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Significance

Pattern prediction of two 
dimensions (2D) molecular 
networks has so far relied on 
computationally involved 
approaches such as density 
functional theory, classical 
molecular dynamics, Monte 
Carlo, or machine learning. Here, 
we demonstrate an apparently 
simpler approach: Based on the 
mean-field theory of 2D 
polygonal tessellations, we build 
a hierarchical geometric model 
for supramolecular pattern 
classification and prediction. 
When applied to existing 
experimental data, our model 
provides a different view of 
self-assembled molecular 
patterns, leading to interesting 
predictions about admissible 
patterns and potential additional 
phases. While developed for 
hydrogen-bonded systems, an 
extension to covalently bonded 
graphene-derived materials or 
3D structures such as fullerenes 
is possible, significantly opening 
the range of potential future 
applications.
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Molecular self-assembly plays a very important role in various aspects of technol-
ogy as well as in biological systems. Governed by covalent, hydrogen or van der 
Waals interactions–self-assembly of alike molecules results in a large variety of com-
plex patterns even in two dimensions (2D). Prediction of pattern formation for 2D 
molecular networks is extremely important, though very challenging, and so far, 
relied on computationally involved approaches such as density functional theory, 
classical molecular dynamics, Monte Carlo, or machine learning. Such methods, 
however, do not guarantee that all possible patterns will be considered and often 
rely on intuition. Here, we introduce a much simpler, though rigorous, hierarchical 
geometric model founded on the mean-field theory of 2D polygonal tessellations 
to predict extended network patterns based on molecular-level information. Based 
on graph theory, this approach yields pattern classification and pattern prediction 
within well-defined ranges. When applied to existing experimental data, our model 
provides a different view of self-assembled molecular patterns, leading to interesting 
predictions on admissible patterns and potential additional phases. While developed 
for hydrogen-bonded systems, an extension to covalently bonded graphene-derived 
materials or 3D structures such as fullerenes is possible, significantly opening the 
range of potential future applications.

tessellation | self-assembly | monolayer | 2D

Two-dimensional (2D) natural patterns at all scales, ranging from molecular assemblies 
(1, 2) to macroscopic entities (3, 4), often appear as polygonal tessellations (5). The 
corresponding mathematical theory (6, 7) could be harnessed to obtain a deeper under-
standing of the structure-forming process. Our aim here is to make this step for molecular 
monolayers. Supramolecular tessellation in these materials is often based on noncovalent 
van der Waals interactions or halogen- and hydrogen bonding between neighboring 
molecules (8–11, 12). Illustrative examples of the former interactions are tessellations 
via exo-wall contacts between shape-persistent polygonal macrocycles, such as pil-
lar[6]arene, which have a hexagonal configuration leading to a trivalent vertex (13). 
Similarly, 2D layered network superstructures have been formed using pagoda[4]arene 
with square and rhombic tiles (14). Supramolecular tessellation studies based on direc-
tional hydrogen bonding are numerous, as the extended structures can be varied over a 
wide range by careful design of the molecular building blocks (15–17). Although in 
recent decades empirical insights into the molecular self-assembly patterns are increasingly 
obtained from experimental scanning tunneling microscopy data at molecular resolution 
that often allow for an intuitive assessment of the resulting molecular tiles, theoretical 
methods leading to a deeper understanding and predictability of pattern formation are 
still urgently needed.

Theoretical investigations have shown the architecture and symmetry of the molecular 
precursor to play an important role in combination with the nature of the intermolecular 
interactions (18). In a recent study, Baran et al. investigated how the two important factors 
of complementary molecular size and shape in combination with the presence of directed 
interactions control self-assembly at the surface (19, 20). Using coarse-grained modeling, 
their study aims to both reproduce experimental data and predict new supramolecular 
structures, thereby gaining an understanding of the factors playing a key role in the 
self-assembly process. In addition, molecular dynamics, and related computational 
approaches, have been applied to various molecular architectures (21, 22). Despite con-
tinuous advances in efficient algorithms and computational speed, reorientation kinetics 
are often too slow to capture all possible configurations and reliably identify the most 
stable structure. Enhanced sampling and Monte Carlo (22, 23) or machine learning (18, 
24) approaches have alleviated this issue but still require significant computational 
resources.D
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Results and Discussion

In this work, we present an alternative theoretical approach based 
on the mean-field theory of space-filling polygonal mosaics (6, 
25, 26), which describes these structures by average values n, v 
of the nodal and cell degrees. The former counts the number of 
polygons meeting at one vertex, and the latter counts the number 
of vertices of a polygon (Fig. 1). The averages n, v span the sym-
bolic plane and each space-filling mosaic is associated with one 
point on this plane. This representation proved useful in deter-
mining the provenance of natural fragmentation patterns (3, 4). 
As compared to fracture patterns, molecular assemblies show spe-
cial features: If they are space filling, they are also regular (i.e., the 
vertex of one polygon is not admitted lying in the interior of an 
edge of another polygon) in which case the averages are not inde-
pendent (25, 26):

	 [1]v =
2n

n − 2
,

therefore, if one of the averages can be predicted, the other may 
be computed using Eq. 1.

Single-layer materials may be represented by a hierarchical 
geometric model, consisting of (parts of ) polygonal mosaics on 
multiple scales, which we dub levels and denote, in hierarchical 
order, by Li, (i = 1,2,3,4), associated with the averages ni , vi . We 
note that the concept of levels was first introduced to describe the 
fractal geometry of 2D foams (27). Our approach is conceptually 
similar in the sense that scales of subsequent levels are well sepa-
rated; however, in our case, the subsequent levels do not carry 
self-similar patterns. Instead of being interpreted as convex mosaics, 
levels may also be viewed as graph representations of the monolayer. 
In this context, levels L2 and L4 emerge as the two essential models, 
being, respectively, the fully expanded and the fully contracted 
graphs associated with the monolayer. We next illustrate these levels 
on the example of the α-phase of the 2,7-pyrenedione (PO) mol-
ecule (SI Appendix, section S1.1) as shown in Fig. 2.

Level L1 is not space filling and describes the geometry of the 
interacting sites of a single molecule as a convex polygon with 
v1 vertices at the molecule’s perimeter atoms (i.e., the atoms able 
to form intermolecular bonds). For the PO example, we have 
v1 = 10 (eight hydrogen and two oxygen atoms). In addition, 
we also characterize the chemical bonding of the molecule via 
the parameters b1 and b̂1 . For the hydrogen-bonded systems we 
focus on, b1 is the maximum acceptor capacity of any atom 
among the v1 perimeter atoms. For PO, b1 = 2 , i.e., the maxi-
mum number of accepted hydrogen bonds for the oxygen atom. 
Based on the molecule’s total number of accepted ( ba ) and 
donated ( bd  ) hydrogen bonds, we define b̂1 = min

(

ba, bd

)

 . For 

PO, ba = 4 (two oxygen atoms with two accepted bonds each) 
and bd = 8 (eight hydrogen atoms with one donated bond each), 
so b̂1 = min (4, 8) = 4 (Fig. 3).

Levels L2, L3, and L4 describe supramolecular space-filling 
tessellations, so formula (1) can be used and in each case the 
single average ni characterizes the pattern. As noted, level L2 is 
an essential model characterized by the fully expanded graph: 
Here, all perimeter atoms appear as nodes and besides the edges 
of the L1–polygons (molecular perimeter), all intermolecular 
bonds appear as edges (Fig. 2). On level L2, we also define as b2 
the average number of bonds between neighboring molecules. 
For the PO α-phase, the nodal and cell degree averages are 
( n2, v2 ) = (2.633, 8.316), and the average bonding number b2 
= 1.357. We derive the graph corresponding to level L3 from 
level L2 via chemically targeted face contractions: All faces of the 
L2 graph (i.e., cells of the L2 mosaic) corresponding to molecules 
are contracted to single nodes (Fig. 2), such that, on level L3, the 
nodes are the molecules, and each intermolecular bond is counted 
as an edge. For the PO α-phase, we have nodal and cell degree 
averages ( n3, v3 ) = (6.333, 2.923), and level L4, finally, is again 
an essential model, characterized by the fully contracted graph. 
The latter is, as before, obtained from the preceding level L3 via 
chemically targeted face contractions: All faces of the L3 graph 
(cells of the L3 mosaic), the perimeter of which is formed by two 
intermolecular bonds, are contracted to single edges (Fig. 2), so, 
on level L4, the nodes are the molecules, and a single edge is 
added for any two bonded molecules, independent of the number 
of bonds they share. For the PO α-phase, ( n4, v4 ) = (4.667, 
3.500).

These definitions can be used to organize supramolecular patterns 
using the symbolic plane. Fig. 4 shows the level L2 patterns associ-
ated with some 2D materials (to be discussed in more detail below 
and in SI Appendix, section S1) as well as some simple periodic 
patterns in the symbolic plane along the curve defined by Eq. 1.

The model can be made predictive by expressing the supramo-
lecular pattern averages n2 , n3 , n4 by the molecular pattern average 
v1 and the chemical bonding information carried by the constants 
b1 , b̂1 , and b2 . While the derivation can be found in SI Appendix, 
section S2, we here present the formulae along with some physical 
interpretation. Formulae (2), (3), and (4) determine higher-level 
geometric information based on lower-level geometric and chem-
ical information:

	 [2]
2

v1

+2 ≤ n2 ≤
2b̂1

v1

+2 ≤
2b1

b1+1
+2,

 

	 [3]n3 = v1

(

n2 − 2
)

,

	
[4]n4 =

n3

b2

.

In addition, the mixed formula (5), expresses mean-field aver-
ages using both lower-level and higher-level information:

	 [5]
n4

v1

+ 2 ≤ n2.

We note that if the level 4 pattern is convex, then in formula (5), 
n4 ≥ 3 . The geometric model formed by formulae (2–5) was 
found to be correct for the experimental data of 2D ice as well as 
2,7-dihydroxypyrene (PO), 1,6,7,12-tetraazaperylene (TAPE) and 
triimidazo[1,3,5]triazine (TT) molecules (see data points in Fig. 4 

Fig. 1. Regular polygonal mosaic in the plane. The cell degree v counts the 
vertices of a polygon, the nodal degree n counts the polygons overlapping 
at a vertex.D
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and SI Appendix, section S1 for numeric values as well as a descrip-
tion of the molecules). We note that formula (2), and particularly 
the right-most upper bound, predicts that n2 ≤ 4 and conse-
quently v2 ≥ 4 for all level L2 supramolecular patterns. This 
implies for all conceivable supramolecular patterns n2 ≤ v2 , thus 
lying toward the left on the curve given by formula (1), greatly 
restricting the variety of possible patterns. In addition, we found 
that the bounds given by Eqs. 2 and 5 are sharp, i.e., there exist 
known 2D molecular monolayers where these bounds are exactly 
realized. This can be seen for the case of 2D ice in Fig. 4, where 
the hexagonal and square arrangements lie on the upper and lower 
bounds, respectively, of the admissible range (shown by the red 
arrow) determined by a combination of formula (5) for the lower 
and formula (2) for the upper bound:

	 [6]
3

v1

+ 2 ≤ n2 ≤
2b̂1

v1

+ 2.

In formula (5), we used the information that the level L4 pat-
tern is convex. This implies that these bounds cannot be improved 
unless one imposes restrictions on the set of considered 
materials.

One notable feature of the admissible ranges for water and PO 
shown in Fig. 4 is that they do not overlap on either axis, implying 

that the two molecules will never produce identical supramolec-
ular patterns.

Apart from the PO α-phase, mentioned in deriving the levels, 
the same molecule may also form a β-phase, which is characterized 
by a slightly larger n2 . Neither of the two phases, however, lies 
on the boundary of the admissible range (shown by the purple 
arrow), implying that further phases could exist. While no struc-
ture outside the range delimited by the α- and β-phases was 
observed experimentally, a γ-phase falling within this range was 
observed, which has ( n4, v4 ) = (3.600, 4.500). We observe a 
potentially interesting symmetry at level L4: the α- and β-phases 
correspond to the symmetrical, dual points ( n4, v4 ) at (4.667, 
3.500) and (3.500, 4.667), respectively (SI Appendix, section S1). 
The underlying physical meaning of this symmetry uncovered by 
our mean-field geometric model and its validity for other molec-
ular architectures will be an interesting topic for future research.

A further interesting aspect is that the model may be tuned by 
adding additional data to the chemical bonding information. 
Temperature influences the bonding constant b̂1 and, via Eq. 2, 
also the combinatorial averages. For PO, b̂1 has been computed 
via Boltzmann populations based on density functional theory 
(DFT) total energies of single and bifurcate hydrogen bonds (see 
details in SI Appendix, section S3). As the preference for bifurcate 
hydrogen bonds is reduced with increasing temperature, b̂1 
decreases and the lower bound for v2 increases as a function of 
temperature (SI Appendix, Fig. S4). This implies that at finite tem-
perature the admissible range for patterns may shrink.

Conclusion

In summary, we have applied the theory of space-filling polygonal 
tessellations to classify 2D molecular monolayers and obtained a 
predictive understanding of the conceivable geometries. While 
developed here for hydrogen-bonded molecular networks, there is 
no fundamental reason restricting our method to this class of mate-
rials. Indeed, only the higher upper bound in Eq. 2 is directly 
related to hydrogen bonding, while the rest of the model could be 
readily applied to other 2D assemblies; for example, covalently 
bonded atomic systems like the rich class of graphene-derived com-
pounds such as porous and doped graphene (29) or related com-
pounds such as boron nitrate (30) or borophene (31). As the 
concept of the ( n, v ) symbolic plane does not depend on the 
dimension of the tessellation, the same concepts could, in principle, 

Fig. 2. Illustration of the levels as an interpretation of molecular patterns, using the α-phase of the 2,7-pyrenedione (PO) molecule. Upper row: Physical images 
of molecules and patterns. Lower row: Abstract graph/mosaic representation of patterns. Columns: Level L1: Structure of the molecule and blue polygon derived 
from the perimeter atoms (Upper row), perimeter as convex polygon (Lower row). Level L2: Supramolecular pattern. Faces corresponding to molecules are filled 
with blue color (Upper row) and shown in graph representation (Lower row). Level L2→L3 transition shown in the Upper row: Midpoint of blue molecular faces 
marked as new nodes. Level L3: Pattern obtained by contracting blue molecular faces to single nodes. Lower row: Graph of level L3. Level L3→L4 transition shown in 
the Upper row: Faces between multiple adjacent bonds are colored red. Level L4: Pattern obtained by contracting red faces to edges. Lower row: Graph of level L4.

Fig.  3. Chemical information used in formulae (2–4), for the example of 
the α-phase of the 2,7-pyrenedione (PO) molecule. Upper image: Maximum 
acceptor capacity b

1
 of any atom among the perimeter atoms as well as the 

molecule’s total number of accepted ( b
a
 ) and donated ( b

d
 ) hydrogen bonds 

and b̂
1
= min

(

b
a
, b

d

)

 . Lower figure: b
2
 as the average number of bonds 

between neighboring molecules.D
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be applied to the classification of 3D supramolecular patterns. 
However, in 3D, no formula analogous to (1) exists, so we expect 
that patterns would occupy not just a curve, but a domain of the 
symbolic plane. Our theory has shown its promise for the classifi-
cation and separation of 2D molecular networks. Given that our 
approach yields a set of numbers classifying any given molecule 
and assembly, it could be of high relevance in machine-learning 
studies of the temperature-dependent relation between molecular 
structure and the resulting assembly, serving as a preprocessing step 
to turn image data into suitable numerical datasets.

Data, Materials, and Software Availability. Density functional theory data 
and analysis is available at DOI: 10.24435/materialscloud:e4-h1 (32). All study 
data are included in the article and/or SI Appendix.
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