV) infection, adaptive-like NK cells

(NKG2C+ or Fcϵr1g–, Fc epsilon receptor I gamma) appear, which

exhibit enhanced antibody-dependent effector functions against

infected cells and constitute up to 70% of total peripheral blood NK

cells (6, 7). These HCMV-associated adaptive-like NK cells also

expand during HIV (8), hantavirus (9), chikungunya virus (10),

hepatitis virus (Malone et al.) and SARS-CoV-2 (11) infections in

CMV seropositive individuals, where they impact disease outcome.

Recently, severe COVID-19 disease has been found to be associated

with adaptive-like NK cell expansion (11).

In this Research Topic, Brownlie et al. analyzed the expression

of chemokine receptors CXCR3, CXCR6, and CCR5 on NK cells,

which are involved in the recruitment of these cells to the lungs. In

moderate COVID-19 and influenza patients, peripheral blood-

derived CXCR3, CXCR6, or CCR5 positive NK cells were reduced

and exhibited a stronger activated status, while in the

bronchoalveolar lavage (BAL) fluid, there was an elevated

concentration of the respective ligands of these chemokine

receptors. These observations suggest the migration of activated

NK cells from the periphery into lung tissue and their involvement

in COVID-19 lung pathogenesis.

As NK cells exhibit strong activation and expansion during

SARS-CoV-2 infection in the general population (11), the impact of

SARS-CoV-2 infection on NK cell biology in pregnant women is

not fully described. Carbonnel et al. showed that higher estradiol

levels in pregnant women with SARS-CoV-2 infection suppress NK

cells both phenotypically and functionally. This study hints that

estradiol-induced NK cell suppression in SARS-CoV-2 infection

may be a natural adaptation to ensure fetal survival by

reducing immunopathology.

Viral vaccination has been shown to affect NK cell phenotype

and function. Individuals with superior hemagglutination

inhibition antibody titers after seasonal influenza vaccination

showed higher frequencies of NKG2C+ adaptive-like NK cells

(12). Additionally, vaccination-induced cytokine and chemokine

responses, such as type I interferon, IL-12, IL-18, CCL2, and CCL4,

have been reported for vaccines against influenza, Ebola, yellow
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fever, and hepatitis B viruses, and are involved in the activation,

expansion, and trafficking of NK cells (5).

During chronic HIV and HCV infection, an exhausted CD56–

NK cell subset appears, which is associated with a higher viral load,

and which comprises nearly half of the peripheral blood NK cells

(13). These CD56– NK cells were also observed to be expanded in

CMV and Epstein-Barr virus (EBV) seropositive elderly healthy

individuals, reflecting their immune risk profile (14). However, it is

unclear how antiviral therapies for chronic viral infections impact

NK cell subsets and what their effect on virus control is. Ivison et al.,

conducted a longitudinal study analyzing the NK cell receptor-

ligand repertoire during long-term antiretroviral therapy (ART) in

chronic HIV-1 infected patients. This study identified a less mature

NK cell phenotype (CD16+CD56DimCD57–LILRB1–NKG2C–),

which was associated with lower HIV-1 cell-associated DNA.

Further, surface expression of HLA-Bw6 on infected cells

correlated with lower HIV-1 persistence. These findings uncover

a link between the NK cell receptor and ligand repertoire and

markers of HIV-1 persistence, suggesting a possible role for NK

cells in regulating the latent HIV-1 reservoir. In another report, Sun

et al. revealed the role of CD160 on NK cells in untreated HIV-

infected individuals and its impact on viral control. They found that

CD160 expression was highly reduced on NK cells of HIV-positive

individuals, and this reduced expression of CD160 on NK cells

correlated with disease progression. Mechanistically, the authors

identified that CD160 positively regulates NK cell effector function

by promoting the PI3K/AKT/mTOR pathway and glucose

metabolism. Additionally, they showed that the higher TGF-b1
plasma levels induced by HIV infection inhibit NK cell CD160

expression, thereby promoting the disease. This indicates CD160 as

a prognostic marker for infection with HIV.

Moreover, as summarised by Sun et al., NK cells undergo

significant alterations in their receptor repertoire expression

during HIV infection resulting in the emergence of different NK

cell subpopulations, including protective, dysfunctional, and

regulatory NK cells. The presence of a CD11b+ CD57– CD161+

Siglec-7+ CD56Dim CD16+ NK cell subpopulation has been

suggested as a mean to discriminate elite HIV controllers from

viremic non-controllers. Additionally, higher frequencies of

CXCR5+ and Siglec-9+ CD56Dim NK cells have been correlated

with reduced viral load. Thus, these different NK cell

subpopulations could play a role in spontaneous HIV infection

control and may be useful for guiding the design of future

antiviral therapies.

While several studies have examined how virus infections can

change the NK cell receptor repertoire, it is important to note that

the host genetic makeup of KIRs and HLAs genes also plays a

significant role in regulating this repertoire (3). A study by Vollmers

et al. identified that HIV-1-related changes in KIRs repertoire of NK

cells are predetermined by host KIR2DL/HLA-C genotypes in

viremic, untreated HIV-1+ individuals This suggests that KIR

genotyping may be a predictive factor for NK cell-associated

immune responses, and these findings can be utilized for

improving NK cell-based immune therapies.

Besides performing antiviral functions and being involved in

inflammation, NK cells can also indirectly promote virus
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persistence by presenting immunomodulating ligands such as PDL1

to corresponding inhibitory receptors on antiviral T cells (15), or by

directly eliminating antiviral T cells (16–18), as shown in a murine

lymphocytic choriomeningitis virus (LCMV) infection model. In

humans, NK cells have been shown to inhibit the hepatitis B virus

(HBV)-specific CD8+ T cell response (19). Further, highly

differentiated NK cells were found to be negatively correlated

with the generation of broadly neutralizing antibodies in HIV-1-

infected individuals (20). Additionally, Liu et al. revealed a novel

pathway of human antiviral CD8+ T cell regulation by NK cells in

chronic HBV (CHB) infection. In particular, NK cells of CHB

infected patients expressed higher levels of galectin-9 (Gal-9), a

ligand for the inhibitory receptor Tim-3 expressed on effector CD8+

T cells, thereby inhibiting CD8+ T cell activation and the acquisition

of effector function. These findings indicate that CHB infection-

induced Gal-9 expression on NK cells promotes antiviral CD8+ T

cell dysfunction, and they suggest that inhibition of this pathway

could be a potential target for antiviral therapy.

Chronic HBV and HCV infections can lead to liver cirrhosis

and hepatocellular carcinoma (HCC). NK cells play an important

regulatory role in the development and progression of chronic HBV

and HCV infection-induced HCC, which was comprehensively

reviewed by Sajid et al.
Impact of NK cell plasticity on
NK cell diversity

Viral infections can have a substantial influence on NK cell

diversity. During viral infections, NK cells can undergo activation,

proliferation, and differentiation, resulting in significant changes in

their phenotypic and functional properties. Studies have shown that

short-term exposure to viruses such as HIV-1, West Nile Virus, or

HBV results in the expression of previously un-expressed NK cell

receptors such as NKG2C, CD57 and some KIRs, and hence

increases NK cell diversity (21–23). On the other hand, chronic

infections like HCMV or HIV/HCV can result in the clonal

expansion of specific NK cell subsets such as adaptive-like and

exhausted subsets to the detriment of others, thereby resulting in

reduced NK cell repertoire diversity (21–23). Such reduction in NK

cell repertoire diversity or inflexible NK cell repertoire due to too

much diversification can impair the ability of NK cells to respond to
Frontiers in Immunology 03
new pathogens (23). Notably, changes in NK cell diversity caused by

viral infections may persist even after the virus is cleared and may

become permanent (21). The potential long-term consequences of

these changes on the ability of the NK cell population to control

heterologous infections remain unclear.

In conclusion, this collection of papers focusing on NK cell

plasticity and diversity in viral infections advances our

understanding of the multifaceted role of NK cells in antiviral

immunity and virus immune evasion. It also highlights the

importance of NK cells in influencing infectious disease outcomes

in the host. Such a timely and updated view should trigger new

thoughts for improving therapeutic strategies.
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