Measurement of the polarisation of single top quarks and antiquarks produced in the t-channel at √s = 13 TeV and bounds on the tWb dipole operator from the ATLAS experiment

Anders, J.K.; Beck, H.P.; Chatterjee, M.; Ereditato, A.; Franconi, L.; Halser, L.; Haug, S; Ilg, A.; Lehmann, N.; Mueller, R.; Weber, M.S. (2022). Measurement of the polarisation of single top quarks and antiquarks produced in the t-channel at √s = 13 TeV and bounds on the tWb dipole operator from the ATLAS experiment. Journal of High Energy Physics, 2022(11) Springer 10.1007/JHEP11(2022)040

[img]
Preview
Text
JHEP11_2022_040.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (2MB) | Preview

A simultaneous measurement of the three components of the top-quark and top-antiquark polarisation vectors in t-channel single-top-quark production is presented. This analysis is based on data from proton–proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 139 fb−1, collected with the ATLAS detector at the LHC. Selected events contain exactly one isolated electron or muon, large missing transverse momentum and exactly two jets, one being b-tagged. Stringent selection requirements are applied to discriminate t-channel single-top-quark events from the background contributions. The top-quark and top-antiquark polarisation vectors are measured from the distributions of the direction cosines of the charged-lepton momentum in the top-quark rest frame. The three components of the polarisation vector for the selected top-quark event sample are Px′ = 0.01 ± 0.18, Py′ = −0.029 ± 0.027, Pz′ = 0.91 ± 0.10 and for the top-antiquark event sample they are Px′ = −0.02 ± 0.20, Py′ = −0.007 ± 0.051, Pz′ = 0.79 ± 0.16. Normalised differential cross-sections corrected to a fiducial region at the stable-particle level are presented as a function of the charged-lepton angles for top-quark and top-antiquark events inclusively and separately. These measurements are in agreement with Standard Model predictions. The angular differential cross-sections are used to derive bounds on the complex Wilson coefficient of the dimension-six OtW operator in the framework of an effective field theory. The obtained bounds are CtW ∈ [−0.9, 1.4] and CitW ∈ [−0.8, 0.2], both at 95% confidence level.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Physics Institute > Laboratory for High Energy Physics (LHEP)
10 Strategic Research Centers > Albert Einstein Center for Fundamental Physics (AEC)

UniBE Contributor:

Anders, John Kenneth, Beck, Hans Peter, Chatterjee, Meghranjana, Ereditato, Antonio, Franconi, Laura, Halser, Lea, Haug, Sigve, Ilg, Armin, Lehmann, Niklaus, Müller, Roman, Weber, Michele

Subjects:

500 Science > 530 Physics

ISSN:

1029-8479

Publisher:

Springer

Language:

English

Submitter:

BORIS Import LHEP

Date Deposited:

06 Apr 2023 08:30

Last Modified:

13 Apr 2023 14:52

Publisher DOI:

10.1007/JHEP11(2022)040

Additional Information:

Kollaboration - Es sind nur die Berner Autor*innen namentlich erwaehnt; the ATLAS collaboration

BORIS DOI:

10.48350/181417

URI:

https://boris.unibe.ch/id/eprint/181417

Actions (login required)

Edit item Edit item
Provide Feedback