Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at √s = 13 TeV

Anders, J.K.; Beck, H.P.; Chatterjee, M.; Ereditato, A.; Franconi, L.; Halser, L.; Haug, S.; Ilg, A.; Mueller, R.; O'Neill, A.P.; Weber, M.S. (2022). Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at √s = 13 TeV. Journal of High Energy Physics, 2022(6) Springer 10.1007/JHEP06(2022)063

[img]
Preview
Text
JHEP06_2022_063.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (4MB) | Preview

Cross-section measurements of top-quark pair production where the hadronically decaying top quark has transverse momentum greater than 355 GeV and the other top quark decays into ℓνb are presented using 139 fb−1 of data collected by the ATLAS experiment during proton-proton collisions at the LHC. The fiducial cross-section at s√ = 13 TeV is measured to be σ = 1.267 ± 0.005 ± 0.053 pb, where the uncertainties reflect the limited number of data events and the systematic uncertainties, giving a total uncertainty of 4.2%. The cross-section is measured differentially as a function of variables characterising the tt¯ system and additional radiation in the events. The results are compared with various Monte Carlo generators, including comparisons where the generators are reweighted to match a parton-level calculation at next-to-next-to-leading order. The reweighting improves the agreement between data and theory. The measured distribution of the top-quark transverse momentum is used to search for new physics in the context of the effective field theory framework. No significant deviation from the Standard Model is observed and limits are set on the Wilson coefficients of the dimension-six operators OtG and O(8)tq, where the limits on the latter are the most stringent to date.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Physics Institute > Laboratory for High Energy Physics (LHEP)
10 Strategic Research Centers > Albert Einstein Center for Fundamental Physics (AEC)

UniBE Contributor:

Anders, John Kenneth, Beck, Hans Peter, Chatterjee, Meghranjana, Ereditato, Antonio, Franconi, Laura, Halser, Lea, Haug, Sigve, Ilg, Armin, Müller, Roman, O'Neill, Aaron Paul, Weber, Michele

Subjects:

500 Science > 530 Physics

ISSN:

1029-8479

Publisher:

Springer

Language:

English

Submitter:

BORIS Import LHEP

Date Deposited:

06 Apr 2023 09:13

Last Modified:

13 Apr 2023 14:45

Publisher DOI:

10.1007/JHEP06(2022)063

Additional Information:

Kollaboration - Es sind nur die Berner Autor*innen namentlich erwaehnt; the ATLAS collaboration

BORIS DOI:

10.48350/181416

URI:

https://boris.unibe.ch/id/eprint/181416

Actions (login required)

Edit item Edit item
Provide Feedback