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Abbreviations: 

CAD - Coronary Artery Disease 

CL - Core Laboratory 

CNN - Convolutional Neural Network 

GT - Ground Truth 

IBIS-4 - Integrated biomarker imaging study  

IRA - Infarct-related arteries 

IVUS - Intravascular Ultrasound 

MFCNN - Multi-frame Convolutional Neural Network 

ML - Machine Learning 

PAV - Percent Atheroma Volume 

PCI - Percutaneous Coronary Intervention 

ROI - Region of Interest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Abstract: 

Aims: Standard manual analysis of IVUS to study the impact of anti-atherosclerotic 

therapies on the coronary vessel wall is done by a Core Laboratory (CL), the ground truth 

(GT). Automatic segmentation of IVUS with a machine learning (ML) algorithm has the 

potential to replace manual readings with an unbiased and reproducible method. The aim 

is to determine if results from a CL can be replicated with ML methods.  

Methods: This is a post-hoc, comparative analysis of the IBIS-4 (Integrated Biomarkers 

and Imaging Study-4) study (NCT00962416). The GT baseline and 13-month follow-up 

measurements of lumen and vessel area and percent atheroma volume (PAV) after statin 

induction were repeated by the ML algorithm.  

Results: The primary endpoint was change in PAV. PAV as measured by GT was 43.95% 

at baseline and 43.02% at follow-up with a change of -0.90% (p=0.007) while the ML 

algorithm measured 43.69% and 42.41% for baseline and follow-up, respectively, with a 

change of -1.28% (p<0.001). Along the most diseased 10mm segments, GT-PAV was 

52.31% at baseline and 49.42% at follow-up, with a change of -2.94% (p<0.001). The 

same segments measured by the ML algorithm resulted in PAV of 51.55% at baseline 

and 47.81% at follow-up with a change of -3.74% (p<0.001).  

Conclusions: PAV, the most used endpoint in clinical trials, analyzed by the CL is closely 

replicated by the ML algorithm. ML automatic segmentation of lumen, vessel and plaque 

effectively reproduces GT and may be used in future clinical trials as the standard. 

 

Keywords: Intravascular Ultrasound, Coronary Artery Disease, Machine Learning, 

Lumen Segmentation, Vessel Segmentation  



 
 

Introduction: 

Acute coronary syndromes (ACS), a symptomatic subcategory of coronary artery 

disease (CAD), remains a major cause of morbidity and mortality around the world.1 

Treatment and secondary prevention has focused on reducing clinically significant 

adverse events with statins and other medical therapy. Several mechanistic intravascular 

imaging studies have demonstrated the effects of statin use with plaque-level analyses. 

Specifically, high-intensity rosuvastatin therapy has been shown to provide the most 

benefit.2  

Intravascular ultrasound (IVUS) has become the most established technique to 

determine the effect of anti-atherosclerotic therapies on the vessel wall as it allows a 

precise and reproducible assessment of plaque burden.3,4,5 Typically, IVUS image 

analysis in clinical trials is conducted by an independent Core Laboratory (CL) that is 

regarded as the reference standard for IVUS segmentation. This is currently performed 

manually by tracing frame by frame the lumen and vessel areas. Manual segmentation of 

IVUS images is a time-consuming analysis plagued by human variability with associated 

high costs. Recent studies have shown that newer methods of automatic segmentation 

with machine learning (ML) algorithms improve reproducibility, accuracy, and 

precision.6,7,8 Few studies have compared results of ML algorithms to the CL.  

The IBIS-4 (Integrated Biomarkers and Imaging Study-4) (NCT00962416) study 

was a serial IVUS study performed in STEMI patients receiving high-intensity statin 

therapy.9 The objective of this study was to explore whether the results of the IBIS-4 serial 

IVUS study could be reproduced with a previously validated fully automated ML algorithm 

and were comparable to the gold standard CL results. 



 
 

Materials and Methods: 

Study Design and Patient Population  

This is a post-hoc, comparative analysis of the IBIS-4 study.9 The design of this 

study is represented in Figure 1. The IBIS-4 was a prospective cohort study that 

evaluated whether high-intensity statin therapy can reduce disease burden in proximal 

segments of non-infarct-related arteries (IRA) within 13 months of use after successful 

primary percutaneous coronary intervention (PCI). IVUS determined the effect of statin-

use on plaque burden and phenotype at baseline and follow-up. Patients enrolled in the 

IBIS-4 study met the following criteria: inclusion in the COMFORTABLE-AMI trial plus age 

<90 years, preserved renal and liver function, hemodynamic stability, TIMI flow >2 of the 

IRA at completion of primary PCI, and suitable coronary anatomy for intravascular 

imaging. Rosuvastatin treatment was initially started at 20 mg once daily for the first 2 

weeks and subsequently increased to 40 mg.   

All patients in the IBIS-4 were provided written informed consent, and the study 

was approved by the institutional review boards of all participating centers. 

 

Procedures: Image Acquisition and Analysis 

Intracoronary imaging was first performed at baseline of the region of interest (ROI) 

which included the proximal 50mm of two non-IRA. At follow-up, 13 months after initiation 

of rosuvastatin, IVUS imaging was repeated of the same ROI. A 20-MHz IVUS catheter 

(Eagle Eye, Volcano Corporation, Rancho Cordova, CA) was used with a pullback speed 

of 0.5 mm/s after administration of 200 µg of intracoronary nitroglycerine.9 For ground 



 
 

truth (GT), image recordings were sent to an independent CL (Cardialysis B.V., 

Rotterdam, The Netherlands).9  

The original report included the analysis of the radiofrequency frames which are a 

subset of the grayscale complete dataset (Figure 2). Both the GT baseline and 13-month 

follow-up measurements of region length, average lumen area, average vessel area and 

percent atheroma volume (PAV), or plaque burden, were repeated by the ML algorithm 

as depicted in Figure 1. The ML algorithm was applied to the blinded IVUS datasets 

which were not labeled baseline or follow-up but instead were labeled with a coding only 

known by the statistician of the study.  

 

Machine Learning Algorithm  

The current study focuses on replicating the ground truth IVUS results with an 

automated segmentation method. The artificial intelligence software used in this study 

was proposed by Blanco et al.6 The ML approach automatically extracts lumen and vessel 

boundaries from IVUS datasets, relying on a multi-frame convolutional neural network 

(MFCNN). The MFCNN is coupled to a Gaussian process regressor that delivers 

consistent contour representation (Figure 2). Training, validation, and testing for the ML 

algorithm was all based on the ground truth. See the supplementary material for a more 

detailed account of the ML algorithm. 

 

Statistical Analysis 

The statistician received the results from the ML algorithm which were blinded for 

the analysis phase (baseline/follow-up). The IBIS-4 primary endpoint was change in the 



 
 

PAV and the secondary efficacy endpoint was normalized atheroma volume. PAV was 

calculated as lumen area subtracted from vessel area, divided by vessel area, multiplied 

by 100. For more detailed definitions of these 2 parameters, please refer to the original 

publication.  

 Only the statistician knew the key for deciphering the analysis phase of the IVUS 

results. 

Baseline categorical variables are presented as absolute values and percentages 

and were compared between groups using Fisher’s exact tests. Baseline continuous 

variables are expressed as mean ± standard deviation or median (lower quartile-upper 

quartile) and were analyzed using Student’s t-tests or Kruskall-Wallis tests, as 

appropriate. Serial IVUS analyses were conducted using mixed-effect models on the 

difference between follow-up and baseline, including patient identity as random intercept 

to correct for the multiple vessels per patient. P-values were two-tailed and the 

significance level was set to 0.05 in all analyses. Statistical analyses were performed 

using R Studio version 1.2.5033 (RStudio, PBC, Boston, MA). 

 

 

 

 

 

 

 

 



 
 

Results: 

Baseline and demographic characteristics of patients are found in Table 1. A total 

of 103 patients (207 vessels) were originally eligible for IBIS-4 imaging. Serial imaging 

results for both the GT and ML algorithm analysis was available for 82 patients with 146 

vessels. Serial IVUS imaging was not available in 21 patients and thus was not eligible 

for this analysis. Of the 82 patients included in the current study, 92.7% were male, 47.6% 

had hypertension, 43.9% had hypercholesterolemia, 2.4% had a previous myocardial 

infarction and 1.2% had a previous PCI. The baseline demographics were similar 

between the patients included and those that were excluded in the analysis. 

Parameter measurements from imaging of the entire ROI and the most diseased 

10 mm segment were reported as analyzed by GT and the ML algorithm, summarized in 

Table 2. Region length was determined by GT to be 36.15 mm at baseline and 36.21 mm 

at follow-up.  

For the entire region, change in average lumen area between baseline and follow-

up as measured by GT was -0.16 mm2 while change in average lumen area measured 

by ML was -0.17 mm2. The change in average lumen area was statistically significant for 

both GT and ML with a p-value of 0.020 and 0.009, respectively. The change in average 

vessel area measured by GT was -0.51 mm2. The same parameter as measured by the 

ML algorithm was -0.62 mm2. The regression in vessel area was statistically significant 

with a p-value of <0.001 in both cases.  

The primary endpoint in IBIS-4 was the change in the PAV. Change in PAV as 

calculated by GT was -0.90% (p=0.007), while change in PAV calculated by the ML 

algorithm was -1.28% (p<0.001), summarized in Figure 1. The secondary efficacy 



 
 

endpoint was change in normalized total atheroma volume (mm3): for GT was -12.18 

(p<0.001) and for ML was -15.08 (p<0.001).  

For the most diseased 10 mm segments, change in average lumen area was 0.22 

mm2 (p=0.061) by GT and 0.28 mm2 (p=0.005) by the ML algorithm. Change in average 

vessel area was -0.57 mm2 (p<0.001) by GT and -0.66 mm2 (p<0.001) by the ML 

algorithm. The primary endpoint change in PAV was calculated as -2.94% (p<0.001) by 

GT and -3.74% p<0.001) by the ML algorithm. The secondary endpoint change in 

normalized total atheroma volume was -7.73 mm3 (p<0.001) by GT and -9.44 mm3 

(p<0.001) by the ML algorithm. 

The results from each parameter including change in mean lumen, vessel and 

plaque areas and change in PAV comparing GT to ML are presented in scatter plots in 

Supplementary Figure 1. The correlation coefficients were 0.85, 0.73, 0.54, and 0.76 for 

lumen area, vessel area, plaque area and PAV, respectively. The agreement between 

methods is represented with Bland-Altman plots in Supplementary Figure 2. For change 

in lumen area, the limits of agreement are -8.71 to 9.07 with a bias of 0.18 while for vessel 

area the limits range from -7.81 to 9.38 with a bias of 0.79. For change in plaque area, 

the limits of agreement are -19.36 to 22.55 with a bias of 1.59. Lastly, for plaque burden, 

the limits range from -4.4 to 5.09 with a bias of 0.34.  



 
 

Discussion: 

 The main finding of this study is that the serial intracoronary imaging analysis by 

the CL (i.e., ground truth) and the ML algorithm both show significant regression in plaque 

burden after high-intensity rosuvastatin therapy. The direction and magnitude of the 

change were comparable not only for the primary endpoint, PAV, but also for the change 

in mean lumen, vessel, and plaque areas. 

 This is the first time a ML algorithm replicated the same IVUS analysis already 

read by a CL successfully. Comparing the primary endpoint, change in PAV, analyzed by 

each method for the entire region, both show a significant reduction from baseline to 

follow-up (-0.90% for GT and -1.28% for ML). A similar trend was seen for the most 

diseased 10mm segments where GT measured PAV decreased by 2.94% and ML 

algorithm measured PAV decreased by 3.74%. The ML algorithm “overestimates” PAV 

which in part is because PAV is computed after taking two differences in the middle of the 

process (vessel - lumen to define plaque, and follow-up - baseline to define change). 

When performing these derived entities, it is natural that small errors become amplified. 

Another plausible contributor is that GT analyses were done on the radiofrequency 

images (not more in use) and the ML algorithm analyzed the greyscale images. 

Importantly, the magnitude and the direction of the change are very similar and therefore 

we believe that these results open a new opportunity to use ML algorithms in prospective 

clinical trials. These methodologies should still be used within a CL environment so that 

the CL readers may overread the analysis performed by the software and finalize the 

case.  



 
 

 The relationship between GT results and the ML results for each parameter were 

represented in the scatter plots in Supplementary Figure 1. The highest correlation is 

seen with lumen area at 0.85 while the correlation of vessel area is also noteworthy at 

0.73. For plaque area and plaque burden (percent atheroma volume), which are derived 

measurements using vessel and lumen area, the correlations are notable as well at 0.54 

and 0.76, respectively. The agreement between methods was further described in Bland-

Altman plots in Supplementary Figure 2. The methods perform most similarly when 

calculating lumen area, vessel area and plaque burden with minimal absolute differences 

of 0.18, 0.79 and 0.34, respectively. An automated ML segmentation method, especially 

when it is adequately trained and validated, can successfully replicate data from GT and 

result in the same research conclusions.  

 A low level of intraobserver variability when comparing IVUS readings from different 

analysts is desirable for standardization and consistency in clinical practice and research. 

Unlike ML algorithms which have no variability, reproducibility tested within a CL by 

Gerstein et al. showed that the intraobserver variability reported mean (SD) differences 

of −0.02 (0.23) mm2 for lumen area and 0.09 (0.18) mm2 for vessel area.10 Although 

these differences seem to be small, another source of variability exists between different 

Core Laboratories. This has also been tested in Gerstein et al. where same cases were 

analyzed twice at different Core Laboratories (Cardialysis, Rotterdam, the Netherlands, 

and MedStar Research Institute, Division of Cardiology, Washington, DC). The mean 

(SD) differences were −0.07 (0.45) mm2 for lumen area and 0.53 (0.37) mm2 for vessel 

area.10 Again, in contrast to manual methods applied by CL, the ML algorithm has no 

variability and produces the same output for the same input without fail. 



 
 

The ML algorithm removes the time-consuming nature of manual segmentation. A 

prior study validated the improved reproducibility and time efficiency inherent in automatic 

segmentation compared to manual segmentation.11 They directly compared 10 human 

operator manual readings from different hospitals to the ML algorithm and a Core 

Laboratory. Not surprisingly, relative differences revealed considerable variability in 

manual readings as compared to the Core Lab, especially in lumen area from 0.26% to 

12.61%. The ideal scenario is such that human observations consistently match the Core 

Lab in terms of accuracy and precision. This is difficult with manual readings. 

Furthermore, while human analysts spent an average 47 minutes to complete the 40-

frame analysis, the ML algorithm took on average less than one minute.  

 

Limitations: 

A few limitations should be acknowledged: 1. This is a post-hoc analysis of a single 

arm study; 2. The original report included the analysis of the radiofrequency frames, and 

the ML algorithm analyzed instead the greyscale frames. Although this may seem a real 

limitation, the reader may remember that this type of IVUS catheter acquires 

simultaneously both frames and there is always a set of two frames that correspond to 

each other; 3. The ML algorithm was originally trained with the IBIS-4 data which could 

have resulted in overfitting. The model thus may perform better in this setting when 

compared to a different dataset. However, during training of the algorithm, the full dataset 

was split into three groups. One of them was kept blindly while the algorithm was trained 

with the other two groups. This was repeated three times such that three algorithms 



 
 

performed blind assessment of the entire IBIS-4 database. In this manner, we avoid the 

overfitting limitation.                                                                                                                                                                      



Conclusion:  

The ML algorithm can replicate results from a Core Laboratory, the often-used gold                                 

standard of IVUS readings. Both the automated method and ground truth showed a 

significant regression in PAV after high-intensity rosuvastatin therapy. Automated 

methods minimize variability and improve efficiency while providing similar results and 

conclusions compared to manual analyses. The use of a validated ML algorithm is thus 

warranted in the catheterization laboratory for clinical and research purposes. 
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Table 1: Baseline Characteristics 

 All IBIS4 patients No Machine Learning Machine Learning P-value 
N=103 N=21 N=82  

Age at date of informed consent 58.2 (10.5) 57.1 (12.9) 58.5 (9.9) 0.63 
Gender (female) 10 (9.7) 4 (19.0) 6 (7.3) 0.12 
BMI 27.8 (4.2) 29 (5.5) 27.5 (3.8) 0.27 
Diabetes mellitus (yes) 13 (12.6) 4 (19.0) 9 (11.0) 0.46 
Hypertension (yes) 48 (46.6) 9 (42.9) 39 (47.6) 0.81 
Hypercholesterolemia (yes) 42 (40.8) 6 (28.6) 36 (43.9) 0.22 
Current smoker (yes) 47 (45.6) 12 (57.1) 35 (42.7) 0.33 
Family history of coronary artery disease 31 (30.1) 6 (28.6) 25 (30.5) 1.00 
Renal failure (eGFR) (yes (<60 eGFR)) 5 (4.9) 2 (9.5) 3 (3.7) 0.28 
Previous myocardial infarction (yes) 2 (1.9) 0 (0.0) 2 (2.4) 1.00 
Previous PCIs (yes) 1 (1.0) 0 (0.0) 1 (1.2) 1.00 
Time from symptom onset to balloon inflation (min) 258 (170;472) 238 (168;374) 262 (170;476) 0.73 
Left ventricular ejection fraction (angiography) 47.8 (9.4) 49.4 (12) 47.5 (8.8) 0.56 
Resuscitation prior to hospital arrival (%) 5 (4.9) 0 (0.0) 5 (6.1) 0.58 

IBIS4=integrated biomarker imaging study. BMI=body mass index. eGFR=estimated glomerular 

filtration rate. PCI=percutaneous coronary intervention 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Table 2: Serial Intravascular Ultrasound Results 

 
N=82 patients (146 vessels) Baseline Follow-up Change P-value 
Entire region mean (SD) mean (SD) mean (95% CI)  
Region length (mm) 36.15 (16.10) 36.21 (16.05) 0.06 (-1.06 to 1.17) 0.917 
Region length by machine learning (mm) 34.77 (16.18) 35.06 (16.15) 0.29 (-0.98 to 1.56) 0.651 
Average lumen area (mm2) 8.64 (3.07) 8.48 (2.89) -0.16 (-0.29 to -0.03) 0.020 
Average lumen area by machine learning (mm2) 8.88 (3.03) 8.72 (2.87) -0.17 (-0.29 to -0.04) 0.009 
Average vessel area (mm2) 15.74 (5.64) 15.23 (5.38) -0.51 (-0.67 to -0.35) <0.001 
Average vessel area by machine learning (mm2) 16.17 (5.56) 15.54 (5.34) -0.62 (-0.80 to -0.45) <0.001 
Average atheroma area (mm2) 7.10 (3.21) 6.75 (3.15) -0.35 (-0.49 to -0.21) <0.001 
Average atheroma area by machine learning (mm2) 7.28 (3.13) 6.82 (3.04) -0.46 (-0.59 to -0.33) <0.001 
Percent atheroma volume (%) 43.95 (9.66) 43.02 (9.82) -0.90 (-1.56 to -0.25) 0.007 
Percent atheroma volume by machine learning (%) 43.69 (9.11) 42.41 (9.17) -1.28 (-1.84 to -0.72) <0.001 
Normalized total atheroma volume (mm3) 248.40 (112.69) 235.95 (110.25) -12.18 (-16.91 to -7.44) <0.001 
Normalized total atheroma volume by machine learning (mm3) 239.71 (102.89) 224.44 (100.00) -15.08 (-19.39 to -10.78) <0.001 

Most diseased 10mm segments     
Region length (mm) 9.96 (0.15) 10.25 (2.23) 0.29 (-0.08 to 0.66) 0.118 

Region length (mm) by machine learning 9.93 (0.25) 10.43 (2.89) 0.50 (0.02 to 0.98) 0.041 
Average lumen area (mm2) 7.59 (2.97) 7.78 (2.96) 0.22 (-0.01 to 0.45) 0.061 
Average lumen area by machine learning (mm2) 7.80 (2.89) 8.08 (2.99) 0.28 (0.09 to 0.47) 0.005 
Average vessel area (mm2) 16.26 (5.61) 15.67 (5.52) -0.57 (-0.84 to -0.31) <0.001 
Average vessel area by machine learning (mm2) 16.44 (5.49) 15.76 (5.47) -0.66 (-0.91 to -0.42) <0.001 
Average atheroma area (mm2) 8.67 (3.78) 7.89 (3.53) -0.78 (-0.99 to -0.56) <0.001 
Average atheroma area by machine learning (mm2) 8.64 (3.59) 7.69 (3.32) -0.95 (-1.15 to -0.75) <0.001 
Percent atheroma volume (%) 52.31 (12.17) 49.42 (11.65) -2.94 (-3.89 to -1.98) <0.001 
Percent atheroma volume by machine learning (%) 51.55 (11.21) 47.81 (10.73) -3.74 (-4.66 to -2.83) <0.001 
Normalized total atheroma volume (mm3) 86.44 (37.76) 78.72 (35.08) -7.73 (-9.86 to -5.59) <0.001 

Normalized total atheroma volume by machine learning (mm3) 85.78 (35.59) 76.31 (32.93) -9.44 (-11.44 to -7.44) <0.001 
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Values at baseline and follow-up are mean (SD). Mean change (95%CI) are estimated from mixed-effect models. 
 
DB=diagonal Branch. IMB=intermediate branch. LAD=left anterior descending. LCX=left circumflex. 

RCA=right coronary artery. 

 
 
 
 
 
 
 
 
 



 
 

 



 
 

Figure Titles and Legends: 
 
Figure 1: Study Design and Key Finding  
 
 
There are two panels (A and B) to represent the main comparison in this study. Panel 

(A) indicates that the IVUS dataset was first analyzed at baseline and follow-up in a 

previously published study by a core laboratory consisting of human experts. The lumen 

and vessel borders were manually extracted to calculate percent atheroma volume 

(PAV). The core lab assessment yielded a change in PAV of -0.90%. Panel (B) shows 

that the same dataset was analyzed in this study by a machine learning algorithm which 

automatically extracted the lumen and vessel borders. The machine calculated PAV at 

baseline and follow-up, generating a change in PAV of -1.28%. Both studies resulted in 

the same conclusion that high-intensity statin therapy is associated with regression of 

coronary atherosclerosis. 

 
Figure 2: Intravascular Ultrasound (IVUS) Image Processing Pipeline 
 

Raw data consists of ground truth (GT) lumen and vessel contours, which were 

manually segmented using radiofrequency IVUS images. Then, the GT contours were 

linked to the corresponding grayscale frames present in the gated DICOM dataset, and 

the masks for the lumen and plaque classes were generated. Grayscale frames and 

corresponding masks in polar coordinates are the input for training the machine learning 

(ML) algorithm. The ML strategy consists of a multi-frame convolutional neural network 

with U-Net architecture coupled to a Gaussian process regressor. In the validation and 

testing stages, only the polar coordinate grayscale image is fed to the network, and the 



 
 

ML final prediction is the semantic segmentation that characterizes lumen and vessel 

contours. 
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Supplementary Methods: Description of the Machine Learning (ML) Algorithm 
Next, we provide a description of the machine learning (ML) algorithm proposed 

by Blanco et al.6 which was used in the present study for the automated segmentation 

of lumen and vessel contours in IVUS datasets. 

The ML algorithm consists of a deep learning strategy that produces the 

semantic segmentation of lumen and plaque classes, coupled to a Gaussian process 

regressor that yields the final lumen and vessel contours. The deep learning block is a 

convolutional neural network (CNN) which is fed with the frame of interest to be 

segmented and its neighboring frames in polar coordinates. The CNN architecture 

consists of a typical U-shaped network formed by combining convolution, batch 

normalization, and rectified linear unit activation functions with max-pooling (contracting 

branch) and up-sampling (expanding branch), as seen in Figure 2. The use of the 

neighborhood of the given frame (use of multiple frames) allows the methods to provide 

a more consistent segmentation along the longitudinal direction and characterizes the 

approach as a multi-frame CNN (MFCNN). 

The entire dataset consists of 22089 IVUS frames manually annotated, regarded 

as the ground truth (GT) data. We divide, at per-pullback level, the entire dataset into 

training (60%) validation (20%) and testing (20%). A three-fold cross validation is 

employed so that the entire dataset is used in the study. The multi-class cross-entropy 

loss function was minimized using the ADAM method with learning rate initialized at 

0.0001. Hyperparameter selection and model training were performed following 

conventional practices.6  

The output of the MFCNN consists of a three-class image describing the lumen, 

plaque, and background in polar coordinates (Figure 2). Still in the polar frame of 



 
 

reference, the set of points that characterize the position of the lumen and vessel 

contours is regarded as a noisy periodic signal. Thus, a Gaussian process (GP) 

regressor is employed to create a periodic and smoothed signal that provides the final 

characterization of both contours. Mathematically, the GP algorithm is a non-parametric 

regression method based on the definition of a kernel function, taken to be the exp-sine-

squared kernel, which is able to model periodic functions.6 Using the GP algorithm we 

construct the final shape of the contours from which we compute the lumen area and 

vessel area which is then also used to derive plaque area and plaque burden from both 

GT and ML-generated data. 



 
 

Supplementary Figure 1 
 

 
 
 
 
Supplementary Fig. 1: Vessel-Level Correlations between Intravascular Ultrasound 

(IVUS) Endpoints Processed Using Machine Learning (ML) versus Ground Truth (GT)  

 
From left to right, all scatter plots show the change of quantities between follow-up and 

baseline for the entire dataset (n=146) as computed from ground truth segmentations 

and from machine learning automatic segmentations. Positive values denote increase, 

and negative values, decrease. Percent of change is computed as follows: lumen area 

relative to baseline, vessel area relative to baseline, plaque area relative to vessel area 

at baseline, and plaque burden only difference between follow-up and baseline. 

 

 

 

 

 

 

 



 
 

Supplementary Figure 2 

 

Supplementary Fig. 2: Agreement between Ground Truth (GT) and Machine Learning 

(ML) Methods for Lumen Area, Vessel Area, Plaque Area and Plaque Burden 

 

From left to right, all Bland-Altman plots display the change in quantities between 

baseline and follow-up for each measured parameter including lumen area, vessel area, 

plaque area and plaque burden. The y-axis shows the difference between the ground 

truth and machine learning measurements while the x-axis shows the average of both 

methods.  
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