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Abstract

Tropical montane cloud forest may be especially sensitive to climate change.

However, our ability to understand effects of climate on montane biodiversity

remains limited by the resolution of climate data. We compared 5 years of in situ

weather data from cloud forests in northern Peru, regional weather stations, and

gridded datasets to examine how climatologies reflect (a) forest microclimate buff-

ering and (b) local rainfall in a sparse data region; we also examined spatiotempo-

ral variability and regional trends. Across a 1,700–3,100 m gradient in which

temperature did not covary with relative humidity (RH), in situ data showed

interactions between climate and land-use. Forest humidity buffered warming-

induced evaporative drying across elevations, and inside forest maximum vapour

pressure deficit (VPDmax) did not change with elevation, whereas with a 22%

reduction in RHmin at stations, VPDmax increased >10-fold from high to low ele-

vations. Cloud forest dried out on sunny days after 3 days without rain, especially

during ENSO-related drought concurrent with peak solar insolation. Climatol-

ogies were twice as precise for temperature as rainfall. Chelsa captured a 3.9�C
reduction in maximum temperatures inside forest (MAE 1.6�C, R2 = 0.95)

whereas WorldClim reflected drier lapse rates and higher Tmax outside forest.

CHIRPS provided the best fit for monthly rainfall (MAE 23 mm, R2 = 48), captur-

ing regional drought but underestimating rainfall >150 mm�month−1. Consistent

with stations, CHIRPS showed strong support for regional increases in wet-season

rainfall. Reduced variability and more regular dry seasons were only detected by

montane stations, especially south of 6�S, where rainfall seasonality shifted to ear-

lier wet-season peaks and reduced dry-season rainfall as part of a transition from

the Northern to Central Andes. Our results show that cloud forests may be partly

buffered from warming but are likely to become extremely vulnerable under

reduced humidity either through forest loss or drought.
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1 | INTRODUCTION

In an era of big data, the last decade has seen a rapid
increase in the number of global climatologies combining
station and satellite-based data to interpolate and down-
scale temperature and rainfall as easily accessible gridded
high-resolution datasets (Funk et al., 2015; Fick and
Hijmans, 2017; Karger et al., 2017; Abatzoglou et al.,
2018a). Since the original WorldClim (Hijmans et al.,
2005), recent improvements provide more comprehensive
global datasets on moisture regimes at 1-km scales includ-
ing vapour pressure (Fick and Hijmans, 2017), improved
precipitation downscaling for mountainous terrain from
Chelsa (Karger et al., 2017), as well as refined regional grids
such as PISCO for Peru (Aybar et al., 2020). Additional
daily precipitation time series are available at 0.05� resolu-
tion from CHIRPS (Funk et al., 2015) with 30-min precipi-
tation at 0.1� resolution from GPM-IMERG (Huffman
et al., 2019). However, despite their usefulness, global
gridded datasets often reflect forest microclimate poorly
(Faye et al., 2014; Lembrechts et al., 2019; Montejo-
Kovacevich et al., 2020). Additionally, uncertainties in areas
with a low density of weather stations remain a challenge,
especially sparse data in mountainous regions where heter-
ogenous topography contributes to local variation in cli-
mate (Bobrowski et al., 2021).

The problem of lack of on-the-ground data is accentu-
ated in biodiversity studies, as station-based weather data
often come from populated often drier areas (Fick and
Hijmans, 2017), whereas high biodiversity is typically
found in remote forested mountains. For example, 85% of
terrestrial vertebrate species are estimated to be
compacted into only 25% of the global land area in moun-
tains (Rahbek et al., 2019). Among the most hyperdiverse
systems in the world, the tropical Andes are estimated to
occupy half of the world's climate space (Rahbek et al.,
2019) and this region is considered an important “biodi-
versity hotspot” for conservation because of many range-
restricted flora and fauna (Myers et al., 2000). However,
in the Central Andes of Peru and Bolivia known as the
Yungas, global climatologies may be based on as few as
two to seven stations compared to often >20 stations per
10,000 km2 in the northern Andes of Ecuador, Colombia,
and Venezuela (Fick and Hijmans, 2017).

In the context of climate change, mountains become
even more important as refugia from warming. The prev-
ailing paradigm is that species are shifting upslope
although the rate of change often lags behind warming
(Colwell et al., 2008; Feeley et al., 2011; Forero-Medina
et al., 2011; Freeman and Class Freeman, 2014; Lenoir
and Svenning, 2015; Fadrique et al., 2018; Freeman
et al., 2018; 2021; Feeley et al., 2020) which may be
explained by forest microclimate buffering (Zellweger

et al., 2020). Studies often use global climatologies to
model distributional shifts in response to climate change
(Feeley et al., 2020; Freeman et al., 2021). However,
humid systems such as tropical montane cloud forest
may be especially threatened by subtle changes in mois-
ture regimes, such as reductions in cloud immersion
(Still et al., 1999; Foster, 2001; Bruijnzeel et al., 2011; Hel-
mer et al., 2019). Cloud forest epiphytes are highly depen-
dent on moist air (Nadkarni and Solano, 2002; Gotsch
et al., 2017), and ocean warming related drying of cloud
forests have been documented in Costa Rica (Pounds
et al., 1999; Karmalkar et al., 2008) and México (Ponce-
Reyes et al., 2012).

Terrestrial drying depends on precipitation and evapo-
transpiration (Cook et al., 2014; Sherwood and Fu, 2014;
Padr�on et al., 2020). Idealized thermodynamics predict
intensification of the hydrologic cycle, the “wet get wetter
and dry get drier” hypothesis (Held and Soden, 2006), but
challenges remain to understanding continental moisture
transport (Gimeno et al., 2020). Reduced dry season water
availability has been attributed to human-induced warming
(Padr�on et al., 2020), but uncertainties in the demand side
of drought models fuel debate about whether droughts are
increasing (Ault, 2020; Vicente-Serrano et al., 2020). In the
absence of changes to solar insolation or windspeed, poten-
tial evapotranspiration and atmospheric evaporative
demand relate to vapour pressure deficit (VPD), or the
“drying power of the air,” measured as the difference
between actual water vapour and vapour pressure satura-
tion (VPsat) (Penman, 1948; Monteith, 1965). Critically,
VPsat increases with temperature approximately 7% per 1�C
according to the Clausius–Clapeyron relation (Held and
Soden, 2006). Unlike relative humidity (RH), VPD provides
a linear measure of the exponential relationship between
temperature and evapotranspiration (Anderson, 1936), and
increasing VPD around the globe has been linked to
reduced vegetation growth (Yuan et al., 2019) and wildfires
(Abatzoglou et al., 2018b).

Local climatic conditions experienced by biodiversity
are influenced by temperature–moisture feedbacks across
multiple scales. Warming increases evaporation, but as
liquid water vaporizes, energy becomes stored as latent
heat contributing to cloud cover which further regulates
surface temperatures. Globally, night-time warming is
increasing faster than daytime warming associated with
increased cloud cover, humidity, and precipitation (Davy
et al., 2017; Cox et al., 2020). Forest transpiration results
in evaporative cooling (Bonan, 2008) and forest microcli-
mates buffer near-surface temperature extremes (De
Frenne et al., 2019), especially in the understory (Davis
et al., 2019). Forests also contribute vegetation–
atmosphere feedbacks (Zemp and Rammig, 2014; Zemp
et al., 2017) as moisture recycling from transpiration
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reduces downwind rainfall variability around the globe
(O'Connor et al., 2021).

Although moisture regimes play a critical role in eco-
system function, relatively few studies have examined cli-
matic variability across elevational gradients in humid
low-latitude mountains (Duane et al., 2008; Fries
et al., 2009; Rapp and Silman, 2012; Ramírez et al., 2017;
Jucker et al., 2018). Here we compare 5 years of data on
cloud forest microclimate and local rainfall with regional
weather stations outside forest to examine drivers of vari-
ation in montane climate. We then examine how cloud
forest climate is reflected by several global climatologies
commonly used for species distributional modelling. Our
objectives were to (1) examine microclimate buffering of
forest including (1a) compare temperature extremes and
lapse rates inside versus outside forest to gridded clima-
tologies (WorldClim, Chelsa); (1b) identify drivers of
cloud forest evaporative drying testing the prediction that
VPD increases at warmer lower elevation because of
higher VPsat; (2) evaluate reliability of gridded precipita-
tion datasets to measure spatiotemporal rainfall variabil-
ity in a sparse data region (WorldClim, Chelsa, CHIRPS,
GPM-IMERG, PISCO); and (3) examine effects of climate
change on cloud forests in northern Peru (drought, inter-
annual variability, trends). Analyses integrate data from
local, regional, and global scales to provide insight on
cloud forest and montane climate relevant for biodiver-
sity conservation (Figure 1).

2 | DATA AND METHODS

2.1 | Cloud forest and regional weather
stations in northern Peru at 5�–7�S

Our study was conducted at a transition between the
Northern and Central Andes (Figure 2a), where the

Cordillera Oriental and Central break up around the
Marañon River valley and Huancabamba Depression, a
well-known biogeographic divide where elevation drops
to 500–2,100 m (Weigend, 2002; Hazzi et al., 2018). The
region is characterized by extreme topographic complex-
ity with seasonal temperature differences <2�C. Oro-
graphic lift combined with rain-shadow effects and
narrow canyons result in rainforest, dry forest, and cloud
forest in proximity. Weather data used in our analysis
reflect this climatic variability at small spatial scales, and
we compared cloud forests (n = 8) in a 2� × 2� gridded
area between 5�–7�S and 77–79�W to regional weather
stations within 100 km (n = 32–46) (Figure 2a). Stations
covered a range of slope and aspect with cloud forest gen-
erally accessible on moderate mid-slopes near rural com-
munities (Figure S1, Supporting Information).

To examine forest microclimate and local rainfall, we
used 5 years of data collected in cloud forest as part of a
larger study examining the interaction of climate and
land-use on biodiversity (Ausprey et al., 2020;
Newell, 2021). Cloud forest spanned a 1,700–3,100 m
elevational gradient (Tmean 10–17�C) across a
10,000 km2 area in the vicinity of the city of Chachapoyas
(Figure 2a and Tables S1–S4), and mean annual precipi-
tation ranged from 1,000–2,500 mm (Figure 2d,
Tables S2–S4). At inter-Andean sites dry seasons based
on water stress ranged from 2.7 to 4.7 months (82–
142 days) compared to less than 1 month of water stress
on the eastern slopes. Weather data were collected at
eight landscapes across four watersheds including the
Utcubamba and Imaza, tributaries of the Marañon; and
Huayabamba and Mayo, tributaries of the Huallaga.
Based on vegetation plots at >40 stands, forest microcli-
mate represented typical cloud forest in the region char-
acterized by 71–91% canopy closure (spherical
densiometer) with 12–21 m tall canopies in which height
decreased slightly with elevation.

FIGURE 1 Flow chart of data inputs and analytical comparisons examining spatiotemporal variability and reliability of gridded global

climatologies to describe tropical montane cloud forest climate in the context of biodiversity studies. Weather data from the Florida Musuem of

Natural History (FLMNH) and stations maintained and compiled by the Peruvian National Meterology and Hydrology Service (SENAHMI)

[Colour figure can be viewed at wileyonlinelibrary.com]
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In situ weather data were collected in cloud forests
from 2015–2019, including a strong El Niño event in
2015–16, as well as weak El Niño conditions in 2018–19

(Figure 2b). To measure microclimate inside forest,
weather loggers were attached to a tree 1.5 m above the
ground in a dense closed-canopy area (loggers were

FIGURE 2 Spatiotemporal weather data in northern Peru at a climatic transition between the Northern and Central Andes, and the

eastern slopes and inter-Andean ridges. (a) Map of a network of cloud forest sites (stars) and long-term regional weather stations (circles)

within 100 km; prevailing winds from the South American low-level jet (SALLJ) shown in blue. (b) Variation in rainfall and maximum

vapour pressure deficit (VPDmax) at cloud forest sites across a complex 1,700–3,100 m elevation gradient from 2015–2019; shaded areas

represent the austral winter (dry season). (c) Number of regional weather stations by year from SENAMHI. (d) Mean annual precipitation by

elevation for cloud forest and weather stations; hatched circles represent sites on the eastern slopes with dashed lines for approximate

rainfall [Colour figure can be viewed at wileyonlinelibrary.com]
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concealed at accessible stands away from trails and
edges). At each landscape a pair of Onset HOBO loggers
recorded temperature/RH every 30 min (U23-001) and
temperature/lux (UA-002) every 15 min; light loggers
were attached above humidity loggers with sensors ori-
ented horizontally to capture ambient light while
avoiding spikes from direct sunlight. In a nearby open
area, Onset HOBO tipping-bucket rain gauges (RG3-M)
recorded local precipitation at each landscape, here
defined as rainfall; we did not measure cloud water inter-
ception, which can be highly variable (Giambelluca and
Gerold, 2011). Coverage per year ranged from 78 to 95%
due to occasional logger failures, and data collection at
one landscape was discontinued in 2016 due to safety
concerns while two additional landscapes were added the
same year (Table S1).

Regional weather stations were located within
100 km of cloud forest sites and spanned a 300–3,100 m
elevational gradient in the departments of Amazonas,
San Martin, and Cajamarca (Figure 2a). Stations included
rainforest and dry forest as well as cloud forest with
mean annual precipitation ranging from 500–3,000 mm
(Table S5). We downloaded meteorology data compiled
and maintained by the Peruvian National Meterology
and Hydrology Service (Servicio Nacional de Meteorología
e Hidrología SENAMHI, http://www.senamhi.gob.pe)
using the R package senamhiR (Anderson, 2018). Data
were graphed and scanned for consistency, and we
dropped one station with unreliable RH. For analysis we
used 32–46 stations with >9 years of data (Table S5);
about half were located >1,500 m (n = 23). Records at
the longest running stations began in the early 1960s
(Figure 2c) primarily from populated, often drier areas.
Seven weather stations were located within the
10,000 km2 cloud forest network, but three have been
inactive for >30 years (Table S5). Classified as a humid
highland climate (Cfb) according to the Köppen climate
classification, at 2,400 m the city of Chachapoyas is the
only montane station with >50 years of data, although
coverage has been incomplete. Universidad Nacional
Toribio Rodríguez de Mendoza de Amazonas is develop-
ing an improved network of weather stations (Rojas
Briceño et al., 2021).

2.2 | Global gridded climatologies

We selected two commonly used global climatologies to
compare with in situ data. WorldClim uses a thin-plate
smoothing spline to interpolate climate surfaces at a
1-km scale based on geographic location and elevation
(Hijmans et al., 2005), and v2.1 has been refined to
include additional stations, other factors such as cloud

cover and distance to ocean, as well as high-resolution
datasets for vapour pressure to model complex processes
involved in evapotranspiration (Fick and Hijmans, 2017).
Using an improved downscaling approach to estimate
precipitation in mountainous regions, Chelsa v2.1 pro-
vides a similar 1-km scale resolution for temperature and
precipitation (Karger et al., 2017; 2021).

We also examined several gridded precipitation time
series. CHIRPS v2.0 (https://data.chc.ucsb.edu/products/
CHIRPS-2.0/) provides daily precipitation since 1981 at a
0.05� × 0.05� scale resolution that can be used for trend
analysis (Funk et al., 2015). GPM-IMERG v6.0 from
NASA provides 30-min precipitation since 2000 at a
0.1� × 0.1� scale (Huffman et al., 2019). This dataset joins
satellite data from the current Global Precipitation Mea-
surement (GPM) since 2014 with the Tropical Rainfall
Measuring Mission from 2000 to 2015 (TRMM). For
analyses we used Final Run monthly precipitation
accumulation datasets available in GeoTIFF format
(https://arthurhou.pps.eosdis.nasa.gov/). We also exam-
ined refined regional precipitation grids for Peru from
PISCO v2.1 (Aybar et al., 2020). For trend analysis we
only examined time series from CHIRPS as other time
series are not considered appropriate because of data
inhomogeneities.

For comparison, we extracted point-level data for coor-
dinates using bi-linear interpolation in R with the raster
(Hijmans, 2020), ncdf4 (Pierce, 2019), and chirps (de Sousa
et al., 2020) packages or using the ArcGIS Spatial Analyst
multivalue to points tool. For precipitation datasets, we cal-
culated annual and monthly normals for comparison with
WorldClim (https://www.worldclim.org/data/worldclim21.
html) and Chelsa (https://chelsa-climate.org/downloads/).
Cloud cover was downloaded from MOD09GA (https://
lpdaac.usgs.gov/products/mod09gav061/) at a 250 m reso-
lution (Vermote and Wolfe, 2015) and we calculated the
percentage of total pixels occupied by cloud within a 5-km
radius buffer of rain gauges.

2.3 | Data formatting and statistical
analysis

Cloud forest and weather station data were formatted on
a daily time step for comparison. Forest logger data were
averaged per hour, and we extracted daily minima, max-
ima, and means. We calculated means as the sum of
extremes divided by two to be comparable with stations
which reported data for 700, 1300, and 1900 hrs. Forest
loggers did not record RH > 100%, but supersaturation
with dew can affect around 6% of high humidity mea-
surements (Rapp and Silman, 2012). For stations, we cal-
culated RH from dry and wet bulb temperatures plus

5896 NEWELL ET AL.
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atmospheric pressure based on elevation and tempera-
ture, and we calculated VPD from temperature, RH, and
pressure using the R package psychrolib (Meyer and
Thevenard, 2019). To examine logger cloud cover, we cal-
culated relative light levels as the proportion of trimmed
maxima by sensor controlling for variation in light based
on placement. For trimmed maxima we used 95th per-
centiles to replace extreme values when direct sunlight
occasionally filtered through leaves (winsorizing). For
each metric we calculated daily running means and sums
by 5-day, 10-day, 30-day, and 90-day increments using
the R package data.table (Dowle and Srinivasan, 2020).

We used daily data to examine temperature lapse rates
and dry season length. We calculated near-surface lapse
rates inside versus outside forest by day for Tmin, Tmean,
and Tmax then averaged by month and year (Rapp and
Silman, 2012); only days with data from ≥5 loggers were
included in the analysis (Lute and Abatzoglou, 2021). We
used two approaches to calculate dry season length at cloud
forest sites, either below average rainfall or based on water
stress. Similar to approaches used in tropical rainforest
(Fu et al., 2013), we considered start/end of the dry season
based on 6/8 pentads below normal 5-day mean rainfall
for the site. Additionally, we considered start/end of the
dry season based on five consecutive days of water stress.
We calculated daily water stress as negative climatic water
balance (−CWB) using the Thornthwaite equation for
temperature to calculate potential evapotranspiration (PET):
CWB = Precip30days − PET30days (Thornthwaite, 1948; Vicente-
Serrano et al., 2010).

We compared gridded climatologies to observed data
based on monthly normals averaged across years by site.
Because of sparse in situ data, we did not limit our com-
parison to concurrent years. For cloud forest we used
monthly means from the normal ratio method (see
below) for the 1970–2019 time period, and for stations we
used all years with data. Any weak effects of trends (see
below) were likely outweighed by more robust sample
sizes. Results were similar although weaker for 12 sta-
tions >1,500 m which were active concurrent with our
cloud forest network from 2015 to 2019. We evaluated
gridded climatologies based on mean directional differ-
ences (intercepts centred by group), slope of the line (1:1
ratios), proportion of variation explained (R2), and mean
absolute error (MAE) calculated using the Metrics pack-
age in R (Hamner et al., 2018). We present 95% confi-
dence intervals (CI) from the emmeans package
(Lenth, 2020).

Statistical analyses were conducted in Program
R. Prior to analysis we examined Pearson correlation coef-
ficients among weather variables. We used maximum like-
lihood linear, generalized linear, or generalized additive
mixed models with the lme4 (Bates et al., 2015) or gamm4

packages (Wood and Scheipl, 2020). To examine forest
buffering of climatic extremes, we compared daily ranges
inside versus outside forest using kernel density estimates.
We used AICc model selection to compare relative impor-
tance of factors contributing to hot and dry extremes
(Tmax, RHmin, VPDmax) with repeated measures by
landscape and year. For VPDmax we used a Gamma dis-
tribution with a log link function which provided the best
fit for right-skewed data; a few zero months were replaced
with a minimal value (0.0001). Across the region we exam-
ined logger location (inside vs. outside forest) as an inter-
active effect. Partial regressions from top models were
visualized using the visreg package (Breheny and
Burchett, 2017) and we used the rr2 package (Ives and
Li, 2018) to examine the proportion of variation explained.

2.4 | Normal ratio method, interannual
variability, and regional trends

In montane regions, the normal ratio method provides a
better predictor of local rainfall than inverse distance
weighting (Paulhus and Kohler, 1952; Mair and
Fares, 2010) typically used for interpolating gridded
datasets (Fick and Hijmans, 2017; Aybar et al., 2020).
With sparse data, we integrated local and regional
weather data to model interannual variability over
50 years scaled to cloud forest sites; models generally
provided a good fit to the data (Table S11 and Figures S6
and S7). On the eastern slopes of the Andes at the
Venceremos guard station in Bosque de Proteccíon Alto
Mayo (BPAM), we recorded 2,775 mm of rain in
324 days during El Niño when other sites were drier
than normal. Extensive landslides suggest there was an
inverse ENSO effect, and for analyses we scaled
Venceremos rainfall models by 70% to allow for compari-
son across sites (Figure 2d, S2 and Table S3-4). For a few
months in which loggers malfunctioned or prior to
installation at all sites, we estimated daily temperature
and RH using the normal ratio method; daily values
were used to calculate VPD. See Data S1, Supporting
Information for details.

We examined seasonal trends in temperature and
rainfall for regional weather stations with >9 years of
data. We examined decadal changes from regression
models (mean) and Sen's slope (median) with the R pack-
age trend which allows for nonlinearities and reduces
effects of outliers (Thorsten, 2020). For temperature, we
used linear regression to examine trends in daily means
and extremes. For rainfall, we examined trends in 30-day
rainfall accumulation using a Gamma distribution with a
log link function as variance typically increases with the
mean (Husak et al., 2007).
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3 | RESULTS

3.1 | Microclimatic buffering effects
of forests

3.1.1 | Temperatures inside versus outside
forest compared to gridded climatologies

Forest microclimate reduced climatic variability. Cloud
forests were characterized by high nocturnal humidity
year-round, although daytime RH and VPD varied by sea-
son (Figure 3). Increasing solar insolation after the winter
solstice contributed to greater temperature extremes com-
bined with potential water stress from July to December
(Figure 4). Inside forest, daily thermal ranges were
reduced by half compared to regional weather stations
while forest microclimate buffered evaporative drying
under most conditions (Figure 5). Temperatures inside for-
est were systematically offset compared to stations. Con-
trolling for elevation, forest Tmin was 0.7�C (CI 0.1–1.3)
warmer than stations, whereas forest Tmean and Tmax
were 2.0�C (CI 2.5–1.4) and 3.9�C (CI 3.0–4.8) cooler,
respectively.

Cloud forest microclimate reduced near-surface lapse
rates up to 0.8�C�km−1 (Figure 6a). Greatest differences

were for Tmax, and Tmax lapse rates inside forest were
4.8�C�km−1 (CI 4.9–4.7) compared to 5.6�C�km−1 (CI 5.7–
5.5) outside forest. Effects of forest microclimate decreased
for Tmean at 4.5�C�km−1 (CI 4.6–4.4) compared to
5.3�C�km−1 (CI 5.3–5.2), and Tmin at 4.2�C�km−1 (CI 4.3–
4.1) compared to 4.9�C�km−1 (CI 5.0–4.8). For most of the
year forest Tmin and Tmax lapse rates were similar, but
in September at the end of the dry season, forest Tmax
lapse rates were reduced >1�C matching drier lapse rates
of stations, whereas Tmin lapse rates remained relatively
constant throughout the year (Table S5 and Figure S3).

Cooling effects of forest microclimate were reflected by
Chelsa whereas WorldClim was most accurate outside for-
est (Figure 6b,c). Based on centred intercepts (Table S9),
monthly normals for Tmin were well predicted by grids
independent of dataset or location within −1.1 to 0.4�C
(MAE 0.8–1.2). WorldClim predicted Tmean and Tmax
outside forest within −0.3 to 0.3�C (MAE 0.8–1.2) but
increasingly overestimated Tmean and Tmax inside forest
by 2.1�C (MAE 2.1) and 4.0�C (MAE 4.0), respectively.
Chelsa balanced Tmean between locations at −0.7 to
1.1�C (MAE 0.7–1.1) and corrected overestimation of forest
Tmax within 0.2�C (MAE 1.6), but underestimated Tmax
outside forest by 2.3�C (MAE 2.4). In v2.1 Tmax increased
linearly with observed values (1:1 ratio 0.95), an

FIGURE 3 Diurnal and seasonal cycles in temperature, relative humidity (RH), and vapour pressure deficit (VPD) inside cloud forest

for a network of sites (n = 8, 2015–2019) across a 1,700–3,100 m elevational gradient in the Chachapoyas region of northern Peru. Hourly

means by quarter (a) and mean monthly extremes (b). Shaded areas represent night-time, or wet (blue) and dry (tan) seasons [Colour figure

can be viewed at wileyonlinelibrary.com]
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improvement over WorldClim and previous versions
(Table S9). Temperature models provided a good fit to the
data explaining 94–98% of the variation (Table S9).

3.1.2 | Forest humidity buffers warming-
induced drying across elevations

Reduced rainfall combined with high solar insolation
contributed to cloud forest evaporative drying in conjunction
with regular diurnal and seasonal cycles (Figures 3 and 4).

During the second half of the year, forest VPDmax
increased on dry, sunny days, especially after at least
3 days without rain, but not without the combination of
both factors (Figure 7a). When controlling for season,
rainfall was the top predictor for mean monthly VPDmax
across elevations (Figure 7b and Table S8); inside forest,
season explained 20% of the variation with an additional
18% explained by rainfall and 6% explained by El Niño.
However, effects of rainfall alone were weak and for both
cloud forest and weather stations, RHmin increased 13%
across a rainfall range of 0–300 mm�month−1 whereas

FIGURE 5 Buffering effects of forest microclimate on the range of daily climatic variability inside versus outside forest for temperature,

relative humidity (RH) and vapour pressure deficit (VPD). Polygons represent overlay of kernel density estimates scaled to maximum values

for a network of cloud forest sites (n = 8, 2015–2019) and regional weather stations (n = 32, 1963–2019) in northern Peru [Colour figure can

be viewed at wileyonlinelibrary.com]

FIGURE 4 Seasonal daily thermal range inside cloud forest by (a) minimum relative humidity (RHmin), and (b) maximum vapour

pressure deficit (VPDmax) in relation to 30-day rainfall accumulation for a network of sites (n = 8, 2015–2019) in the Chachapoyas region of

northern Peru. Black dashed lines represent 95th-percentile ranges for the least variable quarter April–June after the rainy season [Colour

figure can be viewed at wileyonlinelibrary.com]
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VPDmax decreased 0.27–0.35 kPa (Figure S5a). Global cli-
matologies overestimated VPD at humid cloud forest sites,
although there was a weak positive relationship outside
forest (Figure S5b).

Across sites RHmin was significantly greater inside for-
est at 91% (CI 85–98) compared to 69% (CI 67–72) for
weather stations outside forest (t = 11.59, p < .001). In a
topographically complex region, monthly RHmin was not
correlated with elevation for either cloud forest
(Rp = −0.10, p = .32) or stations (Rp = 0.03, p = .47)
(Figure S6a and Table S7). Monthly rainfall was weakly
correlated with elevation (Rp = −0.24, p < .001) although
not >1,500 m (Rp = −0.12, p = .07) (Figure S6b and
Table S7). Change in VPD with elevation, or the VPDmax
lapse rate, differed between forest and stations (t = 2.36,
p = .01); the top interactive model explained 82% of the

variation (Table S9). Contrary to our prediction that
VPDmax increases with warmer temperatures at lower ele-
vation, inside humid cloud forest there was no relationship
with elevation (t = −0.41, p = .68) and a VPDmax lapse
rate of −0.03 kPa�km−1 (95% CI: −0.17 to 0.11 kPa�km−1)
(Figure 8a). Conversely, our prediction was supported for
stations. Outside forest a 22% reduction in RHmin resulted
in a >10-fold increase in the VPDmax lapse rate (t = −7.87,
p < .001) at −0.38 kPa�km−1 (95% CI: −0.47 to
−0.28 kPa�km−1) (Figure 8a). Drivers of VPDmax shifted
from RHmin explaining 96% of the monthly variation
inside forest to only 62% outside forest, whereas the
explanatory power of Tmax increased from 27 to 56%.

Modelling change in monthly VPDmax by RHmin
across a range of annual Tmax for all sites, reduced
humidity outside forest rapidly exceeded typical water

FIGURE 6 Observed minimum, mean, and maximum monthly temperatures inside vs. outside forest (a) by elevation, and (b) compared

to climate normals from WorldClim and (c) Chelsa for a network of cloud forest sites (n = 8, 2015–2019) and regional weather stations

(n = 32, 1963–2019) in northern Peru. Dashed 1-to-1 lines shown in black [Colour figure can be viewed at wileyonlinelibrary.com]

5900 NEWELL ET AL.

 10970088, 2022, 11, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.7567 by U
niversitaet B

ern, W
iley O

nline L
ibrary on [28/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


stress thresholds (VPDmax >1.0 kPa) in warm tropical
lowlands (Figure 8b). Above Tmax of 27�C potential
water stress occurred if RHmin fell below 80% whereas at
15�C water stress was unlikely until RHmin reached
50–60%. For a 21�C change in Tmax across elevations,
the “drying power of the air” approximately doubled per
20% reduction in humidity. At 90% RHmin mean monthly
VPDmax changed <0.3 kPa, but lowland VPDmax
increased 0.7 kPa at 70% RHmin, and by 50% RHmin our
model predicted a 1.5 kPa increase in VPDmax indicative
of substantial water stress outside forest in tropical low-
lands. See Data S1 for equations explaining this pattern.

3.2 | Spatiotemporal rainfall variability
in a sparse data region

3.2.1 | Latitudinal shifts in rainfall
seasonality at 5�–7�S

Across the Chachapoyas region, rainfall seasonality
reflected a north-to-south latitudinal shift concurrent with

increasing seasonal temperature differentials (�0.8�C). At
cloud forest sites, rainfall peaked 3 weeks earlier south of
6�S along with a 41% reduction in minimum dry-season
rainfall initiating water stress (32 vs. 54 mm�month−1)
(Figure 9a). Weather stations reflected similar reductions
in May–September rainfall south of 6�S, although shifts in
timing were less clear (Figure 9d). For our network of sites
southeast of the Marañon River, daytime rain was more
seasonal than night-time rain with greater nocturnal dry
season rain north of 6�S (Figure 9b). Rain primarily
occurred during late morning or afternoon except for
October–December when rain occurred at any time of day
(Figure S1); limited data from the eastern slopes suggest
reduced diurnal rain cycles. Northwest of the Marañon
River, weather stations were generally characterized by
greater nocturnal rain indicating greater downslope
instead of upslope wind flow (Figure 9c). Models of long-
term rainfall seasonality show our network of cloud forest
sites bordered on water stress thresholds around
50 mm�month−1 during the driest months, except for the
eastern slopes, but exceeded >150 mm�month−1 during
the wettest months (Figure 10).

FIGURE 7 Drivers of changes in maximum vapour pressure deficit (VPDmax) or the “drying power of the air” inside cloud forest for a

network of sites (n = 8, 2015–2019) in the Chachapoyas region of northern Peru. (a) Percent of days VPDmax exceeded thresholds each year

by sun/clouds and days since rain. (b) Mean monthly VPDmax by quarter, and rainfall during normal years and an ENSO-related drought

in 2016 [Colour figure can be viewed at wileyonlinelibrary.com]
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3.2.2 | Local rainfall compared to gridded
climatologies in a sparse data region

In a sparse data region gridded precipitation remained
imprecise compared to temperature, explaining <50% of

the variation (Figures 11 and S4). Based on centred inter-
cepts (Table S10), gridded datasets predicted moderate
rainfall (≤150 mm�month−1) within 5–13 mm�month−1

(MAE 20–24) except for GPM IMERG which consistently
overestimated moderate rainfall by 31 mm�month−1

FIGURE 8 Buffering effect of humid forest microclimate on maximum vapour pressure deficit (VPDmax) or the “drying power of the
air.” (a) Partial regression for monthly normals by elevation inside versus outside forest. (b) Feedback whereby temperature magnified

VPDmax as minimum relative humidity (RHmin) decreased. Dashed lines show mean RHmin inside versus outside forest relative to typical

water stress thresholds (VPDmax >1 kPa). Data points represent monthly means by site and year for cloud forest (n = 8, 2015–2019) and
regional weather stations (n = 31, 1963–2019) in northern Peru [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Seasonal shift in rainfall by latitude. (a) Mean monthly rainfall and (b) diurnal/nocturnal rain rate (mm�12 hr−1) across a

network of cloud forest sites (n = 8, 2015–2019). (c) Mean diurnal/nocturnal rain rate across the region and (d) seasonal shift in mean

monthly rainfall for regional weather stations within 100 km (n = 46, 1963–2019) [Colour figure can be viewed at wileyonlinelibrary.com]
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(MAE 37). WorldClim overestimated the driest months
(zero-intercept 23–26 mm�month−1) but underestimated
rainfall >80 mm�month−1 (1:1 ratio 0.58–0.63). Chelsa
v2.1 was the only dataset to overestimate moderate
cloud forest rainfall by 29 mm�month−1 (CI 9–49),
although station rainfall was within 4 mm�month−1

(CI −6 to 14). CHIRPS and related PISCO increased lin-
early with observed rainfall (1:1 ratio 0.93–0.94), but
all gridded datasets underestimated heavy rainfall
(>150 mm�month−1) by 31–80 mm�month−1 (MAE 60–84)
except for GPM IMERG which was within 4 mm�month−1

despite variability (MAE 54). Missing heavy rainfall contrib-
uted to gridded datasets predicting annual rainfall
>1,000 mm poorly (Figure 11b) although all datasets par-
tially captured seasonal rainfall shifts across the region
(Figure S5).

3.3 | Interannual variability and
regional trends compared to CHIRPS

During a 5-year period, we captured interannual variability
around a strong El Niño event in 2015–2016. Despite
regional warming of 1�C through the first quarter of 2016
(Tmin, Tmax), after Pacific Ocean warming dissipated by
June, Tmin dropped 0.5�C in October–December at cloud
forest and montane stations, but not below 1,300 m

(Figure 12). At the same time Tmax, after returning near
normal from April–September, increased 1.5�C region-wide
from October to December along with concurrent 10%
decreases in cloud cover, 5–10% decreases in RHmin and a
0.2 kPa increase in VPDmax. Drought was most apparent
at cloud forest sites where daily rain rates were reduced
>1.5 mm�day−1 while RHmin fell >8% (Figure 12). A 20%
reduction in regional rainfall in October–December 2016
was apparent in the three gridded datasets we examined:
CHIRPS, GPM-IMERG, and PISCO (Figure S8), and cloud
forest sites toward the eastern slopes showed the greatest
rainfall reductions (Figure S12).

Over 50 years temperature and rainfall increased in
northern Peru (Figure S10), but trends varied seasonally
(Figure 13) and by metric (Figure S11). Tmin increased in all
seasons at +0.16–0.23�C�decade−1 (CI 0.06–0.33), whereas
Tmax varied by season, with greatest increases during the
dry season at +0.25�C�decade−1 (CI 0.12–0.38), weaker
increases during the transition wet season at +0.13�C�
decade−1 (CI 0.07–0.20), but no change from January–June
(CI −0.11 to 0.12). Changes in VPDmax reflected seasonal
change in RHmin with increasingly humid wet seasons
(VPDmax −0.02 kPa�decade−1 CI −0.04 to −0.01, RHmin
+0.6% decade−1 CI 0.2–0.9), whereas humidity was reduced
during the dry season (VPDmax +0.02 kPa�decade−1 CI
0.01–0.04, RHmin −0.5%�decade−1 CI −0.9 to −0.1), while
transitional seasons did not change (VPDmax CI −0.01 to

FIGURE 10 Models for seasonal rainfall by decade since the 1960s at a network of cloud forest sites in the Chachapoyas region of

northern Peru. Models integrate a short-term network of rain gauges and long-term weather stations to describe spatiotemporal variation

scaled to cloud forest. Dashed lines indicate approximate water stress thresholds (<50 mm�month−1) and heavy rain (>150 mm�month−1)

[Colour figure can be viewed at wileyonlinelibrary.com]
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0.02 kPa�decade−1, RHmin CI −0.65 to 0.32%�decade−1).
Precipitation increased +5–6%�decade−1 (CI 4–8) during the
wet and transition wet seasons but decreased −4%�decade−1
(CI −2 to −6) during the dry season with no change during
the transition to the dry season (Figure 13).

Trend analysis for both the normal ratio method (NRM)
and CHIRPS predicted decadal increases in wet-season
rainfall at cloud forest sites with high certainty (Figure 14),
although at +8–10%�decade−1 CHIRPS predicted greater
magnitude increases than NRM models. Increasing rainfall
was found for all analytical approaches, but weak decreases
in dry-season rainfall were only apparent with Gamma
regression for long-term stations (Figure S12). NRM models
predicted a similar pattern at cloud forest sites (Figure 14)
primarily driven by a decrease in dry-season rainfall vari-
ability and increasingly regular dry seasons with reduced
occurrence of year-round rain at most long-term stations
(Figure 11b). A weaker trend, decreasing dry-season vari-
ability was not detected by CHIRPS or Sen's slope with
additional long-term data needed to confirm this pattern.

Reflecting response to complex topography we also
found evidence for local variation in trends. Decadal
trends for 22 long-term stations showed the greatest
warming at northern sites with greatest reductions in dry
season rainfall at southern sites >1,300 m, including the
city of Chachapoyas (Figures S11 and S12). Across the
region increasing rainfall in January–February was espe-
cially evident for northeastern cloud forest sites

(Figure S12). At cloud forest sites NRM models reflected
decreasing dry-season rainfall for the Chachapoyas region
at −4%�decade−1 (Figure 13) while analysis of seasonal
drought indicated the strongest droughts occurred during
the 1980s (Figure S11). Interannual variability in tempera-
ture related to Pacific Sea surface temperatures with stron-
gest correlations with the Oceanic Niño Index (ONI)
whereas rainfall related to pressure correlated with both
the Equatorial Southern (EQSOI) and Antarctic (AAO)
oscillations (Tables S12–S15).

4 | DISCUSSION

4.1 | Microclimatic buffering effect
of forests

4.1.1 | Temperatures inside versus outside
forest compared to gridded climatologies

Our results are consistent with strong buffering effects of
forest which reduce climatic extremes in the understory
(Davis et al., 2019; De Frenne et al., 2021). Reducing diur-
nal amplitude, we found around 4�C reductions in maxi-
mum and 1�C increases in minimum temperatures inside
compared to outside forest, magnitudes surprisingly close
to both global meta-analysis (De Frenne et al., 2019) and
satellite data across the tropics, although satellites did

FIGURE 11 Gridded climatologies compared to in situ data. (a) Mean monthly and (b) mean annual rainfall from WorldClim, Chelsa,

CHIRPS, and GPM-IMERG compared to rain gauges for a network of cloud forest sites (n = 8, 2015–2019) and regional weather stations

(n = 46, 1963–2019) in northern Peru. Dashed 1-to-1 lines shown in black [Colour figure can be viewed at wileyonlinelibrary.com]
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not detect warmer night-time temperatures (Li et al.,
2015). Foliage cover is a strong predictor of vegetative
cooling (Hardwick et al., 2015; Jucker et al., 2018; Davis
et al., 2019). Despite using weather stations as a broad
proxy for outside forest, our results are consistent with
global analysis of land-use change showing forest loss
amplifies diurnal temperature variation, and increases
mean and maximum temperatures (Alkama and
Cescatti, 2016).

Reflecting moisture recycled by trees, we found forest
loggers predicted a more humid near-surface lapse rate
than regional weather stations, especially for maximum
air temperatures. Compared with published microclimate
data along the eastern slopes of the Andes, our drier

Tmax lapse rates in Sept matched seasonal Tmean lapse
rates in the Manu at 13�S (Rapp and Silman, 2012),
whereas Tmin matched limited seasonality at Estaci�on
Científica San Francisco at 3�S, although nearby pasture
lapse rates dropped in Sept (Fries et al., 2009). Station
lapse rates in southern Peru are generally more seasonal
(Navarro-Serrano et al., 2020) as relative humidity
changes with latitude (Peixoto and Oort, 1996).

Global climatologies differed in their ability to reflect
cloud forest microclimate, primarily cooler maximum
temperatures inside forest. Using different interpolation
versus statistical downscaling approaches, on average
WorldClim was within 1�C outside forest whereas Chelsa
was within 1�C inside forest, an improvement for forest

FIGURE 12 Seasonal change in temperature, relative humidity (RH), vapour pressure deficit (VPD), rain rate, and cloud cover around

the 2015–16 El Niño compared to normal years for a network of cloud forest sites (n = 8, 2015–2019) and regional weather stations by

elevation (n = 11–13) in northern Peru. Error bars represent 95% confidence intervals from daily analysis. Dashed line shows dissipation of

El Niño conditions and return to neutral sea surface temperatures (SST) [Colour figure can be viewed at wileyonlinelibrary.com]
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biodiversity studies. WorldClim also overestimated maxi-
mum temperatures in tropical rainforest (Jucker
et al., 2018) whereas Chelsa underestimated mean tem-
peratures at Colombian weather stations (Bastidas Osejo
et al., 2019). Our results inform choice of gridded datasets
for different applications. Climate datasets that best
reflect species ecology can improve distributional

modelling (Lembrechts et al., 2019) and with a growing
understanding of the buffering effects of forest microcli-
mate, gridded climatologies are needed that explicitly
model forest versus open land for different applications.
Despite high temperature predictability, our forest micro-
climate data demonstrate current challenges to modelling
fine-scale near-surface water vapour.

FIGURE 13 Interannual variability and trends by season for (a) mean quarterly temperature anomalies and (b) quarterly rainfall

accumulation in the Chachapoyas region of northern Peru. Temperature and rainfall scaled to cloud forest sites using the normal ratio

method. Significant trends (p < .05), and global teleconnections with the strongest correlation by season included on each graph [Colour

figure can be viewed at wileyonlinelibrary.com]
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4.1.2 | Forest humidity buffers warming-
induced drying across elevations

Using in situ data, we show interactions between climate
and land-use across a complex 1,400-m elevational
gradient decorrelated with relative humidity. Weather
stations matched our original prediction that VPD
increases at warmer lower elevations, whereas cloud
forests maintained low VPD in the understory. Inside
rainforest, VPD was also relatively constant across a
200–700 m gradient in Borneo (Jucker et al., 2018)
suggesting the phenomenon we observed is not restricted
to cloud forest. At higher latitude in southern Peru and
Costa Rica, forest VPD decreased with elevation along
with concurrent changes in precipitation and cloud cover
(Rapp and Silman, 2012; Gotsch et al., 2017). Covariance
between temperature and moisture is a common problem
on elevational gradients (Körner, 2007), and our system
spanning four watersheds provides unique insight by iso-
lating temperature.

Effects of forest microclimate on warming-induced
evaporative drying reflect the dominate role of trees in ter-
restrial water fluxes. Near-surface atmospheric water bal-
ance and VPD are tightly linked to plant transpiration
(Jasechko et al., 2013) although forests can also influence
surface albedo and aerodynamic roughness (Pielke
et al., 2007). Evaporation increases with warming whereas
plant physiology regulates transpiration. Our results sug-
gest that with normal rainfall, humid forests can stabilize
warming-induced drying across elevations, perhaps
because transpiration typically increases with VPD up to a
given threshold (Grossiord et al., 2020). Forest buffering of
VPD and maximum temperature can change with soil

water balance (Davis et al., 2019) and we found forest
VPD increased after the 2016 El Niño when rainfall was
reduced during peak solar insolation. Further work is
needed to examine if warmer temperatures at lower eleva-
tion magnify drought. Additionally, how our results relate
to forest function remains unclear. Forests also represent
vertical microclimate gradients (Davis et al., 2019) with
decreasing canopy humidity (Rapp and Silman, 2012;
Nakamura et al., 2017) as transpiration forms a rising col-
umn of humid air (Makarieva and Gorshkov, 2007;
Sheil, 2018). Humid forests provide important regulatory
services recycling rainfall (Spracklen et al., 2012; 2018),
although in arid systems non-native trees can reduce
water tables (Schwärzel et al., 2020). Amazon rainforests
buffer against drought (Staal et al., 2018) and deforestation
has been shown to delay start of the rainy season (Butt
et al., 2011; Leite-Filho et al., 2019), reduce regional rain-
fall by as much as 40% (Spracklen et al., 2012; 2018), and
link to drying of the lower atmosphere contributing to
wildfires (Xu et al., 2020). Globally, forests maintain dry
season transpiration by accessing soil moisture through
deep roots reducing downwind precipitation variability
(O'Connor et al., 2021).

4.2 | Spatiotemporal rainfall variability
in a sparse data region

4.2.1 | Latitudinal shifts in rainfall
seasonality at 5�–7�S

Our results demonstrate a seasonal shift in rainfall
around 6�S. North of this latitude the peak of the rainy

FIGURE 14 Decadal change in

rainfall by season at cloud forest sites

from the normal ratio method (NRM)

compared to CHIRPS in the

Chachapoyas region of northern

Peru. (a) Coefficients from Gamma

regression and (b) Sen's slope; error

bars represent 95% confidence

intervals [Colour figure can be

viewed at wileyonlinelibrary.com]
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season was 3 weeks later with rainfall on average
>50 mm�month−1 year-round. Wetter dry seasons were
driven by greater nocturnal rain while diurnal rain was
more seasonal. Subtle seasonal shifts in timing and extent
of rainfall are consistent with a transition zone between
the Northern and Central Andes (Segura et al., 2019).
Related to the southernmost extent of the Intertropical
Convergence Zone (ITCZ), rainfall seasonality north of
6�S matched the equatorial Andes with peaks from
February to April, and the driest months July–September
(Segura et al., 2019). To the south seasons are shifted a
month earlier with the dry season June–August and
heaviest rainfall December–February related to the
mature phase of the South American monsoon system
(Segura et al., 2019).

Convergence of different weather patterns may con-
tribute to several rainfall peaks (Knoben et al., 2019). In
the transition zone around Chachapoyas, a weak rainfall
peak in October–November has been related to increased
convection over the equatorial Amazon while a second
larger peak in February–April may be caused by intensifi-
cation of the eastern branch of the Walker Cell and
southward migration of the ITCZ (Segura et al., 2019).
Our data show January–February rainfall was reduced in
some years, especially at northern sites during El Niño
conditions in 2016 and 2019, although this region does
not experience consistently alternating wet and dry sea-
sons. Truly bimodal rainfall has only been recorded for
7.9% of the tropics including northern South America
and Central Africa (Knoben et al., 2019).

Our limited data document greatest rainfall on the east-
ern slopes consistent with prevailing winds from the Ama-
zon basin which turn south to form the South American
Low-Level Jet (SALLJ) (Figure 2a). Heaviest rainfall gener-
ally occurs on the first ridge of the Andes, and in
premontane forest in Ecuador, stations commonly report
6,000 mm�year−1 on the eastern slopes (Laraque et al., 2007)
while along the length of the Andes TRMM satellite data
show rainfall peaks between 1,000 and 1,300 m (Laraque
et al., 2007; Bookhagen and Strecker, 2008; Chavez and
Takahashi, 2017). At the lowest point of the Andes around
the Marañon River Valley, northern Peru is often considered
a “dry spot” (Killeen et al., 2007) with extreme rainfall events
≤100 mm�day−1, although 2× this may fall during a day in
southern Peru (Domínguez-Castro et al., 2018; Rodríguez-
Morata et al., 2018). Although rainfall magnitude remains
unclear, our data support field observations that less accessi-
ble northeastern facing slopes in Bosque de Protecci�on Alto
Mayo and the Cordillera de Col�an receive extensive rainfall
(L.G. Rimarachín Cayatopa, A. García Bravo, BPAM park
guards, personal communication).

Regional shifts in timing and magnitude of rainfall
may have influenced early human settlement patterns in
the Andes. The city of Chachapoyas, capital of the

department of Amazonas, is named after the pre-Incan
culture which occupied the region between the Marañon
and Huallaga rivers from 800 to 1,500 AD. Interestingly,
population centres of the Chachapoyas culture appear to
have been primarily located in drier areas south of the
seasonal rainfall shifts that we documented, as well as
west of the eastern slopes. Two of the larger ruins in
Amazonas, Yalape and Kuelap, are situated near where
we documented reduced dry-season rainfall. Perhaps
stronger dry seasons made burning and clearing land eas-
ier. During past dry periods, lake pollen cores indicate
increased cultivation of less humid crops such as maize
to the north around the town of Pomacochas (Åkesson
et al., 2020) where we show dry seasons today are gener-
ally less pronounced. This suggests human populations
could have extended northward to take advantage of
drier conditions, whereas today Pomacochas is a centre
of dairy production.

4.2.2 | Local rainfall compared to gridded
climatologies in a sparse data region

Gridded precipitation remains especially limited by sta-
tion density in remote low-latitude mountains. Datasets
we examined reflected regional rainfall seasonality with a
coarse approximation of latitudinal shifts. CHIRPS pro-
vided the best estimate of rainfall magnitude both inside
and outside forest, increasing linearly with observed
values and explaining around half the variation for in situ
rain gauges. Other studies have found CHIRPS to be the
best option in tropical regions (Beck et al., 2017),
although WorldClim and Chelsa explained >70% of the
variation for higher density stations in Brazil and
Colombia (Bastidas Osejo et al., 2019; de Oliveira-Júnior
et al., 2021). In northern Peru, CHIRPS predicted rainfall
greater than 150 mm�month−1 and 1,000 mm�year−1
poorly. Satellite-based datasets typically underestimate
montane rainfall (Beck et al., 2020), although streamflow
bias corrections (Beck et al., 2020) in Chelsa v2.1 over-
estimated rainfall for our cloud forest network, perhaps
because source allocation becomes problematic in a topo-
graphically complex region. CHIRPS also reflected only
coarse resolution spatiotemporal variability at local
scales. This was especially problematic on the eastern
slopes where we documented nearly 3× the CHIRPS esti-
mate in 2015–2016, while CHIRPS overestimated rainfall
at a second site near the eastern slopes.

In the Chachapoyas region weather stations are pri-
marily located in drier populated areas, and our results
demonstrate the importance of a network of gauges to
capture fine-scale topographic complexity. Above the
inflection point for orographic rainfall (Bookhagen and
Strecker, 2008), mountains are often characterized by a
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constant, but relatively low rate of rain or drizzle
(Rollenbeck and Bendix, 2011) with annual rainfall gen-
erally <3,000 mm and weather stations commonly
reporting 500–1,500 mm�year−1 as in our study (Laraque
et al., 2007; Espinoza Villar et al., 2009). We found gener-
ally drier conditions were more accurate, and drier val-
leys often form predictably from rain shadow effects on
western or southern facing slopes of high mountains in
this region, as well as along narrow canyons where
clouds pass over warm rising air without precipitating
(Killeen et al., 2007). Wetter sites can receive nocturnal
drainage from higher terrain with maximum rainfall in
the early morning whereas afternoon rainfall may be
common at drier sites (Junquas et al., 2018).

4.3 | Interannual variability and
regional trends compared to CHIRPS

Five years of data collection included a strong El Niño
event in 2015–2016 which especially impacted the wet tro-
pics (Rifai 2019). In northern Peru a combination of
reduced rainfall and increased evaporative demand con-
tributed to region-wide drought in the austral spring, sev-
eral months after El Niño conditions dissipated. Drought
may have related to phase of Arctic Oscillation which is
currently correlated with the North Atlantic Oscillation
influencing rainfall across Peru (Mohammadi et al., 2020).
Reduced rainfall and humidity were especially apparent in
cloud forest as daytime temperatures increased and night-
time temperatures dropped. In November 2016 wildfires
burned some of the last remaining relic cloud forests on
the western slopes of the Andes in northern Peru (Mutke
et al., 2017) providing a warning for the future if droughts
occur regularly. In the Chachapoyas region, burning is
believed to induce rain leading to increased use of fire
when forests are most at risk. Rain gauge data since the
1960s suggest more regular dry seasons with reduced
occurrence of year-round rain combined with increasing
evaporative demand. Modelling shows a 10× increase in
extinction risk from changing rainfall (McCain and
Colwell, 2011) while some evidence suggests ecotonal
limits of cloud forest may be structured by extreme ENSO
events (Crausbay et al., 2014).

At the same time as documenting drought, we
found strong support for regional increases in wet season
rainfall consistent with other studies (Urrutia and
Vuille, 2009; Rasc�on et al., 2021). Over the past 50 years
we estimated wet season rainfall increased �40% region-
wide, with concurrent increases in Tmin of �1�C.
Extreme rainfall events can contribute to flooding and
landslides, especially in mountainous regions (Poveda
et al., 2020). Although the major paved east–west road

from Chiclayo to Tarapoto crosses at the low point of the
Andes, transportation regularly shuts down in March
and April, isolating mountain cities such as
Chachapoyas. In April 2016 >40 mm of rain fell in a few
hours washing out the hydroelectric plant for the town of
Beruit in the district of Corosha, resulting in permanent
loss of community infrastructure.

In the absence of alterations to global atmosphere and
ocean circulation, the Chachapoyas region of northern
Peru is likely to experience greater seasonal extremes of
both flooding and drought consistent with amplification
of precipitation variability in wet regions (Zhang
et al., 2021). Ongoing deforestation is likely to exacerbate
extremes (Ellison et al., 2017; Chapman et al., 2020).
Gridded datasets provide a useful tool to integrate across
space and time, but we demonstrate the utility of in situ
data to capture both forest microclimate and fine-scale
variation in rainfall. Our results highlight the importance
of developing long-term climate monitoring in remote
biodiverse regions across the Andes, including change in
forest microclimate (Zellweger et al., 2020).
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