A global picture of the first abrupt climatic event occurring during the last glacial inception

E. Capron,1,2 A. Landais,1 J. Chappellaz,3 D. Buiron,3 H. Fischer,4,5 S. J. Johnsen,6 J. Jouzel,1 M. Leuenberger,4 V. Masson-Delmotte,1 and T. F. Stocker4

Received 6 June 2012; revised 29 June 2012; accepted 29 June 2012; published 4 August 2012.

[1] The orbital-scale transition from the last interglacial to glacial climate corresponds to the progressive organization of global millennial-scale climate variability. Here, we investigate the structure and the global fingerprint of the first warming event occurring during the last glacial inception, the Greenland InterStadial 25 (GIS 25). Using centennial to decadal-resolution measurements of δ18O and δD in the ice together with δ15N, δ18O2 and CH4 in the trapped air, we show that GIS 25 does not coincide with large environmental changes at lower latitudes. Such an equivocal fingerprint questions whether GIS 25 is simply a smaller amplitude version of later rapid events or whether it reflects a more regional northern hemisphere origin for the initiation of the millennial-scale climatic variability. After this ambiguous first rapid event, the onset of the global millennial-scale variability - characteristic of the last glacial period - occurs as a short (300 years) event ending GIS 25. Citation: Capron, E., A. Landais, J. Chappellaz, D. Buiron, H. Fischer, S. J. Johnsen, J. Jouzel, M. Leuenberger, V. Masson-Delmotte, and T. F. Stocker (2012), A global picture of the first abrupt climatic event occurring during the last glacial inception, Geophys. Res. Lett., 39, L15703, doi:10.1029/2012GL052656.

1. Introduction

[2] Major global climate reorganisations take place at the transition between relatively short and stable interglacial periods, and relatively long and variable glacial periods. While the role of orbital forcing on changes in the latitudinal and seasonal distribution of insolation is recognized to be an important driver for glacial inceptions [e.g., Berger, 1988], open questions remain regarding the onset, cause and role of millennial variability within such transitions. Fully understanding and simulating these rapid changes are critical challenges as they indicate an important instability of the Earth climate and thus, may have important implications for predictions of future climate and constraining the boundary conditions required to initiate rapid climate change.

[3] The transition between the Last Interglacial (hereafter Marine Isotopic Stage 5.5, ~129–116 thousand years before present (ka)) into the first stage of the last glacial period (MIS 5.4, ~116–105 ka) is the only glacial inception recorded in Greenlandic ice cores [NorthGRIP Community Members, 2004]. It is generally accepted that this transition is characterized by progressive ice sheet growth in response to the climatic amplification of astronomical forcing, through, e.g., the snow/ice albedo feedback [e.g., Khodri et al., 2001; Wang and Mysak, 2002; Tziperman et al., 2006; Jochum et al., 2012]. At least one quarter of the ice sheet volume during full glacial conditions is reached at MIS 5.4 [Bintanja et al., 2005; Thompson and Goldstein, 2005] (Figure 1). This transition is associated with a small millennial-scale warming event first identified in Northern Atlantic marine records [Chapman and Shackleton, 1999; Oppo et al., 2006] and labelled Dansgaard-Oeschger (DO) event 25 in the NorthGRIP δ18Oice record [NorthGRIP Community Members, 2004].

[4] DO events are a classical feature of the last glacial period [NorthGRIP Community Members, 2004]. A DO event is classically described as an abrupt warming reaching 8–16°C within decades in Greenland [Huber et al., 2006; Landais et al., 2006], leading to a transient warm phase (GIS for Greenland Interstadial) followed by a slower cooling and generally culminating in a rapid return to the cold stadial state (GS for Greenland Stadial) (Figure 1). DO events have worldwide reverberations captured by oceanic and continental records [Voelker et al., 2002], changes in atmospheric composition [Chappellaz et al., 1993], and their one-to-one Antarctic counterparts [EPICA Community Members, 2006; Capron et al., 2010a] confirm the bipolar seesaw mechanism predicted in a simple model [Stocker and Johnsen, 2003]. They are commonly thought to be linked with significant shifts in the strength of the Atlantic Meridional Overturning Circulation (AMOC), related to glacial ice sheet meltwater discharge into the North Atlantic Ocean [Broecker, 1998; Stocker, 2000]. However, modelling the glacial climatic millennial-scale variability related to changes in the AMOC is still challenging (Kageyama et al. [2010] for a review) and mechanisms or threshold-crossing events in the Tropics or the Southern Hemisphere for triggering abrupt climatic events are not ruled out [Cane, 1998; Knorr and Lohmann, 2003]. A crucial problem is thus to document the triggering and the structure of early DO events during the glacial inception compared to classical DO events of MIS 3.
Figure 1. (a) 65°N insolation (black), 30°N insolation (grey) and obliquity (dashed black) [Laskar et al., 2004]. (b) Sea level relative to present, reconstructions from Bintanja et al. [2005] (grey curve) and Thompson and Goldstein [2005] (black crosses with associated uncertainties). (c) CO₂ data [Lüthi et al., 2008], smoothed curve (black) produced from a five-point binomial filter using 1200-yr resampled data. (d) NorthGRIP δ¹⁸O_{ice} [NorthGRIP Community Members, 2004]. GIS beginning is marked by an abrupt warming referred to as DO. Yellow boxes indicate rebound-type structures: GIS 22, GIS 25 and the rapid event ending GIS 21 [Capron et al., 2010a]. (e) NorthGRIP CH₄ grey triangle: Capron et al. [2010b]; this study: red triangle). (f) NorthGRIP δ¹⁸O_{atm} [Landais et al., 2010]. (g) δ¹⁸O_{calcite} of Sanbao Cave speleothems [Wang et al., 2008]. (h) EDML δ¹⁸O_{ice} [Stenni et al., 2010]. Antarctic Isotopic Maximum events are indicated (AIM). (i) EDC δ¹⁸O_{ice} Jouzel et al. [2007] and Stenni et al. [2010] have suggested that an Antarctic counterpart of DO 25, named AIM 25, was visible in δ¹⁸O_{ice} profiles from the EPICA ice cores; the millennial-scale event identified as AIM 25 is indicated for each record by the red arrow. The associated question marks illustrate that such identification remains equivocal. Except for the Sanbao δ¹⁸O_{calcite} record, the orbital parameters, and the sea level reconstruction from Thompson and Goldstein [2005], records are synchronised on the EDC3 timescale [Parrenin et al., 2007; Capron et al., 2010b]. Dashed light pink lines indicate rapid event onsets. The black arrow indicates the temporal uncertainty linked to the timescale synchronisation at the onset of GIS 25. The horizontal bar indicates the GIS/GS succession and dots indicate the ambiguity that remains on defining the start of GS 26 and GS 23.
[5] Up to now, the only ice core from Greenland able to depict the continuous sequence of the last glacial inception is the NorthGRIP ice core, providing a wealth of climatic and environmental proxies, and an exceptionally high resolution over this sequence (annual layer thickness of the order of 1 cm [NorthGRIP Community Members, 2004]). At NorthGRIP, the long-term cooling trend between 123 ka and 116 ka due to decreasing obliquity and precession-forced insolation is interrupted at 116 ka by GIS 25 which lasts 4700 ± 140 years (Figure 2). This climatic sequence is very similar to the one observed over the long interstadials of MIS 5, GIS 21 and GIS 23. They display a short-lived abrupt warming called “rebound” event following a progressive cooling phase [Capron et al., 2010a]. Thus, DO 25 can be viewed as the “rebound” event ending MIS 5.5. The presence of such characteristic structures associated with rebound-type events demonstrates that the millennial scale climatic variability in Greenland is more complex than the GS/GIS succession classically described (Figure 1).

[6] Previous studies have already pointed out the peculiarities of DO 25, with characteristics different from classical DO events [Chapman and Shackleton, 1999; Oppo et al., 2006; Landais et al., 2006; Sanchez-Goñi et al., 2002]. Still, high-resolution data do not show the precise North Atlantic sequence of events over the last glacial inception and how this is linked to climatic and environmental changes in the lower latitudes. Here we employ the NorthGRIP record to report a detailed picture of the onset of the rapid climatic variability in Greenland and in the lower latitudes based on
new high-resolution (centennial to sub-decadal) profiles of a wide range of parameters measured on both ice and air trapped in ice (Figure 2 and Table 1).

2. Data and Methods

[7] New air isotopes (δ15N of N2, δ18O of O2) and methane concentration measurements were performed on the trapped air of the NorthGRIP ice core. A high resolution profile of δ18O of the ice (δ18Oice) was obtained over the last glacial inception, along with a δD profile which in combination yields the deuterium excess (d-excess = δD – 8 × δ18O) [Dansgaard, 1964]). See Table 1 and Appendix A for details.

[8] Estimating the magnitude of the Greenland temperature shift at the onset of GIS 25 is not straightforward since δ18Oice is affected by precipitation seasonality and/or shifts in moisture sources [e.g., Masson-Delmotte et al., 2005]. The combined use of positive anomalies of δ15N together with the modelling of physical processes occurring in the firm (e.g., densification, heat diffusion [Goujon et al., 2003]) provides a quantitative estimate of the amplitude of rapid surface temperature increases [e.g., Severinghaus et al., 1998; Landais et al., 2004a, 2006; Huber et al., 2006]. Here, using a firnification and heat diffusion model [Goujon et al., 2003], it is possible to reproduce the δ15N evolution by adjusting the prescribed surface temperature scenario that is originally based on water isotopic records. The associated uncertainty of 2.5°C is estimated from sensitivity experiments performed using varying surface temperature scenarios as model inputs [Landais et al., 2004a].

3. Results

[9] We first present new high-resolution δ18Oice measurements covering the glacial inception between 108 and 123 ka (Figure 2 and Table 1). Two abrupt increases of δ18Oice are objectively identified in this time interval and quantified using the RAMPFIT software [Mudelsee, 2000]. This weighted least-squares method estimates the level of the δ18Oice for stadial and interstadial conditions, a linear trend between the change points, and a measure of the uncertainty of these estimated change points based on a set of 400 bootstrap simulations for each abrupt event. The onset of GIS 25 is characterized by a δ18Oice increase of 1.12 ± 0.05‰ and the end of GIS 25 is punctuated by a second abrupt δ18Oice increase of 1.51 ± 0.04‰. This sub-event is referred later as GIS 25 s. These magnitudes are significantly reduced in comparison to subsequent GIS onsets (Figure 1). Note that
while the location of GIS 25 close to bedrock (80 m) favours a strong influence of ice diffusion, this will only dampen $\delta^{18}O_{\text{ice}}$ high frequency variability [Johnsen et al., 2000] and the rate of abrupt variations but this should not affect the magnitude of abrupt stepwise $\delta^{18}O_{\text{ice}}$ shifts.

[10] Our new high resolution $\delta^{13}N$ profile reveals an increase of 0.044‰ at GIS 25 onset. Using the firm densification model from Goujon et al. [2003], the best fit between measured and modelled $\delta^{13}N$ is obtained for a warming of 3 ± 2.5°C. The warming at the onset of GIS 25 occurs in 180 years and is three to up to five times smaller than for the subsequent abrupt events [e.g., Landais et al., 2006]. We also show that GIS 25 is then terminated by a previously undocumented short warm event, GIS 25 s, lasting 300 ± 90 years with an amplitude of 5 ± 2.5°C (Figure 2). Note, that our detailed $\delta^{13}N$ and $\delta^{18}O_{\text{am}}$ (proxy for low frequency bio- and hydrological changes [Landais et al., 2010; Severinghaus et al., 2009]) does not show any significant changes at the same depth as the shift in $\delta^{18}O_{\text{ice}}$ marking DO 25 onset [Landais et al., 2006]. This confirms that DO 25 is of climatic origin and does not result from stratigraphic disturbances [e.g., Landais et al., 2004b; Fuchs and Leuenberger, 1996]. The $\delta^{13}N$ increase associated with GIS 25 s onset occurs at the same depth as a sharp methane peak of 59 ± 7 ppbv. Such synchrony between $\delta^{13}N$ and CH$_4$ is systematic during subsequent DO events [e.g., Huber et al., 2006] and classically interpreted as reflecting changing emissions from tropical and boreal wetlands in phase with Greenland temperature [Chappellaz et al., 1993].

[11] In contrast, no clear CH$_4$ signal is associated with the $\delta^{13}N$ peak marking DO 25. Indeed, a 47 ± 11 ppbv CH$_4$ increase is concurrent to GIS 25 onset, an amplitude also encountered during two other CH$_4$ peaks identified during GS 26 and GIS 25 when no significant Greenland temperature change is registered. This contrasts with the CH$_4$ shifts between 80 to 200 ppbv that are associated with the glacial DO events [Chappellaz et al., 1993] (Figure 2). Such a small CH$_4$ increase could result from the fact that the temperature rise at the onset of GIS 25 is also significantly smaller than the one observed for the subsequent rapid events as the temperature sensitivity of the CH$_4$ change at the onset of GIS 25 is in the observed range of later rapid events. But the fact that there are other CH$_4$ signals of similar strength without a corresponding temperature shift points to an additional temperature-independent driver of CH$_4$ changes during glacial inception. The reduced CH$_4$ change at the onset of GIS 25 compared to later rapid events indicates that neither boreal nor tropical CH$_4$ sources significantly responded to this abrupt warming. It is also possibly related to the fact that GIS 25 occurs at a time corresponding to a relative minimum in the 30°N summer insolation, damping the effect of changes in the hydrological cycle on CH$_4$ sources (Figure 1). Indeed, it has been previously pointed out that this precession-forced parameter was modulating the amplitude of DO imprints in CH$_4$ [Brook et al., 1996; Flückiger et al., 2004].

[12] The isotopic composition of atmospheric oxygen ($\delta^{18}O_{\text{atm}}$) is also an integrated signal incorporating contributions from low latitudes. $\delta^{18}O_{\text{atm}}$ records have revealed smoothed millennial-scale variations marked by a systematic increase over GS and a decrease over GIS (Figure 1) [Severinghaus et al., 2009]. After comparison with the $\delta^{18}O$ of calcite ($\delta^{18}O_{\text{calcite}}$) from Chinese speleothems [Wang et al., 2008], those millennial-scale variations were suggested to reflect changes in the vegetation distribution and in the low latitude hydrological cycle over abrupt events related to the monsoon activity, itself influenced by shifts in the InterTropical Convergence Zone [Landais et al., 2010; Severinghaus et al., 2009]. Although the $\delta^{18}O_{\text{atm}}$ variations are of smaller amplitude, we can distinguish an inverse pattern over the glacial inception. Indeed, while $\delta^{18}O_{\text{atm}}$ is increasing over the later GS, it decreases slightly by 0.06 ‰ during GS 26 in parallel to the CH$_4$ trend. Also, $\delta^{18}O_{\text{am}}$ increases by 0.07 ‰ during GIS 25 (Figure 2) while other interstadials are associated with a decrease of $\delta^{18}O_{\text{am}}$. This result suggests that there is not a simple coupling between high-latitude temperature and ITCZ shifts during abrupt climatic events that holds for all time periods.

[13] Deuterium excess in polar ice is used as a tracer for climatic conditions prevailing in the oceanic moisture source regions. Over DO 25, a negative 1 ‰ excursion is identified concurrent to GIS 25 s (Figure 2) interrupting a long-term d-excess increase that starts in the course of GIS 25. An anti-phase behaviour is also observed for the sequence of GS 25-GIS 24 with a clear decrease of d-excess by 4 ‰ corresponding to DO 24. This is consistent with the $\delta^{18}O_{\text{ice}}$/d-excess antiphase behaviour between 12 and 100 ka observed in Greenlandic ice cores, interpreted to reflect a significant warming of the Greenland moisture source region, induced by southward source shifts at each GS onset [e.g., Masson-Delmotte et al., 2005]. The existence of such an antiphase behaviour between $\delta^{18}O_{\text{ice}}$/d-excess at the onset of GIS 25 remains equivocal. Indeed, a rapid 1‰-drop occurs simultaneously to the onset of GIS 25 but this is embedded in a long-term decrease of d-excess which already starts over GS 26. Thus, it seems unlikely that the onset of GIS 25 is associated with major modifications of the North Atlantic hydrological cycle. Also, the d-excess trend changes in the course of GIS 25 when d-excess starts increasing without any corresponding variation in the $\delta^{18}O_{\text{ice}}$ (Figure 2). Slow changes in the location of the moisture source likely occurred during the glacial inception because of decreasing local insolation, but the coupled behaviour between abrupt shifts in Greenland temperature and moisture source location is likely to have started only at GIS 25 s, simultaneously with the clear coupling between Greenland abrupt warming and CH$_4$ increase.

4. Discussion and Conclusions

[14] Altogether, the comparison of $\delta^{18}O_{\text{atm}}$, CH$_4$, d-excess, $\delta^{13}N$ and $\delta^{18}O_{\text{ice}}$ on the same ice core suggests that DO 25 is less pronounced than later DO events and that the coupling between low and high latitudes over DO 25 is different than for subsequent events.

[15] First, the weak effect of DO 25 on the low latitude hydrology could be explained by an asymmetrical polar ice sheet growth during the glacial inception. Indeed, moderate warmth and a strong AMOC during the glacial inception have been demonstrated, and have been suggested to act as a strong positive feedback to fuel northern ice-sheet growth [McManus et al., 2002; Guiot et al., 2010, 2011; Khodri et al., 2001; Wang and Mysak, 2002] by providing heat and moisture to the high latitudes during winter [Denton et al., 2005]. Since the thermal inertia of the Southern Ocean delays the Antarctic cooling, an interhemispheric thermal asymmetry could be created that would shift the
ITCZ southward [Chiang and Bitz, 2005]. We speculate that for such extreme southward positions of the ITCZ, its sensitivity to DO changes in the North Atlantic is muted, while atypically strong rainfall in the southern low latitude regions would prevail over the glacial inception. The $\delta^{18}O_{\text{calcite}}$ from Sanbao cave exhibits an event, the East Asian Monsoon event 25 (EAM 25), during the glacial inception that is significantly smaller than the subsequent EAM [Wang et al., 2008] (Figure 1). Unfortunately, dating uncertainties preclude a precise discussion of the sequence of events between the speleothem and ice core records, so we cannot distinguish whether EAM 25 is related to Greenland in the classical DO fashion. Considering those dating issues, one should also be cautious in interpreting the small isotopic event recently identified in the benthic $\delta^{18}O$ record from the China Sea and interpreted as a response to ice volume variations to the Antarctic counterpart of DO 25 [Caballero-Gill et al., 2012].

[16] Additionally, in contrast with the subsequent GS, the identification of an Antarctic counterpart to DO 25 is still ambiguous (Figure 1) as a precise synchronization of Greenland and Antarctic ice cores through CH$_4$ records is complicated over this time interval [Capron et al., 2010b]. Indeed, the short NorthGRIP CH$_4$ peaks cannot be recorded in the current Antarctic ice cores because of the slower enclosure process [Spahni et al., 2003]. In addition, the smoothed CH$_4$ increase observed when considering a low-pass filtered CH$_4$ curve over GS 26 and GIS 25 precludes the precise identification of a CH$_4$ stratigraphic marker between NorthGRIP and Antarctic ice cores (Figure 2). Finally, the high-frequency Antarctic $\delta^{18}O_{\text{ice}}$ records of the glacial inception show strong differences among different ice cores: the EPICA Dome C (EDC) $\delta^{18}O_{\text{ice}}$ profile displays only a small “inflection” interrupting the regular decrease, while the EPICA Dronning Maud Land (EDML) $\delta^{18}O_{\text{ice}}$ profile exhibits several centennial-scale variations (Figure 1) [Stenni et al., 2010; Jouzel et al., 2007]. Consequently, we cannot firmly assess the existence of an Antarctic counterpart to DO 25.

[17] To summarize, our results indicate that the first abrupt warming event, GIS 25, over the glacial inception is of significantly smaller amplitude (3 \pm 2.5°C) than subsequent events (from 8 to 16°C [Huber et al., 2006; Landais et al., 2006]). We show that GIS 25 does not have the clear global fingerprint as demonstrated for later rapid events. The onset of the classical millennial-scale variability with a clear, broad spatial signature occurs only at the end of GIS 25, during the brief GIS 25 s event. Since GIS 25 warming is of reduced amplitude compared to the subsequent rapid events, one could expect that the global response to this event should also be small, as observed in CH$_4$ and d-excess records. This interpretation implies that this first abrupt event is likely driven by the same physical processes as the latter events. Alternatively, based on CH$_4$ and d-excess patterns, together with the anomalous relationship observed between Greenland temperature and $\delta^{18}O_{\text{dust}}$ data, we speculate that a different coupling between the high and low latitudes is at play during GIS 25 compared to later rapid events, and that GIS 25 represents a regional feature in the Greenland/North Atlantic region that ends MIS 5.5. The first Greenlandic warming event is likely neither associated with significant iceberg discharge [Chapman and Shackleton, 1999; Oppo et al., 2006] nor strong reorganisation of the AMOC [Guihou et al., 2010, 2011]. Thus, similarly to the small “rebound” events at the end of GIS 21 and 23, we suggest that GIS 25 could be a response to the slow cooling phase occurring during MIS 5.5 induced by a decreasing local summer insolation. This progressive cooling can increase sea ice formation resulting in saltier surface waters [e.g., Jochum et al., 2012]. At a certain point, a resumption of the AMOC can be triggered, leading to NH high-latitude warming, enhancing accumulation and ice sheet growth. Such a recovery of the AMOC may only affect the North Atlantic region. This hypothesis that calls for processes originating in the high latitudes of the NH needs further investigation involving improved synchronisations between ice cores and other paleoclimatic archives. So far, neither of these two hypotheses (muted event or regional event) can be ruled out from existing data. Still, the sequence of events revealed by our new data highlights the close interplay between orbitally-driven transitions and the progressive large-scale organization of millennial-scale variability.

Appendix A

[19] The $\delta^{18}O$ measurements have been performed at LSCE through an automatic injection device and a technique based on uranium reduction of water to H$_2$ gas with an associated analytical accuracy of \pm0.5‰ at 1σ [Vaughn et al., 1998]. The high resolution $\delta^{18}O_{\text{ice}}$ profile has been obtained at the Niels Bohr Institute for Astronomy (University of Copenhagen). Measurements were performed using a CO$_2$ equilibration technique [Epstein, 1953] with an analytical precision of 0.07‰. The d-excess calculation is therefore associated with a quadratic uncertainty of 0.75‰. Methane concentrations measurements were conducted at LGGE. The air from ice samples of 50 g is extracted with a melt-refreezing method under vacuum, and the extracted gas is then analysed for CH$_4$ by gas chromatography accompanied by a mean analytical uncertainty (1σ) of 8 ppbv [Chappellaz et al., 1993].

[20] Measurements of $\delta^{15}N$ of N$_2$ and $\delta^{18}O$ of O$_2$ were carried out at LSCE. For each depth, two adjacent ice samples (10g each) covering the same depth interval were cut from the ice core. As depicted in Sowers et al. [1989] and Landais et al. [2004a, 2004b], the trapped air is extracted by melting...
the samples under vacuum. The water is then refrozen and the gases remaining in the headspace are cryogenically trapped in a steel tube at liquid He temperature. The isotopic measurements are then performed on a Thermo Delta V Plus that permits simultaneous acquisition of m/z 32 and 28. Corrections are applied for pressure imbalance and chemical interference for all measurements. The δ18O of paleoatmospheric O2 (δ18Oatm) is obtained after correction for gravitational and thermal fractionation in the firn (i.e. the unconsolidated snow that constitutes the top 70 m of the ice sheet at the NorthGRIP site today) using the δ18O data that are acquired simultaneously [Landais et al., 2006]. The associated pooled standard deviation for δ15N and δ18Oatm is 0.006‰ and 0.030‰ respectively. The δ15N measurements and a low resolution δ18O profile over DO 25 were published by Landais et al. [2006, 2010]. Here, we increased the resolution of the δ18O record up to 110 years.

[21] Acknowledgments. We thank Nerilie Abram and Eric Wolff for their useful comments on an early version of this paper. This work is a contribution to the North Greenland Ice Core Project (NGRIP) directed and organized by the Department of Geophysics at the Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen. It is supported by funding agencies in Denmark (SNF), Belgium (FNRS-CFB), France (IFEP and INSU/CNRS), Germany (AWI), Iceland (RannIs), Japan (MEXT), Sweden (SPRS), Switzerland (SNF) and the USA (NSF, NSF, Office of Polar Programs). This work was supported by ANR PICC and ANR NEEM and by funding to the Past4Future project from the European Commission’s 7th Framework Programme, grant 243908. This work is published by "Earth and Planetary Science Letters", vol. 282, 345-365, doi:10.1016/j.epsl.2009.07.014.