
Astronomy
&Astrophysics

A&A 669, A117 (2023)
https://doi.org/10.1051/0004-6361/202244132
© The Authors 2023

Removing biases on the density of sub-Neptunes characterised
via transit timing variations

Update on the mass-radius relationship of 34 Kepler planets⋆

A. Leleu1, J.-B. Delisle1, S. Udry1, R. Mardling2, M. Turbet3, J. A. Egger4, Y. Alibert4, G. Chatel5,
P. Eggenberger1, and M. Stalport1

1 Observatoire de Genève, Université de Genève, Chemin Pegasi, 51, 1290 Versoix, Switzerland
e-mail: adrien.leleu@unige.ch

2 School of Physics and Astronomy, Monash University, Victoria 3800, Australia
3 Laboratoire de Météorologie Dynamique/IPSL, CNRS, Sorbonne Université, École Normale Supérieure, PSL Research University,

École Polytechnique, 75005 Paris, France
4 Physikalisches Institut, Universität Bern, Gesellschaftsstr. 6, 3012 Bern, Switzerland
5 DISAITEK, 10 rue Achille Antheaume, 95190 Fontenay-en-Parisis, France

Received 27 May 2022 / Accepted 13 July 2022

ABSTRACT

Transit timing variations (TTVs) can provide useful information on compact multi-planetary systems observed by transits by setting
constraints on the masses and eccentricities of the observed planets. This is especially helpful when the host star is not bright enough
for a radial velocity (RV) follow-up. However, in the past decade, a number of works have shown that TTV-characterised planets tend to
have lower densities than planets characterised on the basis of RVs. Re-analysing 34 Kepler planets in the super-Earth to sub-Neptunes
range using the RIVERS approach, we show that at least some of these discrepancies were due to the way transit timings were extracted
from the light curve, as a result of their tendency to underestimate the TTV amplitudes. We recovered robust mass estimates (i.e. with
low prior dependency) for 23 of the planets. We compared these planets the RV-characterised population and found that a large fraction
of those that previously had unusually low density estimates were adjusted, allowing them to occupy a place on the mass-radius diagram
much closer to the bulk of known planets. However, a slight shift toward lower densities remains, which could indicate that the compact
multi-planetary systems characterised by TTVs are indeed composed of planets that are different from the bulk of the RV-characterised
population. These results are especially important in the context of obtaining an unbiased view of the compact multi-planetary systems
detected by Kepler, TESS, and the upcoming PLATO mission.

Key words. planets and satellites: fundamental parameters – methods: data analysis – techniques: photometric –
celestial mechanics – planets and satellites: general

1. Introduction

The most high-yield technique for detecting exoplanets is the
transit method, which is based on the fact that when a planet
passes in front of a star, the flux received from that star decreases.
This forms the basis for numerous past, present, and future space
missions such as CoRoT, Kepler/K2, TESS, and PLATO, with
the aim of detecting planets in large areas of the sky. When a
single planet orbits a single star, its orbit is periodic, with the
implication that its transit is repeating itself over a fixed time
interval. This constraint is used to detect planets when their indi-
vidual transits are too faint with respect to the noise of the data:
using algorithms such as boxed least squares (BLS, Kovács et al.
2002), the data-reduction pipelines of the transit survey missions
fold each light curve over a large number of different periods and
look for transits in the folded data (Jenkins et al. 2010, 2016).
This folding of the light curve increases the number of observa-
tions per phase and, therefore, the signal-to-noise ratio (S/N) of
the transit as well.

⋆ Data are only available at the CDS via anonymous ftp
to cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/669/A117

As soon as two or more planets are orbiting around the same
star, their orbits cease to be strictly periodic. In some cases,
the gravitational interaction of planets can generate relatively
short-term transit-timing variations (TTVs): transits no longer
occur at a fixed period (Dobrovolskis & Borucki 1996; Agol
et al. 2005). The amplitude, frequencies, and overall shape of
these TTVs depend on the orbital parameters and masses of
the planets involved (see e.g. Lithwick et al. 2012; Nesvorný &
Vokrouhlický 2014; Agol & Deck 2016). As the planet-planet
interactions that generate TTVs typically occur on timescales
that are longer than the orbital periods, space missions with
longer baselines such as Kepler and PLATO are more likely to
observe such effects. Over the last decade, a number of efforts
have been made to estimate the TTVs of Kepler objects of inter-
est (KOIs; Mazeh et al. 2013; Rowe & Thompson 2015; Holczer
et al. 2016; Kane et al. 2019).

Transit-timing variations are a gold mine for our understand-
ing of planetary systems: they can constrain the existence of
non-transiting planets, adding missing pieces to the architecture
of the systems (Xie et al. 2014; Zhu et al. 2018) and allowing
for a better comparison with synthetic planetary-system popula-
tion studies (see e.g. Mordasini et al. 2009; Alibert et al. 2013;
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Mordasini 2018; Coleman et al. 2019; Emsenhuber et al. 2021).
They can also be used to constrain the masses of the planets
involved (see e.g. Nesvorný et al. 2013) and, thus, their density,
which ultimately offers constraints on their internal structure, as
in the case of the Trappist-1 system (Grimm et al. 2018; Agol
et al. 2021). Detections of individual dynamically active systems
also help set valuable constraints on planetary system formation
theory, as the current orbital state of a system has the capacity to
display markers of its evolution (see e.g. Batygin & Morbidelli
2013; Delisle 2017). Orbital interactions also impact the possible
rotation state of the planets (Delisle et al. 2017) and, thus, their
atmospheres (Leconte et al. 2015; Auclair-Desrotour et al. 2017).

However, if TTVs with amplitudes comparable to (or greater
than) the duration of the transit occur on a timescale compara-
ble to (or shorter than) the mission duration, there is no unique
period that will successfully stack the transits of the planet. Fit-
ting an orbit with a fixed orbital period to a planet with TTVs
results in estimations of a shallower, longer transit, biasing the
determined planet radii toward lower values (García-Melendo &
López-Morales 2011). This erroneous transit shape is then com-
monly used for a first estimation of the planet transit timings
(e.g. Rowe et al. 2014, 2015; Holczer et al. 2016). In Rowe et al.
(2014, 2015), the transit shape is updated, correcting for TTVs in
a second fit of the transit timings only when they find significant
TTVs in the first estimation. In Holczer et al. (2016), the authors
recomputed the transit shape while looking for TTVs only if the
S/N of individual transit is above 10, which is not the case for a
large part of the sub-Neptune population detected by the Kepler
mission (noting that only 1 planet out of the 34 we re-analyse
in this paper would satisfy this criterion). For both methods, the
lower the S/N values of individual transits, the harder it is to fit
the individual transits in the light curve, sometimes resulting in
fitting background noise instead. All these effect combined can
lead to incorrect timings estimations. For the smallest planets,
the TTV signal can be completely missed, resulting in an erro-
neous estimation of planetary parameters or even mistaking the
planet for a false positive (Leleu et al. 2021b, 2022). The correct
planet parameters can be recovered using the photo-dynamical
model of the light curve Ragozzine & Holman (2010), where
planet-planet interactions are modelled to account for TTVs (e.g.
Kepler-223, Kepler-444, Kepler-138; Mills et al. 2016; Mills &
Fabrycky 2017; Almenara et al. 2018). However, for shallow tran-
sits and large TTVs, these photo-dynamical fits will struggle to
converge if not initialised very close to the solution. In Leleu
et al. (2021b), we show how to tackle this problem using neural
networks.

Numerous studies (e.g. Wu & Lithwick 2013; Weiss & Marcy
2014; Mills & Mazeh 2017; Hadden & Lithwick 2017; Cubillos
et al. 2017) have discussed the difference in density between the
planets characterised by TTVs and radial velocities (RV). In par-
ticular, Hadden & Lithwick (2017) re-analysed the TTVs of over
140 Kepler Objects of Interest (KOI) and showed that the sub-
population of planets whose masses were estimated by TTVs
are less dense than the sub-population of planets for which the
masses were estimated through RV. This can be partially due
to the bias inherent to each method: RVs tend to detect heavier
planets and transits larger ones. In addition, for planets in the
Earth to the mini-Neptune range; thus far TTVs tend to estimate
masses further away from the host star, where the planets might
be less subject to atmospheric escape. It is also possible that the
observed populations are intrinsically different, as planets char-
acterised by TTVs are embedded in compact multi-planetary
systems that could undergo different formation and migration
mechanisms, which is not necessarily the case for RV planets

(e.g. missing planets in compact systems Delisle et al. 2018).
However, part of this discrepancy might be due to the difficulty
in recovering the transit timings of small planets.

In this paper, we explore the result of applying the method
known as recognition of interval variations in exoplanet recovery
surveys (RIVERS) to 15 systems that were previously charac-
terised using pre-extracted transit timings. The RIVERS method,
described in detail in Leleu et al. (2021b), consists of applying a
neural network to recover a proxy for the transit timings of each
planet, followed by a photo-dynamical fit of the light curve. We
first describe the method in Sect. 2. We then describe and discuss
the newly obtained masses, radii and eccentricities in Sect. 3. A
discussion and the conclusions can be found in Sect. 4.

2. Method

2.1. Selection of the targets

In this paper, we compare the output of a photodynamical
fit of the lightcurve to the output of the fit of pre-extracted
transit timings. To do so, we compare our results to those pub-
lished in Hadden & Lithwick (2017). We focus on systems
of (nearly-)resonant sub-Neptune objects exhibiting significant
TTVs. The peak-to-peak amplitude of TTVs for each planet is
estimated by taking the highest harmonics in the periodogram of
the TTVs published by Rowe et al. (2015). Out of the 55 systems
studied by Hadden & Lithwick (2017), we selected our systems
as follows: systems composed only of planets with radius below
3.5 R⊕ and with the sum of the peak-to-peak TTV amplitudes
of all the planets above 40 min. We excluded systems of four
or more (near-)resonant planets for simplicity. We also excluded
Kepler-138, which was already studied by a photodynamical
analysis (Almenara et al. 2018), as well as Kepler-29 that have
been re-analysed by Vissapragada et al. (2020), along with an
additional transit from WIRC. We ended up with 34 planets in
15 multi-planetary systems for the current analysis.

2.2. Stellar parameters

The stellar parameters reported in Table 1 are taken from Berger
et al. (2020), with the exception of the two targets indicated
by an asterisk. The stellar parameters of these two stars (KIC
11512246 and KIC 8077137) could indeed be refined thanks to
the asteroseismic analysis of Huber et al. (2013).

2.3. Extraction of a transit-timing proxy using RIVERS.deep

The RIVERS.deep method, introduced in detail in Leleu et al.
(2021b), is based on the recognition of the track of a planet in a
river diagram (Carter et al. 2012). Figure 1 shows the example
of Kepler-128 c, zoomed-in on the track of the planet. A river
diagram displays the light curve in a 2-D matrix, where each row
shows one transit of the planet. The bottom row displays the first
orbital period of the planet (22.8030 day in the case of Kepler-
128 c), the second row displays the following orbital period, etc.
The color code represents the normalised flux.

The RIVERS.deep algorithm takes this 2D array as input
and produces two outputs: (1) confidence matrix, an array of the
same size as the input containing (for each pixel) the confidence
that this pixel belongs to a transit. This task is performed by the
‘semantic segmentation’ (pixel-level vetting) subnetwork (Jégou
et al. 2017); (2) global prediction, a value between 0 and 1 which
quantifies the model confidence that the output of the semantic
segmentation module is due to the presence of a planet. This task
is performed by the classification subnetwork.
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Table 1. Stellar parameters.

Name KIC Teff[K] M[M⊙] R[R⊙] ρ[ρ⊙]

Kepler-23 11512246 (∗) 5828 ± 100 1.078 ± 0.077 1.548 ± 0.048 0.291 ± 0.016
Kepler-24 3231341 6028 ± 116 1.060 ± 0.069 1.099 ± 0.039 0.787 ± 0.098
Kepler-26 9757613 4124.0 ± 68.3 0.593 ± 0.016 0.595 ± 0.026 2.75 ± 0.35
Kepler-49 5364071 4095.6 ± 74.7 0.607 ± 0.014 0.618 ± 0.020 2.53 ± 0.21
Kepler-28 6949607 4499.3 ± 74.9 0.684 ± 0.026 0.664 ± 0.013 2.32 ± 0.14
Kepler-52 11754553 4163.9 ± 62.2 0.624 ± 0.017 0.630 ± 0.025 2.44 ± 0.30
Kepler-54 7455287 3853.9 ± 79.9 0.518 ± 0.013 0.522 ± 0.014 3.61 ± 0.20
Kepler-57 8564587 5187.9 ± 90.8 0.859 ± 0.049 0.826 ± 0.019 1.51 ± 0.15
Kepler-58 4077526 5747 ± 104 0.972 ± 0.070 0.982 ± 0.031 1.01 ± 0.12
Kepler-60 6768394 6024 ± 113 1.131 ± 0.082 1.434 ± 0.039 0.377 ± 0.045
Kepler-85 8950568 5505.2 ± 89.4 0.928 ± 0.044 0.875 ± 0.021 1.38 ± 0.11
Kepler-128 8077137 (∗) 6072.0 ± 75.0 1.184 ± 0.074 1.659 ± 0.038 0.2591 ± 0.0048
Kepler-176 8037145 5139.2 ± 93.1 0.847 ± 0.043 0.800 ± 0.016 1.64 ± 0.14
Kepler-305 5219234 5090 ± 101 0.827 ± 0.046 0.792 ± 0.025 1.65 ± 0.17
Kepler-345 9412760 4722 ± 118 0.786 ± 0.029 0.819 ± 0.047 1.39 ± 0.19

Notes. Stellar parameters from Berger et al. (2020). (∗) Indicates that the parameters were updated, see Sect. 2.2.

Fig. 1. Zoom on the track of Kepler-128 c in a river diagram with
a folding period of 22.8030 days. The left panel shows the detrended
data with a clipping at 3σ. The right panel shows the corresponding
confidence matrix which is the output of the RIVERS.deep algorithm.
Black indicates noise or missing data; white indicates the track of a
planet. The track having the highest confidence is highlighted in blue.
For comparison, the transit timings reported by Rowe et al. (2015) are
shown in red. See Fig. 4 for further comparisons.

For the purposes of this paper, we already know the exis-
tence of the planets, so we only used the output of the semantic
segmentation. The right panel of Fig. 1 shows a zoom-in on the
track of the planet in the confidence matrix. The blue curve high-
lights the path of highest confidence. The red errorbars show the
transit timings extracted by Rowe et al. (2015). The TTVs asso-
ciated with the red curve appears to be of lower amplitude than

what we recover using RIVERS.deep. This is discussed further
in Sect. 3.1.1.

2.4. Data pre-processing

For each star, the raw PDCSAP flux was downloaded using
the lightkurve1 package. Long-cadence and short-cadence
data were downloaded and pre-processed separately. The pre-
processing steps are as follows. We started by checking for
gaps longer than 2.5 h. Such gaps were commonly produced
by the monthly data downlinks. After repointing the spacecraft,
there was usually a photometric offset produced due to thermal
changes in the telescope. We therefore removed all data points
6 h prior, and 12 h after such an interruption. We then created
a copy of each light curve in which we removed in-transit data
for all the known planets in the system (a window of three times
the transit duration was centred on the transit timing predicted
by the output of RIVERS.deep) and applied a B-spline detrend-
ing on the remaining data using keplersplinev22. We used
the ‘choosekeplersplinev2’ function, forcing the timescale τ to
remain larger than three times the longest transit duration of
the planets in the system, with a limit of 1.5 days. The best τ
(minimising the Bayesian information criterion) was then saved
for use during the photo-dynamical fit (see Sect. 2.5). We then
checked the mean value of the detrended light curve within a
sliding window of five hours. If this mean value departs from 1
by more than once the standard deviation of the light curve for
the long-cadence data (and a third of the standard deviation for
the short cadence data), it implies that the local behaviour of the
light curve cannot be modelled by the B-splines. In this case, we
flag all data point that are within the five-hour window ±τ. We
then used the raw data from which only the data near the down-
links were removed and we additionally removed the data points
we flagged. This is the raw data that is used in Sect. 2.5.

2.5. Photo-dynamical fit of the light curve

The fits of the light curves were performed using a similar setup
to the one presented in Leleu et al. (2021b). For each system,

1 https://docs.lightkurve.org/
2 https://github.com/avanderburg/keplersplinev2
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we used the adaptive MCMC sampler samsam3 (see Delisle
et al. 2018), which learns the covariance of the target distribu-
tion from previous samples to improve the subsequent sampling
efficiency. The transit timings of the planets were modelled
using the TTVfast algorithm (Deck et al. 2014). The approx-
imate initial conditions for the orbital elements and masses of
these planets were obtained by a preliminary fit of the transit
timings to the timing proxy obtained from the application of
RIVERS.deep (Sect. 2.3, blue curve in Fig. 1). We modelled the
transit of each planet with the batman package (Kreidberg 2015).
For the long-cadence data, we used a supersampling parameter
set to 29.42 min to account for the long exposure of the dataset.
The effective temperature, log g, and metallicity of the star (see
Sect. 2.2) were used to compute the quadratic limb-darkening
coefficients, u1 and u2, and their error bars were adapted to
the Kepler spacecraft using LDCU (Deline et al. 2022). Based
on the limb-darkening package (Espinoza & Jordán 2015),
LDCU uses two libraries of stellar atmosphere models, ATLAS9
(Kurucz 1979) and PHOENIX (Husser et al. 2013), to compute
stellar intensity profiles for a given pass-band.

We worked directly with the raw (non-normalized) fluxes
obtained in Sect. 2.4 and modelled them as the product of the
normalized transit model and a low-frequency component which
may account for both stellar variations and instrumental sys-
tematics. This low-frequency component is modelled through a
cubic B-spline (see Appendix C for more details). Our model for
the raw flux, f , thus takes the following form:

f (θ, η, t) = m(θ, t)b(η, t), (1)

where m is the normalized transit model with parameters, θ, and
b is the B-spline with parameters, η. We assumed Gaussian white
noise for the measurement errors, but we quadratically added a
free jitter term, σjit., to the measurements error, σi. The full set
of parameters of the model is (θ, η, σjit.) and the likelihood of the
model is:

L(θ, η, σjit.) = p(y|θ, η, σjit.)

=
1

√
|2πΣ|

exp
(
−

1
2

(y − f )TΣ−1(y − f )
)
, (2)

where Σ = diag(σ2 + σ2
jit.) is the (diagonal) covariance matrix

of the noise and y represents the observations. We are mostly
interested here in the transit related part of the model and con-
sider the B-spline parameters η as nuisance parameters. Thus, we
analytically marginalized the likelihood over η to obtain:

L(θ, σjit.) = p(y|θ, σjit.) =
∫

p(y|θ, η, σjit.)p(η|θ, σjit.)dη. (3)

The details of this procedure which allows for very efficient eval-
uations of the marginal likelihood are explained in Appendix C.

2.6. Masses, eccentricities, and longitudes of periastron
degeneracies

Taking Pin (resp. Pout) to be the period of the inner (resp. outer)
planet, these planets are close to two-planet mean motion res-
onance (MMR) when Pout/Pin ∼ (k + q)/k, where k and q are
integers, with q as the order of the resonance. All the systems we
study in this paper are close to first-order MMR (see Sect. 3.3),

3 https://gitlab.unige.ch/Jean-Baptiste.Delisle/samsam

except Kepler-60, whose three planets are pairwise within first-
order MMRs and Kepler-26 which is near a second-order MMR
(q = 2). Nesvorný & Vokrouhlický (2016) described the TTVs
induced by first-order MMRs using an analytical model at
first order in eccentricities, based on the 1-degree-of-freedom
model proposed by Henrard & Lemaitre (1983). The changes
of variables from the 4-degrees-of-freedom Hamiltonian of the
two planets coplanar case to the 1-D model involves complex
coordinates linked to the quantities:

Z = eineiϖin +
f31

f27
eouteiϖout (4)

and

Z2 = eineiϖin −
f27

f31

√
1
α

mout

min
eouteiϖout . (5)

where ein is the eccentricity of the inner planet, ϖin its longi-
tude of periastron (resp. eout and ϖout for the outer planet), and
f27 and f31 are functions of the Laplace coefficients that depend
on k and α = ain/aout, with ain (resp. aout) as the semi-major
axis of the inner planet (resp. outer) and min (resp. mout) is the
mass of the inner planet (resp. outer).Z evolves during the reso-
nant motion and is linked to the TTV signal near (Lithwick et al.
2012) or inside first-order MMRs (Nesvorný & Vokrouhlický
2016), while Z2 has been shown to be a constant of motion at
first order in eccentricities (Henrard & Lemaitre 1983; Nesvorný
& Vokrouhlický 2016).

Hadden & Lithwick (2016) developed a model at second
order in eccentricities, valid as long as the two planets are not
too close to the resonance (see Nesvorný & Vokrouhlický 2016;
Mardling 2022, in prep.). In this case, the TTV signal of near-
resonant pair of planets can be split into three terms (Hadden
& Lithwick 2016): the first term, called ‘fundamental’, which
appears for pairs near first-order MMRs, is a sinusoidal signal
whose frequency is associated with the super period:

Pin,out = ((k + 1)/Pout − k/Pin)−1. (6)

The secondary term is a sinusoid with twice this frequency,
and the third term is the high-frequency ‘chopping’ signal. The
chopping signal depends only on the masses, while the funda-
mental and secondary terms both depend on the masses and Z.
Observing only the fundamental term is thus not enough to dis-
entangle Z from the planetary masses: the chopping signal or
the secondary term have to be observed as well.

For planets closer to or inside the MMR, recovering the
masses requires observing either the secondary harmonics in the
amplitude of libration of the resonant angle or the observation
of a second, lower frequency signal (Nesvorný & Vokrouhlický
2016; Mardling 2022, in prep.).

Good constraints on the masses hence generally translate to
good constraints on the quantity Z, however the constant Z2
needs to be determined to access the eccentricity and longitude
of the periastron of the planets. The full determination of the
orbits hence requires recovering signals beyond the first order of
eccentricities of the two-planet model4.

As we show in Sect. 3, in some cases, the non-fundamental
harmonics can be constrained well enough to estimate Z2 as

4 The absence of the dependence of the secondary term on Z2 is
an approximation, as shown by Hadden & Lithwick (2016). A well-
constrained secondary term could hence help to constrain Z2 as
well.
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Fig. 2. Examples of correlation between parameters of the posterior
of Kepler-345 (see Sect. 3). These correlation appears when |Z2| is
poorly constrained. See Fig. A.1 for the full corner plots for each set of
coordinates.

well. However, when Z2 remains unconstrained, the poste-
rior of the variables (ein, ϖin, eout, ϖout) is highly degenerate.
Low-eccentricity solutions in the posterior distribution tend to
correspond to small values of |Z2| and anti-aligned longitudes
of periastra (see Fig. 11 of Leleu et al. 2021b), while higher-
eccentricity solutions tend to correspond to larger values of |Z2|

and to aligned longitudes of periastra. Such a peculiar posterior
shape has also been found for resonant systems (e.g. Panichi et al.
2019; Leleu et al. 2021b, 2022). In this case, a large value of |Z2|

can lead to a precession of the longitude of the periastra of the
planets, which can lead to a circulation of the resonant angles of
the pair despite the fact that the orbit is formally resonant.

The dependence of the analytical TTV expression on Z
only suggests that the degeneracies discussed above may be best
explored via the coordinate ei cosϖi, and ei sinϖi (which them-
selves are linear combinations of the real and imaginary parts of
Z and Z2). Indeed, this choice produces elliptic-shaped corre-
lations between these parameters, while others such as (ei,ϖi)
or (
√

ei cosϖi,
√

ei sinϖi) produce contorted correlations (see
Fig. 2) and may prevent our MCMC from adequately exploring
the parameter space.

2.7. Priors

We used wide, flat priors for the mean longitude, period, impact
parameter, jitter, and ratio of the radius of the planet over
the radius of the star, Rp/R⋆. The stellar density and limb-
darkening parameters have Gaussian priors. In order to test for
the mass-eccentricity degeneracy inherent to pairs of planets
near mean-motion resonances (Boué et al. 2012; Lithwick et al.
2012), Hadden & Lithwick (2017) fitted the transits using dif-
ferent priors for masses and eccentricities. Their ‘default’ prior
is log-uniform in planet masses and uniform in eccentricities.
Their ‘high-mass’ prior is uniform in planet masses and log-
uniform in eccentricities. We used the same choice of priors in
order to be able to compare the posteriors of the photo-dynamical
fit to their fit of pre-extracted transit timings. In addition, we

performed a third fit, using log-uniform mass prior and the
Kipping (2013) prior for the eccentricity: a β-distribution of
parameters α = 0.697 and β = 3.27. The posterior associated
with this set of prior is referred to as the ‘final’ posterior.

3. Results

The transit timings estimated for each planet, as well as 300 sam-
ples of the final posterior for each system, can be found at the
CDS.

3.1. Pre-extracted transit timings or photo-dynamical analysis:
Effect on the mass-radius relationship of exoplanets

In the introduction to this paper, we explain how the use of pre-
extracted transit timings (e.g. Rowe et al. 2014, 2015; Holczer
et al. 2016) might not be ideal when the S/N of individual transits
(S/Ni, which we define as the S/N reported by the Kepler team
divided by the square root of the number of transits reported by
the Kepler team) is too low: adding an additional free parame-
ter per transit might not fully recover the information from the
light curve when individual transits are below the noise level. In
this section, we compare the posterior of the fit of pre-extracted
transit timings to the posterior of a photo-dynamical fit. For this
comparison, we used the default set of priors for masses and
eccentricities from Hadden & Lithwick (2017). We illustrate in
Fig. 3 the difference in the posterior of the masses and radii of
exoplanets depending on the use of pre-extract transit timings
(see Hadden & Lithwick 2017, for the posterior of the masses
and references therein for the radii) in black or photo-dynamical
analysis (this paper) in green. The five most degenerate mass
posteriors were removed from this plot to highlight the trend (see
Table 2). The bulk of the previous radius estimates had rather
large uncertainties, making it hard to distinguish a clear trend in
the shift of the radius of the planets. The masses, however, shift
toward a larger value as a result of the photo-dynamical analy-
sis. The photo-dynamical posterior of Kepler-128 exhibits a shift
from ∼0.7 M⊕ for both planets to masses in the 3–4 M⊕ range,
which is highlighted in purple in Fig. 3. Two causes were identi-
fied to explain such a difference: the pre-extracted transit timings
yield lower-amplitude TTVs compared to those which are recov-
ered with the photo-dynamical fit and the photo-dynamical fit
can constrain TTVs beyond the first harmonic, allowing the
mass-eccentricity degeneracy to be broken (Lithwick et al. 2012;
Hadden & Lithwick 2017).

3.1.1. Amplitude of recovered TTV signals

To illustrate the effect that pre-extracting the TTVs exerts on the
recovered TTV amplitude, we begin with Kepler-128 (Fig. 4).
The pre-extracted transit timings are shown in black with error
bars (Rowe et al. 2015), while the curves going through the best-
fit TTVs of the photo-dynamical model are shown in blue. Its
main frequency is extracted. Then, a linear trend and a sinusoid
of that frequency is fit to the pre-extracted transit timings in red
(dashed) and to the TTVs of the best fit in green (dashed). In
this example, the sinusoidal approximations of the pre-extracted
TTVs and of the photo-dynamical model show strong differ-
ences. The S/Ni of both planets of Kepler-128 are rather small
(∼2.7 and 3.1) and as a result, their pre-extracted transit tim-
ings appears to not be efficiently recovered. If we assume that
the two-planet model is correct, it also appears that the error-
bars of the pre-extracted transit timings are underestimated.
Another system, Kepler-60 is one of the rare system known in
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Fig. 3. Posteriors of the mass-radius relation for a subset of the Kepler
planetary systems studied in this paper. Black bars show the radii
and masses resulting from the analysis of pre-extracted transit timings
(Hadden & Lithwick 2017). Green bars show the outcome of RIVERS
(RIVERS.deep + the photo-dynamical fit). The priors on masses and
eccentricities are set to the default prior and identical in both studies.
The blue line shows the earth’s composition. The position of Kepler-
128 from the top panel is also shown on the bottom panel in purple,
with a purple line showing its shift in the mass-radius diagram.

Laplace resonance and is hence of particular interest. With three
known planets with S/Nis in the range 1.68 (Kepler-60 d) to 2.41
(Kepler-60 c), we show the effect of the TTV pre-extraction in
Fig. 5. While the sinusoidal approximation may be less valid
in this case, the first hundred days of Kepler-60 d shows what
might be the result of the initialisation for the search of TTVs:
the individual transit timings are initialised on a fixed-period
ephemeride, then allowed to vary. Some of the transit timings

Fig. 4. TTVs of the near-resonant pair Kepler-128 b,c. Black bars show
the pre-extracted transit timings from Rowe et al. (2015), while blue
bars show the best photodynamical fit. Dashed red and green curves
show sinusoidal approximations for the pre-extracted transits and the
photo-dynamical analysis respectively.

caught the real planet track (three points near −150 min of TTV),
while others (three points near 0 mins of TTV) probably became
trapped in a local minimum closer to 0 mins TTVs, namely,
their initialisation. More generally, the pre-extracted TTVs of
the three planets of Kepler-60, as in the case of the two plan-
ets of Kepler-128, shows numerous outliers, implying that the
local search for each transit timings found noise structures that
were preferred over the actual transit.

The effect of the S/Ni on the recovered TTV amplitude
may be validated by an analysis of the whole dataset. Figure 6
shows the difference between the peak-to-peak TTV amplitude
for the sinusoid approximation and the pre-extracted transit tim-
ings (in black) and photo-dynamical analysis (coloured). In all
cases where S/Ni ≳ 3.5, the recovered amplitude of TTVs varies
by a few minutes at most, while the amplitude can differ by
several tens of minutes for lower S/Nis. This effect is further
highlighted in Fig. 7. In that figure, we show the pre-extracted
TTVs from Rowe et al. (2015) that are used by Hadden &
Lithwick (2017). We also show the timings of Holczer et al.
(2016) that were extracted by a different method. The top panel
shows the difference in amplitude of the sinusoidal approxima-
tion, while the bottom panel shows the reduced chi-squared (χ2

ν)
of the published transit timings and their error with respect to
the timings of our best photodynamical fit (blue curves in Figs. 4
and 5). The two databases display different behaviours: the tim-
ings from Rowe et al. (2015) appear to miss most of the large
amplitude TTVs for low S/Ni, but have a relatively lower χ2

ν ,
while the timings from Holczer et al. (2016) appear to have a
relatively better estimation of the overall TTV amplitudes, but
with a relatively larger fraction of outliers (larger χ2

ν). Inter-
estingly, even planets with relatively high S/Ni (Kepler-176 c,
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Table 2. Final posterior value for 34 Kepler planets.

Planet P R M ∆M ρ e ∆e

[day] [R⊕] [M⊕] [ρ⊕]

Kepler-23 b / KOI-168.03 7.10 1.638+0.047
−0.047 2.56+0.43

−0.40 1.16 0.578+0.088
−0.079 0.017+0.019

−0.014 1.24
Kepler-23 c / KOI-168.01 10.74 3.005+0.074

−0.074 7.81+1.32
−1.20 1.18 0.286+0.042

−0.037 0.021+0.009
−0.014 0.32

Kepler-23 d / KOI-168.02 15.27 2.206+0.057
−0.057 4.44+1.30

−1.21 0.54 0.41+0.11
−0.11 0.010+0.014

−0.008 1.24
Kepler-24 b / KOI-1102.02 8.14 2.348+0.092

−0.091 11.14+2.25
−1.93 1.16 0.85+0.20

−0.17 0.023+0.014
−0.016 0.44

Kepler-24 c / KOI-1102.01 12.33 2.514+0.098
−0.098 9.99+2.01

−1.66 1.13 0.62+0.14
−0.13 0.014+0.011

−0.011 1.25
Kepler-24 e / KOI-1102.03 18.99 2.46+0.11

−0.11 [0.06, 4.66] 3.23 − [0.01, 0.07] 1.40
Kepler-26 b / KOI-250.01 12.28 3.22+0.15

−0.15 4.85+0.44
−0.42 0.11 0.142+0.023

−0.022 0.021+0.021
−0.013 0.81

Kepler-26 c / KOI-250.02 17.25 3.11+0.14
−0.14 7.48+0.49

−0.48 0.16 0.243+0.036
−0.035 0.013+0.013

−0.010 1.24
Kepler-49 b / KOI-248.01 7.20 2.579+0.087

−0.086 9.77+0.94
−0.95 0.04 0.559+0.071

−0.071 [0.00, 0.06] 1.30
Kepler-49 c / KOI-248.02 10.91 2.444+0.083

−0.082 8.38+0.92
−0.89 0.06 0.564+0.079

−0.077 0.008+0.023
−0.005 0.93

Kepler-28 b / KOI-870.01 5.91 1.959+0.043
−0.042 1.63+0.51

−0.40 0.98 0.215+0.068
−0.055 [0.00, 0.08] 1.71

Kepler-28 c / KOI-870.02 8.99 1.857+0.042
−0.042 2.06+0.70

−0.52 0.91 0.32+0.11
−0.09 0.017+0.023

−0.014 0.62
Kepler-52 b / KOI-775.02 7.88 2.40+0.10

−0.10 [2.41, 6.82] 1.45 − [0.08, 0.20] 1.45
Kepler-52 c / KOI-775.01 16.38 2.122+0.093

−0.092 [7.85, 23.27] 1.71 − 0.012+0.018
−0.009 1.23

Kepler-54 b / KOI-886.01 8.01 1.856+0.057
−0.057 3.09+0.30

−0.31 0.31 0.478+0.057
−0.058 0.022+0.020

−0.015 0.50
Kepler-54 c / KOI-886.02 12.07 1.688+0.054

−0.055 2.10+0.20
−0.21 0.32 0.431+0.053

−0.052 [0.00, 0.05] 1.26
Kepler-57 b / KOI-1270.01 5.72 3.135+0.090

−0.088 25.06+5.16
−4.91 0.49 0.81+0.18

−0.17 0.0162+0.0024
−0.0021 0.37

Kepler-57 c / KOI-1270.02 11.60 2.196+0.067
−0.065 6.86+1.52

−1.43 0.48 0.64+0.16
−0.15 0.0725+0.0070

−0.0062 0.43
Kepler-58 b / KOI-1336.01 10.22 2.113+0.082

−0.082 [3.10, 32.41] 4.64 − 0.040+0.044
−0.031 0.79

Kepler-58 c / KOI-1336.02 15.57 2.062+0.086
−0.085 [1.59, 23.52] 4.94 − [0.00, 0.10] 1.26

Kepler-60 b / KOI-2086.01 7.10 1.889+0.062
−0.061 5.26+0.45

−0.44 0.08 0.77+0.11
−0.10 [0.00, 0.04] 1.35

Kepler-60 c / KOI-2086.02 8.90 2.049+0.066
−0.066 3.84+0.39

−0.40 0.14 0.438+0.066
−0.065 0.0390+0.0020

−0.0027 0.17
Kepler-60 d / KOI-2086.03 11.90 2.511+0.093

−0.092 4.40+0.44
−0.44 0.03 0.273+0.044

−0.042 0.0020+0.0051
−0.0015 1.06

Kepler-85 b / KOI-2038.01 8.30 1.778+0.050
−0.050 1.84+0.60

−0.47 1.17 0.33+0.11
−0.09 0.020+0.028

−0.016 1.24
Kepler-85 c / KOI-2038.02 12.51 1.978+0.056

−0.057 2.15+0.73
−0.57 1.16 0.277+0.098

−0.077 0.027+0.028
−0.014 0.78

Kepler-128 b / KOI-274.01 15.00 1.421+0.040
−0.040 3.79+0.76

−0.66 0.74 1.31+0.27
−0.23 [0.00, 0.12] 1.29

Kepler-128 c / KOI-274.02 22.80 1.521+0.047
−0.047 3.38+0.67

−0.59 0.74 0.95+0.19
−0.17 0.037+0.026

−0.030 0.46
Kepler-176 c / KOI-520.01 12.76 2.281+0.052

−0.051 [0.56, 8.25] 6.99 − [0.01, 0.10] 1.85
Kepler-176 d / KOI-520.03 25.75 2.354+0.062

−0.061 [0.80, 8.34] 5.92 − [0.00, 0.08] 2.09
Kepler-305 b / KOI-1563.01 5.49 2.829+0.094

−0.094 [3.06, 8.35] 1.67 − 0.0050+0.0035
−0.0034 1.09

Kepler-305 c / KOI-1563.02 8.29 2.495+0.088
−0.087 [2.13, 6.35] 1.78 − [0.00, 0.01] 1.34

Kepler-305 d / KOI-1563.04 16.74 2.76+0.12
−0.12 6.20+1.76

−1.34 1.20 0.296+0.089
−0.072 [0.00, 0.05] 1.27

Kepler-345 b / KOI-1977.02 7.42 1.080+0.076
−0.076 [0.65, 3.72] 3.09 − [0.00, 0.06] 1.43

Kepler-345 c / KOI-1977.01 9.39 2.03+0.13
−0.13 [1.32, 8.52] 2.27 − [0.00, 0.05] 1.30

Notes. Values with errorbars come from the final posteriors and displays median values and the 0.16–0.84 quantile uncertainties. ∆M and ∆e are
the degeneracy metrics defined by Eq. (7) for ∆M and equivalently for ∆e. Whenever ∆M (resp. ∆e) is above 1.3, the reported value for M (resp. e)
is replaced by the interval between the lowest 0.16 quantile across the three posteriors and the highest 0.84 quantile across the three posteriors to
highlight the degeneracy.

S/Ni = 13.1) have a large number of outliers. These differences
can be explained by their different approaches: the method of
Rowe et al. (2015) is ‘local’: they first initialise the transit tim-
ings along a fixed-period ephemeride, then, if significant TTVs
are observed, they update the transit shape and recompute the
transit times. In some cases, they use two transit timing mea-
surements to linearly extrapolate an estimate of the next transit
time to initialize the fitter (Rowe et al. 2014). This leads to

successive updates of an initially flat TTV curve. Holczer et al.
(2016) conducted a broader search by systematically looking
through a grid of timings around the expected transit time; hence,
each transit a better chance of recovering the correct timing
regardless of the other transits. At the same time, a broader
search would also increase the risk of fitting background noise,
which can explain the larger χ2

ν . We note that three of the
smallest S/Ni values (Kepler-345 b: S/Ni = 0.89, Kepler-60 b:
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Fig. 5. TTVs of the Laplace-resonant chain Kepler-60. See Fig. 4 for
the description.

S/Ni = 1.98, and Kepler-60 d: S/Ni = 1.68) are not included in
the Holczer et al. (2016) database.

In order to recover robust planetary masses, both the main
TTV amplitude and the lower amplitude-higher frequency sig-
nals are important: in the case of systems outside of MMR,
the main TTV amplitude is directly linked to the estimated
mass of the planets, while higher harmonics help to break the
mass-eccentricity degeneracy (see Sect. 2.6).

3.1.2. Mitigation of the mass-eccentricity degeneracy

Following Hadden & Lithwick (2017), we explored the mass-
eccentricity degeneracy intrinsic to systems close to but outside
MMRs (Lithwick et al. 2012). The choice of priors is detailed in
Sect. 2.7. Figure 8 reports the mass posteriors of each planet
resulting from the RIVERS analysis (RIVERS.deep + photo-
dynamical analysis) in green and blue (this study), and the
posteriors obtained by adjusting pre-extracted transit timings
from Rowe et al. (2015) by Hadden & Lithwick (2016) in black
and grey. The default prior tends to draw the posterior towards

Fig. 6. Peak-to-peak TTV amplitudes of the sinusoidal approximation
of all of the planets that were analysed in this study. Black points are
fits to the pre-extracted timings published by Rowe et al. (2015), which
for Kepler-128 and Kepler-60 correspond to the red-dashed curves in
Figs. 4 and 5. The coloured diamonds show the peak-to-peak amplitude
of the sinusoidal approximation of the best fit of the photo-dynamical
model (the green dashed curves in Figs. 4 and 5). The colour indicates
the S/Ni of the planet. The agreement between pre-extracted timings
and photo-dynamical fit is reduced for lower S/Ni. This is further high-
lighted in Fig. 7.

lower masses and larger eccentricities, while the high-mass prior
draws the posterior toward larger masses. The closer these two
posteriors are to one another, the less the posterior depends on
the prior and the more robust the mass estimate. Figure 8 shows
that the photo-dynamic analysis tends to significantly reduce the
discrepancies between the posteriors, providing a more robust
mass estimation. This is explained by the ability of the photo-
dynamical analysis to better constrain the higher harmonics of
the TTV signals (see Sect. 2.6). In addition to setting better
constraints on the amplitude of the dominant harmonic of the
TTVs as shown in Fig. 8, the photo-dynamical fit also better
constrains the chopping or secondary term in several systems,
reducing the mass-eccentricity degeneracy. Figure 9 shows the
TTVs of Kepler-57, highlighting the recovery of a strong non-
fundamental harmonic (see the blue curve). The relative size
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Fig. 7. Difference between the amplitude of the sinusoidal approxi-
mation of both the best solution of the photo-dynamical analysis and
pre-extracted transit timings (top). The blue dots correspond to the tim-
ings from Rowe et al. (2015), and in orange from Holczer et al. (2016).
Reduced chi-squared between the published transit timings and the best
solution of the photo-dynamical fit (bottom).

of the TTV harmonics, computed from the analytical model
of Hadden & Lithwick (2016), are shown and discussed in
Appendix B.

To provide our masses estimates, we chose to run a fit with
the third set of priors, labelled as ‘final’ and shown in blue in
Fig. 8, which has the same log-uniform mass prior as the Hadden
& Lithwick (2017) ‘default’ prior. However, the ‘default’ prior is
uniform in eccentricity. We chose the ‘final’ prior to being some-
what skewed toward lower eccentricities, as we deem it to be
more realistic (see Sect. 2.7). We then quantified the degeneracy
impacting each mass estimate using the quantity:

∆M = max(∆M+,∆M−). (7)

Here,

∆M+ =
mhigh,0 − mfinal,0

mfinal,+σ − mfinal,0
, (8)

where mhigh,0 is the maximum of the default and high-mass pos-
terior medians, mfinal,0 is the median of the final posterior, and
mfinal,+σ is the 0.84 quantile of the final posterior, while

∆M− =
mfinal,0 − mlow,0

mfinal,0 − mfinal,−σ
, (9)

where mlow,0 is the minimum of the default and high-mass pos-
terior medians, and mfinal,−σ is the 0.16 quantile of the final

posterior. We then set an arbitrary threshold of ∆degen = 1.3,
below which we consider the masses to be constrained enough
to be of use to the community. The masses and radii for all
planets are reported in Table 2. For the planets which sat-
isfy ∆degen ≤ 1.3, the final mass and density posterior is given.
For planets where ∆degen > 1.3, an interval is given for the
mass, with bounds corresponding to the lowest 0.16 and highest
0.84 quantiles of the three posteriors. The eccentricity is treated
in the same way, with the definition of ∆e reported in Table 2.
The reported radius comes from the final posterior, although its
value is always consistent across all three posteriors.

Hadden & Lithwick (2017) considered a mass estimation
robust if the median of the high-mass posterior lay within the
0.16–0.84 quantile interval of the default posterior. Out of the
re-analysed systems, only Kepler-26 c, Kepler-49 b and c, and
Kepler-60 d were robust in their analysis (see the overlap of the
black and grey errorbars in Fig. 8). For these planets, we find
very similar results across all our posteriors, implying that the
two-priors test proposed by Hadden & Lithwick (2017) is able
to properly identify which masses are robust and which are not,
regardless of the quality of the pre-extracted transit timings. In
other words, poorly-determined transit timings did not ‘mimic’
strongly constrained planetary masses in their analysis.

The systems we analysed also partly overlap with those stud-
ied by Jontof-Hutter et al. (2016). To estimate the robustness of
their solution, they also performed several tests including dif-
ferent eccentricity priors. Amongst the measurements labelled
as ‘precise’ are Kepler-26, with mb = 5.12+0.65

−0.61 and mc =

6.20+0.65
−0.65 M⊕, and Kepler-60: mb = 4.19+0.56

−0.52, mc = 3.85+0.81
−0.81, and

md = 4.16+0.84
−0.75 M⊕. These estimations are mostly 1 − σ compat-

ible with our results presented in Table 2, except for Kepler-60 b
where the difference is of ∼2σ. Amongst their ‘less secure’ solu-
tions are Kepler 57 with mb = 23.13+9.76

−7.64 and mc = 5.68+2.55
−1.96 and

Kepler-49 with mb = 5.09+2.11
−1.9 and mc = 3.28+1.45

−1.32 M⊕. Although
our result somewhat agrees for Kepler-57, we obtain a robust
mass estimation that strongly disagrees with their solution for
Kepler-49. Our results hence also agree with the robustness tests
of Jontof-Hutter et al. (2016).

From this analysis, we have drawn two main conclusions:
(1) tests such as those presented in Hadden & Lithwick (2017),
Jontof-Hutter et al. (2016) or this paper are necessary to ensure
the robustness of TTV-characterised masses and (2) the recovery
of the TTV signal (here using RIVERS.deep) and the photo-
dynamical fit of the light curve can significantly increase the
robustness of mass estimations.

3.1.3. Addition of a third planet

Here, we discuss the example of Kepler-24 with four known
planets. Hadden & Lithwick (2017) only considered Kepler-24 b
and c at 8.14 and 12.33 day. The inner planet at 4.24 day is too
far from any significant MMR with the other planets to have sig-
nificant TTVs. Kepler-24 e, however, with an orbital period of
19.00 days, has a period ratio of ∼1.54 with Kepler-24 c. Due to
its small S/Ni (≈1.8), no clear TTV signal is recognisable in the
pre-extracted transit timings (see the top panel of Fig. 10). How-
ever, using RIVERS, we were able to recover TTVs of ∼50 min
of peak-to-peak amplitude. The bottom panel of Fig. 10 show the
difference in the mass determination of Kepler-24 between the
two- and three-planet model. In the three-planet model, Kepler-
24 e is unconstrained, but its TTVs help to break the degeneracy
on the inner part of the system. A similar test was performed
for Kepler-23: the addition of Kepler-23 d helped to better
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Fig. 8. In black and grey, the default and high-
mass posteriors of the fit of pre-extracted TTVs
from Rowe et al. (2015) by Hadden & Lithwick
(2017). In green and blue, we give the poste-
riors from the RIVERS analysis. Dark green
shows the default posterior, light green the
high-mass posterior, and blue the final poste-
rior. The full photo-dynamical analysis reduces
the prior dependency, thereby increasing mass-
estimate robustness, for most planets of the
sample.

constrain the whole system, also shifting the masses of Kepler-
23 b and Kepler-23 c toward larger values, while remaining
consistent within 1−2σ with the two-planet solution.

3.2. Masses, radii, and densities

Here we compare the mass-radius relationship of the sample of
re-analysed Kepler planets to the samples of exoplanets for which
the mass was estimated by the radial-velocity technique. We use
the DACE database5 (Otegi et al. 2020) and select only the plan-
ets for which the mass uncertainty is below 50% and the radius
uncertainty below 30%. The mass-radius measurements of this
population is shown in grey in Fig. 11. The figure shows the
posterior of the final photo-dynamical fit, with the mass degener-
acy indicator, ∆M , colour-coded. The mass-radius measurements
are also compared to various theoretical mass-radius relation-
ships in Fig. 12. This includes (1) pure solid interiors (pure
iron, terrestrial Earth-like, pure MgSiO3 rocky), taken from
Zeng et al. (2016); (2) terrestrial interiors with H2/He envelopes,

5 https://dace.unige.ch/exoplanets/

taken from Zeng et al. (2019); (3) terrestrial interiors with H2O
steam envelopes, taken from Aguichine et al. (2021). The steam
mass-radius relationships are the most appropriate here for water
(with respect to liquid and icy interiors) given all planets of the
sample are more irradiated than the runaway greenhouse limit
(Turbet et al. 2020). Mass-radius relationships with H2 and H2O
envelopes are arbitrarily plotted for various temperatures (500 K,
700 K, 1000 K; from the smallest to the largest radius) which are
representative of the equilibrium temperatures of our sample of
planets.

Firstly, we notice in Fig. 11 that the low-mass-and-large-
radius population amongst the re-analysed planets (Kepler-24 e,
Kepler-176 c and d) is not, in fact, robust. This is a reassuring
result, as these planets should theoretically not be able to main-
tain a stable hydrogen envelope, given their low mass and the
high irradiation they receive. These planets are indeed located in
the part of the mass-radius diagram where the radius of a H2-rich
planet increases as the mass of the planet decreases (see Fig. 12).
This is symptomatic of the fact that the gravity of the planet is
insufficient to guarantee the hydrostatic equilibrium of a H2/He
envelope.
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Fig. 9. TTVs of the near-resonant system Kepler-57. See Fig. 4 for
details.

Fig. 10. TTVs of Kepler-24 e at the top. Details are the same as in
Fig. 4. Bottom panel shows the mass posteriors of the planets of Kepler-
24, depending on the addition of Kepler-24 e to the model; see Fig. 8 for
a description. Adding Kepler-24 e helps to better constrain the masses
of Kepler-24 b and Kepler-24 c, despite having a highly degenerate mass
itself.

Secondly, we notice that the robust TTV-characterized plan-
ets (in this work) exhibit a tendency toward a lower density than
the RV-characterised planets, in particular, the cluster of plan-
ets of masses between 2 and 3 M⊕ and radius below 2 R⊕. Most
of the TTV-characterized planets lie above the pure rock (100%
MgSiO3, black curve in Fig. 12), indicating that they must have

a H2-rich or a volatile (e.g. water) envelope (Zeng et al. 2019;
Bean et al. 2021). The mass-radius relationships alone do not lift
the degeneracy between either of these two scenarios, at least
for most planets of our sample. It is still not clear whether the
tendency toward lower density of TTV planets (compared to RV
planets) is due to the sensibility of the RV method toward more
massive planets (RV planets for which the mass is known with
better than 50% are plotted in Figs. 11 and 12, while low-mass
planet have a tendency of having a lower precision on their mass)
or if, in fact, it testifies to their distinct formation and evolution
histories. We notice that the TTV planets have on average a lower
equilibrium temperature than RV planets (Teq = 768 ± 246K
for the TTVs samples and 1193 ± 616K for the RV sample),
which could favor the stability of H2 or H2O envelopes, and thus
increase the share of planets present in the large-radius peak of
the so-called radius gap (Fulton et al. 2017). This is particularly
relevant for the cluster of TTV planets near 2–3 M⊕ which have
moderate equilibrium temperatures.

To quantitatively explore the differences in composition
between the RV and TTV planet populations, we used a Bayesian
inference method to characterise further the gas mass fraction of
both populations. We hypothesize for this calculation that it is the
gas envelope (H2/He) that drives the observed variations in den-
sity between the planets. The full model is described in detail in
(Leleu et al. 2021a) and based on (Dorn et al. 2017). More details
on the method are given in Appendix D.

The results from our analysis are shown in Fig. 13. It shows
(Fig. 13, left panel) the gas mass fraction (more precisely the
median of the posterior distribution of the gas mass fraction as
derived from the Bayesian analysis) of the modelled planets from
both samples in relation to their position in a radius and equi-
librium temperature diagram. In general, for both populations,
the larger the radius, the larger the median of the gas mass frac-
tion. However, for equilibrium temperatures smaller than 1000 K
and radii between 1.5 and 2.5 R⊕, the re-analysed set of Kepler
planets shows, on average, a much higher gas content. Indeed,
the majority of RV-characterised planets have a gas mass frac-
tion smaller than 10−6, whereas we see a significant fraction of
Kepler planets with a gas mass fraction as large as 10−4. The
same can be observed when looking at the corresponding mass
and equilibrium temperature diagram (Fig. 13, right panel) for
masses below 3 M⊕. This suggests that the equilibrium temper-
ature difference between the RV and TTV planets alone cannot
explain the differences in the gas content.

3.3. Eccentricities and resonant states

The architecture of (nearly) resonant systems contains informa-
tion on their formation and evolution, such as migration in the
proto-planetary disc (e.g. Nesvorny et al. 2022) and tidal evo-
lution (e.g. Lee et al. 2013). Table 3 indicates the value of the
parameter Γ′ for each pair of planets. Γ′ is the parameter of the
one degree of freedom model of the first order MMRs, which
describes the position of a pair of planets with respect to the
closest first-order MMR6 (Henrard & Lemaitre 1983; Deck et al.
2013). The power of this 1-degree of freedom model is that it
allows comparing pairs of planets of different orbital periods
and masses with respect to any of the first order MMRs. The
resonance formally appears for Γ′ ≥ 1.5. Hence, if Γ′ < 1.5, the
pair cannot be resonant (although its resonant angles can librate

6 Numerous equivalent versions of the model exist in the literature, and
we chose Γ′ from (Deck et al. 2013) for consistency with Leleu et al.
(2021b, 2022).
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Fig. 11. Mass-radius relationship of the re-
analysed set of Kepler planets with the final
posterior. The colour shows the degeneracy
metric defined above Eq. (7): black-purple cor-
responds to well-constrained masses (low prior
dependency), while red-yellow shows poorly
constrained masses (high prior dependency).
The grey background is the mass-radius rela-
tionship from RV-estimated masses.

Fig. 12. Mass-radius relationship of the robust set of Kepler planets. The colour code shows the equilibrium temperature of the planet, taken from
the exoplanet archive (computed assuming a bond albedo of 0.3).
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Fig. 13. Radius (left) and mass (right) as function of equilibrium temperature of both the re-analysed set of Kepler planets (larger circles with
green outline) and the RV-characterised planets. Colour code shows the modelled gas mass fraction of the planets in a logarithmic scale.

Table 3. Dynamical state of 19 Kepler pairs.

Pair Pout
Pin

Γ′ |Z| |Z2|

Kepler-23 b,c 1.51 −2.77+0.45
−0.30 0.0226+0.0032

−0.0027 0.065+0.033
−0.032

Kepler-23 c,d 1.42 − − −

Kepler-24 b,c 1.52 −3.09+0.21
−0.13 0.0159+0.0026

−0.0017 0.026+0.030
−0.012

Kepler-24 c,d 1.54 −9.54+2.55
−2.41 0.036+0.010

−0.016 0.016+0.012
−0.013

Kepler-26 b,c 1.41 − − −

Kepler-49 b,c 1.52 −2.90+0.16
−0.18 0.00433+8.9e−04

−9.1e−04 0.011+0.049
−0.007

Kepler-28 b,c 1.52 −5.19+6.16
−1.86 0.032+0.013

−0.008 0.050+0.028
−0.019

Kepler-52 b,c 2.08 −2.40+9.40
−4.08 0.071+0.017

−0.013 0.145+0.072
−0.043

Kepler-54 b,c 1.51 −1.69+0.18
−0.08 0.0142+0.0023

−0.0013 0.025+0.033
−0.013

Kepler-57 b,c 2.03 −5.73+0.44
−0.37 0.0515+0.0054

−0.0042 0.0322+0.0041
−0.0046

Kepler-58 b,c 1.52 −2.5+13.8
−2.5 0.043+0.023

−0.017 0.052+0.057
−0.029

Kepler-60 b,c 1.25 6.25+0.17
−0.17 0.02861+5.0e−04

−5.2e−04 0.0286+0.0066
−0.0052

Kepler-60 c,d 1.34 3.89+0.14
−0.15 0.02632+6.4e−04

−6.2e−04 0.0384+0.0041
−0.0046

Kepler-85 b,c 1.51 −2.68+1.78
−0.35 0.0179+0.0056

−0.0040 0.040+0.070
−0.021

Kepler-128 b,c 1.51 5.44+6.47
−3.45 0.0431+0.0091

−0.0063 0.060+0.052
−0.025

Kepler-176 b,c 2.02 −2.2+26.9
−8.1 0.041+0.021

−0.017 0.096+0.059
−0.047

Kepler-305 b,c 1.51 −4.23+0.56
−0.53 0.0042+0.0020

−0.0012 0.0057+0.0048
−0.0026

Kepler-305 c,d 2.02 −7.80+0.66
−0.88 0.0086+0.0090

−0.0059 0.018+0.030
−0.014

Kepler-345 b,c 1.27 −7.70+1.27
−1.55 0.0115+0.0049

−0.0046 0.024+0.035
−0.014

Notes. Γ′ is the resonant parameter discussed in Sect. 3.3. The complex
quantities Z and Z2 are defined Eqs. (4) and (5). The value reported
are computed on the final posterior (β-distribution as eccentricity prior),
which somewhat under-estimate the uncertainties onZ2 when it highly
degenerates.

around a given value), and Γ′ gives an estimate of the distance
to the resonance. For Γ′ > 1.5, an additional test is required to
check if the system lies inside the resonance, which we will not
describe here. For resonant systems, Γ′ describes how ‘deep’
the pair is in the MMR. Breaking the degeneracy between the

masses of the planets and Z hence does not only provide good
mass estimates for the planets involved, but can also provide
valuable information about their resonant state, which can in turn
be linked to their proto-planetary disc or the inner planet’s inter-
nal structure. Out of all the pairs studied, only Kepler-60 b and
c and Kepler-60 c and d are inside the 2-body MMRs, forming a
Laplace resonant chain (Goździewski et al. 2016). We obtained
good constraints on Γ′ for several of the pairs; the implications
for the dissipative evolution of these systems will be the subject
of a future study. Systems with large uncertainties on Γ′, such
as Kepler-128, were checked to see that they have all of their
posterior outside of the resonance.

We obtain robust eccentricity estimates for 19 planets. Often
the errors remain quite large, with medians of a few percent and
uncertainties of similar amplitude. However some eccentricities
are different from zero at more than 8σ, such as Kepler-57 b
and c and Kepler-60 c (see Table 2). This implies that we were
able to constrain the TTVs beyond the effects of first-order in
eccentricities (see Sect. 3.1.2). This results in good constraints
onZ2 (see Table 3).

4. Summary and conclusion

We re-analysed a sample of 34 Kepler planets in the super-
Earth to mini-Neptune range in 15 multi-planetary systems. Most
of these planets were known to have TTVs, with transit tim-
ings available in current databases Rowe et al. (2015); Holczer
et al. (2016). These systems were previously characterised by fit-
ting these pre-extracted transit timings (e.g. Jontof-Hutter et al.
2016; Hadden & Lithwick 2017). Our analysis used the RIVERS
method, which first estimates the transit timings of the planets
using the RIVERS.deep algorithm (CNN-based image recogni-
tion; see Sect. 2.3), then uses a photo-dynamical fit of the light
curve (see Sect. 2.5).

Firstly, we showed that the transit timings resulting from
our analysis often differ by several tens of percent in amplitude
from the published values, introducing a systematic bias in
estimates of the associated planet masses. We have shown
that the amplitude of this difference is strongly anti-correlated
with the signal-to-noise ratio (S/N) of individual transits of
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the planets, indicating that the classical approach of fitting the
lightcurve, with individual transit timings as free parameters to
recover the TTVs, gives poor results when the individual transit
S/N is below ∼4.

Secondly, using the default prior identical to the one used
by Hadden & Lithwick (2017), we consistently recovered masses
that were higher than those obtained by fitting pre-extracted tran-
sit timings. This difference, which can be more than 4σ as in
the case of Kepler-128 (Hadden & Lithwick 2016), is explained
not only by the difference in TTV amplitude, but also by the
capacity of the photo-dynamic analysis to recover additional
harmonics (especially when short-cadence data is available),
allowing us to break the mass-eccentricity degeneracy inherent
to nearly resonant pairs of planets. For the three-planet systems
Kepler-23 and Kepler 24, we also tried fitting only two planets;
in both cases, the three-planet study yielded larger and better
constrained masses for the two planets that were present in both
analyses. This highlights the model dependency inherent to the
TTV method, and imply that non-transiting planets can also be
responsible for underestimations of the masses of planets.

Out of the 34 planets analysed, we robustly determined the
mass of 23 planets (low prior dependency; see the robustness cri-
terion described in Sect. 3.1.2), 13 of which have a precision on
the mass better than 20%. Comparing the newly-characterised
planets to the RV-characterised population from (Otegi et al.
2020), it appears that some of the TTV-characterised planets
still have a lower density than their RV counterparts, which is in
agreement with the robustly-characterised samples of Hadden &
Lithwick (2017). In terms of internal structure, this lower density
translates to a larger mass fraction of gas, as derived from inter-
nal structure modeling. Although the TTV-characterized planets
we study here have, on average, a lower equilibrium tempera-
ture than RV-characterized planets (which would help stabilize a
gas or volatile envelope), we notice that this property alone can-
not explain the observed differences in density. The difference
could be due to the bias inherent to the method used to obtain
the mass: higher masses make a planet easier to adequately char-
acterise using RVs, while deeper transits allow for better transit
timing estimates. Another explanation could be related to the
fact that planetary systems characterised by TTVs are necessar-
ily compact multi-planetary systems. The difference in density
could therefore be related to the formation and evolution history
of the systems. More studies, comparing larger samples and cor-
recting the effect of observational biases, are required in order
to decipher the origin of the differences between the two popula-
tions. We also leave to a future study the re-analysis of super-puff
planets such as Kepler-79 (Jontof-Hutter et al. 2014), found not
robust by Hadden & Lithwick (2017); and Kepler-51 (Masuda
2014; Libby-Roberts et al. 2020), found robust by Hadden &
Lithwick (2017).

We constrained the eccentricities of most planets to a few
percent at most, with errors on the same order. The exceptions
were Kepler-57 b and c and Kepler-60 c, for which the analysis
provided relatively precise estimates of the individual eccentric-
ities, which in itself is of particular interest given that it requires
adequate power in the non-dominant harmonics and because it
is especially difficult to measure such small eccentricities with
radial velocities. Breaking the mass-eccentricity degeneracy has
also often allowed us to have a better view on the resonant state
of the systems. For systems whose inner planet is far-enough
from the star (typically >10 days), this will allow us to constrain
the local shape of the proto-planetary disc prior to its dispersal
(e.g. Nesvorny et al. 2022). For systems whose inner planet is
closer to the star, the observed resonant state can allow us to

constrain the tidal dissipation in the inner planets (e.g. Lee et al.
2013).

Finally, we want to stress that all of the robustly characterised
planets in this study occupy a ‘believable’ position in the mass-
radius diagram, while a single analysis of pre-extracted transit
timings would often have resulted in a strong underestimation
of the planetary masses. Since the quality of pre-extracted tran-
sit timings is strongly correlated with the transit S/N (hence,
the planetary radius), this bias mostly affects systems of small
(typically sub-Neptune) planets, which can impede the charac-
terisation of these systems in the Kepler, TESS, and upcoming
PLATO data.

Our results, combined with those of Hadden & Lithwick
(2017), strongly advocate the use of several priors to explore
the mass-eccentricity degeneracy, as well as the systematic use
of photo-dynamical analysis to recover higher small-amplitude
harmonics of the TTVs signals. Since the long baselines of the
Kepler data, near-polar observations of TESS and PLATO allow
for the detection of planets whose individual transits are below
the noise level, recovering individual transits to initialise the
photo-dynamical fit might be challenging. In this case, we have
shown that the use of RIVERS.deep, based on the the recogni-
tion of the track of a planet in a river diagram using a neural
network, could recover the transit timings of such planets.
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Appendix A: Eccentricity and longitude of
periastron posterior shapes

Figure A.1 shows the correlation between parameters for various
choices of coordinates.

Fig. A.1: Corner plots of the eccentricities and longitudes of periastron of the default posterior of Kepler-345 b and c. The top-left
corner shows the real and imaginary part ofZ andZ2, top-right corner shows the ki = ei cosϖi and hi = ei sinϖi variables, bottom
left corner shows the ei and ϖi variables, and the bottom right corner shows the

√
ei cosϖi and

√
ei sinϖi variables.
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Appendix B: Analytical modeling of TTVs

Table B.1: TTV amplitude of 19 Kepler pairs

Pair Pout/Pin Ampin Ampout σF,in σF,out σS ,in σS ,out σC,in σC,out

Kepler-23 bc 1.51 97.13 45.84 95.10+4.43
−3.97 41.55+1.22

−1.07 4.82+0.47
−0.52 2.12+0.22

−0.18 2.45+0.24
−0.22 0.869+0.090

−0.078

Kepler-23 cd 1.42 45.84 6.11 − − 0.41+0.33
−0.18 0.99+0.68

−0.41 4.81+0.95
−0.93 10.73+1.05

−0.83

Kepler-24 bc 1.52 62.66 111.83 74.69+3.69
−3.46 114.62+6.27

−5.49 3.05+0.18
−0.21 4.82+0.33

−0.28 3.55+0.51
−0.36 4.32+0.61

−0.48

Kepler-24 ce 1.54 111.83 39.97 0.70+1.31
−0.34 45.02+7.93

−7.52 0.06+0.12
−0.03 4.20+1.45

−1.37 0.12+0.22
−0.06 6.04+0.78

−0.75

Kepler-26 bc 1.41 21.69 16.66 − − 18.73+0.75
−0.81 14.86+0.82

−0.84 15.76+0.60
−0.65 13.18+0.75

−0.83

Kepler-49 bc 1.52 20.17 36.80 9.18+3.96
−2.34 15.79+4.75

−1.97 0.228+0.046
−0.035 0.482+0.088

−0.073 4.72+0.36
−0.36 5.96+0.38

−0.38

Kepler-28 bc 1.52 19.53 20.72 18.25+0.92
−1.02 19.56+1.10

−1.00 1.45+0.31
−0.25 1.59+0.34

−0.27 0.80+0.22
−0.14 0.70+0.20

−0.11

Kepler-52 bc 2.08 36.30 17.96 33.32+2.59
−3.29 15.63+1.88

−2.43 2.53+0.67
−0.56 1.08+0.35

−0.26 0.80+0.16
−0.13 0.105+0.024

−0.018

Kepler-54 bc 1.51 127.90 255.26 140.49+2.55
−2.78 278.65+4.63

−3.97 4.77+0.50
−0.33 9.67+0.95

−0.63 1.53+0.10
−0.11 2.43+0.15

−0.18

Kepler-57 bc 2.03 10.92 65.86 60.33+5.19
−6.10 338.5+27.4

−23.7 3.73+0.31
−0.36 20.21+1.39

−1.45 0.245+0.036
−0.035 0.415+0.061

−0.057

Kepler-58 bc 1.52 37.30 77.49 30.48+5.56
−5.61 69.69+9.43

−7.25 2.85+1.03
−0.71 7.06+2.11

−1.92 1.59+0.99
−0.45 3.12+1.39

−0.82

Kepler-85 bc 1.51 83.20 101.12 81.29+5.31
−4.48 93.34+5.19

−4.13 3.34+0.52
−0.37 3.92+0.63

−0.43 0.93+0.21
−0.17 0.85+0.19

−0.15

Kepler-128 bc 1.51 163.99 230.13 139.24+3.36
−3.98 207.22+6.59

−5.69 13.47+1.50
−1.27 20.17+2.52

−1.66 1.82+0.21
−0.23 2.20+0.28

−0.27

Kepler-176 cd 2.02 45.47 47.32 56.0+12.7
−12.3 64.2+18.9

−14.4 3.31+1.40
−1.32 3.84+1.61

−1.40 0.107+0.049
−0.021 0.036+0.020

−0.008

Kepler-305 bc 1.51 10.46 28.32 10.89+2.58
−2.68 22.38+3.80

−4.40 0.140+0.065
−0.038 0.30+0.14

−0.06 1.06+0.26
−0.16 1.67+0.41

−0.27

Kepler-305 cd 2.02 28.32 8.54 21.1+19.3
−8.3 20.6+11.9

−8.0 0.17+0.43
−0.08 0.16+0.27

−0.06 0.345+0.085
−0.057 0.091+0.019

−0.015

Kepler-345 bc 1.27 14.52 9.21 13.66+4.81
−3.85 8.32+1.47

−1.40 0.82+0.50
−0.29 0.53+0.17

−0.16 6.70+2.24
−1.90 3.85+0.95

−0.73

Notes. Peak-to-peak amplitude of the sinusoidal approximation for the inner and outer planet of the pair, and the peak-to-peak amplitude of the
fundamental (σF), secondary (σS ) and chopping signal (σC) along the duration of the Kepler mission, from the analytical model of planets outside
of first and second order MMRs by Hadden & Lithwick (2016). All amplitudes are in minutes.

Table B.1 shows the peak-to-peak amplitude of the sinusoidal
approximation of the best fit of the photo-dynamical model
(Sect. 3.1.1). The table also shows the different TTVs contribu-
tions from the analytical model of Hadden & Lithwick (2016),
valid outside first- or second-order MMRs. These coefficients
are computed as follows: we randomly selected 400 samples of
the final posterior. For each of these initial conditions, we com-
puted the analytical TTVs for each subsequent pair of planets.
We computed the fundamental, secondary, and chopping signal
separately based on appendix B of Hadden & Lithwick (2016)
(see Sect. 2.6 for a discussion on these terms). For the chop-
ping signal, we computed the first ten terms of the series based
on Eqs. (39) and (54) of (Hadden & Lithwick 2016). Then, for
the fundamental, secondary, and the sum of the chopping terms,
we computed the amplitudes by subtracting their minimum value
from their maximum value over the duration of the Kepler mis-
sion. This resulted in 400 estimations of amplitude for each term.
In the table, we display the median and .16 and .84 quantiles error
for each amplitude across these 400 samples.

We do not display the results for Kepler-60, since the plan-
ets are inside the MMRs and therefore the model is not valid.
We also note that the model does not work properly for Kepler-
57, which might be strongly affected by the proximity of the
resonance or require the consideration of additional terms in
eccentricity. For all other pairs, the amplitude of the sinusoidal
approximation is similar to the estimated amplitude of the funda-
mental harmonic. The table gives an idea of the relative size of
the secondary and chopping terms that need to be constrained
in order to break the mass-eccentricity degeneracy. However,
the interpretation of these results is not straightforward. Firstly,
the difficulty in detecting a harmonic depend not only on its
amplitude but also strongly on the S/Ni of the planet and the
availability of short cadence data. Secondly, the analytical TTV

model was not directly fit to the data: small errors on secondary
and chopping signals do not necessarily imply that we were able
to measure these contributions with high precision, but that the
overall constraints we got on the system allowed to give a pre-
cise estimation of what should be the amplitude of these terms.
For example, the small uncertainties on the chopping terms of
Kepler-57 illustrate this point. Thirdly, the model only considers
a pair of planets.

Appendix C: B-splines and marginalization of the
likelihood

In this appendix, we describe the B-spline model used to
account for stellar variations and instrumental systematics, as
well as the method we use to efficiently compute the likelihood
marginalized over the B-spline parameters. A cubic B-spline
is a piecewise third order polynomial that is twice as con-
tinuously differentiable everywhere. We assume here regularly
spaced knots and denote, using τ, the time lag between two knots.
The value of τ is chosen in order to avoid over-fitting short term
variations associated with the transits but still model as much as
possible of stellar variations and instrumental systematics. The
procedure used to select the value of τ is described in Sect. 2.4.
For a time series with large interruptions (∆t > 4τ), the B-splines
over each of the segments of continuous observations are inde-
pendent from each other. Thus, the full marginal likelihood is
simply the product of the marginal likelihoods over each seg-
ment. We thus consider here a single segment with continuous
observations (∆t < 4τ). For a segment with time span T , we have
N = ⌈T/τ⌉ pieces (N + 1 knots). We centre the time series in the
sense that we set the positions (τk) of the knots such that the lag
between the first knot and the first measurement (t1 − τ1) is the
same as the lag between the last measurement and the last knot
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(τN+1 − tn). The B-spline is defined as a linear combination of
N + 3 splines. Each piece is modeled as a combination of four
splines and, reciprocally, each spline is defined over four consec-
utive pieces (except on the edges). The parameters η of the model
are the N + 3 coefficients appearing in the linear combination of
the splines. For t ∈ [τk, τk+1], we have:

b(η, t) = ηk (1 − δ)3 + ηk+1

(
3δ3 − 6δ2 + 4

)
+ ηk+2

(
−3δ3 + 3δ2 + 3δ + 1

)
+ ηk+3δ

3, (C.1)

where δ = t − τk. The time series b(η, t) thus takes the form:

b(η, t) = Bη, (C.2)

where B is the (n × (N + 3)) matrix defined as

B =



β1,1 . . . β1,4 0 . . . . . . 0
...

...
...

...
...

...
...

βn1,1 . . . βn1,4 0 . . . . . . 0
0 βn1+1,1 . . . βn1+1,4 0 . . . 0
...

...
...

...
...

...
...

0 βn2,1 . . . βn2,4 0 . . . 0
...
. . .

. . .
. . .

. . .
. . .

...
0 . . . 0 βnN−1,1 . . . βnN−1,4 0
0 . . . . . . 0 βnN−1+1,1 . . . βnN−1+1,4
...

...
...

...
...

...
...

0 . . . . . . 0 βn,1 . . . βn,4



, (C.3)

with nk the index of the last measurement that lies in the range
[τk, τk+1] and

βi,1 = (1 − δi)3 ,

βi,2 = 3δ3i − 6δ2i + 4,

βi,3 = −3δ3i + 3δ2i + 3δi + 1,

βi,4 = δ
3
i . (C.4)

The matrix B can thus be stored in an efficient manner in the
form of the (n × 4) matrix β.

We now aim at computing the marginal likelihood of Eq. (3).
For this purpose, we first need to set a prior on the parameters
η. We assume for η a centred Gaussian prior with covariance Λ,
which is independent of the other parameters (θ, σjit.):

p(η|θ, σjit.) = p(η) =
1

√
|2πΛ|

exp
(
−

1
2
ηTΛ−1η

)
. (C.5)

We additionally assume Λ to be diagonal in the following. For
a given set of parameters θ, we can compute the transit model
m(θ, t), and define

A(θ, t) = m(θ, t) ∗ B(t), (C.6)

where ∗ denotes the Hadamard (element-wise) product of each
column of B by the vector m. The matrix A possesses the exact
same structure as B and can be stored using the n × 4 matrix α =
m ∗ β. The marginal likelihood of Eq. (3) can then be rewritten
as

L(θ, σjit.) =
1

√
|2πΣ||2πΛ|

× (C.7)

∫
exp

(
−

1
2

(
(y − Aη)TΣ−1(y − Aη) + ηTΛ−1η

))
dη,

which can be integrated as

L(θ, σjit.) =

√
|2πC|

|2πΣ||2πΛ|
exp

(
−

1
2

(
yTΣ−1y − xTCx

))
, (C.8)

with

C−1 = Λ−1 + ATΣ−1A,

x = ATΣ−1y. (C.9)

This expression could be further simplified using the Woodbury
identity to obtain a simple Gaussian distribution for y (e.g. Luger
et al. 2017):

L(θ, σjit.) =
1

√
|2πS |

exp
(
−

1
2
yTS −1y

)
, (C.10)

where

S = Σ + AΛAT. (C.11)

However, while this latter expression is more compact, evalu-
ating the marginal likelihood using it requires to compute the
determinant of S and to solve for yTS −1y, with S a (n × n)
matrix. Thus, the cost of a likelihood evaluation typically scales
as O(n3). For Σ and Λ diagonal, the matrix S is actually banded
with bandwidth w = maxk(nk+3 − nk−1). This structure might
allow us to improve performances (scaling in O(w2n)), but since
the number of measurements is usually much larger than the
number of pieces (n ≫ N), the bandwidth w is still a large frac-
tion of n. In such a case, a more efficient method is to keep the
marginal likelihood in the form of Eq. (C.8). Indeed, for Σ and
Λ diagonal, C−1 is a symmetric banded matrix with bandwidth
3, and the cost of likelihood evaluations can be reduced to O(n).
We first define

u =
y

σ̃
,

G =
1
σ̃
∗ A =

m
σ̃
∗ B,

γ =
1
σ̃
∗ α =

m
σ̃
∗ β, (C.12)

with σ̃ =
√

diag(Σ) =
√
σ2 + σ2

jit.. With these new notations, we
have

C−1 = Λ−1 +GTG,

x = GTu. (C.13)

We additionally introduce the piecewise notations

G(k) =


γnk−1+1,1 . . . γnk−1+1,4
...

...
...

γnk ,1 . . . γnk ,4

 ,
u(k) =


unk−1+1
...

unk

 , (C.14)
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and for each piece we compute the (4 × 4) matrix:

F(k) = G(k)T
G(k), (C.15)

and the vector of size 4,

v(k) = G(k)T
u(k). (C.16)

We then obtain the lower banded representation of the matrix
GTG with

(
GTG

)
i,i+d
=

min(4−d,i)∑
j=max(1,i−N+1)

F(i− j+1)
j, j+d , (C.17)

and the vector x with

xi =

min(4,i)∑
j=max(1,i−N+1)

v
(i− j+1)
j , (C.18)

for i ∈ [1,N + 3] and d ∈ [0, 3]. Since Λ is assumed to be diag-
onal, the lower banded representation of C−1 is straightforward
to compute from Eq. (C.17). Finally, we compute the Cholesky
decomposition C−1 = LLT in lower banded form which allows to
straightforwardly compute the determinant of C and to solve for
xTCx = (L−1x)T(L−1x). Using algorithms dedicated to banded
matrices, both the Cholesky decomposition and the solving have
a computational cost scaling as O(n).

In practical computations, we assume that the priors on the
B-spline parameters η are sufficiently broad (i.e. the diagonal
entries of Λ are sufficiently large) such that C−1 ≈ GTG. More-
over, we additionally ignore the determinant of Λ in Eq. (C.8)
since it is a constant renormalization factor which does not have
any impact in our analyses. These approximations are equiv-
alent to assuming a uniform prior for the parameters η with
unspecified very large bounds.

Appendix D: Internal structure model

For both the sample of re-analysed Kepler planets and the sam-
ple of RV-characterised planets, we used a Bayesian inference
method to characterise the internal structure of the planets. The
full model is described in detail in (Leleu et al. 2021a) and based
on (Dorn et al. 2017).

We assume that the planets are spherically symmetric and
consist of four fully differentiated layers (iron core, silicate man-
tle, water, and H/He atmosphere). In terms of equations of state,
we use Hakim et al. (2018) for the iron core, Sotin et al. (2007)
for the silicate mantle, and Haldemann et al. (2020) for the water
layer, along with the atmosphere model of Lopez & Fortney
(2014). We further assume that the H/He atmosphere is indepen-
dent of the rest of the planet and fix the temperature and pressure
at the gas-water boundary. We thereby neglect effects of the gas
layer on the solid part of the planet, such as atmospheric pressure
or thermal insulation.

In the sample of RV-characterised planets, for many planets,
at least some of the stellar observables are unknown. Therefore,
we limit the stellar input parameters of the Bayesian model to
the observables that are known for all planets from both samples:
mass, radius, and the effective temperature of the star. For these
values, we assume an error of 5%, since reliable error bars are
not generally available. Furthermore, we assume the stars to be
of Solar composition, also within error bars of 5%. For the age of

the stars, we assume it is unconstrained (5 ± 5 Gyr). The plane-
tary input parameters of the model are the mass and radius values
with the respective errors and the period with an assumed error
of 0.1%. Additionally, the model assumes that the composition
of the modelled planet matches the one of the star exactly (see
(Thiabaud et al. 2015)). We note that the evidence for this
is not quite conclusive; in addition, Adibekyan et al. (2021)
recently showed that the correlation might in fact not be a 1:1
relationship.

We stress that the results from the Bayesian inference model
depend to some extent on the chosen priors and would differ if
very different priors were chosen. Again following the method
detailed in (Leleu et al. 2021a), we assume a log-uniform prior
for the gas mass and a prior that is uniform on the simplex for
the iron core, mantle, and water mass fractions with respect to
the solid planet. However, we assume we choose an upper limit
of 50% for the water mass fraction (see (Thiabaud et al. 2014)
and (Marboeuf et al. 2014)). The results from our analysis are
shown in Figure 13.
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