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Noninvertible Symmetries from Holography and Branes
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We propose a systematic approach to deriving symmetry generators of quantum field theories in
holography. Central to this analysis are the Gauss law constraints in the Hamiltonian quantization of
symmetry topological field theories (SymTFTs), which are obtained from supergravity. In turn, we realize
the symmetry generators from world-volume theories of D-branes in holography. Our main focus is on
noninvertible symmetries, which have emerged in the past year as a new type of symmetry in d ≥ 4 QFTs.
We exemplify our proposal in the holographic confinement setup, dual to 4D N ¼ 1 Super-Yang Mills. In
the brane picture, the fusion of noninvertible symmetries naturally arises from the Myers effect on
D-branes. In turn, their action on line defects is modeled by the Hanany-Witten effect.

DOI: 10.1103/PhysRevLett.130.121601

Introduction.—The study of quantum dynamics is at the
heart of uncovering any fundamental principles of nature.
From various points of view, in condensed matter physics,
mathematical physics, and quantum field theory, such
explorations have established the study of symmetries as
an essential “backbone” of quantum systems. It thus comes
as a genuine surprise in the past year where a dramatic
extension to symmetries in 4D quantum field theories
(QFTs) were uncovered, which unlike ordinary ones that
form groups, obey fusionlike composition laws. These
noninvertible symmetries are well established in d ¼ 2, 3,
however, they are unexpected in d ≥ 4. Within the past year
various systematic approaches to the construction of non-
invertible symmetries have appeared in [1–7]. Physical
implications include characterization of deconfining or
confining vacua and constraints on pion decays [8,9],
and other applications appeared in [8–14].
All constructions thus far rely on field theory methods.

Here we provide the holographic perspective from sym-
metry inflow, supergravity, and branes. Other preliminary
aspects of holography and noninvertible symmetries have
been recently studied in [14–16]. Fundamental for the
holographic construction is the symmetry topological field
theory (SymTFT) [17–20], which naturally arises in brane
and holographic setups from the anomaly polynomial and
inflow [21–25]. The SymTFT on Wdþ1 encodes the full
symmetry structure—the background fields for global

symmetries and their ‘t Hooft anomalies—of a QFT on
Wd ¼ ∂Wdþ1. When placed on a slab with boundaries Wd
and Md and gapped boundary condition on Md, the
SymTFT reduces to the anomaly theory of the QFT.
In this Letter, we propose a holographic derivation of the

SymTFT, as well as the study of the resulting symmetries—
including noninvertible ones—that depend on said boun-
dary conditions. We derive the SymTFT by descent from
the anomaly polynomial in dþ 2 dimensions, which is
encoded in the supergravity. Motivated by the work on BF-
type theories in [26], the Hamiltonian quantization of the
SymTFT on Wdþ1 allows us to extract Gauss’s law
constraints that generate gauge symmetry transformations.
Under inflow, the bulk gauge symmetry restricts to the
global symmetries of the boundary theory and the bulk
generators flow to the desired symmetry operators.
This is complemented by a realization of the symmetry

generators in terms of D-branes and their world-volume
theories. The bulk supergravity fields, which define the
symmetries, pull back on the brane world-volume theories.
In addition, the D-branes also contribute topological sectors
that dress the symmetry defect, while the kinetic terms of
the brane action drop out at the boundary. These defects
become noninvertible depending on the boundary condi-
tions for the bulk fields. The brane setup and its dynamics
towards the boundary provide a compelling holographic
interpretation for the noninvertible fusion via the Myers
effect of Dp-branes into a single Dðpþ 2Þ-brane, which in
turn implements the noninvertible fusion.
We demonstrate our proposal in the Klebanov-Strassler

solution, that is dual to a flow to confining pure N ¼ 1
SUðMÞ Super-Yang Mills (SYM) [27,28]. Global proper-
ties of the gauge group can be identified in holography as in
[29] and the study of holographic confinement using the
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‘t Hooft anomalies of higher-form symmetries was carried
out in [30]. In this Letter, we determine a framework to
construct all symmetries in this setup, in particular, the
noninvertible symmetries in the PSUðMÞ ¼ SUðMÞ=ZM
theory, which map between deconfining or confining vacua
when spontaneously broken. In the brane picture the
noninvertible fusion is naturally encoded in the Myers
effect on D-branes [31]. Furthermore, the deconfining or
confining transition is beautifully modeled by the Hanany-
Witten brane transition [32], Fig. 1. Though we focus on
holographic confinement, the methods are general and can
be used to study the symmetry generators of any QFT from
its SymTFT.
Field theory.—Noninvertible symmetries in QFTs in

spacetime dimensions d ≥ 4 have recently been con-
structed using various approaches. One is based on the
presence of global symmetries that enjoy a mixed ‘t Hooft
anomaly [1]. For concreteness we consider a 4D gauge
theory (on a spin manifold) with 0-form symmetry
Γð0Þ ¼ Z2M, whose background field is A1, and 1-form
symmetry Γð1Þ ¼ ZM with background field B2. Consider
the anomaly

A ¼ −2π
1

M

Z
A1 ∪

PðB2Þ
2

; ð1Þ

where P is the Pontryagin square. This anomaly arises in
4D N ¼ 1 supersymmetric Yang-Mills theories, for in-
stance, where Γð0Þ is the chiral symmetry. There is a

nonanomalous Zð0Þ
2 ⊂ Zð0Þ

2M.
The generalized 0- and 1-form symmetries [33] are

generated by 3D and 2D topological defects Dg
3ðM3Þ

and Dh
2ðM2Þ, respectively, which have group compo-

sition Dg1
p ðMpÞ ⊗ Dg2

p ðMpÞ ¼ Dg1g2
p ðMpÞ. Because of the

anomaly, the generators for Γð0Þ transform nontrivially in
the presence of background fields for Γð1Þ

Dg
3ðM3Þ → Dg

3ðM3Þ exp
�Z

M4

−
2πi
M

PðB2Þ
2

�
; ð2Þ

where ∂M4 ¼ M3. Gauging the 1-form symmetry makes
this defect inconsistent. The proposal in [1] is to dress
the defect Dg

3ðM3Þ with a minimal TQFT AM;p, which has
1-form symmetry ZM and cancels the anomaly [34].
For ZM this is the minimal (spin) TQFT AM;1 ¼ Uð1ÞM.

The dressed defects are

N ð1Þ
3 ¼ Dð1Þ

3 ⊗ AM;1; ð3Þ

where the superscript labels the generator of the 0-form
symmetry. This defect has noninvertible fusion [4,8]. ForM
odd the TQFTs obey AM;1 ⊗ AM;1 ¼ AM;2 ⊗ AM;2. This
results in the noninvertible fusion of the 3D defects in the
PSUðMÞ theory

N ð1Þ
3 ⊗ N ð1Þ

3 ¼ AM;2N ð2Þ
3 : ð4Þ

Defining the conjugate N ð1Þ†
3 ¼ D−1

3 ⊗ AM;−1 results in

N ð1Þ
3 ⊗ N ð1Þ†

3 ¼
X

M2∈H2ðM3;ZMÞ

ð−1ÞQðM2ÞD2ðM2Þ
jH0ðM3;ZMÞj

; ð5Þ

which is the condensation defect of the 1-form symmetry

on M3 with D2ðM2Þ ¼ e
i2π

R
M2

b2=M, where b2 is the gauge
field for the 1-form symmetry. We will now turn to
supergravity and branes and show how these noninvertible
symmetries are naturally implemented in this framework.
Symmetries from holography.—We illustrate the system-

atic approach by realizing it in the holographic confinement
setup in type IIB supergravity introduced by Klebanov-
Strassler [28]. It describes the near-horizon geometry of N
D3-branes probing the conifold (i.e., the Calabi-Yau cone
over the Sasaki-Einstein 5-manifold T1;1 ∼ S3 × S2) with
M D5-branes on S2 ⊂ T1;1. The near-horizon geometry is
W5 × T1;1, where the 4D space-time where the QFT lives is
W4 ¼ ∂W5. We assume integral N=M, so that the duality
cascade in field theory ends on 4D N ¼ 1 SUðMÞ SYM.
The 5d effective action is written in terms of p-form field
strengths f1, F 2, g2, h3, f3 with Bianchi identities

df1¼2MF 2; dg2¼Mh3; dF 2¼dh3¼df3¼0: ð6Þ

We solve the Bianchi identities (6) in terms of

f1 ¼ fb1þdc0þ2MA1; F 2 ¼F b
2þdA1;

g2 ¼ gb2þdβ1þMb2; h3 ¼ hb3þdb2; f3 ¼ fb3þdc2;

ð7Þ

FIG. 1. Top: Hanany-Witten transition, where the ðx0; x3Þ plane
is displayed to show the equivalence with the field theory
transition. Bottom: ‘t Hooft loop passing through the noninver-

tible defect N ð1Þ
3 becomes attached to a topological surface

operator.
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where A1, c0, b2, β1, c2 are globally defined p-form gauge
potentials and fb1, F

b
2, g

b
2, h

b
3, f

b
3 are closed forms with

integral periods, representing topologically nontrivial base
points. From Eq. (6) it follows that Mh3 and 2MF 2 are
cohomologically trivial. Assuming W5 has no torsion,
hb3 ¼ 0 ¼ F b

2. The base-points fb1, gb2 represent integral
lifts of classes in H1ðW5;Z2MÞ, H2ðW5;ZMÞ describing
discrete gauge fields for a Z2M 0-form symmetry and ZM
1-form symmetry.
The relevant terms in the 5d bulk action consist of

standard kinetic terms and nontrivial topological terms.
The latter can be extracted [30] from the consistent
truncation of [35] or via anomaly inflow [24], as reported
in the Supplemental Material [36]. In order to construct the
symmetry generators, it is convenient to dualize the
0-form potential c0 into a (globally defined) 3-form gauge
potential c3. Our task, carried out in the Supplemental
Material [36], is then to write the 5d bulk action in terms of
A1, b2, β1, c2, c3 and the base-point fluxes fb1, g

b
2, f

b
3. The

final action consists of standard kinetic terms and

Stop ¼ 2π

Z
W5

�
1

2
Nðb2dc2 − c2db2Þ þMðA1dc3 þ c3dA1Þ

þ Nb2fb3 þ A1ðgb2Þ2
�
: ð8Þ

Symmetry generators.—We now analyze the 5d bulk
action in the Hamiltonian formalism, treating the radial
direction of W5 as Euclidean time similarly to the AdS5
cases [26,29]. Crucially, the action does not depend on the
time derivatives of the time components of the gauge
potentials. As a result, the associated canonical momenta
are identically zero. Varying the action with respect to the
time components of the gauge potentials implements the
(classical) Gauss constraints. We denote the variation of
the action with respect to the time component of A1 as GA1

,
and so on. We find that Gβ1 ¼ G̃β1 and

Gb2 ¼ G̃b2 −Nd4c2−Nfb3; Gc2 ¼ G̃c2 þNd4b2;

GA1
¼ G̃A1

þ2Md4c3þðgb2Þ2; Gc3 ¼ G̃c3 þ2Md4A1: ð9Þ

Here, d4 denotes external derivative along the spatial slice
W4, tilde the kinetic term contributions, and all fields are
understood as restricted to W4. The contributions G̃ of the
bulk kinetic terms are suppressed near the boundary
[26,29].
We provide a detailed derivation of symmetry generators

from Gauss’s law constraints in the Supplemental Material
[36]. For concreteness, let us illustrate the general analysis

here by considering e
2πi

R
M4

½2Md4c3þðgb
2
Þ2�

as it is brought to
the boundary. Our task is to define a genuine operator on a
3-cycle M3 such that, when raised to the 2Mth power
and with M3 ¼ ∂M4, it reproduces the operator

e
2πi

R
M4

½2Md4c3þðgb
2
Þ2�

from the Gauss constraint. We consider
two options. In option (i), we fix gb2 at the boundary as a
classical background. This corresponds to 4D N ¼ 1
SUðMÞ SYM, with a global electric ZM 1-form symmetry
coupled to a nondynamical discrete 2-form field. The
genuine operator on M3 in this case is simply the standard

holonomy e
2πi

R
M3

c3 accompanied by the c-number phase

e
ð2πi=2MÞ

R
M4

ðgb
2
Þ2
. This operator obeys grouplike fusion

rules. In option (ii) we sum over gb2 at the boundary. In
field theory, we gauge the electric 1-form symmetry of 4D
N ¼ 1 SUðMÞ SYM, thereby getting the PSUðMÞ theory.
Casting the phase e

ð2πi=2MÞ
R
M4

ðgb
2
Þ2
as a genuine operator on

M3 we can rewrite ð1=2MÞðgb2Þ2 using a 3D auxiliary
theory (this is a type of inflow from the bulk operator onM4

to M3), which we detail in the Supplemental Material [36].
The symmetry generator on M3 is thus

N ð1Þ
3 ðM3Þ ¼

Z
Dae

2πi
R
M3

ðc3þ1
2
Madaþagb

2
Þ
; ð10Þ

which has the noninvertible fusion rule (4).
The far IR for PSUðMÞ.—The Zð0Þ

2M global symmetry of

4DN ¼ 1 SUðMÞ SYM is spontaneously broken toZð0Þ
2 in

the far IR and the theory hasM confining vacua. The mixed
anomaly (1) is matched by a nontrivial 4D symmetry
enhanced topological phase (SET) [33]

L4d ¼ Mϕdc3 þ
1

2
ϕdb1db1 þ Λ2ðdb1 þMb2Þ; ð11Þ

where ϕ is a compact scalar of period 1, c3, b2, b1 are gauge
potentials and Λ2 a Lagrange multiplier. The b1, b2 fields
are nondynamical. The possible VEVs he2πiϕi ¼ e2πip=M

(p ¼ 0; 1;…;M − 1) label the M vacua, while e
2πi

R
C3

c3

describes a domain wall between vacua. The action (11) is
invariant under the gauge transformations b01 ¼ b1 −Mλ1,

c03 ¼ c3 þ db1λ1 − 1
2
Mλ1dλ1. Thus e

2πi
R
M3

c3 has a
‘t Hooft anomaly, consistently with the fact that the
domain walls in the SUðMÞ theory support a 3D TQFT
AN;−1 [37].
In [30] it is demonstrated how the SET (11) emerges

from the 5d bulk couplings in the IR geometry T�S3
(deformed conifold). In contrast to the UV analysis above,
the IR analysis receives contributions from both topological
and kinetic terms. The Lagrange multiplier Λ2 is an imprint
of the Stückelberg pairing between b1, b2 in the 5d action.
The scalar ϕ is identified as c0=M.
Let us now turn to the PSUðMÞ theory. The far IR is still

described by (11), but now b1, b2 are local dynamical
fields. Using db1 ¼ −Mb2, we see that the vacuum with
he2πiϕi ¼ e2πip=M exhibits a discrete 2-form gauge theory
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R
M4
ðpM=2Þb22. The domain walls are no longer realized as

e
2πi

R
M3

c3 , which is not gauge invariant, but precisely
by (10). Indeed, this operator raised to the 2Mth power
with M3 ¼ ∂M4 reduces to the manifestly gauge invariant

quantity e
2πi

R
M4

ð2Mdc3þdb1db1Þ (where gb2 is locally modeled
by db1). On the domain wall, both a and b1 are dynamical
and summed over. The total 3D theory is then an Abelian
CS theory with levels encoded in the matrix ðM

1
1
0
Þ. This is a

Dijkgraaf-Witten theory with gauge group Z1, hence
trivial, as anticipated in [34].
D-branes as symmetry generators.—The topological

defects also arise as boundary limits of probe branes in
the bulk that are parallel to the boundary. Both in AdS in
hyperpolar coordinates and in the W5 geometry of the KS
solution, where the boundary sits at r → ∞, the tension
TDp ∼ rp (p > 0), such that the DBI part of the action
decouples and the Wess-Zumino term dominates. In addi-
tion, we stress that these D5-branes are not necessarily BPS
but are expected to be stable in the sense of [38] in r → ∞.
The topological terms for a D5-brane wrapping the S3

contain the bulk forms c3 (from C6 on S3) and b1 (from C4

on S3), as well as the Uð1Þ gauge field a on the brane. We
derive the action on the defect by reducing the D5-brane
Wess-Zumino action in the Supplemental Material [36].
The result reads

SD5 ¼ 2π

Z
M3

�
c3 þ

M
2
adaþ adb1

�
: ð12Þ

Here b1 is a local gauge field. The cohomology class of db1
is identified with gb2 and is part of the data of the b2
configuration in (7). It is interesting to understand what
happens as (12) is pushed to the boundary. We always
perform a path integral over a, which is a localized mode on
the D5-brane. We may or may not integrate over the
topologically trivial part of b1, which is a bulk mode,
depending on the boundary conditions. If we do not
integrate over it, the holonomy of c3 is dressed with the
nontrivial TQFT Uð1ÞM. If we integrate over it, it becomes
a trivial theory just as in the supergravity derivation. The
D-branes therefore precisely give rise to the minimal TQFT
stacking.
Noninvertible fusion and Myers effect.—To see the

noninvertible fusion, we can either repeat the field theory
analysis, given the explicit form of (12). There is a much
more elegant way to obtain the fusion directly in string
theory. The fusion is computed by stacking two D5-branes,
which gives rise to a non-Abelian gauge theory. However, a
non-Abelian brane configuration with an orthogonal S2

geometry and a nontrivial B field undergoes the Myers
effect [31] in reaching the configuration with minimal
energy (see the Supplemental Material [36]). The end point
configuration is given by a single D7-brane with two units

of world-volume gauge flux on S2. We then write
f2 ¼ fS

2

2 þ da, with
R
S2 f

S2
2 ¼ 2. From the expansion of

the Wess-Zumino action of the D7, integrating on S2 and
S3, the terms are

SD7=2D5 ¼ 2π

Z
M3

ð2c3 þMadaþ 2adb1Þ: ð13Þ

Note that this argument is applicable for any integral value
of M. From the brane we thus obtain the following
perspective on the fusion. Each single D5-brane results
in topological defects that are dressed with Uð1ÞM ¼ AM;1

CS theories—thus string theory construction automatically
results in the minimal TQFT dressing of the defects. The
“brane-fusion” predicts the action (13), which is Uð1Þ2M
CS theory coupled to b2. This is obtained also by fusing
two Uð1ÞM theories, [39] and therefore realizes the field
theory fusion rule in (4).
It is also tempting to conjecture that the fusion of N ð1Þ

3

with its conjugate N ð1Þ†
3 (5) is the fusion between defects

created by brane and antibrane, with a nontrivial field
configuration. This result in the condensation defect, which
is the lower-dimensional brane that couples to db1. This is
in fact expected from tachyon condensation of the D-Dbar
system [40], which needs to preserve the charge under db1,
and thus is expected to give rise to a nontrivial condensate.
This will be discussed elsewhere, and shown to correspond
to a mesh of D3-branes.
Action on ‘t Hooft lines and Hanany-Witten.—The brane

perspective makes the interaction between the ‘t Hooft line

H and the noninvertible symmetry defect, N ð1Þ
3 , manifest.

Field theoretically, when such a line crosses the non-
invertible topological defect, a topological surface operator
is created, which connectsN andH, see Fig. 1. This is due

to gauge transformation H → He2πi
H

Λ1 , where also b2 →
b2 þ dΛ1 [4,8].
In order to see this effect in supergravity we need to

define a surface operator, which extends in the radial
direction, r, and ends on the boundary, O2ðM2Þ. The 5d
bulk EOMs select a natural candidate for O2ðM2Þ: the b2
EOM imply

−kf3d � f3 ¼ Nf3 þ f1g2 −Mkg2 � g2≕MF 3; ð14Þ

where the k’s are constants from the kinetic terms, and Nf3
and f1g2 −Mkg2 � g2 are separately closed. The latter
combination encodes the 3-form field strength of the
2-form potential dual to b1. On shell, F 3 ¼ dâ2 for some
globally defined 2-form potential. The operator O2ðM2Þ is
identified with a Wilson surface for â2,

O2ðM2Þ ¼ e
2πi

R
M2

â2 ; â2 ¼ a2 þ κc2; ð15Þ
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where κ ¼ N=M and a2 is the dual of b1 (in type IIB a2
comes from C4 on S2, and the duality is a consequence of
the self-dual F5 flux).
In the frame where we keep b1, H is defined by the κth

power of the Wilson surface for c2 and the ‘t Hooft surface
Hb1 , i.e., the disorder operator defined by

R
S2 db1 ¼ 1 on a

small S2 that nontrivially links with M2 in the 5d space-
time. Under a gauge transformation b1 → b1 −MΛ1,
b2 → b2 þ dΛ1,O2ðM2Þ is not gauge invariant (the periods
of db1 are only invariant modulo M). We then see that

O2ðM2Þ needs to be dressed by e−2πi
H

b2. This dressing is
meaningful at the boundary when b2 is allowed to freely
vary, hence matching the field theory picture described in
[8] and the fractionalization of the ‘t Hooft line when a

noninvertible defect N ð1Þ
3 is crossed.

This bulk picture fits with the D-brane picture, in which
O2ðM2Þ is realized by a D1-D3-brane bound state on
S2 ⊂ T1;1, or alternatively D3s with κ ¼ N=M units of flux
supported on S2 [30]. In brane engineering, a Hanany-
Witten transition [32] can occur when two branes link
nontrivially in spacetime and are passed through each other,
thereby creating a new extended object stretching between
them. In our setup this can happen for D3s wrapping S2 and
extending along the radial direction r and D5s on S3

localized at the boundary:

Brane x0 x1 x2 x3 r z1 z2 w1 w2 w3

D3 X X X X

D5 X X X X X X

F1 X X

ð16Þ

Here z1;2, w1;2;3 are local coordinates on S2 and S3,
respectively. The relevant brane linking in our system is
measured by the following quantity L defined modulo M,

L¼
Z
M2×S3

F5¼−
Z
M1×S2

F3¼
Z
M2

db1¼−
Z
M1

dc0; ð17Þ

where M2 ¼ Rx1 ×Rx2 and M1 ¼ Rr. On the world

volume of N ð1Þ
3 , the EOM for a implies db1 ¼ −Mda.

Thus, db1 is exact modulo M. As a result, the linking L
must be conserved modulo M. When the D3 crosses the
D5, this changes to db1 ¼ −Mdaþ δðpt ⊂ M2Þ. The
localized source is the effect of a new object (an F1-string)
that is created, which intersects both M2 and M3 and
extends along t ¼ x0; x3, Fig. 1. The system in (16) is
related to the original Hanany-Witten setup NS5-D5-D3 by
S and T dualities. The D3- and D5-branes link in the
direction x3, this means that an F1 is created when the D3
crosses the D5 (16). F1 strings are indeed electrically

charged under e−2πi
H

b2, which was precisely the dressing
for O2ðM2Þ. This also matches the physics of the action on

the ‘t Hooft loop in PSUðMÞ through a noninvertible
domain wall between deconfining or confining vacua, that
mimics closely the order or disorder transition in the
Ising model.
Outlook.—We provide a bottom-up approach—via

Gauss law constraints in supergravity—and top-down
one—via branes in string theory—for constructing sym-
metry operators in holography. Our methods are crucial for
a systematic extraction of symmetry defects, whenever
SymTFTs are available. It deserves further study. Future
applications include theories that have a similar type of
mixed anomalies in the SymTFT, such as N ¼ 4 SYM
theories holographically dual to AdS5 × S5 with noninver-
tible duality defects [2,13]. A similar realization of these
topological defects in terms of M5-branes at the boundary
of conical in G2-holonomy spaces is also tempting, and
show similar features to (16). Finally, we also briefly
comment on the holographic realization of the (self-)
duality and triality of noninvertible topological defects
[4] for N ¼ 4 SYM in AdS5 × S5. Duality and triality are
all subgroups of SLð2;ZÞ symmetries, therefore is very
tempting to conjecture that the topological defects in this
case are engineered by 7-branes wrapping S5. These are just
examples of possible applications of this approach, which
we plan to come back to in the future, but very importantly
they show the broader scope of the holographic super-
gravity and brane approach, which are meant to address
questions about symmetries of the QFTs living at the
boundary.
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