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ABSTRACT 

Plants exposed to mildly elevated temperatures display morphological and developmental 

changes collectively termed thermomorphogenesis. This adaptative process has several 

undesirable consequences to food production, including yield reduction and increased 

vulnerability to pathogens. Understanding thermomorphogenesis is, thus, critical for 

understanding how plants will respond to increasingly warmer temperature conditions, such 

as those caused by climate change. Recently, we have made major advances in that 

direction, and it has become apparent that plants resource to a broad range of molecules 

and molecular mechanisms to perceive and respond to increases in environmental 

temperature. However, most of our efforts have been focused on regulation of transcription 

and protein abundance and activity, with an important gap encompassing nearly all 

processes involving RNA (i.e., posttranscriptional regulation). Here, I summarized our 

current knowledge of thermomorphogenesis involving transcriptional, posttranscriptional, 

and posttranslational regulation, focused on opportunities and challenges in understanding 

posttranscriptional regulation—a fertile field for exciting new discoveries. 

HIGHLIGHT 

There is an important knowledge gap, encompassing nearly all processes involving RNA, in 

our understanding thermomorphogenesis regulation, offering many opportunities for 

exciting new discoveries in posttranscriptional regulation, with manageable challenges. 

KEYWORDS gene regulation; posttranscription; response to temperature; RNA decay; 

thermomorphogenesis; translation 
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INTRODUCTION 

 

Climate change is an increasing threat to biodiversity and food security. Rises in global 

average temperature is a major consequence of climate change, with significant impact on 

plant development, growth, and defence (Porter and Semenov, 2005; Hatfield and Prueger, 

2015; Velásquez et al., 2018; Gil and Park, 2019; Lippmann et al., 2019; Exposito-Alonso et al., 2019). 

In response to elevated temperatures that are still within the physiological range (~24-300C 

for the plant model Arabidopsis), plants undergo a process known as thermomorphogenesis 

that is characterized by morphological and developmental changes (e.g., elongation of 

hypocotyl, leaf, leaf petiole and primary root, and hyponasty) (Delker et al., 2014b; Quint et al., 

2016). These growth responses to relatively low increases in temperature are particularly 

important in the context of climate change, because plants are now growing in 

environments that are becoming slowly and steadily warmer than in the past. Importantly, 

plant response to elevated temperatures above the physiological range (i.e., heat stress) is 

phenotypically unrelated to thermomorphogenesis, can be lethal, and better models the 

effect of heat waves, instead of continuous warmer conditions (Box 1). 

 

Here, I present an overview of our current understanding of how plants regulate their 

response to elevated temperatures and discuss opportunities and challenges in 

posttranscriptional regulation—a fertile field for exciting new discoveries in 

thermomorphogenesis. 
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CURRENT UNDERSTANDING OF THERMOMORPHOGENESIS REGULATION 

 

What we know about thermomorphogenesis regulation 

In the past few years, we have gained substantial understanding on how plants perceive and 

adapt to elevated temperatures (see key recent developments in Box 2). However, we 

clearly still don't know the scope of perception mechanisms, possibly because of substantial 

challenges associated with the identification of sensing molecules (e.g., protein, RNA, lipid, 

DNA, and cofactor) that directly and specifically respond to increases in temperatures with 

regulatory consequence. The better characterized example is phyB, a photoreceptor 

sensitive to red/far-red (R/FR) ratio that exists in two interconvertible forms. Red light 

absorption induces conformational changes that shifts the inactive (Pr) to active (Pfr) form, 

while far-red promotes its reversion from Pfr to Pr, inactive form (Quail et al., 1995; Burgie and 

Vierstra, 2014). Elevated temperatures also promote phyB reversion to its inactive form Pr, a 

process called thermal reversion (Jung et al., 2016; Legris et al., 2016). Red light-activated phyB 

promotes degradation of the transcription factor family PYTOCHROME INTERACTING 

FACTORs (PIFs) (Lorrain et al., 2007) and, therefore, when phyB is inactive (high R/FR ratio or 

elevated temperatures), PIFs accumulate and promote increased levels of the growth-

stimulating hormone auxin (Koini et al., 2009; Franklin et al., 2011). Hence, phyB thermal 

reversion is a bona fide thermosensing mechanism in Arabidopsis, albeit its conservation is 

unknown. Another bona fide thermosensor is ELF3, a protein containing polyglutamine 

(polyQ) repeat embedded within a prion-like domain that undergoes temperature-

dependent phase transition, rapidly and reversibly shifting from active (soluble) to inactive 

(droplets) in response to higher temperatures (Jung et al., 2020). Natural variation in the ELF3 
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prion-like domain is associated with adaptation to native temperature conditions in plants 

(Jung et al., 2020), suggesting that ELF3 thermosensing via phase transition might be a 

conserved mechanism. Elevated temperatures can also be sensed via conformational 

changes in PIF7 mRNA, leading to increased translation efficiency at warm temperatures 

that is required for proper thermomorphogenic phenotype in Arabidopsis (Chung et al., 

2020). 

 

It is remarkable the fast pace at which the thermomorphogenesis field has progressed in the 

past few years (Figure 1). To my knowledge, the first work to report null mutant with 

disrupted response to warm temperature was in 1998, describing the dependency of warm 

temperature response on auxin, where the authors show impaired thermomorphogenic 

phenotype in AUXIN RESISTANT 1 (AXR1) and TRANSPORT INHIBITOR RESPONSE 1 (TIR1) null 

mutants (Gray et al., 1998). However, over half of the described thermomorphogenic mutants 

were published in the last three years, evidencing a strong momentum in recent years. 

Table 1 lists all currently known genes reported to result in thermomorphogenic phenotype 

in null Arabidopsis mutant plants. Except for phyB, ELF3, and PIF7, the listed genes have 

been described for their role in regulatory mechanisms downstream temperature 

perception. Strikingly, less than a handful of genes have been implicated in 

posttranscriptional regulation, while transcriptional and posttranslational regulation have 

yielded most known genes required for thermomorphogenic phenotype. 
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Gene expression, defined as a gene or combination of genes required for a phenotype, 

typically involves transcription, translation, and protein activity of given gene(s) in a defined 

condition. In thermomorphogenesis, regulation of transcription and protein activity have 

been extensively studied, as evidenced in Table 1, while mRNA fate after transcription (i.e., 

posttranscriptional regulation) in response to elevated temperatures is largely unknown. 

However, fine-tuning of protein abundance is a common theme in thermomorphogenesis, 

as well as in photomorphogenesis and clock-regulated processes. For instance, 

CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and DE-ETIOLATED 1 (DET1) regulate 

protein abundance via proteasomal degradation of specific targets and are central players in 

both thermomorphogenesis and photomorphogenesis (Lau and Deng, 2012; Delker et al., 

2014b). Posttranscriptional regulation is a fundamental process in the modulation of protein 

abundance and, hence, likely a major regulatory step in gene expression in 

thermomorphogenesis. 

 

What we (mostly) don’t know about thermomorphogenesis 

Many aspects of thermomorphogenesis regulation are still poorly understood and perhaps 

one of the most underappreciated is RNA regulation. A transcript undergoes numerous 

processes that offer important regulatory checkpoints. During transcription, precise 

definition of the transcription start site and termination, as well as splicing events, define 

the transcript primary sequence. RNA, however, is rarely a linear string of nucleotides in a 

cell; instead, RNA fold co-transcriptionally forming structures that can regulate splicing and 

all other downstream processes (Bushhouse et al., 2022). Transcribed and folded RNA, bond 

to various proteins and potentially other molecules such as other RNAs, is then transported 
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to a subcellular space (cytoplasm, for mRNAs). An mRNA in the cytoplasm can be recruited 

for translation and will eventually be degraded via an RNA decay pathway. Therefore, 

transcriptional processes determining mRNA sequence identity and posttranscriptional 

modulating localization, translation, and stability are key in gene expression and offer major 

opportunities for phenotypical regulation in any biological context. Except for PIF7 mRNA, 

the steps described above have not been characterized for their regulatory role in plant 

response to elevated temperatures. 

 

OPPORTUNITIES IN POSTTRANSCRIPTIONAL REGULATION OF THERMOMORPHOGENESIS 

 

Alternative splicing regulation 

Although splicing occurs co-transcriptionally, it is typically considered a posttranscriptional 

process, providing a key regulatory step in gene expression. Environmental temperature has 

long been known to alter alternative splicing, particularly temperature extremes (reviewed 

in John et al., 2021). Elevated temperatures within physiological range (~27-300C for 

Arabidopsis) decreases the expression level of a particular splicing isoform of FLOWERING 

LOCUS M (FLM), namely FLM-β, involved in flowering repression, with consequent 

promotion of early flowering (Posé et al., 2013; Lee et al., 2013). At mildly warmer 

temperatures (i.e., 250C), most alternative splicing has been associated with epigenetic 

regulation involving histone H3 lysine 36 tri-methylation (H3K36me3), including in flowering 

time regulators (e.g., FLM, MAF2, and FCA) and circadian clock components (e.g., PRR3 and 

PRR7) (Pajoro et al., 2017). There is also evidence that alternative splicing in response to 
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warmer temperatures involves PIF4, likely requiring HOOKLESS1 (HSL1) (Jin et al., 2020), 

suggesting that control of transcript isoform is a core regulatory process in 

thermomorphogenesis.  

 

small RNA regulation 

Plant small RNAs (sRNAs), including small interfering RNA (siRNAs) and microRNAs (miRNAs), 

can modulate their target mRNAs stability or translation, both resulting in reduced protein 

levels (Bologna and Voinnet, 2014) and, although sRNAs play key role in development, 

growth, and plant adaptation, little attention has been given to their activity in 

thermomorphogenesis. Warm temperature reduces gene silencing, with less production of 

siRNAs likely caused by lowered SGS3 protein levels, exhibiting transgenerational epigenetic 

inheritance, evidencing a memory mechanism that might also influence plant defence in 

warm environments (Zhong et al., 2013). However, another study showed that less than 1% 

of sRNA loci are differentially expressed in response to warmth, suggesting a rather specific 

role for sRNAs (Gyula et al., 2018). In the same work, miRNAs such as miR169, which targets 

NF-YA transcription factors that regulated flowering, were shown to be regulated by warm 

temperature. Indeed, early flowering induction by warm temperatures has been shown to 

involve miRNA regulation in Arabidopsis (May et al., 2013) and, possibly, tomato (Zhou et al., 

2016). It is possible that miRNAs also regulate root, hypocotyl, and leaf growth, fertility, 

yield, among others that are impacted by warm temperatures. Such knowledge can be 

valuable for crop improvement, because plant miRNAs and their targets are often 

conserved, and gene editing of target sites can be implemented for most crops. Hence, 

characterization of miRNA-target pairs involved in thermomorphogenesis might enable 
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genetic manipulation for increased protein levels of key players, without interfering with 

transcription.  

 

Transcript stability regulation 

RNA levels depend on transcription rate and RNA stability. RNA decay regulation modulates 

plant development (Xu and Chua, 2009), adaptation (Chantarachot et al., 2020), and defence 

(Yu et al., 2019), evidencing a critical role played by posttranscriptional regulation of RNA 

levels. Transcript stability is primarily determined by the 5′ 7-methylguanosine triphosphate 

(m7G) cap and 3′ poly-(A) tail, and RNA decay usually initiates via 3′ poly-(A) tail removal 

(i.e., deadenylation) with consequent transcript degradation via either 5′-3′ exoribonuclease 

(i.e., decapping) or 3′-5′ exonuclease activity  (Sorenson et al., 2018). Importantly, RNA 

stability is specific, selective, and dynamic process (Gerstberger et al., 2014; Perea-Resa et al., 

2016; Yu et al., 2019). For instance, rice exposed to heat stress showed decrease in transcript 

stability that correlated with unfolding of RNA structure in response to the high 

temperature treatment, with no evidence for translational regulation (Su et al., 2018). Also, 

RNA decay via the 5′-3′ exonuclease activity of XRN4 is required for proper circadian rhythm 

and xrn4 mutants display long period phenotype for clock gene expression and leaf 

movement (Careno et al., 2022), while light regulates mRNA stability of the clock gene CCA1 

via RNA modification (Wang et al., 2021). Although clock and light response interplay with 

warm temperature response, little is still known about RNA stability in 

thermomorphogenesis, albeit it is likely that tight control of RNA clearance is also an 

important process in the response to warm temperature. 
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Translational regulation 

Transcript and protein abundance often don’t correlate, particularly for tightly regulated 

genes, as a consequence of translational and posttranslational regulation. Translation itself 

is complex and can be modulated by a myriad of processes such as differential expression 

and protein modification of ribosomal subunits (Malik Ghulam et al., 2022; Zhang et al., 2022), 

ribosomal stalling and collision (Wan et al., 2021), and stress granule formation (Kosmacz et al., 

2019). In turn, these processes are usually regulated by information in the mRNA sequence 

and structure, beyond the instructions for protein synthesis. In stress granule formation—a 

hallmark of heat stress—, translation is inhibited via subcellular arrest of mRNA to distinct 

loci formed by specific proteins that respond to stresses such as heat (Kosmacz et al., 2019) 

and, importantly, this is a selective process that inhibit translation of specific subset of 

transcripts, as shown for heat stress response in wheat (Tian et al., 2022b). However, little is 

known about the determinant features within specific transcripts for selective arrest in 

stress granules. Identification of sequence and RNA structural determinant features 

required for specific transport to stress granules might enable less disruptive genetic 

manipulation for crop improvement, with less risk for pleiotropic effect by avoiding 

manipulation of proteins involved in stress granules formation itself. The role of stress 

granules is, however, still speculative for plants exposed to warm physiological 

temperatures. In fact, translational regulation in response to warm temperature, with 

phenotypical consequence, has only been shown for PIF7 mRNA so far. Hypocotyl 

elongation at elevated temperatures, an important thermomorphogenic trait, is primarily 

driven by PIF4, PIF7 and, to a lesser extent, PIF5 (Koini et al., 2009; Fiorucci et al., 2020a; Chung 

et al., 2020). PIF7 mRNA has been shown to form a temperature-dependent inhibitory 
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structure at its 5′ untranslated region (Chung et al., 2020). At lower ambient temperatures, 

the inhibitory structure is formed, while elevated temperatures disrupt it, leading to 

increased PIF7 translational efficiency at warm temperatures and consequent 

thermomorphogenic response. Only few studies in plant science incorporate translation 

analysis, as compared to the large majority that analyses transcript steady-state levels, and 

it is, thus, possible that translational regulation will remain relatively overlooked in 

thermomorphogenesis for longer than most regulations that require changes in transcript 

levels.  

 

Regulation via RNA modification 

Study of RNA modification is a hot field, with continuous technical advances and new 

evidence for biological relevance. N6-methyladenosine (m6A), the most abundant and well-

characterized mRNA modification in plants and animals, has been shown to regulate the 

circadian clock via photoreceptor cryptochromes (Wang et al., 2021). Further, disruption of 

the methyltransferase FIONA1 leads to phytochrome signalling-dependent hypocotyl 

elongation and photoperiod-independent early flowering (Sun et al., 2022; Wang et al., 2022), 

and FIONA1-dependent m6A modification of FLOWERING LOCUS C (FLC) transcript is 

important for FLC mRNA stability (Sun et al., 2022). In human, it has been recently shown that 

m6A modification can guide DNA demethylation, leading to reprogrammed chromatin 

accessibility and gene transcription (Deng et al., 2022). In addition to m6A, several other 

modifications play major role in gene expression regulation, including pseudouridylation (Ψ) 

and 5-methylcytosine (m5C) (Anreiter et al., 2021). Currently, however, the role of RNA 
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modification in thermomorphogenesis is still speculative and likely represents an interesting 

research opportunity. 

 

CHALLENGES IN THERMOMORPHOGENESIS REGULATION 

 

Our understanding of thermomorphogenesis regulation is advancing at very fast pace 

(Figure 1) and it is apparent that previous knowledge in photobiology, chronobiology, and 

plant development have been the main drivers until now. Indeed, plant response to 

elevated temperatures closely resembles shade avoidance (photobiology), carbon allocation 

for growth is tightly regulated by biological rhythms (chronobiology), and plant architecture 

and developmental transitions are regulated by environmental temperature. 

Thermomorphogenesis regulation, however, has its own particularities. For instance, 

elevated temperature triggers different molecular response in root, hypocotyl, and shoot 

(Bellstaedt et al., 2019; Borniego et al., 2022; Costigliolo Rojas et al., 2022), implicating that 

studies should avoid combining different plant tissues in given samples (e.g., whole seedling 

analysis) to minimize confounding variables that can bias the results. It is possible that initial 

perception of environmental temperature further displays tissue or cell type specificity, e.g., 

more pronounced in epidermis because of its close contact with air (aboveground organs) 

and soil (root), in which case the discovery and characterization of thermosensors will likely 

benefit from approaches involving single cell analysis and others that increase signal-to-

noise ratio for cell-specific molecular responses. It can be speculated that a main challenge 
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in thermomorphogenesis regulation will soon be our ability to shift from whole plant or 

tissue to single cell studies. 

 

Posttranscriptional regulation 

Posttranscriptional regulation of mRNAs primarily involves translation and transcript 

stability. Factors such as mRNA transport, subcellular localization, partnering proteins, 

modification, and structure are usually the mechanisms underlying posttranscriptional 

regulation. Compared to healthcare, research in plant biology is limited by a narrow range 

of commercially available antibodies, difficulting analyses of protein levels and leading to 

gaps in our knowledge of how much of a given transcript results in protein accumulation. 

This is further constraint by the reduced number of research groups that produce data on 

translation and transcript stability. Consequently, most works on thermomorphogenesis 

present data on transgenic plants expressing tagged proteins that likely lack some of the 

native regulatory elements, as well as are focused mostly on steady-state transcript levels 

(RT-qPCR and RNA-seq). Therefore, a main challenge in studying posttranscriptional 

regulation in response to warmth is the availability of data that accurately describes the 

native state of mRNAs, including all endogenous regulatory elements without biases 

introduced with typical transgenic expression (e.g., lack of untranslated regions, UTRs, and 

incomplete sequence because of poor gene annotation). 

 

RNA structure has been shown to modulate virtually all processes involving RNAs, from 

transcription initiation (Wu et al., 2020) and termination (Wanrooij et al., 2010; Breaker, 2012), 
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to splicing (Cheah et al., 2007; Warf et al., 2009; Oikawa et al., 2010; Yang et al., 2011; Kar et al., 

2011), localization (Gonsalvez et al., 2005; Mayer et al., 2008; Aragón et al., 2009; Chao et al., 2010; 

Bullock et al., 2010; Subramanian et al., 2011), translation control (Mortimer et al., 2014; Reis et 

al., 2021), and RNA decay (Winkler et al., 2004; Badis et al., 2004; Prouteau et al., 2008; Fukuchi 

and Tsuda, 2010). In addition to be a fundamental property of RNAs, RNA structure is formed 

co-transcriptionally (Bushhouse et al., 2022) and, hence, blurs the line between transcriptional 

and posttranscriptional regulation, given that structure regulates processes that are 

typically thought as transcriptional, such as transcription initial and termination, and 

splicing. Because RNA structure formation and stability are highly dependent on 

temperature (Wan et al., 2012; Becskei and Rahaman, 2022), it is possibly that changes in 

structure conformation plays a broad, yet largely unexplored regulatory role in 

thermomorphogenesis. Although there have been major technical advances enabling 

transcriptome-wide interrogation of RNA structures (Ding et al., 2014), the incorporation of in 

vivo RNA structural analysis to understand posttranscriptional regulation is still challenging 

and demands specific experimental setup and data analysis.  

 

CONCLUSIONS 

 

Each 10C increase in global average temperature is consequential for crop yield and can lead 

to serious food security problems (Zhao et al., 2017). Thermomorphogenesis describes a 

collection of phenotypical changes common to most plants grown in mildly warmer 

environments that, to a great extent, is similar to observed consequences of global warming 
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on crop plants (Parent and Tardieu, 2012). Understanding the molecular mechanisms that 

regulate thermomorphogenesis is critical and timely. The plant community has been active 

on this topic, as evidenced by a strong upwards momentum in newly discovered players in 

plant response to elevated temperatures. However, there are still important gaps that have 

not been given proper attention yet, including the role of posttranscriptional regulation (Box 

2).  

 

Effective understanding of thermomorphogenesis regulation requires the inclusion of 

multiple expertise, but also the adoption of various technical approaches by the broader 

community, such as analysis of translation and transcript stability, as well as in vivo RNA 

structure. Detailed mechanistic understanding when involving posttranscriptional regulation 

will likely require collaborative effort in most cases, because of the need to study mRNA 

features (e.g., RNA modification, structure, and binding sites) that often requires specialised 

expertise. Because there has still been little advance in the identification and 

characterization of posttranscriptional regulation in thermomorphogenesis, the study of 

regulatory processes involving RNA is a fertile field for exciting new discoveries. 
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BOXES 

 

Box 1. Thermomorphogenesis and global warming: what’s the link? 

Global warming leads to two main changes in environmental temperature: increases in heat 

wave frequency and mild increases in global average temperature. Heat waves can be lethal 

for plants and have been extensively studied (Ohama et al., 2017), while mild temperature 

increases are not lethal and are much less understood. Modelling plant response to heat 

waves in the laboratory is not experimentally complex because precise control of 

temperature is usually not relevant, and phenotype typically involve growth arrest that is 

straightforward to be scored. Modelling response to mild temperature increases, however, 

requires certain temperature precision (usually 27-300C vs 20-230C, for Arabidopsis), and 

phenotype is characterized by specific morphological and developmental changes, termed 

thermomorphogenesis (Casal and Balasubramanian, 2019; Delker et al., 2022). Therefore, the 

study of thermomorphogenesis is associated with global warming effect on average 

temperatures and is unrelated to heat stress and response to heat waves. Indeed, it is 

apparent that our extensive knowledge in plant heat stress provides limited help in the 

understanding of how plants adapt to warmth. Furthermore, it can be argued that crop 

plants improved for heat wave response will not solve the yield problem—typically reduced 

with warmth. For effective measures towards global warming-resilient plants, it is essential 

that we tackle both heat stress response and thermomorphogenesis. 
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Box 2: Key developments in understanding posttranscriptional regulation in 

thermomorphogenesis 

(A) Chung et al. (2020) identified a hairpin structure in the PIF7 5′ UTR, near the translation 

initiation site, that functions as an RNA thermometer by shifting its conformation in warmer 

temperature, thereby enhancing PIF7 translation, that is necessary for thermomorphogenic 

phenotype. Currently, this is the only direct evidence for translational regulation in 

thermomorphogenesis. 

(B) Zhong et al. (2013) identified SGS3, required for the amplification of small interfering 

RNAs (siRNA)s, as involved in the response to warm temperature. This work points towards 

a largely untapped role for siRNAs in thermomorphogenesis. 

(C) Pajoro et al. (2017) and Jin et al. (2020) showed that H3K36me3 and PIF4, respectively, are 

involved in alternative splicing regulation in response to warm temperature. Hence, it is 

possible that splicing is a major regulatory checkpoint in thermomorphogenesis.  
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Box 3: Outstanding questions in posttranscriptional regulation in thermomorphogenesis 

 miRNAs are key regulators of development and adaptation. Which miRNAs and 

regulatory networks are involved in plant response to elevated temperatures?  

 Transcript level (steady state) is a snapshot of transcription rate and RNA 

stability integrated outcome. What is the role of RNA decay pathways in plant 

response to warmth? How do elevated temperatures modulate mRNA stability? 

 Protein abundance often does not correlate with transcript level, in part because 

of translational regulation. How is translation regulated by warmth? Are changes 

in RNA structure a common feature of translational control by warmth? What are 

the proteins involved in translational control by warmth? 

 mRNA can be chemically modified to acquire specific protein binding partners. 

What are the relevant RNA modifications in thermomorphogenesis? How does 

RNA modification modulate plant response to elevated temperatures?  

 Alternative splicing can modulate mRNA regulation and protein composition, 

including protein localization and activity. How does mRNA isoform diversity 

contribute to thermomorphogenesis? What are the specific alternative splicing 

isoforms involved in plant response to elevated temperatures? 
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FIGURES 

 

Figure 1. The recent surge of thermomorphogenesis. Number of publications describing 

mutants with thermomorphogenic phenotype across the years (see Table 1), and number of 

articles mentioning the term “thermomorphogenesis” (Scholar Google). 

 

Figure 2. Depiction of critical regulations in thermomorphogenesis. Illustration of processes 

involved in transcriptional, posttranscriptional, and posttranslational regulation, listing 

known factors required in thermomorphogenesis (blue; see Table 1). 
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TABLE 

Table 1. Genes associated with thermomorphogenic phenotype in Arabidopsis. 

 

Gene name Short 
name 

Regulatory 
mechanism in 
response to 
temperature 

Reference 

Transcriptional regulation 

AUXIN RESISTANT 1 AXR1 Transcriptionally 
regulated 

(Gray et al., 1998) 

BRASSINAZOLE 
RESISTANT 1  

BZR1 Transcription of 
targets 

(Ibañez et al., 2018) 

BRI1-EMS-SUPPRESSOR 1  BES1 Transcription of 
targets 

(Costigliolo Rojas et 
al., 2022) 

CENTROMERIC HISTONE 
H3  

cenH3 Haploid induction  (Ahmadli et al., 
2022) 

CRYPTOCHROME 2  CRY2 Unknown (Sanchez-Bermejo 
et al., 2015) 

EARLY FLOWERING 7 ELF7 Transcription 
elongation factor 

(Zhao et al., 2023) 

EARLY FLOWERING 8 ELF8 Transcription 
elongation factor 

(Zhao et al., 2023) 

ELONGATED HYPOCOTYL 5  HY5 Transcription of 
targets 

(Delker et al., 
2014a) 

HISTONE H3.3 H3.3 Epigenetic (Zhao et al., 2023) 

HISTONE H2A PROTEIN 9  H2A.Z Epigenetic  (Xue et al., 2021) 

HISTONE DEACETYLASE 6, 
9, 15, and 19  

HDA6, 
HDA9, 
HDA15, 
and 
HDA19 

Epigenetic  (Tasset et al., 2018; 
Shen et al., 2019) 

HOOKLESS1 HSL1 Transcription of 
targets 

(Jin et al., 2020) 

INO80 ORTHOLOG  INO80 Epigenetic  (Xue et al., 2021) 

ISOCHRISMATESYNTHASE1  ICS1 Transcription of 
targets 

(Samaradivakara et 
al., 2022) 

JASMONATE INSENSITIVE 1  JIN1/MYC2 Transcription of 
targets 

(Agrawal et al., 
2022) 

KINETOCHORE NULL 2  KNL2 Haploid induction  (Ahmadli et al., 
2022) 

LATE ELONGATED 
HYPOCOTYL  

LHY Transcription of 
targets 

(Gould et al., 2006) 

LONG HYPOCOTYL IN FAR-
RED  

HFR1 Transcription of 
targets 

(Shen et al., 2019) 

MEDIATOR COMPONENTS 
14 and 17 

MED14 
and 

Transcription 
initiation 

(Agrawal et al., 
2022; Bajracharya et 
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MED17 al., 2022) 

NON RACE-SPECIFIC 
DISEASE RESISTANCE 1  

NDR1 Transcription of 
targets 

(Samaradivakara et 
al., 2022) 

PHYTOCHROME 
INTERACTING FACTOR 4  

PIF4 Transcription of 
targets 

(Koini et al., 2009) 

POWERDRESS  PWR Epigenetic (Tasset et al., 2018) 

REVEILLE 5 and 7  RVE5 and 
RVE7 

Transcription of 
targets 

(Tian et al., 2022a; 
Li et al., 2023) 

SUPPRESSOR OF NPR1-1, 
CONSTITUTIVE 1  

SNC1 Transcription of 
targets 

(Gangappa et al., 
2017) 

SUPPRESSOR OF TY’S 4  SPT4 Transcription 
elongation 

(Xue et al., 2021) 

SUPPRESSOR OF TY’S 5  SPT5 Transcription 
elongation 

(Xue et al., 2021) 

TRANSPORT INHIBITOR 
RESPONSE 1 

TIR1 Transcriptionally 
regulated 

(Gray et al., 1998) 

TCP FAMILY 
TRANSCRIPTION FACTOR 4  

TCP4 Transcription of 
targets 

(Saini et al., 2022) 

Posttranscriptional regulation 

LAMMER kinases 
(AT4G24740) 

AFC2 Alternative 
splicing 

(Lin et al., 2022) 

FLOWERING LOCUS M  FLM Alternative 
splicing  

(Jin et al., 2022) 

HOOKLESS1 HSL1 Alternative 
splicing 

(Jin et al., 2020) 

PHYTOCHROME 
INTERACTING FACTOR 7  

PIF7 RNA 
conformational 
changes and 
transcription of 
targets 

(Fiorucci et al., 
2020b; Chung et al., 
2020) 

SUPPRESSOR OF GENE 
SILENCING 3 

SGS3 Gene silencing (Zhong et al., 2013) 

SUPPRESSOR OF MAX2 1  SMAX1 Reduced protein 
levels by 
unknown 
mechanism 
(partially via 
proteasome) 

(Park et al., 2022) 

Posttranslational regulation 

LAMMER kinases 
(AT4G24740) 

AFC2 Protein 
modification 
(phosphorylation) 

(Lin et al., 2022) 

CONSTITUTIVE 
PHOTOMORPHOGENIC 1  

COP1 Protein 
ubiquitination 
(degradation) 

(Delker et al., 
2014a; Park et al., 
2017; Nieto et al., 
2022) 

CRYPTOCHROME 1  CRY1 Protein-protein 
interaction with 
PIF4 

(Ma et al., 2016) 

CYCLING DOF FACTOR 2  CDF2 Protein-protein (Gao et al., 2022) 
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interaction with 
PIF4 

DE-ETIOLATED 1  DET1 Protein 
ubiquitination 
(degradation) 

(Delker et al., 
2014a) 

EARLY FLOWERING 3  ELF3 Phase transition (Box et al., 2015; 
Raschke et al., 
2015; Jung et al., 
2020) 

EARLY FLOWERING 4  ELF4 Protein 
movement 

(Chen et al., 2020) 

FLOWERING CONTROL 
LOCUS A  

FCA Protein-protein 
interaction with 
PIF4 

(Lee et al., 2014) 

GIGANTEA  GI Chaperone 
activity (protein 
target 
stabilization) 

(Gould et al., 2006; 
Park et al., 2020; 
Kim et al., 2020) 

HEMERA  HMR Protein-protein 
interaction with 
PIF4 

(Qiu et al., 2019; 
Bajracharya et al., 
2022) 

HEAT-SHOCK PROTEIN 90 HSP90 Chaperone 
activity 

(Zeng et al., 2023) 

HISTONE REGULATORY 
HOMOLOG A 

HIRA Chaperone 
activity 

(Zhao et al., 2023) 

ANTI-SILENCING FUNCTION 
1 

ASF1 Chaperone 
activity 

(Zhao et al., 2023) 

KIP-RELATED PROTEIN1  KRP1 Kinase inhibitor? (Saini et al., 2022) 

PHOTOPERIODIC CONTROL 
OF HYPOCOTYL 1  

PCH1 Protein-protein 
interaction with 
phyB 

(Huang et al., 2019; 
Murcia et al., 2021) 

PHYTOCHROME B  phyB Protein 
conformational 
change 

(Jung et al., 2016; 
Legris et al., 2016) 

REGULATOR OF 
CHLOROPLAST 
BIOGENESIS  

RCB Protein-protein 
interaction with 
HMR 

(Qiu et al., 2021) 

SHORT VEGETATIVE 
PHASE  

SVP Protein-protein 
interaction with 
specific FLM 
isoform  

(Jin et al., 2022) 

TANDEM ZINC KNUCKLE 
PROTEIN  

TZP Protein 
localization of 
phyB (nuclear 
body) 

(Fang et al., 2022) 

TARGET OF TEMPERATURE 
3 TOT3 

 Protein 
modification 
(phosphorylation) 

(Vu et al., 2021) 

TEOSINTE BRANCHED 
1/CYCLOIDEA/ 132 

TCP5, 
TCP13, 

Protein-protein 
interaction with 

(Han et al., 2019; 
Zhou et al., 2019) 
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PROLIFERATING CELL 
FACTORS 5, 13, and 17  

and TCP17 PIF4 and CRY1 

TIMING OF CAB 
EXPRESSION 1  

TOC1 Protein-protein 
interaction with 
PIF4 

(Zhu et al., 2016) 

TOT3-INTERACTING 
PROTEIN 4 and 5  

TOI4 and 
TOI5 

Protein 
modification 
(phosphorylation) 

(Vu et al., 2021) 

UVB-RESISTANCE 8  UVR8 Protein-protein 
interaction with 
COP1 

(Hayes et al., 2017) 

WRKY DNA-BINDING 
PROTEIN 14, 35, 65, and 69  

WRKY14, 
WRKY35, 
WRKY65, 
and 
WRKY69 

Protein-protein 
interaction with 
TCP5 

(Qin et al., 2022) 

ZEITLUPE  ZTL Protein 
ubiquitination 
(degradation) 

(Kim et al., 2020) 
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