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Abstract

The construction and implementation of atmospheric model grids is a popular tool in exoplanet characterization.
These typically vary a number of parameters linearly, containing one model for every combination of parameter
values. Here we investigate alternative methods of sampling parameters, including random sampling and Latin
hypercube (LH) sampling, and how these compare to linearly sampled grids. We use a random forest to analyze the
performance of these grids for two different models, as well as investigate the information content of the particular
model grid from Goyal et al. (2019). We also use nested sampling to implement mock atmospheric retrievals on
simulated James Webb Space Telescope transmission spectra by interpolating on linearly sampled model grids.
Our results show that random or LH sampling outperforms linear sampling in parameter predictability for our
higher-dimensional models, requiring fewer models in the grid, and thus allowing for more computationally
intensive forward models to be used. We also found that using a traditional retrieval with interpolation on a linear
grid can produce biased posterior distributions, especially for parameters with nonlinear effects on the spectrum. In
particular, we advise caution when performing linear interpolation on the C/O ratio, cloud properties, and
metallicity. Finally, we found that the information content analysis of the grid from Goyal et al. (2019) was able to
highlight key areas of the spectra where the presence or absence of certain molecules can be detected, providing
good indicators for parameters such as temperature and C/O ratio.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Exoplanet atmospheres (487)

1. Introduction

With the recent launch of the James Webb Space Telescope
(JWST) and the upcoming developments in ground-based
observatories, we are stepping into a new era of exoplanet data.
These new facilities promise an explosion in the precision and
sensitivity of spectra of exoplanet atmospheres, which will require
a matching advancement in our analysis techniques. The current
state of the art in exoplanet analysis uses atmospheric retrieval to
search parameter space for the model that best fits the data (e.g.,
Madhusudhan & Seager 2009; Benneke & Seager 2013). These
traditionally employ a Bayesian sampling algorithm such as an
MCMC or nested sampling, in conjunction with an atmospheric
model. In a single retrieval, tens of thousands of models are
computed on the fly and compared to the data, meaning we are
inherently limited in the complexity of the physical models we
can use. Most retrievals rely on 1D atmospheric models, with
some recent work branching out into forms of 2D models (e.g.,
Irwin et al. 2020). However, many studies have investigated
potential biases in the results from 1D retrievals, and the
detrimental effects these can have when attempting to accurately
characterize an exoplanet (e.g., Feng et al. 2016; Line &
Parmentier 2016; Taylor et al. 2020). With improved data from
upcoming instruments such as JWST and the Extremely Large
Telescope (ELT), these biases will only worsen.

An alternative method of exoplanet analysis involves the
computation of grids of atmospheric models, constructed by
varying each parameter in turn. These grids have fewer

computational restrictions, allowing for more complex physics
to be included in the model. The linear structure of the grids
enables one to study the individual effects of each parameter on
the spectrum and assess the sensitivity of observations. The grids
can also be used to exclude particular models when analyzing
data. For example, de Wit et al. (2018) are able to rule out
hydrogen-dominated atmospheres for the Trappist-1 planets
simply by visual inspection. In more recent years, several groups
have developed techniques that use machine learning to perform
atmospheric retrieval and other analyses by training on a set of
synthetic spectra (e.g., Waldmann 2016; Márquez-Neila et al.
2018; Zingales & Waldmann 2018; Cobb et al. 2019; Fisher et al.
2020; Ardevol Martinez et al. 2022; Matchev et al. 2022). This
form of retrieval allows one to use model grids provided by other
groups, without requiring access to the original model code or
relying on an interpolation method. Most model grids are either
open-source or can be provided on demand, and range from
brown dwarf spectra (Burrows et al. 1997; Allard et al. 2001;
Allard 2014; Marley et al. 2021) to global circulation models
(Edson et al. 2011; Perna et al. 2012; Tan & Komacek 2019; Beltz
et al. 2021) to exoplanet spectra (Fortney et al. 2010; Kempton
et al. 2017; Mollière et al. 2017; Goyal et al. 2018, 2019, 2020).
This presents an interesting opportunity for machine-learning
retrievals to take advantage of these grids, and provide some
comparison across different models. This was investigated in a
study of brown dwarfs (Oreshenko et al. 2020), which compared
grids from three different groups to highlight differences in the
models.
The linear spacing of these model grids has one key

disadvantage—as the number of parameters increases, the number
of models required increases exponentially and becomes
prohibitive. An advantage of using machine learning is that it is
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able to automatically disentangle the parameter effects by learning
from a large number of examples. This suggests that the linearly
sampled grid is suboptimal for machine-learning retrievals. The
use of stratified sampling methods, a type of random sampling
that ensures each subdivision (or strata) of parameter space is
evenly sampled, has been demonstrated to optimize computer
experiments for many years (e.g., McKay et al. 1979; Wang 2003;
Chalom & de Prado 2012). Therefore, one would expect random
and stratified sampling methods to outperform linear sampling in
the problem of machine-learning atmospheric retrievals. In this
paper we investigated to what degree this applies. We test
different methods of sampling exoplanet model grids for various
types of analyses. We create our own model grids with an
increasing number of parameters and different sampling methods,
and then compare the predictability of each parameter using the
random forest (Márquez-Neila et al. 2018). We also consider the
model grid from Goyal et al. (2019), and use an analytical
approximation to create differently sampled versions. We then use
the random forest to analyze the grids for different purposes.

2. Methods

2.1. Modelling

Here we describe the methods and assumptions used to
generate our grids of atmospheric models.

2.1.1. Analytical Model

In order to test sampling methods and grid sizes, we use a
simplified analytical model, assuming an isothermal, isobaric
atmosphere. This follows the work of Lecavelier Des Etangs
et al. (2008), de Wit & Seager (2013), Bétrémieux & Swain
(2017), Heng & Kitzmann (2017), Jordán & Espinoza (2018),
Heng (2019), and Fisher & Heng (2018), and allows one to
write down an analytical expression for the transit radius, given
by Equation (2) in Fisher & Heng (2018). The atmospheric
opacity is given by

( )åk
k

k k k= + + +
X m

m
, 1

i

i i i
CIA haze cloud

where m is the mean molecular mass, and Xi, mi, and κi are the
volume mixing ratio, mass, and opacity of species i,
respectively. κCIA is the opacity associated with collision-
induced absorption (both H2–H2 and H2–He), taken from
HITRAN (Rothman et al. 2013). κhaze and κcloud follow
different equations in two different models we consider (see
Sections 2.1.2 and 2.1.3), but are generally associated with
Rayleigh scattering and a gray cloud, respectively. The cross
section due to Rayleigh scattering is taken from Vardya (1962).

To mimic spectra we expect to obtain from JWST’s
NIRSpec Prism mode, we bin our models to ∼400 points in
the range 0.6–5.3 μm, giving a resolution of ∼100. We then
add random Gaussian noise, assuming the uncertainty on each
spectral point to be 20 ppm.

2.1.2. Free Chemistry Models

For our first set of models we assume free chemistry. This
means the abundances of each molecule can take any value,
which allows for a greater freedom in the models, but could
lead to unphysical compositions. For these models, we include
a varying subset of the molecules H2O, CO, CO2, CH4, C2H2,
HCN, and NH3. The opacities for these molecules are

computed using the open-source HELIOS-K opacity calculator
(Grimm & Heng 2015; Grimm et al. 2021), and the line lists are
taken from the ExoMol, HITRAN and HITEMP databases—
Polyansky et al. (2018; H2O), Li et al. (2015; CO), Rothman
et al. (2010; CO2), Yurchenko & Tennyson (2014; CH4),
Gordon et al. (2017; C2H2), Barber et al. (2014; HCN), and
Yurchenko et al. (2011; NH3). The molecular opacities are
sampled every 0.01 cm−1 in wavenumber space, at a pressure
of 1 mbar. In each set of models, we vary the temperature and
molecular abundances of the included species. For one version
of this set we also include a nongray cloud model, following
Equation (9) of Fisher & Heng (2018),

( )k
k

=
+-Q x x

. 2
acloud

0

0
0.2

This analytical cloud model comes from Kitzmann & Heng
(2018). In this work, we vary three of the parameters—the
factor κ0, the index a, and the cloud particle size rc (measured
in centimeters). The cloud composition Q0 is set to 50, since
previous studies have shown it to be unconstrained in retrievals
(e.g., Fisher & Heng 2018). For this model, κhaze is simply
opacity due to Rayleigh scattering. The range of values
spanned by the grids for all the possible parameters in our free
chemistry model are shown in Table 1.
For all the models we assume the same planetary parameters

as WASP-12 b: Rp= 1.79RJ, g= 977 cm s−2, R* = 1.57Re.

2.1.3. Goyal Models

Our second set of models emulates the grid from Goyal et al.
(2019), and thus are termed “Goyal models.” Goyal et al.
(2019) present a scalable grid of exoplanet transmission
spectra, varying the temperature, gravity, metallicity, C/O
ratio, haze, and cloud. Their models are computed using ATMO
—a 1D radiative–convective equilibrium model for planetary
atmospheres (Amundsen et al. 2014; Tremblin et al. 2015;
Drummond et al. 2016; Tremblin et al. 2016). They use
isothermal P− T profiles, assuming chemical equilibrium. Full
details on their implementation of the model can be found in
the paper.
We simulate these models using the analytical model

described in Section 2.1.1. To implement equilibrium chem-
istry in our model, for a given temperature, metallicity, and C/
O ratio, we use the validated analytical model of Heng & Tsai
(2016) that includes carbon, oxygen, and nitrogen. From this
we obtain abundances for H2O, CO, CO2, CH4, C2H2, HCN,
and NH3. The opacities used for these molecules are the same
as in Section 2.1.2.
In the grid from Goyal et al. (2019), the parameters are

sampled as follows. The temperature is sampled every 100 K,
from 300 to 2600 K. The surface gravity can take one of the
four values, 5, 10, 20, or 50 ms−2. The atmospheric metallicity

Table 1
Prior Ranges for All Possible Parameters in Our Free Chemistry Model

Parameter Prior Range

T (K) [500, 2900]
Xlog i [−13, −1]
klog 0 [−10, −1]

a [3, 6]
rlog c [−7, −1]
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controls the elemental abundances, including oxygen, and is
sampled at 0.1, 1, 10, 50, 100, and 200 times solar. The C/O
ratio controls the carbon abundance, and takes the values 0.35,
0.56, 0.7, and 1.0. The haze parameter controls small scattering
aerosol particles, and is implemented as αhaze in the equation
σ(λ)= αhazeσ0(λ), where σ(λ) is the total scattering cross
section, and σ0(λ) is the H2 Rayleigh scattering cross section.
αhaze is sampled at 1, 10, 100, and 1100. The cloud is treated as
large particles with a gray opacity, and the parameter is
implemented as αcloud in the equation ( ) ( )k l k l= +c
k a2 H cloud2 , where κ(λ)c is the total scattering opacity, and

kH2 is the scattering opacity due to H2 at 350 nm, which Goyal
et al. (2019) states as∼2.5× 10−3 cm2g−1. αcloud is sampled at
0, 0.06, 0.2, and 1.0. This leads to a total of 36,864 models.5

2.1.4. Analytical versus Full Model Comparison

There are several key approximations in our analytical
model, such as the isobaric atmosphere and constant chemical
abundances. Figure 1 shows a comparison of six models with
their corresponding model from Goyal et al. (2019). Each
model has only one parameter changed with respect to the top
left model. The top right model shows the effect of a higher
temperature. In this case, the absorption due to TiO and VO
dominates in the bluer wavelengths for the Goyal et al. (2019)
model. Since we do not include TiO or VO in our models, we
see a discrepancy here. The second-row, left-column panel
shows a higher metallicity value. The agreement between the
two models is very good, as the dominant absorbers for this set
of parameters are present in both. The second-row, right-
column panel shows a higher C/O ratio. Here we start to see
another discrepancy between the models, which worsens with
an increasing C/O ratio. This is due to the differing chemical
models. Goyal et al. (2019) include many more species in their
equilibrium model, leading to different abundances for the
main absorbers. As a test, we took the abundances from the
Goyal et al. (2019) model and ran the analytical model, which
resulted in a very good agreement between the two (not
shown). The bottom-row, left-column panel shows a higher
haze parameter value, which controls the level of the Rayleigh
scattering slope. Again, the agreement here is good. Similarly,
the bottom-row, right-column panel shows a higher cloud
value, and the agreement between the two models is good.

2.2. Sampling Techniques

Here we describe three possible sampling methods for model
grids—linear sampling, random sampling, and Latin hypercube
sampling. We perform a comparison of these methods, with the
results shown in Section 3.2.1.

2.2.1. Linear Sampling

Traditional grids of models are typically sampled linearly
(e.g., Allard et al. 2001; Goyal et al. 2019; Marley et al. 2021).
This involves having one model for each possible combination
of parameters, leading to Xn models, where n is the number of
parameters and X is the number of values sampled for each one.
This is shown in the left panel of Figure 2, for an example with
two parameters, each sampled twice. One of the benefits of a

linear grid is that one is able to easily study the effects of a
single parameter by comparing consecutive models. Varying
only one parameter at a time prevents the effects from multiple
parameters becoming entangled. This is extremely useful in
forward modeling, where the main goal is to study these
effects.
However, in the field of atmospheric retrieval these grids can

prove challenging. Unless strong assumptions are made (e.g.,
chemical equilibrium), retrievals regularly contain ∼10–20
parameters. This quickly escalates the linear grid to a
completely unfeasible size. Nevertheless, linear grids are
sometimes used with interpolation to perform traditional
Bayesian retrievals of exoplanets (e.g., Miller et al. 2020;
Mollière et al. 2020; Carrión-González et al. 2021).

2.2.2. Random Sampling

In our previous work on machine-learning retrievals
(Márquez-Neila et al. 2018), we used randomly sampled grids
for our training sets. This involves simply drawing each
parameter at random from a uniform distribution inside the
desired range. Unlike linear sampling, this grid does not allow
one to compare models with only one differing parameter.
However, for a fixed number of models, the random grid allows
for more points in each parameter dimension to be sampled.
The right panel of Figure 2 shows an example of a random grid
with four models. This method proves beneficial for the
random forest, which is able to automatically disentangle the
effects of each parameter.

2.2.3. Latin Hypercube Sampling

A common sampling technique in machine learning is Latin
hypercube sampling (LHS; McKay et al. 1979). Starting from a
square grid with fixed sampling positions, a Latin square has
exactly one sample in each row and column. A Latin hypercube
(LH) is the generalization of this to higher dimensions. The
middle panel of Figure 2 shows an example of a Latin square
with four models. Latin squares and hypercubes have been
used in the design of experiments for almost a century, and
provide a method for improving inference from a sparse
sampling of high-dimensional space. This has already proven
extremely useful in the field of cosmology (e.g., Kaufman et al.
2011; Albers et al. 2019; Rogers et al. 2019; Wibking et al.
2020), but has yet to be taken advantage of in other fields of
astrophysics.
In comparison to simple random sampling, the key

advantage of LHS is that it guarantees a better representation
of the real variability of the parameters. Random sampling has
no such guarantees. Therefore, for an inference problem with a
large number of parameters, LHS typically requires fewer
samples than random sampling. See the Appendix for more
details on the history and applications of LHs in experiments.

3. Results

3.1. Free Chemistry Grid

3.1.1. Sampling Comparison

To compare the different methods, we created training sets
using each of the three sampling techniques, and then trained
and tested a corresponding random forest. For a fair
comparison, we assumed a fixed number of models can be
generated, such that all three training sets have the same size.

5 Note that some of the parameter values in the open-source grid have
changed since Goyal et al. (2019) was published, and the information on this
can be found in the readme.txt file in their Google Drive.
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This is also a realistic situation in which one is limited by
computation time. We considered five different models, with 2,
4, 6, 8, and 11 parameters. For linear sampling, we sampled
each parameter an equal number of times, given by X, and
calculated as the highest integer such that Xn∼ 100,000. This
results in the training set sizes shown in Table 2. These sizes
are kept the same for the random sampling and LHS training
sets. The parameters in the linear and LHS grids are evenly
spaced inside the prior range (shown in Table 1), while the
parameters in the random grids are drawn randomly from a
uniform distribution across this range.

For each model, a forest is trained on each of the differently
sampled grids. Due to its ability to make fast predictions, the
forest can be tested on a large set of models, spanning the
whole parameter space. We randomly generated a testing set of
10,000 models, keeping it the same across each sampling case.
Once tested, the forest provides a useful predictability analysis,
by calculating the coefficient of determination (R2 score)

between the real and predicted values of each parameter. The
R2 score varies from −1 to 1, where values near unity indicate
strong anticorrelations and correlations, respectively, between
the real and predicted values of a given parameter. Figure 3
shows the coefficient of determination for each parameter and
sampling technique in the different models.
For the 2 and 4 parameter models, all three training sets

perform comparably well. This is expected as even in the linear
case, each parameter is still sampled sufficiently densely for the
forest to learn its effects. For the 6 parameter model, the linear
case starts to drop in performance, when compared with the
random and LHS cases. For the 8 parameter model, the linear
case shows an extremely poor predictability for certain
parameters, including temperature, which had previously been
relatively easy to predict. This is because each parameter is
only sampled four times, providing the forest with little
information on the parameters’ effects on the spectrum. The
random and LHS cases show fairly low R2 scores for the newly

Figure 1. Comparison of our analytical models with the corresponding models from Goyal et al. (2019), shown for different parameter values. The analytical model is
shown in blue and the model from Goyal et al. (2019) is shown in red.
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added parameters (NH3 and C2H2), but the other parameters
remain fairly well predicted. The lower R2 scores for NH3 and
C2H2 is likely due to their lack of strong, distinctive molecular
features, and degeneracies with the other molecules. The 11
parameter model shows an even more extensive difference,
with several parameters in the linear grid dropping into
negative predictability.

Generally these results are unsurprising, as it is trivial that
parameters sampled only three or four times in the training set
will be hard to retrieve. However, these linear grids are often
used with an interpolation scheme in traditional Bayesian
retrievals (e.g., Mollière et al. 2017; Miller et al. 2020; Carrión-
González et al. 2021), and these results highlight issues that can
arise from this. One interesting takeaway from these results is
that the R2 score for each parameter in the random and LHS
models remains at a very similar value across each model, as
more parameters are added. This suggests that the addition of
extra parameters does not necessarily require a higher number
of samples in the training set. However, it is possible that this
could be due to the distinct effects each parameter has on the
spectrum in this specific case, as more interconnected
parameters could be harder to disentangle. So far, we see very
little difference between the random and LHS cases, most
likely because the number of parameters is still relatively low.

3.1.2. Mock Retrieval

One potential advantage of a linearly spaced grid is that it
allows for easy interpolation, and can therefore be used in a
traditional, Bayesian retrieval with an MCMC or nested
sampling. This is beneficial when the forward model is quite
slow, as a traditional retrieval needs to compute models on the
fly, typically tens of thousands of times for a single run. By

computing a grid in advance, the computational burden is
shifted offline, and the models can be reused for multiple
retrievals. To study this, we ran several retrievals on a
simulated spectrum using our free chemistry models.
Figure 4 shows three retrievals performed on the same
simulated spectrum for the 11 parameter model. The first uses
nested sampling by interpolating on the linear grid. The second
uses the random forest trained on the random grid. The third
uses nested sampling with the full analytical model.
The key difference between the full analytical retrieval and

the random forest trained on the random grid is the width of the
posteriors. For the tightly constrained parameters in the full
retrieval, such as temperature, CO, and CH4, the forest’s
posterior generally peaks in the same place, but with a wider
distribution. This is due to nested sampling’s ability to hone in
on a small part of parameter space. For the parameters with an
upper bounded full retrieval posterior, such as H2O, HCN,
NH3, CO2, and C2H2, the upper limit for the forest’s posterior
is about 2 dex higher. For the completely unconstrained cloud
parameters, the forest’s posteriors are comparable. Improve-
ments can be made on the forest’s posteriors by adjusting
parameters in the forest such as the number of trees or tree
depth, increasing the size of the training set, or incorporating a
likelihood into the posterior computation (Nixon & Madhu-
sudhan 2020). However, the latter negates one advantage of the
traditional likelihood-free random forest, which does not rely
on assuming a functional form of the likelihood.
Unsurprisingly, the nested-sampling retrieval using inter-

polation on the linear grid performs poorly due to the sparse
sampling of the parameters. It would not be appropriate to use
interpolation for a grid with this many dimensions.

3.2. Goyal Grid

3.2.1. Sampling Comparison

Using the analytical model described in Section 2.1.1, we
created four different versions of the Goyal grid. The first two
are linearly spaced grids of different sizes. We started by
following the parameter spacing from Goyal et al. (2019),
described in Section 2.1.3. This consists of 24 temperatures, 4
gravities, 6 metallicities, 4 C/O ratios, 4 haze parameters, and 4
cloud parameters, leading to a total of 36,864 models. Next we
created a sparser version of this linear grid, sampling fewer

Figure 2. Schematic of different methods for sampling four models from a grid with two parameters. The first panel shows linear sampling, where each parameter has
two values and every combination of values is sampled. The second panel shows a Latin square, where the value of each parameter is chosen randomly, but each value
is chosen exactly once, allowing for four parameter values each in the grid. The third panel shows completely random sampling, without using a grid of values.

Table 2
Table Showing the Training Set Size for Our 2, 4, 6, 8, and 11 Parameter

Models

# Parameters # Parameter Samples Training Set Size

2 316 99,856
4 17 83,521
6 6 46,656
8 4 65,536
11 3 177,147
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parameter values. This consists of 5 temperatures (300, 900,
1500, 2100, 2600 K), 3 gravities (5, 14, 50 ms−2), 4
metallicities (0.1, 1, 50, 200), 3 C/O ratios (0.35, 0.63, 1.0),
3 haze parameters (1, 31.6, 1100), and 3 cloud parameters (0,
0.13, 1.0), leading to a total of 1620 models. A summary of the
parameter spacing for both versions of the linear grid is shown
in Table 3. Note that in the analysis we converted the gravity,
metallicity, and haze parameters to log quantities.

The second two grids use different sampling methods. First
is a randomly sampled set of 1620 models, created by drawing
each parameter from a uniform distribution (or log-uniform for
metallicity, gravity, and the haze parameter) in the same range
as in Goyal et al. (2019). The final grid is a set of 1620 models
using LHS, where each parameter dimension has 1620 evenly

spaced points (or even in log-space for metallicity, gravity, and
the haze parameter) in the same range as in Goyal et al. (2019).
We trained a random forest on each of the four grids, and

then tested them on a randomly generated set of 5000 models.
Figure 5 shows the R2 scores for each parameter across the
different grids.
For every parameter, the sparse linear grid is outperformed

somewhat by all other grids, including the random and LHS
grids that contain the same number of models. For most
parameters, the denser linear grid, the random grid, and the
LHS grid give comparable results, despite differing in size by
more than a factor of 20. Although the predictability of the C/
O ratio is significantly higher for the random and LHS grids,
this is actually due to the uneven spacing adopted for the linear

Figure 3. R2 scores for each parameter in each of the free chemistry models, using the three different grid-sampling methods—linear sampling, random sampling, and
Latin hypercube sampling.
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grid. In Goyal et al. (2019), the C/O ratio takes the values 0.35,
0.56, 0.7, and 1.0, leaving a larger gap at the higher values.
Due to the nonlinear effect of the C/O ratio on the spectrum, it
proves challenging for the forest to accurately interpret models
in this high C/O range. In contrast, for temperature even the
sparse linear grid performs relatively well. In fact, all four well-
predicted parameters (i.e., temperature, gravity, metallicity, and
haze) have comparable R2 scores across all models, to within
∼0.1. This contrasts the results from Section 3.1.1, but could
be explained by the relatively low number of parameters in the
model and the linear effects of these four parameters on the
spectrum. This motivates a differently structured grid, with

denser sampling for parameters with highly nonlinear effects
on the spectrum.
Since LHS guarantees a better representation of the real

variability of the parameters, we might expect it to outperform

Figure 4. Retrieval of a mock spectrum from the 11 parameter model using different methods. This shows the retrievals using nested sampling, interpolating on the
linear grid, and the random forest trained on the random grid, compared with the full retrieval using nested sampling with the analytical model computed on the fly.
The dashed purple lines show the true parameter values for the spectrum.

Table 3
Parameter Values for the Grid from Goyal et al. (2019), and the Values in Our

Sparsely Sampled Linear Grid

Parameter Goyal Grid Sparse Grid

T (K) (300–2600), in steps of 100 (300, 900, 1500,
2100, 2600)

g (ms−2) (5, 10, 20, 50) (5, 14, 50)
metallicity (x solar) (0.1, 1, 10, 50, 100, 200) (0.1, 1, 50, 200)
C/O (0.35, 0.56, 0.7, 1.0) (0.35, 0.63, 1.0)
Haze (1, 10, 100, 1100) (1, 31.6, 1100)
Cloud (0, 0.06, 0.2, 1.0) (0, 0.13, 1.0)

Figure 5. R2 scores for each parameter in the Goyal model, using the three
different grid-sampling methods—linear sampling, random sampling and Latin
hypercube sampling. Linear sampling is tested for a dense grid of 36,864
models, and a sparse grid of 1620 models.
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random sampling. The fact that the results in the bar chart in
Figure 5 look comparable between the two could be due to the
relatively low number of parameters. Perhaps a higher number
of dimensions could lead to a divergence in their performances.

3.2.2. Mock Retrieval

We also ran mock retrievals using the Goyal grids. One
example is shown in Figure 6. This figure shows three
retrievals. The first uses nested sampling with interpolation on
the dense linear grid. The second uses the random forest,
trained on a randomly sampled grid of 36,864 models (i.e., the
same size as the dense linear grid). The third uses nested
sampling with the full analytical model, computed on the fly. In
contrast to Figure 4, the linear interpolation retrieval does not
perform so badly. Here, the temperature, gravity, and haze
posteriors are very similar to the full retrieval, with only minor
offsets. Of course this is due to denser sampling of the
parameters, although the gravity and haze, for example, only
sample one extra point than the parameters in the free
chemistry model from Figure 4. It could be that the effects of
these parameters are more linear than those in the free
chemistry model. The poor performance of the linear
interpolation retrieval is seen again in the metallicity, C/O
ratio, and the cloud parameters. This is likely due to the more
nonlinear effects of these parameters, and the uneven spacing
(for the C/O ratio in particular).

The random forest posteriors exhibit a similar behavior as in
Figure 4, with wider, less constrained distributions, but with the

same peak location. This effect is exaggerated for the cloud
parameter, for which the forest’s posterior encompasses the
entire range of values. This is consistent with the R2 scores in
Figure 5, which shows that the forest struggles to accurately
retrieve the cloud parameter.

3.2.3. Information Content of the Goyal Grid

We also trained a forest on the original grid of models from
Goyal et al. (2019). To be consistent, we binned these models
down to the same resolution and wavelength range, and added
the same noise level, as in Section 2.1.1. We then randomly
selected 6864 models to be the testing set, leaving 30,000 for
training. Figure 7 shows the predicted versus real values for
this forest. Although the R2 scores are high for all six
parameters, an important caveat is that the testing set contains
the same evenly spaced parameter values as the training set.
This makes it significantly easier for the forest to predict the
correct answer. The sparse testing set provides no information
about how the forest performs on spectra with parameters in
between these values. We would need to generate our own
ATMO models with randomly chosen parameters in order to test
this forest’s ability to generalize.
In addition, we computed the “feature importance” for this

forest. This determines the information content of each spectral
point with respect to each parameter in the retrieval. Figure 8
shows the results for the original Goyal grid. In this figure, the
feature importance is shown against two spectra with a high
and low value of the relevant parameter, to provide context.

Figure 6. Retrieval of a mock spectrum using different methods. This shows the retrievals using nested sampling, interpolating on the dense linear grid, and the
random forest trained on the dense random grid, compared with the full retrieval using nested sampling with the analytical model computed on the fly. The dashed
purple lines show the true parameter values for the spectrum.
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Some aspects of the feature importance are intuitive, such as
the haze parameter drawing most information from the bluer
wavelengths, where the Rayleigh slope is visible. Parameters
that are less well constrained typically have a slightly more
uniform feature importance across all spectral points, as is seen
for the cloud parameter. Temperature has major peaks at the
TiO features, implying that this species performs well as a
thermometer for the atmosphere. The C/O feature importance
appears to peak around the water features at 2 and 3 μm, which
are present in spectra with lower C/O ratios. These features
coincide with troughs in the methane opacity, which dominates
the high-carbon spectra, making these areas good indicators of
the C/O ratio. The same behavior in the feature importance is
found for the forests trained on the analytical model, using both
the linear and random grids (not shown).

4. Conclusion

We generated differently sampled grids for two types of
atmospheric models, and compared their performance using
different types of analyses. For our free chemistry model, we
found that random and LH sampling outperformed linear
sampling for our 8 and 11 parameter models, but obtained
comparable results for our 2, 4, and 6 parameter models
(Figure 3). Our free chemistry mock retrieval for the 11
parameter model clearly demonstrated that linear interpolation

is not appropriate for high-dimensional models, as expected
(Figure 4). For our models simulating those of Goyal et al.
(2019), we found that the difference between the linear and
random or LHS was less significant, particularly for parameters
with generally high predictability, likely due to the lower
dimensionality of the model. Our mock retrieval showed that
the linear interpolation retrieval performed well for several
parameters, but struggled with parameters with nonlinear
effects, such as the C/O ratio.
These results warn against the use of linear interpolation of

precomputed linear model grids for atmospheric retrievals.
They also demonstrate the known results that random and LHS
enable inference from a sparsely sampled parameter space. We
did not find an improvement in LHS over random sampling,
likely due to the relatively low dimensionality of our models.
Although they are not ideal for building into a retrieval, linearly
sampled grids have their own advantages. For example, they
enable one to easily compare spectra differing in only one
parameter, allowing for the clear analysis of individual
parameter effects (e.g., Goyal et al. 2019). Furthermore, the
feature importance for the linear grid from Goyal et al. (2019)
provided extremely useful analysis of the information content
of the spectra, although this could also be performed on the
other grids.
Therefore, the answer for which type of sampling to use

when constructing a model grid depends heavily on the

Figure 7. Real vs. predicted values for the random forest trained on the models from Goyal et al. (2019), binned down to match the resolution and wavelength
coverage of JWST NIRSpec Prism. The R2 score varies from −1 to 1, where values near unity indicate strong anticorrelations and correlations, respectively, between
the real and predicted values of a given parameter.
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intended use of the grid. For retrievals, in particular for
machine learning, randomly sampled grids are likely to
provide better results, with higher predictability for each
model parameter, and require far fewer models. However,
for analysis of the model physics and spectral sensitivity, a
linearly sampled grid is preferable, due to the ease of model
comparisons. Information content analysis can be performed
in either case, providing similar results, beneficial for
observing proposals or even informing future telescope
development.

We thank Daniel Kitzmann for helpful discussions about the
model, and Pablo Márquez-Neila for advice about the random
forest. We acknowledge financial support from the Swiss
National Science Foundation, the European Research Council
(via a Consolidator Grant to KH; grant number 771620), the
PlanetS National Center of Competence in Research (NCCR),
the Center for Space and Habitability (CSH), and the Swiss-
based MERAC Foundation.

Appendix
Latin Hypercubes in Computer Experiments

The use of Latin squares in the design of experiments,
particularly in agriculture, dates back almost a century
(Fisher 1935). Its modern applications to computer experiments
enables inference from a sparse coverage of high-dimensional
parameter space (Santner et al. 2003; Fang et al. 2006;
Kleijnen 2015). However, the use of Latin squares, and the
higher-dimensional LHs, has been relatively limited in
astrophysics, with the majority of applications in cosmology.
Kaufman et al. (2011) use LHs to improve the efficiency of
emulators, and apply it to photometric redshifts of galaxies.
More recently, Wibking et al. (2020) use LHs for their
emulation framework modeling galaxy clustering, while Albers
et al. (2019) implement them in the training of a neural network
to speed up Einstein–Boltzmann solvers in cosmological
simulations. Rogers et al. (2019) also use LHs in their emulator
for the Lyα forest, for example.

Figure 8. Relative feature importance of each wavelength point for each parameter of the model. Plotted over the top are two models with high and low values of the
corresponding parameter, showing examples of the behavior of different spectra. This allows for the comparison between spectral features and their relative
importance for each parameter. The y-axes correspond to the transit depth for the models. The feature importance values add up to unity, though their values are not
shown.
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There has been a great amount of work in the statistics
community on the optimization of Latin hypercube designs
(LHDs) to improve their efficiency and apply them to ensemble
models, such as orthogonal LHDs (e.g., Sun et al. 2010), sliced
LHDs (e.g., Qian 2012; Ba et al. 2015), and progressive LHS
(e.g., Sheikholeslami & Razavi 2017). There are also many
packages in the R public domain software environment for
using LHS for computer experiments (e.g., lhs (Carnell 2020);
DiceDesign and DiceEval (Dupuy et al. 2015); DiceK-
riging (Roustant et al. 2012); DiceView (Richet et al.
2020); tgp: Bayesian Treed Gaussian Process
Models (Gramacy 2007; Gramacy & Taddy 2010)).

ORCID iDs

Chloe Fisher https://orcid.org/0000-0003-0652-2902
Kevin Heng https://orcid.org/0000-0003-1907-5910

References

Albers, J., Fidler, C., Lesgourgues, J., Schöneberg, N., & Torrado, J. 2019,
JCAP, 2019, 028

Allard, F. 2014, in Proc. of the IAU 299, Exploring the Formation and
Evolution of Planetary Systems (Cambridge: Cambridge Univ. Press), 271

Allard, F., Hauschildt, P. H., Alexander, D. R., Tamanai, A., & Schweitzer, A.
2001, ApJ, 556, 357

Amundsen, D. S., Baraffe, I., Tremblin, P., et al. 2014, A&A, 564, A59
Ardevol Martinez, F., Min, M., Kamp, I., & Palmer, P. I. 2022, arXiv:2203.

01236
Ba, S., Myers, W. R., & Brenneman, W. A. 2015, Technometrics, 57, 479
Barber, R. J., Strange, J. K., Hill, C., et al. 2014, MNRAS, 437, 1828
Beltz, H., Rauscher, E., Brogi, M., & Kempton, E. M. R. 2021, AJ, 161, 1
Benneke, B., & Seager, S. 2013, ApJ, 778, 153
Bétrémieux, Y., & Swain, M. R. 2017, MNRAS, 467, 2834
Burrows, A., Marley, M., Hubbard, W. B., et al. 1997, ApJ, 491, 856
Carnell, R. 2020, lhs: Latin Hypercube Samples, R package v1.1.5, https://

CRAN.R-project.org/package=lh
Chalom, A., & de Prado, P. I. d. K. L. 2012, arXiv:1210.6278
Cobb, A. D., Himes, M. D., Soboczenski, F., et al. 2019, AJ, 158, 33
de Wit, J., & Seager, S. 2013, Sci, 342, 1473
de Wit, J., Wakeford, H. R., Lewis, N. K., et al. 2018, NatAs, 2, 214
Drummond, B., Tremblin, P., Baraffe, I., et al. 2016, A&A, 594, A69
Dupuy, D., Helbert, C., & Franco, J. 2015, JoSS, 65, 1
Edson, A., Lee, S., Bannon, P., Kasting, J. F., & Pollard, D. 2011, Icar, 212, 1
Fang, K.-T., Li, R., & Sudjianto, A. 2006, Design and Modeling for Computer

Experiments (London: Chapman & Hall), doi:10.1201/9781420034899
Feng, Y. K., Line, M. R., Fortney, J. J., et al. 2016, ApJ, 829, 52
Fisher, C., & Heng, K. 2018, MNRAS, 481, 4698
Fisher, C., Hoeijmakers, H. J., Kitzmann, D., et al. 2020, AJ, 159, 192
Fisher, R. A. 1935, The Design of Experiments (Edinburgh: Oliver and Boyd)
Fortney, J. J., Shabram, M., Showman, A. P., et al. 2010, ApJ, 709, 1396
Carrión-González, Ó., García Muñoz, A., Santos, N. C., et al. 2021, A&A,

655, A92
Gordon, I. E., Rothman, L. S., Hill, C., et al. 2017, JQSRT, 203, 3
Goyal, J. M., Mayne, N., Drummond, B., et al. 2020, MNRAS, 498, 4680
Goyal, J. M., Mayne, N., Sing, D. K., et al. 2018, MNRAS, 474, 5158
Goyal, J. M., Wakeford, H. R., Mayne, N. J., et al. 2019, MNRAS, 482, 4503
Gramacy, R. B. 2007, JoSS, 19, 1

Gramacy, R. B., & Taddy, M. 2010, JoSS, 33, 1
Grimm, S. L., & Heng, K. 2015, ApJ, 808, 182
Grimm, S. L., Malik, M., Kitzmann, D., et al. 2021, ApJS, 253, 30
Heng, K. 2019, MNRAS, 490, 3378
Heng, K., & Kitzmann, D. 2017, MNRAS, 470, 2972
Heng, K., & Tsai, S.-M. 2016, ApJ, 829, 104
Irwin, P. G. J., Parmentier, V., Taylor, J., et al. 2020, MNRAS, 493, 106
Jordán, A., & Espinoza, N. 2018, RNAAS, 2, 149
Kaufman, C. G., Bingham, D., Habib, S., Heitmann, K., & Frieman, J. A. 2011,

AnApS, 5, 2470
Kempton, E. M. R., Lupu, R., Owusu-Asare, A., Slough, P., & Cale, B. 2017,

PASP, 129, 044402
Kitzmann, D., & Heng, K. 2018, MNRAS, 475, 94
Kleijnen, J. 2015, Design and Analysis of Simulation Experiments,

International Series in Operations Research & Management Science (2nd
edn.; Germany: Springer Verlag),

Lecavelier Des Etangs, A., Pont, F., Vidal-Madjar, A., & Sing, D. 2008, A&A,
481, L83

Li, G., Gordon, I. E., Rothman, L. S., et al. 2015, ApJS, 216, 15
Line, M. R., & Parmentier, V. 2016, ApJ, 820, 78
Madhusudhan, N., & Seager, S. 2009, ApJ, 707, 24
Marley, M. S., Saumon, D., Visscher, C., et al. 2021, ApJ, 920, 85
Márquez-Neila, P., Fisher, C., Sznitman, R., & Heng, K. 2018, NatAs, 2,

719
Matchev, K. T., Matcheva, K., & Roman, A. 2022, arXiv:2201.02696
McKay, M. D., Beckman, R. J., & Conover, W. J. 1979, Technometrics,

21, 239
Miller, L. P., Roudier, G., Swain, M., & Welsh, W. 2020, AAS Meeting

Abstract, 235, 173.16
Mollière, P., Stolker, T., Lacour, S., et al. 2020, A&A, 640, A131
Mollière, P., van Boekel, R., Bouwman, J., et al. 2017, A&A, 600, A10
Nixon, M. C., & Madhusudhan, N. 2020, MNRAS, 496, 269
Oreshenko, M., Kitzmann, D., Márquez-Neila, P., et al. 2020, AJ, 159, 6
Perna, R., Heng, K., & Pont, F. 2012, ApJ, 751, 59
Polyansky, O. L., Kyuberis, A. A., Zobov, N. F., et al. 2018, MNRAS,

480, 2597
Qian, P. Z. G. 2012, J. Am. Stat. Assoc., 107, 393
Richet, Y., Deville, Y., & Chevalier, C. 2020, DiceView: Methods for

Visualization of Computer Experiments Design and Surrogate, https://
CRAN.R-project.org/package=DiceView

Rogers, K. K., Peiris, H. V., Pontzen, A., et al. 2019, JCAP, 2019, 031
Rothman, L. S., Gordon, I. E., Babikov, Y., et al. 2013, JQSRT, 130, 4
Rothman, L. S., Gordon, I. E., Barber, R. J., et al. 2010, JQSRT, 111, 2139
Roustant, O., Ginsbourger, D., & Deville, Y. 2012, JoSS, 51, 1
Santner, T., Williams, B., & Notz, W. 2003, The Design and Analysis

Computer Experiments (New York: Springer), doi:10.1007/978-1-4757-
3799-8

Sheikholeslami, R., & Razavi, S. 2017, Environ. Model. Softw., 93, 109
Sun, F., Liu, M.-Q., & Lin, D. K. 2010, J. Stat. Plan. Inference, 140, 3236
Tan, X., & Komacek, T. D. 2019, ApJ, 886, 26
Taylor, J., Parmentier, V., Irwin, P. G. J., et al. 2020, MNRAS, 493, 4342
Tremblin, P., Amundsen, D. S., Chabrier, G., et al. 2016, ApJ, 817, L19
Tremblin, P., Amundsen, D. S., Mourier, P., et al. 2015, ApJ, 804, L17
Vardya, M. S. 1962, ApJ, 135, 303
Waldmann, I. P. 2016, ApJ, 820, 107
Wang, G. 2003, J. Mech. Design, 125, 210
Wibking, B. D., Weinberg, D. H., Salcedo, A. N., et al. 2020, MNRAS,

492, 2872
Yurchenko, S. N., Barber, R. J., & Tennyson, J. 2011, MNRAS, 413, 1828
Yurchenko, S. N., & Tennyson, J. 2014, MNRAS, 440, 1649
Zingales, T., & Waldmann, I. P. 2018, AJ, 156, 268

11

The Astrophysical Journal, 934:31 (11pp), 2022 July 20 Fisher & Heng

https://orcid.org/0000-0003-0652-2902
https://orcid.org/0000-0003-0652-2902
https://orcid.org/0000-0003-0652-2902
https://orcid.org/0000-0003-0652-2902
https://orcid.org/0000-0003-0652-2902
https://orcid.org/0000-0003-0652-2902
https://orcid.org/0000-0003-0652-2902
https://orcid.org/0000-0003-0652-2902
https://orcid.org/0000-0003-1907-5910
https://orcid.org/0000-0003-1907-5910
https://orcid.org/0000-0003-1907-5910
https://orcid.org/0000-0003-1907-5910
https://orcid.org/0000-0003-1907-5910
https://orcid.org/0000-0003-1907-5910
https://orcid.org/0000-0003-1907-5910
https://orcid.org/0000-0003-1907-5910
https://doi.org/10.1088/1475-7516/2019/09/028
https://ui.adsabs.harvard.edu/abs/2019JCAP...09..028A/abstract
https://ui.adsabs.harvard.edu/abs/2014IAUS..299..271A/abstract
https://doi.org/10.1086/321547
https://ui.adsabs.harvard.edu/abs/2001ApJ...556..357A/abstract
https://doi.org/10.1051/0004-6361/201323169
https://ui.adsabs.harvard.edu/abs/2014A&A...564A..59A/abstract
http://arxiv.org/abs/2203.01236
http://arxiv.org/abs/2203.01236
https://doi.org/10.1080/00401706.2014.957867
https://doi.org/10.1093/mnras/stt2011
https://ui.adsabs.harvard.edu/abs/2014MNRAS.437.1828B/abstract
https://doi.org/10.3847/1538-3881/abb67b
https://ui.adsabs.harvard.edu/abs/2021AJ....161....1B/abstract
https://doi.org/10.1088/0004-637X/778/2/153
https://ui.adsabs.harvard.edu/abs/2013ApJ...778..153B/abstract
https://doi.org/10.1093/mnras/stx257
https://ui.adsabs.harvard.edu/abs/2017MNRAS.467.2834B/abstract
https://doi.org/10.1086/305002
https://ui.adsabs.harvard.edu/abs/1997ApJ...491..856B/abstract
https://CRAN.R-project.org/package=lh
https://CRAN.R-project.org/package=lh
https://arxiv.org/abs/1210.6278
https://doi.org/10.3847/1538-3881/ab2390
https://ui.adsabs.harvard.edu/abs/2019AJ....158...33C/abstract
https://doi.org/10.1126/science.1245450
https://ui.adsabs.harvard.edu/abs/2013Sci...342.1473D/abstract
https://doi.org/10.1038/s41550-017-0374-z
https://ui.adsabs.harvard.edu/abs/2018NatAs...2..214D/abstract
https://doi.org/10.1051/0004-6361/201628799
https://ui.adsabs.harvard.edu/abs/2016A&A...594A..69D/abstract
https://doi.org/10.18637/jss.v065.i11
https://doi.org/10.1016/j.icarus.2010.11.023
https://ui.adsabs.harvard.edu/abs/2011Icar..212....1E/abstract
https://doi.org/10.1201/9781420034899
https://doi.org/10.3847/0004-637X/829/1/52
https://ui.adsabs.harvard.edu/abs/2016ApJ...829...52F/abstract
https://doi.org/10.1093/mnras/sty2550
https://ui.adsabs.harvard.edu/abs/2018MNRAS.481.4698F/abstract
https://doi.org/10.3847/1538-3881/ab7a92
https://ui.adsabs.harvard.edu/abs/2020AJ....159..192F/abstract
https://doi.org/10.1088/0004-637X/709/2/1396
https://ui.adsabs.harvard.edu/abs/2010ApJ...709.1396F/abstract
https://doi.org/10.1051/0004-6361/202141469
https://ui.adsabs.harvard.edu/abs/2021A&A...655A..92C/abstract
https://ui.adsabs.harvard.edu/abs/2021A&A...655A..92C/abstract
https://doi.org/10.1016/j.jqsrt.2017.06.038
https://ui.adsabs.harvard.edu/abs/2017JQSRT.203....3G/abstract
https://doi.org/10.1093/mnras/staa2300
https://ui.adsabs.harvard.edu/abs/2020MNRAS.498.4680G/abstract
https://doi.org/10.1093/mnras/stx3015
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.5158G/abstract
https://doi.org/10.1093/mnras/sty3001
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.4503G/abstract
https://doi.org/10.18637/jss.v019.i09
https://doi.org/10.18637/jss.v033.i06
https://doi.org/10.1088/0004-637X/808/2/182
https://ui.adsabs.harvard.edu/abs/2015ApJ...808..182G/abstract
https://doi.org/10.3847/1538-4365/abd773
https://ui.adsabs.harvard.edu/abs/2021ApJS..253...30G/abstract
https://doi.org/10.1093/mnras/stz2746
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.3378H/abstract
https://doi.org/10.1093/mnras/stx1453
https://ui.adsabs.harvard.edu/abs/2017MNRAS.470.2972H/abstract
https://doi.org/10.3847/0004-637X/829/2/104
https://ui.adsabs.harvard.edu/abs/2016ApJ...829..104H/abstract
https://doi.org/10.1093/mnras/staa238
https://ui.adsabs.harvard.edu/abs/2020MNRAS.493..106I/abstract
https://doi.org/10.3847/2515-5172/aada13
https://ui.adsabs.harvard.edu/abs/2018RNAAS...2..149J/abstract
https://doi.org/10.1214/11-AOAS489
https://doi.org/10.1088/1538-3873/aa61ef
https://ui.adsabs.harvard.edu/abs/2017PASP..129d4402K/abstract
https://doi.org/10.1093/mnras/stx3141
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475...94K/abstract
https://doi.org/10.1051/0004-6361:200809388
https://ui.adsabs.harvard.edu/abs/2008A&A...481L..83L/abstract
https://ui.adsabs.harvard.edu/abs/2008A&A...481L..83L/abstract
https://doi.org/10.1088/0067-0049/216/1/15
https://ui.adsabs.harvard.edu/abs/2015ApJS..216...15L/abstract
https://doi.org/10.3847/0004-637X/820/1/78
https://ui.adsabs.harvard.edu/abs/2016ApJ...820...78L/abstract
https://doi.org/10.1088/0004-637X/707/1/24
https://ui.adsabs.harvard.edu/abs/2009ApJ...707...24M/abstract
https://doi.org/10.3847/1538-4357/ac141d
https://ui.adsabs.harvard.edu/abs/2021ApJ...920...85M/abstract
https://doi.org/10.1038/s41550-018-0504-2
https://ui.adsabs.harvard.edu/abs/2018NatAs...2..719M/abstract
https://ui.adsabs.harvard.edu/abs/2018NatAs...2..719M/abstract
http://arxiv.org/abs/2201.02696
https://doi.org/10.2307/1268522
https://ui.adsabs.harvard.edu/abs/2020AAS...23517316M/abstract
https://doi.org/10.1051/0004-6361/202038325
https://ui.adsabs.harvard.edu/abs/2020A&A...640A.131M/abstract
https://doi.org/10.1051/0004-6361/201629800
https://ui.adsabs.harvard.edu/abs/2017A&A...600A..10M/abstract
https://doi.org/10.1093/mnras/staa1150
https://ui.adsabs.harvard.edu/abs/2020MNRAS.496..269N/abstract
https://doi.org/10.3847/1538-3881/ab5955
https://ui.adsabs.harvard.edu/abs/2020AJ....159....6O/abstract
https://doi.org/10.1088/0004-637X/751/1/59
https://ui.adsabs.harvard.edu/abs/2012ApJ...751...59P/abstract
https://doi.org/10.1093/mnras/sty1877
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.2597P/abstract
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.2597P/abstract
https://doi.org/10.1080/01621459.2011.644132
https://CRAN.R-project.org/package=DiceView 
https://CRAN.R-project.org/package=DiceView 
https://doi.org/10.1088/1475-7516/2019/02/031
https://ui.adsabs.harvard.edu/abs/2019JCAP...02..031R/abstract
https://doi.org/10.1016/j.jqsrt.2013.07.002
https://ui.adsabs.harvard.edu/abs/2013JQSRT.130....4R/abstract
https://doi.org/10.1016/j.jqsrt.2010.05.001
https://ui.adsabs.harvard.edu/abs/2010JQSRT.111.2139R/abstract
https://doi.org/10.18637/jss.v051.i01
https://doi.org/10.1007/978-1-4757-3799-8
https://doi.org/10.1007/978-1-4757-3799-8
https://doi.org/10.1016/j.envsoft.2017.03.010
https://doi.org/10.1016/j.jspi.2010.04.023
https://doi.org/10.3847/1538-4357/ab4a76
https://ui.adsabs.harvard.edu/abs/2019ApJ...886...26T/abstract
https://doi.org/10.1093/mnras/staa552
https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.4342T/abstract
https://doi.org/10.3847/2041-8205/817/2/L19
https://ui.adsabs.harvard.edu/abs/2016ApJ...817L..19T/abstract
https://doi.org/10.1088/2041-8205/804/1/L17
https://ui.adsabs.harvard.edu/abs/2015ApJ...804L..17T/abstract
https://doi.org/10.1086/147269
https://ui.adsabs.harvard.edu/abs/1962ApJ...135..303V/abstract
https://doi.org/10.3847/0004-637X/820/2/107
https://ui.adsabs.harvard.edu/abs/2016ApJ...820..107W/abstract
https://doi.org/10.1115/1.1561044
https://doi.org/10.1093/mnras/stz3423
https://ui.adsabs.harvard.edu/abs/2020MNRAS.492.2872W/abstract
https://ui.adsabs.harvard.edu/abs/2020MNRAS.492.2872W/abstract
https://doi.org/10.1111/j.1365-2966.2011.18261.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.413.1828Y/abstract
https://doi.org/10.1093/mnras/stu326
https://ui.adsabs.harvard.edu/abs/2014MNRAS.440.1649Y/abstract
https://doi.org/10.3847/1538-3881/aae77c
https://ui.adsabs.harvard.edu/abs/2018AJ....156..268Z/abstract

	1
	2. Methods
	2.1. Modelling
	2.1.1. Analytical Model
	2.1.2. Free Chemistry Models
	2.1.3. Goyal Models
	2.1.4. Analytical versus Full Model Comparison

	2.2. Sampling Techniques
	2.2.1. Linear Sampling
	2.2.2. Random Sampling
	2.2.3. Latin Hypercube Sampling


	3. Results
	3.1. Free Chemistry Grid
	3.1.1. Sampling Comparison
	3.1.2. Mock Retrieval

	3.2. Goyal Grid
	3.2.1. Sampling Comparison
	3.2.2. Mock Retrieval
	3.2.3. Information Content of the Goyal Grid


	4. Conclusion
	AppendixLatin Hypercubes in Computer Experiments
	References

