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Abstract 1 

During rest, intrinsic neural dynamics manifest at multiple timescales, which progressively 2 

increase along visual and somatosensory hierarchies. Theoretically, intrinsic timescales are 3 

thought to facilitate processing of external stimuli at multiple stages. However, direct links 4 

between timescales at rest and sensory processing, as well as translation to the auditory 5 

system are lacking. Here, we measured intracranial electroencephalography in 11 human 6 

patients with epilepsy (4 women),  while listening to pure tones. We show that in the auditory 7 

network, intrinsic neural timescales progressively increase, while the spectral exponent flattens, 8 

from temporal to entorhinal cortex, hippocampus, and amygdala. Within the neocortex, intrinsic 9 

timescales exhibit spatial gradients that follow the temporal lobe anatomy. Crucially, intrinsic 10 

timescales at baseline can explain the latency of auditory responses: as intrinsic timescales 11 

increase, so do the single-electrode response onset and peak latencies. Our results suggest 12 

that the human auditory network exhibits a repertoire of intrinsic neural dynamics, which 13 

manifest in cortical gradients with millimeter resolution and may provide a variety of temporal 14 

windows to support auditory processing.   15 

Significance statement 16 

Endogenous neural dynamics are often characterized by their intrinsic timescales. These are 17 

thought to facilitate processing of external stimuli. However, a direct link between intrinsic timing 18 

at rest and sensory processing is missing. Here, with intracranial electroencephalography 19 

(iEEG), we show that intrinsic timescales progressively increase from temporal to entorhinal 20 

cortex, hippocampus, and amygdala. Intrinsic timescales at baseline can explain the variability 21 

in the timing of iEEG responses to sounds: cortical electrodes with fast timescales also show 22 
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fast and short-lasting responses to auditory stimuli, which progressively increase in the 23 

hippocampus and amygdala. Our results suggest that a hierarchy of neural dynamics in the 24 

temporal lobe manifests across cortical and limbic structures and can explain the temporal 25 

richness of auditory responses. 26 

  27 



 

4 

Introduction 28 

The human brain gives rise to rich neural dynamics, which play a fundamental role in 29 

processing sensory information. Intrinsic dynamics of the brain operate at multiple timescales 30 

(Hasson et al., 2008; Honey et al., 2012; Murray et al., 2014; Raut et al., 2020) through 31 

oscillatory (Frauscher et al., 2018; Mahjoory et al., 2020; Vezoli et al., 2021) and non-oscillatory 32 

(Gao et al., 2020) processes. In the visual and somatosensory systems, intrinsic timescales 33 

manifest at rest, in ongoing neural activity: primary areas exhibit short timescales that may 34 

facilitate a quick reaction to incoming stimuli (Murray et al., 2014; Siegle et al., 2021). These 35 

progressively increase while advancing through the cortical hierarchy, supporting integration of 36 

information (Chaudhuri et al., 2015; Murray et al., 2014). Whether a similar hierarchy of intrinsic 37 

dynamics exists in the auditory system, and in particular within the temporal lobe, a hub for 38 

auditory processing, remains underexplored. 39 

In the auditory system, evidence for processing of external stimuli at multiple latencies stems 40 

from studying evoked responses (Honey et al., 2012; Norman-Haignere et al., 2022). Primary 41 

auditory areas show fast and short-lasting responses to sounds (Camalier et al., 2012). 42 

Response latencies progressively increase while advancing in a processing hierarchy, from 43 

primary to secondary areas, as for example the superior temporal gyrus (Nourski et al., 2014). 44 

Beyond this ‘classical’ auditory cortex circuitry of the temporal lobe an extensive network of 45 

adjacent cortical and deeper regions is also sensitive to auditory input and exhibits diverse 46 

response profiles and latencies. At a cortical level, the insula for example shows relatively fast 47 

auditory responses (Blenkmann et al., 2019), while deeper structures, such as the hippocampus 48 

and amygdala show slower, long-lasting responses to auditory stimuli (Halgren et al., 1980), 49 

possibly mediating the integration of sensory information (Zuo et al., 2020).  50 
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This richness in auditory responses suggests that, when stimulated with sounds, the temporal 51 

lobe facilitates auditory processing at multiple timescales (Stephens et al., 2013). These are 52 

thought to reflect temporal “integration” windows that manifest in response to external stimuli 53 

(Honey et al., 2012; Lerner et al., 2011; Norman-Haignere et al., 2022). Whether a similar 54 

temporal lobe hierarchical organization also exists during rest and contributes to auditory 55 

processing remains underexplored. Importantly, there is a critical lack of studies that 56 

simultaneously assess neural timescales not only in the temporal cortex, but also in the 57 

hippocampus and amygdala, which are key, yet underexplored regions in processing of auditory 58 

information (Billig et al., 2022). The question of how these structures are positioned in a 59 

hierarchy of intrinsic timescales remains therefore open. In humans, in particular, a fine-grained 60 

measurement of neural dynamics in the temporal lobe can be challenging with non-invasive 61 

techniques (Johnson et al., 2020; Raut et al., 2020; Tzovara et al., 2019), but evidence from 62 

invasive recordings remains limited.  63 

Here, we aimed at characterizing spontaneous intrinsic neural dynamics within cortical and 64 

limbic structures of the extended auditory system, covering the temporal lobe and insula, and 65 

their contribution to auditory processing. We focused on this network, which is relatively 66 

accessible through intracranial electroencephalography (iEEG) recordings in patients with 67 

pharmacoresistant epilepsies. We hypothesized that spontaneous intrinsic neural timescales, 68 

estimated via the autocorrelation function (ACF) (Golesorkhi et al., 2021b; Zeraati et al., 2022), 69 

or via the knee frequency of the power spectral density (PSD) (Gao et al., 2020) of iEEG 70 

signals, would show a hierarchical organization within an extended auditory network, which 71 

could, in turn, explain a hierarchy of neural responses to incoming auditory stimuli. We 72 

additionally hypothesized that non-oscillatory brain dynamics, characterized by the spectral 73 

exponent of aperiodic neural activity, which has been suggested to reflect a proxy of the 74 
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excitation to inhibition balance (Gao et al., 2017), would also reveal a hierarchical organization 75 

across the temporal lobe. 76 
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Materials and Methods 77 

Patients 78 

We recorded intracranial EEG in 11 neurosurgical patients (4 women, median age=32 years, 79 

min=27, max=56) with drug-refractory epilepsy who had been implanted with depth electrodes 80 

to identify seizure foci (Table 1 for a detailed patient description). Electrode locations were 81 

based on clinical criteria only. Recordings took place at the EPI Clinic, Zurich, and at the 82 

Inselspital, Bern. The number of patients included in this study is following standards in the field 83 

and is in line with, or larger than, existing intracranial studies investigating intrinsic neural 84 

dynamics (Honey et al., 2012; Hullett et al., 2016; Lendner et al., 2020; Mercier et al., 2022). 85 

Patients provided written informed consent prior to participation in this research study, approved 86 

by institutional ethics review boards of the Canton of Zurich (PB-2016-02055), and Inselspital, 87 

Bern (# 2018-01387). All experiments were performed in accordance with the 6th Declaration of 88 

Helsinki. 89 

Experimental protocol 90 

Patients were presented with auditory stimuli consisting of pure tones at three frequencies (500, 91 

1250, 2500 Hz) with a random interstimulus interval between 0.9 and 19 seconds. Each tone 92 

had a duration of 100 ms with 5 ms on/off ramps to avoid clicks. Interstimulus interval and tone 93 

frequency were drawn from a pseudorandom distribution such that each was played 120 times 94 

per hour (in total 360 tones per hour). Auditory stimuli were presented via in-ear headphones, 95 

and their intensity was adjusted individually for each patient at a comfortable level. Patients 96 

were instructed to relax and ignore the sounds. Some of the patients were additionally 97 
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presented with the auditory stimuli during sleep, at a later session, which was not analyzed in 98 

the context of the present study.  99 

 100 

iEEG recordings & preprocessing 101 

Depth electrodes were used for iEEG recordings (DIXI Medical, 3 patients; Ad-Tech Medical, 8 102 

patients) targeting different brain regions and varying from eight to eighteen platinum iEEG 103 

contacts along their shaft. Data were recorded at 4096 or 1024 Hz. Recordings with 4096 Hz 104 

sampling rate were downsampled offline to 1024 Hz. 105 

All data were visually inspected to exclude electrodes with persistent spiking activity. 106 

Continuous data were notch filtered around 50 Hz and harmonics, and re-referenced with a 107 

bipolar scheme, i.e. each electrode to the closest one in the same electrode lead outwardly, to 108 

remove any source of widespread noise. This was done to retain a local signal and mitigate 109 

effects of volume conduction, following recommendations in the analysis of iEEG data (Lachaux 110 

et al., 2012; Mercier et al., 2022). Peri-stimulus epochs were then extracted, spanning from -5 s 111 

before the sounds’ onset to 5 s post-stimulus onset. Only epochs that did not overlap with 112 

another sound in this period were kept. All epochs were then visually inspected and any epochs 113 

with remaining artifacts were rejected. The baseline period of each epoch was defined as the 114 

interval [-1,0] s preceding the sounds. For studying auditory responses (see Responsive 115 

electrodes section), the raw signal from all electrodes was additionally band-pass filtered 116 

between 1-40 Hz. Processing of iEEG data was performed using MNE python (Gramfort et al., 117 

2013). 118 

Electrode localization 119 

Electrodes were localized on post-implant computed tomography (CT) scans using the Lead-120 

DBS toolbox (Horn & Kühn, 2015) and transformed into standard MNI coordinates for group 121 
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analyses. The post-implant CT scan was registered to a pre-implant structural T1-weighted 122 

magnetic resonance imaging (MRI) scan from which anatomical labels were reconstructed using 123 

the FreeSurfer toolbox and the Destrieux atlas. Subsequently, electrode coordinates identified 124 

on the post-implant CT scans were mapped to their corresponding anatomical regions identified 125 

on the pre-implant MRI. Anatomical label assignment was validated for all electrodes by an 126 

expert neurologist, who verified their location and additionally ensured that none of the 127 

electrodes that were included in our analyses were in white matter. The available electrodes 128 

were divided across four regions of interest, covering the temporal cortex, the insula due to its 129 

prominent auditory responses (included in temporal cortex), entorhinal cortex, hippocampus, 130 

and amygdala. This resulted in N=270 electrodes in total, with a median=25, min=8 and max = 131 

37 electrodes per patient (Table 1). 132 

Intrinsic neural timescales 133 

For estimating spontaneous intrinsic neural timescales, we first computed the Autocorrelation 134 

function (ACF) on each epoch during 1 s baseline period (function acf from Python’s 135 

statsmodels (Seabold & Perktold, 2010)). The resulting ACFs across epochs were then 136 

averaged to yield a single ACF for each electrode. We then defined the “intrinsic timescale” of 137 

each electrode as the time lag at which the ACF reaches the value 1/e, consistent with an 138 

analytical decay of the form f(t)=exp(-t/τ). The precise time-lag was computed by interpolating 139 

with a spline fit to the ACF, as in (Raut et al., 2020).  140 

To ensure that the estimation of timescales was not trivially driven by neural oscillations, we 141 

performed two additional control analyses, following previous literature (Chaudhuri et al., 2015; 142 

Gao et al., 2020; Murray et al., 2014; Zeraati et al., 2022). First, we fitted a curve of the form f(t) 143 

= a*exp(-t/τ) + (1-a)*cos(2πft) to the ACF with (a, τ, f) as parameters to be optimized (Zeraati et 144 
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al., 2022); a represents the amplitude parameter, f the putative oscillatory frequency, and τ the 145 

estimated timescale. In a second control analysis, we computed timescales as the inverse of the 146 

knee frequency in power spectra, estimated as fk=k1/exp with k being the knee parameter and exp 147 

the spectral exponent, as implemented in the specparam toolbox (Donoghue et al., 2020) in 148 

“knee” mode. We fitted power spectra from 2 to 35 Hz, to have a reliable power estimate on the 149 

lower limit and to keep consistency with the “fixed” spectral parametrization for the higher limit 150 

(see next section for a discussion on the choice of frequency band). Electrodes where the 151 

algorithm could not find a knee frequency were excluded. 152 

Power spectral density and spectral exponent 153 

For estimating the spectral exponent, we computed power spectra with a Hann-windowed and 154 

detrended Fourier transform on the baseline period (function spectrogram from Python’s scipy 155 

(Virtanen et al., 2020)). Power spectra were averaged using a “meanlog” approach, i.e. taking 156 

the mean of the logarithm of the power spectra across epochs, to yield a single power spectrum 157 

density for each electrode. 158 

The spectral exponent was then computed on each electrode’s average power spectrum density 159 

using the standard implementation of the spectral parameterization algorithm (Donoghue et al., 160 

2020) in the “fixed” mode (linear fit in log-log plot) in two different frequency ranges: a lower 161 

one, at 20-35 Hz, and a higher one, at 80-150 Hz. The lower range was chosen following a 162 

large body of literature in order to avoid low-frequency knees, high-power peaks and spectral 163 

plateaus (Gerster et al., 2021), and has been previously linked with individual variations to 164 

excitation to inhibition balance (Gao et al., 2017; Lendner et al., 2020). Different alternative, but 165 

related, frequency ranges were tested in exploratory analyses on a subset of patients (for 166 

example 30-45 Hz, or 20-40 Hz). All of those gave comparable results, and we used 20-35 Hz 167 

for our analysis, as it was the band that more consistently avoided the above-mentioned 168 
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problems. The higher range was chosen as a typical high-frequency range that is often 169 

computed in iEEG studies, as a proxy for neural firing (Lachaux et al., 2012). The spectral 170 

exponent was computed as the slope of non-periodic parts of the power spectra observed at 171 

each electrode via a standardized approach with the specparam toolbox (Donoghue et al., 172 

2020) (parameters for the fitting: peak_threshold=2, min_peak_height: 0.1, peak_width_limits: 173 

[1, 10], with max_n_peaks=2 for the lower range and 0 for the higher one). Fits for every 174 

electrode were visually inspected, and any electrodes with clear artifacts on the power spectra, 175 

or where the fit was particularly noisy were excluded to ensure an accurate estimation of the 176 

spectral exponent. After this step, all remaining  electrodes (N= 270) had fits with R2 of at least 177 

0.8. Amygdalar electrodes from two patients had a prominent peak in their power spectra 178 

around 40 Hz (Figure 5A), which was found for electrodes of the amygdala only, and not other 179 

electrodes, and to the best of our knowledge was unrelated to any sources of noise, or 180 

pathological findings in these patients. We confirmed that fitting of the spectral exponent was 181 

not affected by these peaks in any of the two patients, which were outside the range of our fits.  182 

Responsive electrodes 183 

Responsive electrodes were identified following common approaches in the field of iEEG 184 

(Dürschmid et al., 2016). Briefly, differences between the average signal in post-stimulus time 185 

points A 𝑡 , and over the entire baseline B, were compared with surrogate distributions 186 

computed by randomly shifting the original epochs for i=1,...,1000 iterations ({Ai(t)-Bi}i=1…1000). 187 

Response time points were considered significantly different from the baseline if A 𝑡 -B fell 188 

outside the outer 5% interval of the permuted distribution. Additionally, only electrodes with at 189 

least one consecutive response lasting more than 50 ms were kept, to correct for multiple 190 

comparisons, as commonly done in the field (Guthrie & Buchwald, 1991; Haller et al., 2018; 191 

Kam et al., 2021).  192 
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The post-stimulus time-points were restricted to the interval [10, 600] ms, to control for too early 193 

and too late onsets that would be biologically implausible. We defined the onset latency as the 194 

time between the sound onset and the first responsive timepoint, and the peak latency as the 195 

time between the sound onset and the maximum absolute voltage difference from baseline. 196 

Statistical analyses 197 

Statistical tests were conducted in R version 4.2.0 (R Development Core Team, 2020) using 198 

Linear Mixed-Effects models (LMEs) with a random intercepts term corresponding to the patient. 199 

The random intercepts term captures inter-patient variability, which is needed when analyzing 200 

electrodes from multiple patients together. This ensured that any identified effects were not 201 

trivially driven by the fact that the electrodes were recorded from multiple patients (Yu et al., 202 

2022) (implemented with nlme package (Lindstrom & Bates, 1990)). The omnibus tests for the 203 

“brain region” factor were computed with F-tests, while post-hoc pairwise comparisons were 204 

computed with Tukey’s range test, controlling for multiple comparisons (implemented with 205 

emmeans package). In the case of omnibus tests on multiple time lags (Fig. 2a) and tests over 206 

multiple MNI coordinates, p-values were Bonferroni-corrected. For regression analyses, we 207 

used LMEs with a continuous predictor and random intercepts accounting for across-patient 208 

variability. We computed correlation values starting from R2 as described in (Nakagawa & 209 

Schielzeth, 2013) and took the square root, mimicking a fixed-effects-only linear model 210 

(implemented with MuMIn package (Kamil Barton, 2020)). P-values were computed with F-tests, 211 

correcting with Bonferroni when regressing on each level of the region factor separately (pcorr). 212 



 

13 

Data and code availability 213 

Because of the sensitive nature of the data, data and code can be made available from the 214 

corresponding author upon reasonable request.  215 
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Results 216 

We analyzed iEEG signals in 270 electrodes from 11 epilepsy patients (median=25, min=8, 217 

max=37 electrodes per patient, Table 1). In a first step, we assessed a macroscopic 218 

organization of neural dynamics by dividing electrodes into four regions of interest, selected 219 

based on the most consistent implantation schemes across patients. These were targeting the 220 

entorhinal cortex (ENT), hippocampus (HIP), and amygdala (AMY) in their innermost electrodes, 221 

and had additional electrodes covering the temporal and adjacent cortices (CTX) (Figure 1A for 222 

an exemplar implantation). In a second step, we grouped all available electrodes together 223 

(Figure 1B for full electrode coverage), irrespective of regions of interest, and assessed their 224 

spatial organization at a finer level, with respect to cortical and limbic anatomies. 225 

iEEG signals in the four regions of interest present striking qualitative differences already in their 226 

ongoing neural activity prior to sound presentation (Figure 1B for exemplar iEEG recordings). To 227 

characterize ongoing neural dynamics, we computed their intrinsic timescales prior to the 228 

presentation of sounds (Figure 1A, middle). For each electrode, we computed the 229 

autocorrelation function of baseline iEEG signals, which quantifies how similar a time series is to 230 

its past values across multiple time-lags. The mean autocorrelation, computed across patients 231 

and brain regions, shows a characteristic decay as the time lag increases (Figure 2A). For short 232 

time lags, the mean autocorrelation follows an ordering: electrodes in the temporal cortex have 233 

the most rapid decay, followed by electrodes in the entorhinal cortex, the hippocampus, and 234 

last, the amygdala (Figure 2A), with significant differences across the four regions at time-lags 235 

between 10 and 80 ms (mixed-effects models, accounting for different patients, pcorr<0.05 with 236 

Bonferroni correction) (Figure 2A, solid horizontal line).  237 
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We next computed intrinsic neural timescales (τ). These were defined as the time lag at which 238 

the autocorrelation of each electrode decayed to a fixed value (in our case, 1/e, Figure 2A, 239 

dashed horizontal line). The extracted intrinsic timescales τ confirm the macroscopic hierarchy 240 

observed via the autocorrelation function and show a significant difference across brain regions 241 

(F(3,256)=27.313, p=2.33×10-15, mixed-effects model with random intercepts) (Figure 2B). The 242 

temporal cortex exhibits significantly faster intrinsic timescales, at 40.6 ms on average 243 

compared to both the hippocampus and amygdala, which have slower timescales, at 56.1 and 244 

63.3 ms, respectively (Table 2 for a detailed report of all paired statistical comparisons, based 245 

on t-tests derived via the linear mixed effect models, and accounting for different patients). 246 

Within subregions of the cortex, intrinsic timescales tend to be slower in the pole, and faster in 247 

the transverse gyrus, while the superior, middle and inferior temporal cortex, and the insula lie in 248 

between (Table 3). The entorhinal cortex (46.9 ms) is also significantly faster compared to other 249 

limbic areas, but not different from the temporal cortex (Table 2).  250 

These results were confirmed with two additional control analyses, which accounted for 251 

potential biases due to oscillations. First, when estimating timescales by a direct exponential 252 

decay fit to the ACFs, similar to (Murray et al., 2014; Siegle et al., 2021), but accounting for 253 

oscillations (Zeraati et al., 2022), the same macroscopic hierarchy was observed, highlighted by 254 

a significant difference of timescales across regions (F(3,256)=16.789, p=5.49×10-10). Second, 255 

the same hierarchy was also observed when estimating timescales as the inverse of the knee 256 

frequency in power spectra, similar to (Gao et al., 2020), (F(3,197)=28.769, p=1.78×10-15). Both 257 

of these control analyses replicate the same ordering of timescales as reported in Figure 2B. 258 

These findings reveal a robust macroscopic hierarchy in spontaneous neural activity, confirmed 259 

with three different methods, where the temporal cortex shows short intrinsic timescales, while 260 

limbic areas exhibit slower dynamics.  261 
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We then delved into a finer characterization of timescales by exploring their spatial organization 262 

within anatomical regions (Table 3 for an overview of cortical subregions). Within the temporal 263 

and entorhinal cortices, intrinsic timescales show a gradient that spans the temporal lobe 264 

through the postero-lateral (fast timescales) to the antero-medial (slow timescales) axis, 265 

following the temporal lobe anatomy (Figure 2C). This gradient is particularly prominent in the Y 266 

and Z directions that mostly define the temporal lobe orientation (Figure 2D, correlation between 267 

coordinates in MNI space and intrinsic timescales: ρX=0.231, pX=2.44×10-6; ρY=0.292, 268 

pY=1.83×10-9; ρZ=-0.377, pZ=2.94×10-12, mixed-effects models and Bonferroni corrected).  269 

The spatial distribution of timescales in the hippocampus and amygdala, on the contrary, is less 270 

defined, with no significant correlation along any of the MNI coordinates after correcting for 271 

multiple comparisons (ρX=0.201, pX=0.156; ρY=0.219, pY=0.154; ρZ=-0.159, pZ=0.443, mixed-272 

effects models and Bonferroni corrected, Figure 3). These findings support a fine-grained 273 

intrinsic organization of spontaneous neural dynamics in the extended auditory network, that 274 

manifests across cortical and limbic regions, and exhibits an anatomical gradient spanning the 275 

temporal cortex from posterior to anterior.  276 

We next investigated whether intrinsic timescales at baseline could explain the timing of 277 

auditory processing. At a qualitative level, auditory intracranial event-related potentials (iERPs) 278 

show striking differences throughout the temporal lobe (Figure 4A). iERPs in primary auditory 279 

regions (for example the transverse gyrus, Figure 4A, top row) show early, short-lasting, and 280 

high-amplitude responses, while iERPs in the superior temporal gyrus have a later onset and 281 

duration (Figure 4A, second row). By contrast, auditory responses in the hippocampus, 282 

amygdala, and entorhinal cortex are smoother and long-lasting (Figure 4A, third to fifth rows), 283 

similar to previous reports (Halgren et al., 1980).  284 
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To quantify these response profiles, we restricted our analysis to electrodes that showed a 285 

significant 1-40 Hz iEEG response to the auditory stimuli compared to a pre-stimulus baseline 286 

(Methods, Responsive electrodes, N=67 out of 270 total electrodes). For each responsive 287 

electrode, we computed its response onset and peak latencies (Figure 4B). Cortical electrodes 288 

show generally faster responses than hippocampal and amygdalar ones both for onset (30 ms 289 

faster) and peak (50-60 ms faster). At the group level though, there is no significant effect of 290 

brain region on onset latency (F(3,55)=1.867, p=0.146) and just barely on peak latency 291 

(F(3,55)=2.774, p=0.0499, both mixed-effects models). In cortical subregions, the transverse 292 

gyrus shows the earliest responses, followed by the superior temporal gyrus/sulcus, inferior and 293 

middle temporal gyri (Table 3). 294 

Interestingly, this variability in onset and peak latencies within and between brain regions can be 295 

partially explained when accounting for differences in intrinsic timescales (Figure 4C). We 296 

computed a regression of response latencies on intrinsic timescales, which shows a highly 297 

significant main effect of timescale at baseline both on response onset (ρ=0.353, p=0.0009) and 298 

peak latency (ρ=0.409, p=0.0005, both mixed-effects models with random intercepts, to account 299 

for different patients). The strong regression of the onset of auditory responses on intrinsic 300 

timescales at baseline holds for electrodes within the temporal cortex (ρ=0.457, pcorr=0.0017) 301 

and hippocampus (ρ=0.816, pcorr=0.0013, Figure 4D) (mixed-effect models and Bonferroni 302 

corrected). The other within-region regressions do not reach significance, except for the peak 303 

latency in the hippocampus (ρHIP=0.734, pcorr=0.031). Moreover, a significant regression result 304 

persists when splitting each patient’s trials into two experimental halves, suggesting that the 305 

observed results are robust across the experimental session (ρ1=0.429, p1=0.001; ρ2=0.364, 306 

p2=0.01 for the first and second half of the experiment, respectively). These results show that 307 

intrinsic timescales at baseline can explain both the onset and peak latencies of auditory 308 

responses throughout the temporal lobe: regions that are characterized by fast intrinsic 309 
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timescales exhibit a fast reaction to incoming auditory stimuli, while the hippocampus, 310 

amygdala, and entorhinal cortex are mediated by slower ongoing dynamics and show slower 311 

auditory responses. 312 

To further explore and confirm the observed hierarchy of intrinsic neural timescales, we 313 

additionally characterized their aperiodic neural activity via the spectral exponent (Figure 5). The 314 

average power spectral density shows qualitative differences across the four regions of interest 315 

(Figure 5A). The cortex exhibits a characteristic oscillatory peak around 10 Hz, and a relatively 316 

fast decay, while the hippocampus displays the strongest power, which for low frequencies 317 

decays relatively gently, but after 70 Hz much faster (Figure 5A). We quantified the non-318 

oscillatory part of the power spectra for each electrode via the spectral exponent (i.e. the slope 319 

in log-log space) in a lower (20-35 Hz, as commonly reported in the literature (Gao et al., 2017; 320 

Lendner et al., 2020; Miskovic et al., 2019)) and upper range (80-150 Hz), corresponding to high 321 

gamma power (Lachaux et al., 2012). The lower range was chosen after considering typical 322 

ranges used in literature, which vary across studies, and compromising between consistency 323 

with previous studies and recommended methodological considerations (see Methods, Power 324 

spectral density and spectral exponent for a detailed explanation of the choice of the frequency 325 

band and control analyses). 326 

The spectral exponent in the 20-35 Hz range shows a strong ordering, with electrodes in the 327 

temporal cortex having the steepest exponent, followed by electrodes in the entorhinal cortex, 328 

hippocampus, and amygdala (Figure 5B), with a significant effect of region (F(3,256)=80.665, 329 

p=1.11×10-16). This result confirms the ordering observed for intrinsic timescales (Figure 2B), 330 

with a different and complementary measure. Moreover, all pairs of cortical-limbic areas have 331 

significant differences in their 20-35 Hz exponent (Table 4), while the difference between 332 

temporal and entorhinal cortex is slightly below significance threshold (Table 4, pCTX-ENT=0.054). 333 

Exponents in cortical subregions do not show marked differences from each other (Table 3). 334 
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The spectral exponent in the 80-150 Hz range also shows a significant main effect of region 335 

(F(3,256)=79.156, p=1.11×10-16) (Figure 5C). This effect is mainly driven by the difference 336 

between the hippocampus (with an exponent of 4.5 on average across electrodes) and all other 337 

regions (Table 4), which instead have very similar exponent values, ranging between 2.4 and 338 

2.6 on average (Figure 5C). The particularly steep hippocampal spectral exponent for high 339 

frequencies reflects the abrupt change of slope in the power spectrum, which forms a knee at 340 

around 70 Hz (Figure 5A). 341 

As the lower range spectral exponent reflects the same ordering of brain regions as intrinsic 342 

timescales, we explored its spatial organization. Similar to the intrinsic timescales, we observe 343 

an anatomical modulation of spectral exponents along the temporal lobe, indicated by a 344 

significant, albeit weaker, correlation between spectral exponent and MNI X coordinates (ρX=-345 

0.188, pX=9.99×10-4, mixed-effects model and Bonferroni corrected), but no significant 346 

correlation along other axes (p>0.12). This information provides further support for a gradient 347 

organization of neural dynamics within the extended auditory cortical network.  348 

Last, the spectral exponent within the hippocampus/amygdala only shows a weak correlation 349 

along the X axis (ρX=-0.252, pX=0.029, mixed-effects model and Bonferroni corrected). When 350 

correlating the lower spectral exponent with response onset or peak latencies there is no 351 

significant correlation, neither in all responsive electrodes grouped together (ρonset=0.066, 352 

ponset=0.529; ρpeak=-0.096, ppeak=0.430, mixed-effects models) nor within any of the individual 353 

brain regions (Table 5). 354 
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Discussion 355 

We provide evidence for a hierarchy of spontaneous intrinsic neural dynamics in the extended 356 

human auditory network, which in turn explains a hierarchy in the processing of incoming 357 

auditory stimuli. At a macroscopic level, the temporal cortex assumes a “low” position along this 358 

hierarchy, highlighted by a steep spectral exponent and short intrinsic timescales, which likely 359 

mediate short temporal receptive windows (Honey et al., 2012; Norman-Haignere et al., 2022). 360 

On the contrary, the hippocampus and amygdala exhibit longer intrinsic timescales and have 361 

flatter spectral exponents. This suggests that the hippocampus and amygdala assume a 362 

“higher”, or integrative, function in a temporal lobe hierarchy, as longer receptive time windows, 363 

indicated by longer timescales, may be necessary for information integration (Golesorkhi et al., 364 

2021b; Murray et al., 2014). By contrast, a flatter exponent may indicate a shift towards 365 

excitation (Gao et al., 2017), or increased neural noise (Alnes et al., 2021).  366 

Intrinsic timescales and spectral exponent reveal a hierarchy in the temporal lobe 367 

Our findings are in line with previous reports of a hierarchical organization in the visual and 368 

somatosensory modalities (Murray et al., 2014; Wang, 2020), where neural timescales 369 

progressively increase along the cortical hierarchy. Previous investigations of intrinsic 370 

timescales in humans have mainly relied on hemodynamic and magnetoencephalographic 371 

measures, and have shown fast spontaneous dynamics in the temporal lobe compared to 372 

higher-level areas, like the prefrontal cortex, albeit only at a macroscopic level (Golesorkhi et al., 373 

2021a; Raut et al., 2020). Apart from timescales, oscillatory power and the spectral exponent 374 

also show an intrinsic organization (Frauscher et al., 2018; Mahjoory et al., 2020). iEEG 375 

oscillatory peaks transition from faster to slower frequencies along the posterior-to-anterior 376 

temporal cortex (Frauscher et al., 2018), while primary auditory regions show weaker alpha and 377 
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stronger high-gamma power in their baseline activity compared to secondary auditory areas 378 

(Billig et al., 2019). Here, we refine these observations by exploring the hierarchy of intrinsic 379 

timescales within the extended auditory network of the temporal lobe. 380 

From a signal processing perspective, timescales quantify the autocorrelation decay of neural 381 

signals, while the spectral exponent measures the power decay of aperiodic neural activity 382 

(Hasson et al., 2015; He et al., 2010). A steeper exponent may reflect decreased higher-383 

frequency activity, a rotation in the power spectra (Podvalny et al., 2015), or lower levels of 384 

neural noise (Alnes et al., 2021; Voytek et al., 2015). As several mechanisms can explain 385 

changes in the steepness of power spectra, associating those to neural timescales is neither 386 

trivial nor unambiguous. At a physiological level, timescales are considered an indicator of a 387 

neural system's memory capacity (Hasson et al., 2015), while the steepness of the spectral 388 

exponent around the lower range we studied here is considered a proxy of excitation-to-389 

inhibition balance (Gao et al., 2017).  390 

Importantly, similar to timescales, synaptic excitation and inhibition also manifest hierarchically: 391 

while advancing through the visual hierarchy, excitatory connections increase, myelin content 392 

decreases, and the expression of genes involved in synaptic transmission increases (Wang, 393 

2020). In our data, the 20-35 Hz spectral exponent was steeper in the temporal cortex than in 394 

the hippocampus or amygdala, similar to previous reports (Frauscher et al., 2018), and possibly 395 

reflecting higher levels of inhibition, compatible with previous reports of increased inhibition in 396 

sensory regions (Wang, 2020).  397 

In our results, the macroscopic ordering that we identify via timescales is mirrored by the 398 

spectral exponent and reflects the neurobiological proximity that one would expect between the 399 

temporal/entorhinal cortex and hippocampus, which are all characterized by a laminar 400 

organization of pyramidal neurons, as opposed to the amygdala whose basolateral nucleus 401 
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consists primarily of pyramidal cells without preferential orientation, and with a much higher 402 

neural density (Dumas et al., 2011).  403 

Overall, our findings support the notion that properties of neural dynamics are intrinsic (Wainio-404 

Theberge et al., 2022); to this, we add that they are also local in nature. Taking advantage of 405 

the fine spatial resolution of intracranial recordings in humans, we show that a hierarchy of 406 

intrinsic neural dynamics of the extended auditory network manifests as a continuous gradient 407 

along the postero-lateral to antero-medial axis, following the anatomy of the temporal lobe, both 408 

for intrinsic timescales and spectral exponent.  409 

Extending the hierarchy of intrinsic timescales to hippocampus and amygdala 410 

Importantly, contrary to the vast majority of existing studies (Gao et al., 2020; Honey et al., 411 

2012; Murray et al., 2014; Norman-Haignere et al., 2022), we extend the characterization of 412 

intrinsic neural dynamics beyond cortical electrodes by including limbic structures, such as the 413 

hippocampus and the amygdala. Previous studies have shown that prefrontal or parietal regions 414 

assume the role of “higher-order” areas (Honey et al., 2012; Rocchi et al., 2021). Here, we 415 

expand these well-studied hierarchies by showing that the hippocampus and amygdala can also 416 

be positioned in a “higher” order compared to sensory areas, both in terms of intrinsic dynamics 417 

(slower timescales and flatter exponent) and auditory response latencies.  418 

To date, only few studies have attempted to characterize intrinsic timescales in the human 419 

hippocampus and amygdala. These report intermixed results, with one magnetic resonance 420 

imaging study showing gradients of timescales in the hippocampus in the range of few seconds 421 

(Raut et al., 2020), and a study of neural firing reporting no differences in timescales between 422 

the two structures (Hagemann et al., 2022). In our work, we also didn’t find evidence for 423 

gradients of timescales within the hippocampus and amygdala. There are several possible 424 

explanations for these diverging results across studies, including the different overall temporal 425 
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sensitivity of the recorded signals, ranging from seconds to milliseconds, the electrode 426 

coverage, or, in the case of hemodynamic responses, signal dropout (Raut et al., 2020), which 427 

all together make the comparison of timescales extracted from different recording modalities 428 

non-trivial (Manea et al., 2022).  429 

Additionally, the extended auditory network includes the “what” and “where” pathways, 430 

comprising prefrontal and parietal areas (Rauschecker & Scott, 2009). The “what”, or rostral, 431 

pathway typically shows sustained responses and longer response latencies than the “where”, 432 

or caudal, pathway (Jasmin et al., 2019). This dissociation can be observed in non-human and 433 

human primates (Camalier et al., 2012; Hamilton et al., 2018; Scott et al., 2011). The lack of 434 

frontal or parietal electrode coverage in our patient cohort didn’t allow investigating how 435 

timescales are organized along the full extent of these pathways and how they would be 436 

positioned relative to hippocampus/amygdala in a putative hierarchy. Future investigations could 437 

expand beyond the temporal lobe, allowing a direct comparison of intrinsic timescales in limbic 438 

structures and frontal or parietal cortex. 439 

Linking spontaneous intrinsic timescales and auditory processing 440 

Although several studies have posited that short intrinsic timescales may mediate fast 441 

responses to incoming stimuli, we now provide direct evidence for the auditory system. Previous 442 

studies have either analyzed intrinsic timescales in the auditory system while assessing whole-443 

brain dynamics (Gao et al., 2020; Golesorkhi et al., 2021a; Raut et al., 2020), without the 444 

specificity of our work for the auditory system, or have investigated intrinsic timescales during 445 

complex auditory stimuli like speech, as they unfold over time (Honey et al., 2012; Norman-446 

Haignere et al., 2022). Here, we show, for the first time, specifically for the extended auditory 447 

system, that a hierarchical organization in spontaneous neural activity is strongly related to the 448 

timing of processing short, evoked auditory stimuli.  449 
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Importantly, we show, in the same patients and recordings, that the diversity of intrinsic 450 

timescales partially explains the richness of auditory responses that are observed in temporal 451 

areas in terms of onset and peak latencies, at the single electrode level, with high spatial 452 

resolution. Although our analyses are correlational, we posit that this repertoire of spontaneous 453 

intrinsic timescales may support the auditory process itself, providing a variety of processing 454 

windows (Golesorkhi et al., 2021b) both at a macroscopic level across brain regions, and also at 455 

the millimeter level, following the anatomical organization of the temporal cortex. Here, we used 456 

pure tones as a simple experimental model of auditory processing. Future studies can examine 457 

how the characteristics of auditory stimuli, for example, their frequency or complexity, affect the 458 

interplay between spontaneous and evoked activity, and whether trial-by-trial changes in 459 

timescales may affect auditory processing and perception of individual sounds.  460 

Last, although the spectral exponent mirrors the macroscopic hierarchy observed via intrinsic 461 

timescales, in our data there was no direct link to the timing of auditory responses. Although the 462 

spectral exponent is sensitive to auditory processing (Gyurkovics et al., 2022), or levels of 463 

attention (Waschke et al., 2021), it doesn’t seem to directly relate to their timing. We speculate 464 

that the exponent may capture frequency-specific modulations in neural activity, rather than the 465 

response latency itself, which may be better explained by the temporal “memory” of a signal.  466 

Conclusions 467 

Our results show a hierarchy of neural dynamics in the extended human auditory network that 468 

manifests across cortical and limbic structures, exhibits anatomical gradients with millimeter 469 

resolution, and can explain the temporal richness of neural responses to auditory stimuli. 470 
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Table legends 693 

Table 1. Overview of patients dataset. We collected data from a total of 270 electrodes from 11 694 

patients, with a median of 25 electrodes per patient and minimum and maximum of 8 and 37 695 

electrodes. For each patient, we report gender, age, the hospital where the data were collected, 696 

the number of electrodes used for our analyses, the hemisphere(s) where the electrodes were 697 

implanted and the regions sampled from the retained electrodes. 698 

Table 2. Pairwise comparisons of intrinsic neural timescales across regions of interest. The first 699 

column lists each of the six pairwise comparisons, the second one the relative degrees of 700 

freedom of the test, the third one the t-values of the post-hoc t-test, and the last column the 701 

related p-values. All pairs of cortical-limbic areas have significant differences in their intrinsic 702 

timescales, while the differences between temporal/entorhinal cortex and 703 

hippocampus/amygdala are non-significant. The timescale values per region are computed 704 

through a mixed-effects model with a patient-specific random effect and p-values are corrected 705 

for multiple comparisons via the Tukey range test. D.O.F.: degrees of freedom. 706 

Table 3. Intrinsic neural timescales, iERP latencies and the spectral exponent across cortical 707 

subregions. The number of total and responsive electrodes across all recordings is reported for 708 

each subregion, together with median values of timescales, auditory latencies, and 20-35 Hz 709 

exponent. The fastest timescales and lower response latencies are observed for the transverse 710 

temporal gyrus, while the opposite is true for the temporal pole. TTG: transverse temporal 711 

gyrus, STG: superior temporal gyrus, STS: superior temporal sulcus, MTG: middle temporal 712 

gyrus,  ITG: inferior temporal gyrus, ITS: inferior temporal sulcus. 713 

Table 4. Pairwise comparisons of spectral exponents among the four regions of interest in the 714 

two analyzed frequency ranges (20-35 Hz and 80-150 Hz). The first column lists each of the six 715 
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pairwise comparisons, the second one the relative degrees of freedom of the test, the third and 716 

fourth ones the t-values and p-values of the post-hoc t-test for the 20-35 Hz range, and the last 717 

two columns the t-values and p-values for the 80-150 Hz range. All pairs of cortical-limbic areas 718 

have significant differences in their 20-35 Hz exponent, while the difference between temporal 719 

and entorhinal cortex is slightly below significance threshold. For the 80-150 Hz range, only the 720 

comparisons between hippocampus and the other areas are significant due to the very steep 721 

slope of hippocampal electrodes in the high-gamma range. The spectral exponent values are 722 

computed through a mixed-effects model with a patient-specific random effect and p-values are 723 

corrected for multiple comparisons via the Tukey range test. D.O.F.: degrees of freedom. 724 

Table 5. Regressions of iERP auditory latencies on the 20-35 Hz spectral exponent at baseline. 725 

The correlation coefficients and relative p-values are summarized when regressing onset and 726 

peak iERP latencies on the spectral exponent, for all responsive electrodes. Regressions are 727 

computed with mixed-effects models with a patient-specific random effect and p-values for the 728 

four regions are Bonferroni corrected.  729 

Figure legends 730 

Figure 1. Experimental paradigm, electrode coverage, and exemplar iEEG traces. A. 731 

Summary of the main analyses and methodology. Left: schematic of the auditory stimulation 732 

protocol: Patients were presented with 100 ms pure tones, occurring at random intervals 733 

between 0.9-19 s. Middle: Example of implanted iEEG electrodes and exemplar raw trace of 734 

spontaneous neural activity from one electrode, before sound presentation, which is used to 735 

estimate intrinsic timescales and spectral exponents. Right: intracranial event-related potentials 736 

(iERPs) are extracted in response to the sounds. These are displayed for a schematic 737 

illustration of our protocol, for three exemplar electrodes, presented in more detail in Figure 4. B. 738 
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Illustration of recorded electrodes (N=270) over the group of 11 patients. Black-circled 739 

electrodes are responsive to the auditory stimulation. As exemplar signals, we show iEEG 740 

traces from the transverse and superior temporal gyri (TTG and STG, pink), the entorhinal 741 

cortex (light blue), the hippocampus (orange), and the amygdala (green). Each of these regions 742 

exhibits characteristic and distinct spontaneous dynamics, displayed here over a 6 s segment.  743 

Figure 2. Autocorrelation function and intrinsic cortical neural timescales at baseline. A. 744 

Average autocorrelation function at baseline across electrodes and patients, for electrodes in 745 

the temporal (pink) and entorhinal (light blue) cortices, hippocampus (orange), and amygdala 746 

(green). The autocorrelation shows a significant main effect of region for time lags between 10 747 

and 80 ms (horizontal solid bar). The dashed horizontal line at 1/e (inverse of natural logarithm) 748 

displays the value of the autocorrelation for which the characteristic timescales are extracted. B. 749 

Intrinsic timescales at baseline (τ), plotted for each electrode, show a main effect of region, with 750 

significantly faster timescales for the temporal and entorhinal cortices compared to the 751 

hippocampus and amygdala. C. The spatial organization of intrinsic timescales follows the 752 

cortical anatomy. Electrodes in the posterior/superior temporal cortex exhibit the fastest 753 

timescales, which progressively increase along the anterior/inferior axis. The color map 754 

quantifies the intrinsic timescale for each electrode on a logarithmic scale. For display purposes, 755 

all electrodes were projected to the left hemisphere. D. Gradients of timescales spanning the 756 

cortex, plotted as timescales along the X, Y, and Z directions of MNI coordinates of each 757 

electrode. Timescales significantly correlate with MNI coordinates in all three dimensions, 758 

tracking the cortical anatomy.  759 

Figure 3. Intrinsic hippocampal and amygdalar neural timescales at baseline. A. 760 

Anatomical organization of intrinsic timescales at baseline throughout the hippocampus and 761 

amygdala, displaying generally shorter timescales in hippocampus (darker colors) than in 762 

amygdala, as in Figure 2B. The color map quantifies the intrinsic timescale for each electrode 763 
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on a logarithmic scale. For display purposes, all electrodes were projected to the left 764 

hemisphere. B. Correlations between MNI coordinates and intrinsic timescale (τ) across 765 

electrodes. Although τ tends to be slower for anterior electrodes, and in particular for the 766 

amygdala, correlations in the X, Y, and Z directions are not significant when accounting for 767 

different patients and after Bonferroni correction. 768 

 769 

Figure 4. Onset and peak latencies of auditory responses across brain regions and their 770 

relation to intrinsic timescales at baseline. A. Exemplar auditory responses for each of the 771 

recorded regions (1-40 Hz iERPs). Time 0 corresponds to sound onset. Auditory responses in 772 

the transverse temporal gyrus (TTG) are the earliest, shorter-lasting, and exhibit the largest 773 

amplitude (top plot). Responses in other cortical regions, e.g. the superior temporal gyrus 774 

(STG), have a relatively early onset, and later peak, while responses in the entorhinal cortex, 775 

hippocampus, and amygdala (third to fifth row) are typically smoother, long-lasting, and with 776 

later peaks. Significant response periods compared to the pre-stimulus baseline are highlighted 777 

in blue. The variability in response amplitudes is indicated by the different spans of a 10�V 778 

scale on the y-axis. B. Auditory response onset (left panel) and peak (right panel) latencies for 779 

all responsive electrodes. The temporal cortex shows the earliest onset and peak latencies 780 

across all brain regions, with responses starting on average at 168.7 ms, and peaking at 259 ms 781 

after sound onset, followed by the hippocampus/amygdala, and entorhinal cortex. C. 782 

Regression of auditory iERP onset (y-axis, left panel) and peak (y-axis, right panel) latencies on 783 

intrinsic timescales τ at baseline (x-axis) across all responsive electrodes. Regressions of both 784 

onsets and peaks on intrinsic timescales are highly significant, accounting for across-patient 785 

variations, suggesting that intrinsic timescales can explain the timing of auditory responses at 786 

the single electrode level. D. A significant regression of iERP onsets on intrinsic timescales also 787 
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persists within the temporal cortex (left panel), and hippocampus only (right panel), but not in 788 

the amygdala or entorhinal cortex. 789 

Figure 5. Power spectra and spectral exponents across brain regions. A. Average power 790 

spectra are displayed for the four regions of interest. Cortex (pink) exhibits a characteristic 791 

oscillatory peak around 10 Hz, and a relatively fast decay, while the hippocampus (orange) 792 

displays the strongest power, which for low frequencies decays relatively gently, but after 70 Hz 793 

much faster. The shaded rectangles highlight the two frequency ranges for which the spectral 794 

exponent is computed, at 20-35 Hz, and at 80-150 Hz. x- and y-axes are plotted in logarithmic 795 

scales. B/C. Spectral exponent at 20-35 Hz (B) and 80-150 Hz (C), for each electrode and 796 

region of interest. The spectral exponent in the 20-35 Hz range shows a significant main effect 797 

of region, with the temporal cortex having the steepest exponent followed by the entorhinal 798 

cortex, the hippocampus, and amygdala, which have flatter exponents. The spectral exponent at 799 

80-150 Hz also shows a significant effect of region, with the hippocampus having the steepest 800 

exponent among all other regions, compatible with the knee observed in the average power 801 

spectra (panel A).  802 
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Tables 803 

Patient ID Gender Age Clinic # of 

electrodes 

analyzed 

Hemisphere Regions 

1 M 31 Zürich 25 L + R CTX, ENT, HIP, AMY 

2 F 33 Bern 17 R CTX, ENT, HIP 

3 F 29 Zürich 34 L + R CTX, ENT, HIP, AMY 

4 F 30 Zürich 30 L + R CTX, ENT, HIP, AMY 

5 M 56 Zürich 28 L + R CTX, ENT, HIP, AMY 

6 M 42 Zürich 20 L CTX, ENT, HIP, AMY 

7 M 34 Zürich 37 L + R CTX, ENT, HIP, AMY 

8 F 45 Bern 24 L CTX, ENT, HIP 

9 M 29 Zürich 28 L + R CTX, ENT, HIP, AMY 

10 M 27 Zürich 19 R CTX, ENT, HIP, AMY 
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11 M 32 Bern 8 L CTX, HIP 

Table 1 804 

 805 

Comparison D.O.F. t-value p-value 

CTX-ENT 192 -2.383 0.083 

CTX-HIP 198 -6.099 2.34×10-8 

CTX-AMY 184 -7.716 1.69×10-12 

ENT-HIP 82 -2.817 0.027 

ENT-AMY 68 -4.635 3.36×10-5 

HIP-AMY 74 -2.067 0.167 

Table 2 806 

 807 

Cortical 

subregion 

# electrodes 

(responsive) 

Median 

timescale 

(ms) 

Median iERP 

onset (ms) 

Median iERP 

peak (ms) 

Median 

exponent 

(a.u.) 

TTG 3 (3) 16.7 42.0 80.1 2.1 

STG + STS 54 (13) 31.2 83.0 168.9 3.4 
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MTG 18 (2) 30.0 189.0 293.5 3.5 

ITG + ITS 19 (2) 32.1 133.8 286.6 3.4 

Insula 22 (8) 31.3 131.3 276.9 2.7 

Pole 13 (3) 41.4 260.7 438.5 3.9 

Table 3 808 

 809 

Comparison D.O.F. t-value (20-35 

Hz) 

p-value (20-

35 Hz) 

t-value (80-

150 Hz) 

p-value (80-

150 Hz) 

CTX-ENT 192 2.557 0.054 1.551 0.408 

CTX-HIP 198 12.421 4.34×10-14 -14.214 4.31×10-14

CTX-AMY 184 11.409 5.35×10-14 1.631 0.363 

ENT-HIP 82 7.591 3.63×10-12 -12.321 4.35×10-14 

ENT-AMY 68 7.564 4.27×10-12 0.195 0.997 

HIP-AMY 74 0.608 0.929 11.650 4.90×10-14 

Table 4 810 

 811 

 812 
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Region Correlation ρ 

(iERP onset) 

p-value (iERP 

onset) 

Correlation ρ 

(iERP peak) 

p-value (iERP 

peak) 

All 0.066 0.53 -0.096 0.43 

CTX 0.381 0.12 0.345 0.21 

ENT 0.669 0.73 -0.276 1.0 

HIP 0.313 1.0 0.215 1.0 

AMY -0.237 1.0 -0.340 0.93 

Table 5 813 

 814 
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