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Abstract
Liver disease has become a leading cause of death, particularly in the West, where 
it is attributed to more than two million deaths annually. The correlation between 
gut microbiota and liver disease is still not fully understood. However, it is well 
known that gut dysbiosis accompanied by a leaky gut causes an increase in 
lipopolysaccharides in circulation, which in turn evoke massive hepatic inflam-
mation promoting liver cirrhosis. Microbial dysbiosis also leads to poor bile acid 
metabolism and low short-chain fatty acids, all of which exacerbate the inflam-
matory response of liver cells. Gut microbial homeostasis is maintained through 
intricate processes that ensure that commensal microbes adapt to the low oxygen 
potential of the gut and that they rapidly occupy all the intestinal niches, thus 
outcompeting any potential pathogens for available nutrients. The crosstalk 
between the gut microbiota and its metabolites also guarantee an intact gut 
barrier. These processes that protect against destabilization of gut microbes by 
potential entry of pathogenic bacteria are collectively called colonization 
resistance and are equally essential for liver health. In this review, we shall 
investigate how the mechanisms of colonization resistance influence the liver in 
health and disease and the microbial-liver crosstalk potential as therapeutic target 
areas.

Key Words: Microbiome; Nonalcoholic fatty liver disease; Nonalcoholic steatohepatitis; 
Liver disease; Microbiome-host crosstalk; Gut homeostasis; Microbial metabolites
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Core Tip: The influence of the gut microbiome on various body systems has important implications for 
health and disease, such as liver disease. While the exact mechanisms of how the microbiome contributes 
to liver disease are unknown, there is strong evidence that the translocation of various metabolites across 
the mucosal barrier plays a strong role, which is precipitated by dysbiotic gut microbiota. Considering the 
importance of the microbiome in liver disease, powerful therapeutic options that can manipulate the gut 
microbiome are being explored. These approaches could have the potential for effective treatments for 
various stages of liver disease. This review will explore how the mechanisms of colonization resistance 
influence the liver in health and disease and finally examine potential therapeutic targets in the gut-liver 
axis.

Citation: Kirundi J, Moghadamrad S, Urbaniak C. Microbiome-liver crosstalk: A multihit therapeutic target for 
liver disease. World J Gastroenterol 2023; 29(11): 1651-1668
URL: https://www.wjgnet.com/1007-9327/full/v29/i11/1651.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i11.1651

INTRODUCTION
A healthy gut microbiota plays a significant role in maintaining a homeostatic gut environment. One 
such role is colonization resistance, which is defined as the microbial capacity to resist invasion of 
exogenous microorganisms (for example, pathogens) and/or prevent uncontrolled overgrowth of 
endogenous microbes (for example, pathobionts). For gut homeostasis to be achieved, microbial alpha 
diversity must remain high, gut mucosal integrity must be maintained, and tolerance to the billions of 
microbial immunogens present in the gut must be established. This is all achieved through intricate 
microbe-to-microbe and microbe-to-host interactions mediated by microbial metabolites, such as short-
chain fatty acids, or microbial cell wall components, such as lipopolysaccharides, lipoteichoic acid, 
peptidoglycans and flagellin. Homeostasis is also achieved through the production of antimicrobial 
peptides, resource and oxygen competition, host immunomodulation, and conjugation of bile acids. The 
mechanisms by which these inter/intramicrobial interactions mediate colonization resistance or how 
their perturbation leads to disease have not yet been fully elucidated. However, it is known that an 
imbalance in microbial composition, otherwise known as dysbiosis, which may arise from dietary 
changes, ingestion of exogenous toxins such as antibiotics or xenobiotics, or through infections that 
suppress the immune system, has serious and sometimes long-term clinical implications. Diseases such 
as diabetes, obesity, atherosclerosis, and liver disease are associated with dysbiosis and the translocation 
of gut microbial products into circulation. As the liver is the first organ to be exposed to the gut bacterial 
products and digested food delivered through the portal vein, any leakage of microbial products into 
circulation will lead to hepatocellular immune activation, thereby promoting systemic and hepatic 
inflammation, which may lead to liver disease[1]. An understanding of the mechanisms involved in 
colonization resistance and its influencing factors is therefore crucial to establish their link to the 
etiology of liver disease as well as to identify possible hit points along the gut-liver axis that can be 
utilized as therapeutic targets for liver disease[2]. This review explores some of the mechanisms of 
colonization resistance and their importance to the etiology of the different stages of nonalcoholic fatty 
liver disease (NAFLD) from simple steatosis to liver inflammation, as well as alcohol-associated liver 
disease (ALD), and highlights potential entry points that may be used as therapeutic targets for liver 
disease. A summary of the interplay between the microbiome, liver, immune system, and metabolome is 
presented in Figure 1.

GUT MICROBIAL EUBIOSIS
The gut microbiome starts taking shape at birth, where it is initially influenced by the mode of delivery. 
Vaginally born babies will have a gut microbial composition very close to the maternal vaginal 
microbiota, while the caesarian born will adopt mainly the skin microbiota[3]. Mammals have five phyla 
that predominate the gut: Firmicutes (e.g., Lactobacillus, Clostridium, Ruminococcus, Eubacterium, Fecalibac-
terium and Roseburia), Actinobacteria (with Bifidobacterium as one of its most important members), 
Bacteroidetes (e.g., Bacteroides, Prevotella, and Xylanibacter), Proteobacteria (e.g., Escherichia and Desulfo-
vibrio) and Verrucomicrobia (e.g., Akkermansia)[4]. The earliest colonizers are mainly facultative aerobes 
of the phyla Firmicutes and Actinobacteria, which play a significant role in lowering the gut’s oxygen 
level to allow for the colonization of obligate anaerobes. These aerotolerant microbes reside in the upper 
gut, where they continue to reduce the amount of oxygen in the gut for life. Escherichia coli and Entero-
coccus faecalis are the most abundant in the oxygen-high neonatal gut, and they rapidly expand in the 
early phase, leading to a gradual depression of oxygen levels and allowing growth of the facultative 

https://www.wjgnet.com/1007-9327/full/v29/i11/1651.htm
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Figure 1 During development of nonalcoholic steatohepatitis, several immunological and metabolic pathways intersect, thus promoting 
progression of liver injury and nonalcoholic steatohepatitis. In healthy conditions, gut-liver axis homeostasis is guaranteed by intact intestinal epithelium 
barriers and proper liver-host immune functions that limit the translocation of bacteria and their metabolites. In nonalcoholic steatohepatitis (NASH), on the one hand, 
the intestinal barriers are disrupted (thin mucus layer, decreased expression of tight junction proteins, altered ratio of Firmicutes to Bacteroidetes, dysbiosis, decreased 
short-chain fatty acids that result in increased leakage of bacteria and their metabolites (Lipopolysaccharide, MDP, flagellin, bacterial DNA) into the portal vein and 
systemic circulation, consequently stimulating the production of inflammatory cytokines in the systemic circulation. On the other hand, liver function is compromised 
because of the accumulation of fat, altered lipid metabolism, and increased microbial burden, which in turn elicits hepatic inflammation, hepatic stellate cell activation 
and collagen deposition, Kupffer cell activation, and triggering of the toll-like receptor 4 signaling pathway, which altogether contribute to the development of NASH. Tj: 
Tight junction; SCFAs: Short-chain fatty acids; KC: Kupffer cell; HSC: Hepatic stellate cell; LPS: Lipopolysaccharide; mLN: Mesenteric lymph nodes; TLR4: Toll-like 
receptor 4; TNF-α: Tumor necrosis factor-α; IL-6: Interleukin-6; TGF-β: Transforming growth factor-β; IL-1β: Interleukin-1β.

anaerobes Bifidobacterium, Bacteroides and Clostridium, which colonize most of the lower gut[4,5]. The 
neonatal microbiota is also influenced by the mode of feeding, where breast-fed babies show a more 
stable microbiota that has a higher copy number of Bacteroides and Bifidobacterium but a lower 
abundance of Enterococcus and Streptococcus species, while formula-fed babies have a higher abundance 
of Clostridium, Streptococcus and Enterococcus[6]. The early life microbiota only begins to take a 
semblance of adult microbiota when solid food is introduced and will remain relatively unstable until 3-
5 years after birth[7]. The rapid expansion of early life microbiota and the adaptation to oxygen levels 
signify the earliest mechanisms for initiating gut microbial homeostasis[8].

The colon has the highest density of microbes in the gastrointestinal tract, harboring approximately 
70% of all gut microbes, which are mostly members of the Firmicutes and Bacteroidetes phyla[9]. The 
Firmicutes to Bacteroidetes axis is important in maintaining gut homeostasis, as members of each 
phylum have specialized metabolic roles (i.e., metabolism of sugar vs. indigestible fibers) that impact the 
microbiome and the host. It is believed that the role in homeostasis is optimized when the relative 
abundance is 80% Firmicutes and 15% Bacteroidetes[8,10,11]. However, the significance of this value 
and the actual impact it has on the host have been questioned by some researchers[12], emphasizing the 
importance of more research on the role of Firmicutes and Bacteroidetes in gut microbial homeostasis, 
health and disease. Nutrients, metabolic byproducts and the competition between exogenous microbes 
and commensals help prevent colonization of pathogens and maintain homeostasis. Different animal 
studies have shown that nutrient competition occurs between metabolically related microbiota 
members. For example, germ-free mice colonized with three human commensal strains of Escherichia coli 
(E. coli HS, E. coli Nissle 1917, E. coli MG1655) successfully prevented colonization of the cecum by the 
pathogen enterohaemorrhagic Escherichia coli (EHEC) EDL933, an E. coli 0157:H7 biotype, due to the 
three precolonized commensal biotypes outcompeting E. coli EDL933 for nutrients[13]. This colonization 
resistance was further shown to occur using multiple sugars as metabolic substrates for probiotic E. coli 
Nissle 1917 and commensal subtype E. coli HS, whose rapid growth effectively limited the colonization 
of EHEC E. coli EDL933 in a mouse model[14]. Competition for a shared nutritional niche of proline was 



Kirundi J et al. Microbiome-liver crosstalk in liver disease

WJG https://www.wjgnet.com 1654 March 21, 2023 Volume 29 Issue 11

similarly demonstrated in a gnotobiotic mouse model colonized with early life microbiota where early-
life E. coli 1 was shown to outcompete E. coli 0157:H7[15]. This colonization resistance was also thought 
to be attributed to the production of lactate and acetate by bifidobacteria and enterococci, which can 
suppress the motility of E. coli 0157:H7 under cecal anaerobic conditions[15]. Colonization resistance is 
also aided by the production of toxic antimicrobial peptides by commensals. For example, many 
members of the phylum Bacteroidetes produce toxic antimicrobial peptides through their type 6 
secretion systems (T6SS)[16], E. coli produces narrow-spectrum antibiotics called microcins that 
effectively kill competitors within their niche[17,18], and the probiotic Bifidobacterium secretes broad-
spectrum bacteriocins[19].

Overall, any extrinsic or intrinsic factors that upset the stable microbial communities will in essence 
destabilize the colonization resistance mechanisms and lead to disease by allowing colonization of 
pathogenic microbes and/or leakage of microbes and microbial toxins into circulation.

COLONIZATION RESISTANCE THROUGH MICROBIAL ENHANCEMENT OF GUT 
BARRIER FUNCTION
The gut is lined with a thick mucus layer made of a highly glycosylated mucin 2 protein, which is 
densely packed and insoluble in the layer closest to the epithelium but loosely packed and soluble on 
the outer layer[20,21]. This mucus layer prevents direct contact of bacteria with the gut epithelium, 
thereby reducing the potential for pathogen colonization[20,21]. The development of the mucus layer is 
enhanced by the gut microbiota and depends on the intestinal microbial composition. It has been shown 
that germ-free rodents have a much thinner mucus layer than their conventionally colonized 
counterparts[22]. Petersson and colleagues have shown that a thin colon mucosal layer in a colitis germ-
free mouse model can be restored by administering lipopolysaccharides or peptidoglycans to germ-free 
mice[22]. Bacteria enhance the mucus layer in numerous ways, such as through the production of 
secondary metabolites. Short chain fatty acids (SCFAs), such as acetate produced by Bifidobacterium or 
butyrate produced by gram-positive Firmicutes such as Faecalibacterium prausnitzii, Roseburia sp, and 
Butyricicoccus pullicaecorum[23,24], are known to strengthen gut barrier function, normalize 
permeability, improve intestinal epithelium defense, protect against pathogenic infections, and reduce 
inflammation[25-28].

Intestinal epithelial cells are held together by a set of tight junction proteins that are molecules 
situated at the tight junctions of epithelial cells. The integrity of these tight junctions can be influenced 
by commensal bacteria and their effects on tight junction proteins. For example, Lactobacillus rhamnosus 
GG induces claudin-3 expression, L. acidophilus and L. plantarum stimulate the expression of occludin, 
and Bifidobacterium infantis preserves claudin-4 and occludin deposition at tight junctions[29,30]. In a 
mouse necrotizing enterocolitis model, Bifidobacterium was found to preserve claudin 4 and occludin 
localization in tight junctions, thereby preventing gut permeability[31]. In mouse models, probiotics 
have been shown to improve the integrity of the intestinal barrier, which has also been observed in 
Crohn’s and colitis patients[28]. In vitro treatment of Caco-2 cells with the probiotic E. coli Nissle 1917 
increases the expression and peripheral migration of ZO-2[32]. Treatment of Caco2 cells with the 
probiotic Lactobacillus plantarum MB452 increased occludin and cingulin gene expression[33]. These 
results indicate that in vitro, certain probiotics can improve gut barrier function. Maintaining the 
integrity of the intestinal barrier is essential due to the high levels of microbial lipopolysaccharide (LPS) 
present within the lumen of the gut, as LPS is a potent immunological signal that can induce an inflam-
matory cascade if detected systemically, which a healthy intestinal barrier effectively prevents[34]. 
Leakage of LPS and other microbial polypeptides into circulation due to dysbiosis can lead to inflam-
mation in the liver (among other organs), which can lead to the development of liver disease[34].

COLONIZATION RESISTANCE AND BILE ACID METABOLISM
Pericentral hepatocytes primarily produce bile acids from cholesterol[35]. In humans, these acids are 
then transported to the gut, where they are dehydroxylated, epimerized, or dehydrogenated into 
different secondary bile acids, such as deoxycholic acid (DCA), ursodeoxycholic acid (UDCA), 
ursocholic acid, or lithocholic acid (LCA)[35]. In mice, murideoxycholic acid and hyodeoxycholic acid 
are also produced[35]. Secondary bile acids are known to bind to the intestinal farnesoid X receptor 
(FXR) and G-protein coupled receptor 5 (TGR5)[36]. Some bile acid metabolites have also been shown to 
have a contradictory effect on gut barrier tight junctions[36]. UDCA and LCA, for example, have 
opposing effects on the barrier of human colonic T84 cells[36]. Treatment of these cells with primary bile 
acid-chenodeoxycholic acid (CDCA) combined with LCA leads to an increase in barrier permeability 
and the inflammatory cytokine IL-8[37]. Using a Caco-2 cell model, it was demonstrated that DCA led to 
an increase in the phosphorylation of epithelial growth factor receptor, which induced barrier 
dysfunction[38]. Prematurely weaned piglets treated with CDCA showed an improvement in the gut 
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barrier with higher ZO-1 expression and increased expression of the proinflammatory cytokines tumor 
necrosis factor (TNF)-α and interleukin (IL)-6 and the anti-inflammatory cytokine IL-10[39]. The authors 
speculated that the anti-inflammatory effects of both IL-10 and ZO-1 counteracted the inflammatory 
effects of IL-6 and TNF-α, thus precipitating a net improvement in the intestinal barrier[39]. These 
examples demonstrate that bile acid metabolism is a significant key player in gut health, and it can be 
utilized as a therapeutic target for liver disease and other metabolic disorders, as will be discussed later.

MICROBIAL ASSOCIATION WITH LIVER DISEASE
Liver disease has been shown through preclinical and clinical trials to be accompanied by gut dysbiosis
[40-44]. It has been shown that liver cirrhosis is also correlated with bacteremia, increased gut 
permeability, and increased circulatory LPS[43]. Dysbiosis has been noted in many mouse models of 
liver disease, such as secondary biliary fibrosis (common) induced by bile duct ligation, alcoholic liver 
disease induced by alcohol uptake in drinking water and hepatotoxicity-induced liver cirrhosis using 
carbon tetrachloride (CCL4) treatment[42,43]. In humans, several gram-positive bacteria, including 
members of the genera Clostridium XI, Anaerobacter, Streptococcus, and Lactobacillus, were found to be 
more abundant in the gut in NAFLD patient biopsies than in healthy volunteers[45]. In contrast, 
Oscillibacter and Flavonifractor of the family Ruminococcaceae were abundant in healthy volunteers 
relative to NAFLD patients[45]. In severe fibrosis forms of NAFLD, the bacteria Bacteroidetes vulgatus 
and Escherichia coli were identified as the most abundant[46]. Although there has not yet been a general 
consensus on what microbial ratios of different strains exist in NAFLD patients, many research findings 
indicate that a lower Firmicutes to Bacteroidetes ratio is associated with liver disease[11,47]. Dysbiosis 
may be caused by a reduction in bile acids (which are bacteriostatic) of a cirrhotic liver, which precip-
itates inflammation and immunosuppression, factors that can positively feedback on cirrhosis[42]. 
Dysbiosis may also arise from increased saprophytic fungal growth in the alimentary canal. Cirrhotic 
liver patients who routinely receive antimicrobial treatment have an overgrowth of fungi, especially 
Candida, leading to fungal-bacterial balance in the gut and worsening dysbiosis[42]. Although cirrhosis 
is a systemic disease, it is believed to be worsened by dysbiosis both in the gut liver axis and outside this 
axis, such as in saliva and serum[42,48].

While there is a knowledge gap on the use of microbial interventions for NAFLD therapy, there are 
data showing that nonalcoholic steatohepatitis (NASH) patients improve following treatment with the 
antibiotic rifaximin, which is used for the treatment of traveler’s diarrhea caused by Escherichia coli[49]. 
In a study examining the gut microbiota of stage 4 hepatitis C virus (HCV) patients, Prevotella and 
Faecalibacterium were found to be more abundant in HCV patients than in healthy controls, while 
Ruminococcus and some Clostridium species were more abundant in healthy controls than in HCV 
patients. Bifidobacterium was found only in healthy individuals[50]. Germ-free mice were shown to 
develop NAFLD following fecal microbial transplantation from donor hyperglycemic mice with 
systemic inflammation when fed a high-fat diet[51]. On the other hand, germ-free recipients that 
received fecal transplantation from normal donors (i.e., normoglycemic with negligible systemic inflam-
mation) did not develop NAFLD and were normoglycemic when fed a high-fat diet[51]. Rabot et al[52] 
also showed that germ-free mice fed a high-fat diet were more resistant to hepatic steatosis than 
colonized controls. In an experimental mouse model of cholestasis-induced liver fibrosis induced either 
through bile duct ligation or by CCl4 treatments, colonization with complex microbiota (specific 
pathogen-free mice) was protective against severe fibrosis when compared to limited colonization 
(Altered Schaedler Flora)[53]. How the gut microbiota induces a leaky gut, bacteriaemia and an inflam-
matory flare leading to liver disease has been the subject of intense research. Brown and colleagues fed 
mice a high carbohydrate diet to induce a leaky gut[54]. This high carbohydrate diet caused a sloughing 
of the intestinal villi and reduced tight junction integrity, which allowed bacteria to translocate into the 
circulatory system[54]. In cirrhotic patients, it has been shown that microbial components leaking 
through the intestinal barrier, such as LPS, lipoteichoic acid, lipopolypeptides, and peptidoglycans, 
activate Toll-like receptors (TLRs) in hepatic stellate cells, Kupffer cells, and hepatocytes (all of which 
are differentially populated with TLRs 1-9), inducing severe inflammatory responses and fibrosis in the 
liver[43,55] Microbial activation of TLR2 in monocytes has especially been identified as significant in 
liver fibrosis through the production of TNF alpha, which initiates a cascade of reactions leading to 
increased gut permeability[43].

MICROBIAL METABOLITES IN LIVER DISEASE
Gut microbiota-host crosstalk in liver disease remains widely unclear. However, in recent years, many 
studies have established a correlation between different microbial metabolites and liver disease[56]. LPS 
are gut microbiota-derived endotoxins that form the major component of the gram-negative bacterial 
outer cell wall. High plasma levels of LPS have been identified in NAFLD patients and are associated 
with gram-negative intestinal bacterial overgrowth and compromised gut lining epithelial tight 
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junctions[57,58]. LPS induces an inflammatory response by activating hepatic Kupffer cells through 
TLR4. Apart from inducing proinflammatory cytokines and chemokines from hepatic Kupffer cells, LPS 
also activates hepatic stellate cells (HSCs) to differentiate into myofibroblast-like cells by producing 
extracellular matrix proteins, thus promoting liver fibrosis[49,59-61]. Other important metabolites are 
SCFAs from the fermentation of indigestible dietary fiber, which are mostly found in the colon, where 
most of them are produced and absorbed[62]. The major microbial fermentation products following 
microbial degradation of fiber are the SCFAs butyrate, propionate, and acetate. The body utilizes 
approximately 10% of the energy supply from microbially derived SCFAs, meaning that 90% is stored in 
white adipose tissue[63]. Several studies have revealed that gut microbial dysbiosis is associated with 
chronic liver diseases such as NAFLD or ALD[45,64]. In a metabolomic study in children with NASH, 
serum levels of 2-butanone and 4-methyl-2-pentanone were found to be elevated compared to those in 
healthy individuals[65]. Adults with NAFLD were found to have higher levels of fecal propionate and 
isobutyric acid, which are part of the fecal SCFA family[66]. Obese patients with NAFLD were also 
found to have high levels of propanoic acid and butanoic acid[67]. SCFAs such as acetate and butyrate 
modulate the host immune response by dampening the LPS-induced hepatocellular inflammatory 
response and restoring mucosal and systemic immunologic homeostasis, thus minimizing liver injury
[68,69]. SCFAs can act as hormonal molecules by binding to G-protein-coupled receptors (GPCRs), 
which leads to activation of the GPCR pathway, slowing gut motility and increasing energy harvest[70-
72]. Upon activation, glucagon-like peptide-1 is secreted from epithelial L-cells, enters circulation, and 
induces insulin release from the pancreas[70]. GPCR pathway activation also limits insulin-mediated 
hepatic and muscular fat accumulation and stimulates energy expenditure[71]. In adipocytes, SCFAs 
activate G protein-coupled receptor (GPR) 41 and GPR43 to inhibit lipolysis and activate adipocyte 
differentiation[70]. SCFAs also regulate immune cell functions through GPR43, which is widely 
expressed in most immune cells[73-75]. SCFAs have also been shown to inhibit histone deacetylases, 
which downregulate gene expression and reduce the production of inflammatory cytokines, particularly 
in macrophages and blood mononuclear cells during acute inflammatory hepatitis[69]. Therefore, it can 
be argued that dysbiosis that reduces microbial SCFA generation will result in a dysregulated inflam-
matory response and thus contribute to the progression of liver disease”

Indole and its derivatives are microbial metabolites of tryptophan breakdown. Indole upregulates 
tight junction proteins in the gut and downregulates colonic epithelium inflammatory genes through 
the aryl hydrocarbon receptor[76]. Indole-3-propionate activates pregnane X receptor to downregulate 
proinflammatory cytokine production and has been associated with protection against injury through 
oxidative stress signaling[76,77]. Indole-3-acetate has been shown to modulate hepatocyte lipogenesis, 
thus playing a protective role against NAFLD[78]. Microbial metabolism of dietary choline and L-
carnitine produces trimethylamine (TMA), which is oxidized to trimethylamine N-oxide (TMAO) 
during hepatic detoxification of the blood through catalysis of the liver enzyme hepatic flavin monooxy-
genases[79]. TMAO is excreted in urine, and recent findings in animal NAFLD models fed a high-fat 
diet have shown increased urine levels of TMAO[80]. In a Chinese cohort study, the severity of NAFLD 
was closely associated with circulatory TMAO[81]. Bacteria are essential for the conversion of dietary 
choline to TMA, which is oxidized in the liver through the catalysis of hepatic flavin monooxygenase to 
generate trimethylamine-N-oxide, whose accumulation has been associated with both cardiac and renal 
disease[82,83]. Phosphatidylcholine is also metabolized by gut microbes to generate TMA, whose 
oxidation in the liver yields TMAO and, as previously described, may lead to kidney and cardiac 
disease[84,85]. It is now thought that accumulation of TMAO in the liver causes NASH through the 
inhibition of FXR and alteration of bile acid homeostasis[86]. SCFAs are significant microbial 
metabolites in the etiology of liver disease. More studies are required to target SCFAs as diagnostic or 
therapeutic tools for predicting or treating liver disease.

DIET AND XENOBIOTICS IN LIVER DISEASE
Liver disease is highly influenced by exposure to different environmental factors, which has recently 
been referred to as the exposome. It is now known that liver disease is impacted by an interaction 
between the genetic makeup of the host, exposome, and gut microbiome[87,88]. Certain types of gut 
microbiota have been associated with endogenous alcohol generation, which may in turn be 
hepatotoxic, leading to NASH[89]. The gut microbiota is important for the metabolism of bile acids, and 
in the absence or deficiency of bacteria that can convert primary bile acids to secondary bile acids, there 
is an accumulation of circulatory bile acids, which in turn activate TGR5, leading to monocyte 
dysfunction, which may exacerbate the hepatic inflammatory response and lead to liver disease[90]. 
High circulatory bile acids reflect a dysfunctional FXR, the nuclear receptor responsible for bile acid 
homeostasis, whose function is to facilitate enterohepatic bile acid circulation[91]. Dysbiosis affecting 7α
-dehydroxylation-rich Firmicutes, which convert primary bile acids to FXR-low-binding secondary bile 
acids, will inevitably affect the function of FXR, leading to liver disease[92]. The liver is a crucial filter 
for toxins that find their way into the body either accidentally or deliberately. Alcohol is by far the most 
significant xenobiotic causing liver disease in humans, and it has been identified as the cause of ALD
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[93]. It can be argued that alcohol consumption causes both destruction of microbial communities and 
rupture of the barrier wall integrity in the gut and leads to induction of inflammation during detoxi-
fication in the liver. A compromised gut barrier leads to leakage of LPS and other microbial ligands into 
circulation, triggering inflammation of liver cells.

A high-fat diet and environmental pollutants are further risk factors for liver disease, and their effects 
are exacerbated by microbial metabolites[94,95]. It is likely that most xenobiotics, in addition to being 
directly toxic to hepatic cells, will cause dysbiosis that favors changes in microbial composition that 
generate toxic liver disease-causing metabolites. The changes in these microbial metabolites may 
therefore be used as noninvasive diagnostic biomarkers for liver disease[96] but may also become 
significant therapeutic targets for the treatment of this disease[96-98]. A high carbohydrate diet has been 
demonstrated in environmental enteropathy animal models to lead to intestinal wall epithelial brush-
border shortening and loosening of tight junctions[54]. Furthermore, small intestinal gram-negative 
bacterial overgrowth and high plasma LPS levels can lead to liver disease[56]. In the absence of dietary 
fibers, the gut microbiota cannot produce sufficient SCFAs, which may lead to a dysregulated inflam-
matory response and liver disease[99,100]. Most liver metabolism occurs through the catalysis of 
cytochrome P-450 (CYP-450), and it is known that many dietary biproducts can influence the activity of 
CYP-450[101]. Dietary retinoids, for example, are metabolized by hepatic cells, including hepatic stellate 
cells. An alteration in the uptake and metabolism of retinoids may influence retinoic acid signaling, 
which may activate hepatic stellate cells, resulting in loss of retinoid stores, aberrant extracellular matrix 
generation and the onset of fibrosis, which inevitably precipitate liver disease[102]. Additionally, 
alcohol consumption affects hepatic retinoid metabolism through inhibition of retinoid oxidation, 
induction of CYP2E1 enzymes to increase retinoic acid metabolism, or increased peripheral tissue 
damping of retinoic acid, all of which leads to activation of hepatic stellate cells and development of 
liver disease[103]. Retinoic acid is a gut microbial metabolite of vitamin A whose intestinal concen-
tration is modulated by suppression of retinol dehydrogenase 7 expression by commensal Clostridia 
microbes[104]. Retinoic acid not only regulates bile acid homeostasis but also shares with it the receptors 
retinoid X receptor and FXR and therefore shares the functions of lipid metabolism and insulin 
sensitivity[105]. In a rat model, a high-fat diet in combination with high glucocorticoid treatment 
resulted in a fourfold hepatic lipid deposition and an almost threefold increase in circulatory alanine 
aminotransferase indicative of liver injury[106]. A high-fat diet also caused severe liver damage with 
high levels of circulatory alanine transaminases (ALT) and aspartate aminotransferases (AST) in a 
mouse model[107]. Mice fed a high-fat diet developed high intestinal gram-negative microbial growth 
and an increase in ethanol-producing bacteria when compared to mice fed normal chow[107]. This 
result is consistent with findings from clinical studies where it has been documented that microbial 
diversity rapidly changes with a change in diet[108]. Therefore, it can be concluded that diet, food 
additives, and xenobiotics affect liver disease by influencing gut microbial composition, gut 
permeability, and microbial metabolites. The liver plays a major role in metabolism and blood detoxi-
fication and is thus prone to damage from microbial endotoxins, environmental toxins, and microbial 
dietary metabolites, all of which work together in cascaded inflammatory responses to cause liver 
injury. Understanding the individualized microbial signatures and their influence on gut permeability, 
immunologic inflammatory responses, and the hepatic response to insult will expose multientry 
avenues to precision liver disease therapy.

MICROBIOME-HOST INTERACTION IN LIVER DISEASE
The intestine is heavily colonized with microbiota, yet the surrounding tissues remain sterile. This 
barrier is maintained by intricate crosstalk between gut microbes, the gut wall epithelium, and the 
innate immune system[109,110]. The expression of intercellular tight junction proteins between the 
intestinal epithelium is regulated by cytokines such as interferon gamma and TNF and other regulatory 
cytokines that interact with immunoglobulin A (IgA)-coated gut microbiota to maintain gut and 
immune homeostasis[111]. A change in diet or intake of xenobiotics such as alcohol, prescription/over-
the-counter drugs, or other environmental chemicals may lead to destabilization of the intestinal 
homeostatic environment either through selective overgrowth or reduction of specific microbial strains 
or injury to the mucosal lining. A destabilization of the homeostatic environment will give way to a shift 
in the immunological signaling molecules protective to the gut tight junctions and a sloughing of 
intestinal villi. This breach in the barrier allows leakage of microbial endotoxins into circulation and 
microbial translocation into the liver, thus triggering an immunological inflammatory response once the 
microbial products are detected by the liver’s pathogen recognition receptors, mainly the TLR and 
nucleotide oligomerization domain-like receptors[109,112]. HSCs are endowed with TLR 2, 4, and 9, 
which are associated with promoting TLR4 fibrosis[43,60]. Kupffer cells are lined with TLR 2, 3, 4, and 9 
and are hepatic macrophages that form the main targets of microbial ligands within the liver[43]. 
Furthermore, hepatocytes express TLR 1-9 and are the most abundant cells in the liver, playing a critical 
role in the acute phase of the immunologic response through cytokine-like IL-6[113]. The inflammatory 
response of the liver to leaked gut-microbial endotoxins is not yet fully understood. However, it is 
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known that upon activation, Kupffer cells release proinflammatory and profibrogenic cytokines, such as 
TNF-α, Transforming Growth Factor (TGF)-β and IL-1β, and a few more members of the inflammasome 
whose effect is to induce inflammation and accumulation of lipids in the liver, and if this is not resolved, 
it leads to fibrosis NAFLD[114]. Therapeutic target efforts are geared toward minimizing the hepatic 
inflammation seen after proinflammatory cytokine release. Chemokine receptor antagonists such as C-C 
motif chemochine receptor (CCR) 2 and CCR5 [Cenicrivinoc (CVC)] have been used with some success 
to decrease leukocyte infiltration, and when used in a diet-induced NASH mouse model and a 
thioacetamide-induced fibrosis rat model, liver fibrosis was effectively reduced[115,116]. This outcome 
has since been replicated in phase 2 clinical trials with a remarkable reduction in fibrosis[117]. Several 
other proinflammatory cytokines, including IL-17, IL-11, and IL-1, are still under investigation. A 
clinical trial therapy utilizing an IL-1 pathway anti-inflammatory drug, diacerelin, achieved a 
remarkable reduction in fibrosis in NAFLD patients with diabetes[118].

THE GUT MICROBIOME AS A DIAGNOSTIC BIOMARKER FOR LIVER DISEASE
The dynamics of the gut microbiome could be used as a noninvasive diagnostic tool for liver cirrhosis 
and hepatocellular carcinoma (HCC)[119]. In a cross-regional prospective validation study in China, 
human fecal samples analyzed for microbial diversity revealed a significant rise in diversity as the liver 
condition advanced from cirrhosis to HCC with cirrhosis[119]. There was also a high level of butyrate-
producing bacteria in healthy controls relative to early cirrhosis patients and a notable rise in LPS-
producing bacteria in HCC patients[119]. In a different experiment, gut microbiota known to originate 
from the oral cavity were found to be enriched in liver cirrhosis patients relative to healthy volunteers
[120]. In an Asian NAFLD cohort, Ruminococcaceae and Veillonellaceae species were found to be more 
predominant in NAFLD patients relative to healthy individuals[121]. These microbiome changes could 
not be associated with genetic predispositions known to influence NAFLD and were thought to be 
environmentally driven[121]. Bacteroides and Escherichia spp. have, on the other hand, been associated 
with liver fibrosis in NAFLD patients[122]. Overall, these multiregional studies indicate that there is 
great potential for the gut microbiota as a noninvasive diagnostic biomarker for liver disease with 
distinct indications of the staging of fibrosis and inflammation[121,123]. There is also great potential for 
the gut microbiota and associated metabolites to be utilized as therapeutic biomarkers[119-121]. It must, 
however, be appreciated that as of yet, a single microbial signature indicative of liver disease does not 
exist mainly because disease outcome is influenced by multiple factors such as diet, genetic background, 
age, and lifestyle (such as alcohol consumption), all of which must be considered while interpreting data 
on the predictive value of fecal microbiota on liver disease[124].

THERAPEUTIC APPROACHES
As we have discussed above, dysbiosis and a dysfunctional gut barrier promote the leakage of microbial 
endotoxins and components, as well as bile acid metabolites, into circulation, which can eventually lead 
to liver injury. Various therapeutic approaches (which are at various stages of testing) could be used to 
address these different factors for the treatment or prevention of liver disease, which will be highlighted 
below. Although SCFA supplements could be an attractive therapeutic approach in liver disease, their 
taste is normally not well tolerated. However, methods such as microencapsulation[125], either as soft 
gels or liquid capsules, are available that mask the taste of bitter medications and could be used for oral 
delivery of SCFA, which has the added benefit of being slow release and helps prevent evaporation of 
some volatile SCFAs, such as butyrate. Butyrate enemas have been used in a rat model, with the 
treatment group showing improved mucosal repair and reduced colonic damage compared to the 
untreated control groups[126]. However, butyrate enemas did not show any improvement in clinical 
studies with ulcerative colitis patients[127]. There is potential for the use of SCFA as a therapeutic 
approach, but more research is required to develop an optimal approach. Prebiotics such as inulin 
represent a substitute approach for the supply of SCFAs[98]. Multiple agonists of FXR are under invest-
igation, including GS-9674 and LJN452, in phase 2 trials for NASH[98]. Some fibroblast growth factors 
(FGFs), such as FGF19 and FGF21, have shown encouraging results for NAFLD therapy[128,129].

Probiotic interventions
Treating dysbiosis and restoring homeostasis is complicated due to the wide range of associated factors 
that lead to a loss of important microbial populations or diversity in the first place. In most cases, 
treating dysbiosis with a single approach usually gives discouraging outcomes. However, studies 
involving probiotics have shown encouraging results in terms of safety, tolerance, and efficacy[130]. In a 
Phase 1 clinical trial, Lactobacillus rhamnosus GG administered to cirrhotic patients resulted in reduced 
Enterobacteraceae and increased relative abundance of Clostridiales incertae Sedis XIV and Lachnospiriceae 
with reduced endotoxemia and decreased pathogenic bacterial growth indicative of improved health
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[131]. In another study using multiple probiotic strains, a reduction in inflammatory cytokine flares in 
cirrhotic patients was observed[132]. In obese, sonographically identified NAFLD children, treatment 
with a probiotic combination of Bifidobacteria (B. bifidum and B. lactis) and two Lactobacilli (L. rhamnosus 
DSMZ 21690 and L. acidophilus) strains significantly lowered intrahepatic fat content and ALT levels as 
well as AST relative to the placebo treatment[133]. This reduction in hepatic steatosis was replicated in 
NAFLD patients treated with a multistrain probiotic[134]. In another study, a twelve-week treatment of 
30 NAFLD volunteers with six strains of bacteria containing Bifidobacterium breve and B. lactis, Lactoba-
cillus rhamnosus, L. acidophilus and L. paracasei pacasei and Pediococcus pentosaceus in a randomized, 
double-blind, placebo-controlled study led to an improvement in proinflammatory cytokines, a 
reduction in cholesterol and a decrease in body weight[135]. When probiotics are mixed with 
compatible prebiotics, better outcomes have been achieved in clinical trials, but more studies are needed 
to determine the most effective combinations[136,137]. Hepatic steatosis has, for example, been reported 
to decrease in patients with NASH following symbiotic and prebiotic treatment. Serum alkaline 
phosphatase was decreased following treatment with probiotics, prebiotics and synbiotics[136] 
However, it is noteworthy that the outcomes are dependent on the composition of probiotics, the 
exposure time, and the dosage[136]. Studies in animal models have shown similar outcomes as in 
human studies. In rats fed a high-fat diet, treatment with Bifidobacteria longum or Lactobacillus acidophilus 
significantly reduced hepatic fat accumulation[138]. There was also a strong negative correlation 
between fat liver content and probiotic concentration in the stool[138]. In addition, hepatic steatosis was 
markedly reduced after 12 wk of treatment with B. longum, but this was not the case with L. acidophilus 
treatment[138]. In a diabetic rat model, treatment with Akkermansia muciniphila led to a decreased 
inflammatory response and improved liver function[139]. In hepatic encephalopathy, a mixture of 
Lactobacillus plantarum, L. casei, L. delbrueckii subsp. Bulgaricus, Bifidobacterium infantis, B. longum, B, 
breve, and Streptococcus salivarius subsp. Thermophilius has been associated with both primary and 
secondary prophylaxis[140,141]. Yogurts containing L. bulgaricus, S. thermophilus, L. acidopilus La5 and B. 
lactis Bb12 as well as a prebiotic mixture of fruco-oligosaccharides and L. casei, L. rhamnosus, S. thermo-
philus, B. breve, L. acidophilus, B. longum, and L. bulgaricus have been shown to improve aminotransferase 
in NAFLD patients[142-144]. In NASH patients, probiotics containing L. bulgaricus and S. thermophilus 
have also shown improvement in aminotransferase[145]. A combination of B. longum W11 and fructooli-
gosaccharides, on the other hand, has shown improvement in aminotransferase and the histological 
score activity of NASH patients[146]

Fecal microbiota transplantation
Fecal microbiota transplantation (FMT) is the administration of a solution containing fecal material from 
a “healthy” donor into the intestinal tract of a recipient to modify that recipient’s gut microbial 
composition for targeted health benefits[147]. To date, FMT has been successfully used in the treatment 
of recurrent Clostridium difficile infection, and there is growing evidence that FMT can be used to treat 
noninfectious diseases such as inflammatory bowel disease, obesity, and other metabolic disorders 
[147]. FMT has also been tried as a therapeutic option for liver disease. In a diet-induced steatohepatitis 
mouse model, FMT-treated mice showed increased SCFAs, improved expression of tight junction 
proteins, reduced proinflammatory cytokines and less intrahepatic lipid deposition compared to 
controls (i.e., no FMT)[148]. There have also been several human clinical trials but with mixed outcomes, 
with some achieving a significant reduction in proinflammatory cytokines and improved gut barrier 
function and others not responding to therapy[149,150]. Future experiments should address the 
question of who qualifies as a healthy donor, how should we deal with the variation in gut microbial 
diversity among the recipients, and how best to package the product for better acceptability.

Bile acid metabolism
A recent study in mice indicated that during antibiotic-induced dysbiosis, the homeostasis of bile acids 
was equally destabilized[151,152]. Treatment of these mice with flavanones and total phenolic extracts 
of citrus aurantium L. (TPE-CA) restored bile acid homeostasis and gut barrier integrity[152]. TPE-CA 
also regulates the enterohepatic circulation entry of bile acids through the farnesoid X receptor-
fibroblast-growth factor 15 pathway[152]. The effects of dysbiosis and increased intestinal unconjugated 
bile acid that are observed in ALD were reversed through improved FXR activity and gut barrier 
function following treatment with fexaramine, which is an intestine restricted FXR agonist. These results 
indicate that modulation of cyp7a1 and lipid metabolism can be achieved in a mouse model and thereby 
minimize ethanol-derived liver damage by targeting the bile acid-FXR-fibroblast-growth factor 15 
signaling pathway[153]. Future experiments to verify these findings in higher mammals and translate 
the results to therapeutic interventions for human liver disease are warranted.

Precision microbial engineering
The mechanisms by which the intestinal microbiota influences the development and/or progression of 
liver disease are only beginning to unfold, but to fully elucidate the microbiome role in liver disease, a 
more comprehensive picture of the dynamics of the gut ecosystem is needed. Unfortunately, most of our 
knowledge about the intestinal microbiota arises from fecal or biopsy sample analysis, which is not 
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representative of the entire gut microbiome. However, novel technologies are being developed to 
address this knowledge gap. One such innovation is a capsule sampler and drug delivery system that is 
swallowed and utilizes mechanical gut peristaltic movements to guide the capsule down the entire 
length of the gut as the capsule collects samples[154]. Recently, a capsule robot was designed from a 
shape memory alloy spring with a chamber of a storage capacity of 500 µL, which showed enhanced 
sample preservation[155]. Another approach consists of an inexpensive 3D-printed sampler containing a 
hydrogel whose swelling ability seal and protects the liquid gut samples[156]. Such strategies that 
analyze small samples from various sites will provide information on microbiota distribution and will 
make microbial engineering and microbial targeting more feasible.

One such microbial engineering approach being developed is the use of Clustered Regulatory 
Interspaced Short Palindromic Repeats (CRISPR) Cas-based instructions to precisely cut off targeted 
genetic sequences of the microbial genome and thus change their function in vivo[157]. A conjugative 
plasmid, TP114, was recently used as a delivery vehicle for CRISPR-Cas9, targeted at drug-resistant 
Escherichia coli and Citrobacter rodentium, which led to full clearance of these organisms in a mouse 
model four days after administration[157]. More recent delivery systems for CRISPR-Cas9 have been 
designed to utilize probiotics as a genetically engineered conjugative vehicle that are more efficient and 
practical to use than bacteriophage-based systems[158,157]. The use of CRISPR-Cas9 as antimicrobial 
therapy is still in its early stages but has the potential to be an effective therapy for targeting specific, 
undesired microbes in the dysbiotic gut of liver disease. Other approaches to manipulate the gut 
microbiome are mucosal vaccines. IgA is the predominant antibody in the gut that binds to pathogens 
and commensals, preventing their translocation across the mucosal barrier. Using a probiotic-based 
mucosal vaccine with Lactobacillus acidophilus, Fox et al[159] showed that a potent, diverse IgA response 
could be elicited, which could help with colonization resistance. In another study, Slack and colleagues 
designed an oral vaccine using genetically modified Salmonella enterica capable of setting evolutionary 
traps for prophylaxis treatment in a mouse model[160,161]. While this technology was advanced into a 
pig model and is currently being tested on human neonates to treat neonatal sepsis and necrotizing 
enterocolitis, it has hallmarks to be equally beneficial as therapeutic approaches for liver disease.

Diet and lifestyle changes as therapeutic targets
There are many therapeutic options for NAFLD that are being explored, some of which are in advanced 
levels of clinical trials; however, no treatment is yet available[124]. Diet and lifestyle changes remain the 
most effective methods of managing liver disease[162]. Low caloric diets, low carbohydrate intake and 
low protein diets have all been shown to be effective in the management of liver disease[163,162]. It 
should, however, be noted that dietary changes alone cannot achieve the intended long-term weight loss 
goals to reduce liver inflammation. It is rather a combination of correct diet and exercise that is most 
effective against NAFLD[162]. The response to dietary changes and exercise on both gut microbiota that 
are negatively associated with liver disease and the amount of fat in the liver is different between 
individuals and between races[164] The amount of Bacteroides, for example, is lower in Chinese NAFLD 
individuals after diet and exercise compared to people from the West, and this is correlated with lower 
hepatic fat[164]. It has also been noted that Bacteroides increases in obese volunteers but decreases in 
lean volunteers following exercise and diet intervention[165]. This is suggestive of personalized 
intervention approaches of diet and lifestyle changes[164].

CONCLUSION
The influence of the gut microbiome on various body systems has important implications for health and 
disease, such as liver disease. While the exact mechanisms by which the microbiome contributes to liver 
disease are unknown, there is strong evidence that translocation of various metabolites across the 
mucosal barrier plays a strong role, which is precipitated by a dysbiotic gut microbiota. Considering the 
importance of the microbiome in liver disease, powerful therapeutic options that can manipulate the gut 
microbiome are being explored. These approaches could have the potential for effective treatments for 
various stages of liver disease. More research needs to be done to understand the crosstalk between the 
microbiome and host as it relates to liver disease so that more effective and targeted preventative and 
therapeutic options can be developed.
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