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Disrupted longitudinal restoration of brain connectivity during
weight normalization in severe anorexia nervosa
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Altered intrinsic brain connectivity of patients with anorexia nervosa has been observed in the acute phase of the disorder, but it
remains unclear to what extent these alterations recover during weight normalization. In this study, we used functional imaging
data from three time points to probe longitudinal changes in intrinsic connectivity patterns in patients with severe anorexia
nervosa (BMI ≤ 15.5 kg/m2) over the course of weight normalization. At three distinct stages of inpatient treatment, we examined
resting-state functional connectivity in 27 women with severe anorexia nervosa and 40 closely matched healthy controls. Using
network-based statistics and graph-theoretic measures, we examined differences in global network strength, subnetworks with
altered intrinsic connectivity, and global network topology. Patients with severe anorexia nervosa showed weakened intrinsic
connectivity and altered network topology which did not recover during treatment. The persistent disruption of brain networks
suggests sustained alterations of information processing in weight-recovered severe anorexia nervosa.
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INTRODUCTION
Anorexia nervosa (AN) is a severe and enduring eating disorder,
with an estimated recovery rate of only 46% [1, 2]. Treatment for
severe anorexia nervosa typically consists of intensive specialized
inpatient therapy, but long-term treatment outcomes are often
not satisfactory and the illness is extremely persistent [2].
Investigations into the neural basis underlying AN using resting-

state approaches that examine functional relationships through-
out the brain have provided evidence of impaired intrinsic
connectivity [3–5]. Resting-state approaches provide information
on task-independent intrinsic connectivity and are a powerful tool
to explore alterations in brain circuitry [6] with high predictive
value for behavioral measures [7]. During the state of acute
underweight, studies have provided evidence for altered intrinsic
connectivity in AN [3, 5]. However, closer examination reveals that
the results are inconsistent with respect to direction and location.
For example, both underconnectivity [8–11] and overconnectivity
[12–14] of networks involving the insula are reported in acute AN.
The inferior frontal gyrus has similarly been described as both
underconnected [14, 15] and overconnected [16]. Even region-
specific seed-based approaches focusing on the nucleus accum-
bens, for example, report both over- [17] and underconnectivity
[18]. While data-driven methods tend to show underconnectivity
in patients with AN [8–10], there is great heterogeneity in terms of
the regions and networks examined, such that there is currently
no consensus on alterations of intrinsic connectivity in the acute
state of AN.

Another open question is how these widespread alterations
develop over the course of weight normalization. Longitudinal
studies investigating restoration processes during weight normal-
ization are scarce [3]. To date, only four longitudinal studies have
examined weight-related changes of connectivity in adolescents
and young adults. Following weight normalization, they report
mixed findings of normalization of nucleus accumbens over-
connectivity [17, 19], full restoration of underconnectivity [20], as
well as persisting underconnectivity between the salience and
executive control networks [21]. In weight-recovered adults, there
are mixed reports of no residual alterations [20], underconnectivity
in visual and auditory resting-state networks [22, 23], and over-
connectivity in the default mode network [16]. These incongruent
findings could be influenced not only by disparate methodology but
also by the age range of patients. Results from whole-brain
approaches are mostly based on adolescent samples at an early
stage of disease [24] or on mixed samples of adolescents and adults
[8, 25]. Given that brain development during adolescence follows a
nonlinear course [26, 27], it is particularly difficult to control for
developmental influences. Critically, no longitudinal functional
connectivity study to date has examined whether intrinsic
connectivity alterations recover following weight normalization in
adult patients with severe AN.
Complementing large-scale connectivity analyses, the network

architecture of the brain can be described in terms of two key
properties: the functional segregation of specialized brain regions
and the concurrent integration of information [28]. Graph-
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theoretical measures describe the topology of brain organization
by quantifying reductions in short-range connections (segrega-
tion) and increases in long-range connections (integration)
[29, 30], which represents a trade-off between wiring costs and
the efficiency of information transfer [30]. At the structural level,
AN has recently been associated with a decrease in network
segregation [31]. Only three studies have examined network
topology in the functional domain, reporting mixed findings of
decreased network integration (i.e., greater characteristic path
length and lower betweenness centrality) in adolescents and
young adults [9, 32] and decreased network segregation (i.e.,
lower global clustering) in adult patients [33]. The influence of the
age of the patients is yet unclear. A first study on recovered
anorexia patients suggests that aberrant network topology may
persist after weight normalization [34]. Importantly, none of the
previous studies employed a longitudinal approach and have yet
to be replicated in independent samples.
Here, we investigated intrinsic connectivity in a longitudinal

design with three time points to elucidate network alterations and
recovery processes during treatment in women with severe AN.
We examined global network strength, subnetworks with
differences in neural synchrony, and global network topology in
patients with severe AN and closely matched healthy controls
(HC). Intrinsic connectivity was assessed in women with AN at
(TP1) the beginning of treatment with severe underweight, (TP2)
after initial weight gain, and at (TP3) the end of treatment with an
approximately healthy body mass index (BMI). We tested the
hypothesis that network underconnectivity and altered topology
within the patient group restore with weight normalization over
the course of inpatient treatment (Fig. 1).

METHODS AND MATERIALS
Participants
Twenty-eight women with severe AN (aged 18–32) and 40 HC (aged 18–30)
participated in the study. One patient had to be excluded due to MRI
artefacts, leaving the data of 27 women with AN (24 restrictive type, 3 binge-

purge type) for analysis. The two groups were matched for sex, handedness,
age, intelligence, and years of education at the group level (Table 1). This
sample partially overlaps with previous studies of our group [35, 36].
Inclusion criteria for patients comprised severe AN (BMI ≤ 15.5 kg/m2) and an
illness duration >1 year. Patients were enrolled in an eating disorder-specific
inpatient program with a target BMI ≥ 18.5 kg/m2, that included individual
and group psychotherapy, somatic controls, structured dietary increase,
nutritional counselling, body-perception and art therapy, physiotherapy, and
cooking groups. Sixteen patients were receiving psychotropic medication
when they entered the study and continued to take them unchanged (see
Supplemental Methods). Healthy controls were required to have no history of
mental illness, no first- or second-degree relatives with a lifetime diagnosis of
an eating disorder, and no medications, including hormonal contraceptives.
All participants provided written informed consent prior to participation. The
study protocol complied with the Declaration of Helsinki and was approved
by the local ethics review board.

Procedure
Patients’ brain images were acquired at the beginning of treatment (TP1,
BMI≤ 15.5 kg/m2), after an initial weight gain of approximately 2 BMI points
(TP2, 15.5 < BMI < 17.5 kg/m2), and at the end of treatment (TP3, BMI of ≥
17.5 kg/m2). Healthy controls underwent the same procedure at two time
points (corresponding to TP1 and TP3, see Fig. 1). As intrinsic connectivity can
be influenced by hormonal alterations across the menstrual cycle [37, 38] and
the large majority of patients with AN were amenorrhoeic (85%, details are
provided in Supplemental Methods), HC were scanned in the follicular phase
within the first 10 days of their cycle. Both groups underwent the same
standardized intake procedure (see Supplemental Methods), and scanning
for all participants took place between 3:00 and 4:30 pm. Eating disorder
psychopathology was assessed at all measurement time points with the
validated German version of the Eating Disorder Examination Questionnaire
(EDE-Q) [39] and symptoms of depression were quantified with the Beck
Depression Inventory (BDI) [40]. Intelligence was estimated using the
Viennese Matrices Test (WMT) for fluid intelligence [41] and the Vocabulary
test (WST) for verbal intelligence [42].

MRI data acquisition and preprocessing
T1-weighted structural images and resting-state functional images were
acquired using a 3.0 Tesla whole-body magnetic resonance imaging (MRI)

Fig. 1 Schematic illustration of study procedure and methods. Brain images of patients with anorexia nervosa (AN) were acquired at three
time points (TP1, TP2, TP3) over the course of weight normalization. Healthy controls (HC) were scanned twice (TP1, TP3). Functional MRI data
were processed and parcellated with an adapted version of the automated anatomical labelling atlas with 94 nodes [44]. Intrinsic connectivity
was calculated as Pearson correlation between the mean time series of any pair of two nodes [94×94], standardized with Fisher’s r-to-z
transformation. Global network strength was computed as the whole brain average of all positive connections per person. Subnetworks of
altered connections were analyzed using the network-based statistic tool [47]. Global network topology was captured using characteristic
path length (shortest average path length) as a measure of integration, and clustering coefficient (ratio between closed triplets relative to all
triplets) and global modularity (ratio between within cluster connections to all connections) as a measure of segregation [29].
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system (Ingenia, Philips Healthcare, Best, The Netherlands) equipped with a
32-channels receive phased array head coil (see Supplement for further
acquisition details). Images of all subjects were inspected by a trained
neuroradiologist for any relevant pathology. Functional MRI data were
processed with the DPARSFA toolbox (version 4.5, RRID:SCR_002372) [43].
An adapted version of the automated anatomical labelling (AAL) atlas with
94 regions was used to define the network nodes [44], including the
nucleus accumbens and the anterior and posterior parts of the insular
cortex (Table S1). Intrinsic connectivity strength was calculated as Pearson
correlation between the mean time series of any pair of two nodes,
standardized with Fisher’s r-to-z transformation (see Supplemental
Methods for further preprocessing details). In addition, regional homo-
geneity images were calculated as Kendall’s coefficient of concordance
between the time series of a given voxel with those of its 26 neighboring
voxels [45]. To test whether potential network disruptions would be
explained by local reductions in neuronal synchrony, mean regional
homogeneity per node was extracted for group comparisons (see
Supplement).

Global strength
Global strength was computed as the mean strength of all connections per
person, excluding negative connections and the matrix diagonal. We
compared global strength across time using a mixed ANOVA (group ×
time), between groups at TP1 and TP3, and within the AN group across
time (TP1, TP2, TP3) using two-tailed Welch’s t-tests. Standardized mean
differences are reported as Hedges’ g [46].

Subnetwork analyses
The network-based statistic (NBS) toolbox (RRID:SCR_002454) [47] was
used in a MATLAB environment (R2019b, RRID:SCR_001622) to test for
subnetworks of altered connections, while controlling the family-wise error
(FWE) [47]. To assess group differences, functional connectomes were
compared between groups at TP1 and TP3. To examine changes over time,
we compared both groups across time (group × time), and tested for
changes within the AN group (between TP1 and TP2, and between TP2
and TP3). Group comparisons were performed for both contrasts (AN < HC
and AN > HC) and all analyses were performed with the total number of
connections as a measure of component size, controlled for multiple
comparisons using 5,000 permutations at p ≤ 0.05. To minimize the rate at
which the null hypothesis for individual connections was falsely rejected,
the primary sensitivity threshold for the between-group analysis at TP1
and TP3 was set to t= 3.0 (corresponding to Cohen’s d ≥ 0.7). A more
sensitive primary threshold of t= 1.0 (d ≥ 0.2) and F= 1.5 (d ≥ 0.2) was
chosen for the longitudinal analyses to detect changes over time. To assess
the robustness of results with alternative thresholds, our findings were
repeated with different primary thresholds (see Supplemental Results).
Additionally, to further examine recovery processes during treatment
within the AN group, the mean connectivity of the network identified at
TP1 was extracted and analyzed for significant changes over time, using
Welch’s t-tests for dependent samples.

Global network topology
To calculate the graph metrics, individual connectivity matrices were
thresholded at proportional density thresholds between 0.05 and 0.45 at
0.01 intervals. Importantly, we preserved the connection weights as
weighted networks have been found to offer better reliability by capturing
more comprehensive topological information [48]. Negative correlations
and the matrix diagonal were excluded from the analyses. Using the
Network Toolbox for R [49], we calculated characteristic path length (global
average shortest path length, i.e. geodesic distance) as a measure of
integration, global clustering coefficient as a measure of segregation (with
weights converted to values between 0 and 1), and global modularity as a
measure of compartmentalization of communities [29] (Fig. 1). Integration
refers to the connectedness of nodes within a network, highly integrated
networks have shorter average path length. Segregation refers to the
extent to which networks show densely interconnected groups of nodes,
higher clustering coefficient values meaning higher segregation. Mod-
ularity is related to the ratio between within cluster connections to all
connections and quantifies the segregation into functionally meaningful
clusters. Higher modularity indicates segregation between clusters [29, 30].
Group comparisons were performed using two-tailed Welch’s t-tests and

cluster-based permutation testing with 10,000 permutations in R (version
4.2.2, RRID:SCR_001905) [50] to control the FWE rate. Cluster-basedTa
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permutation has the advantage of greater sensitivity and robustness
compared to the conventional area-under-the-curve approach [51], where
only the integral over the range of thresholds is considered for group
comparison. The probability for clustered differences between groups was
estimated under the null distribution, preserving the dependency across
thresholds within a topological measure by maintaining the shuffling of
group labels within each permutation. Clusters of group differences were
defined by p < 0.05. The empirical cluster size k was compared with the
cluster sizes from the permutation-based null distribution, calculating the
p-value as the proportion of clusters ≥ k under the null distribution
(α= 0.05).

Correlation analyses
To test for covariation between measures of functional connectivity and
clinical (BMI, age, age of onset, illness duration) and psychometric eating
disorder parameters (EDE-Q, BDI) within the patient group, Pearson
correlations were calculated using R (version 4.2.2, RRID:SCR_001905) [50].
For the analyses of global network topology, mean values were calculated
across the range of proportional thresholds for each graph metric. The
significance level for the correlation analyses was set to α= 0.05, adjusted
for multiple comparisons using the Holm−Bonferroni procedure [52].

RESULTS
Clinical and psychometric measures
Patients with severe AN were on average 16.30 ± 2.84 years at
illness onset and had a mean illness duration of 5.88 ± 4.18 years.
Relative to their age-, education-, and intelligence-matched peers
in the control group, the AN group showed elevated scores for
eating disorder-related cognition (EDE-Q) and depression (BDI),
and lower BMI at baseline. These differences decreased over the
course of treatment but remained significant at the end of
treatment compared with matched HC (Table 1).

Global strength
The first aim was to examine whether intrinsic connectivity of
patients with AN in the phase of severe underweight differed from

HC. Results of the group comparison at TP1 showed lower global
connectivity strength of patients (AN1: mean = 0.29 ± 0.08)
compared with HC (HC1: mean = 0.33 ± 0.10, t(57.02) = -2.166,
p= 0.035, g= -0.532) (Fig. 2A+C).
Over the course of treatment, there was no evidence for a

group × time interaction (F(1, 65) = 0.011, p= 0.918) or changes in
global strength within the group of AN patients between TP1
(AN1: mean = 0.29 ± 0.08) and TP2 (AN2: mean = 0.31 ± 0.07,
t(26) = 1.019, p= 0.317, g= 0.19) and between TP2 and TP3 (AN3:
mean = 0.29 ± 0.07, t(26) = −1.457, p= 0.157, g=−0.32).
Compared with HC, global strength remained significantly lower
in patients with AN at TP3 (HC3: mean = 0.33 ± 0.10, t(64.97) =
−2.107, p= 0.039, g=−0.498) (Fig. 2B+C). There was no evidence
for associations between global strength and eating disorder
parameters (clinical and psychometric) within the patient group
(see Supplemental Results).

Subnetwork analyses
Consistent with the results of weakened global connectivity
strength, NBS analyses yielded a subnetwork of underconnectivity
in patients with AN compared with HC at TP1 (p < 0.004, FWE-
corrected). The subnetwork comprised 61 nodes and 125
connections, spanning nearly the whole brain (Fig. 2A, Table S2).
Regional homogeneity of these nodes did not differ between
groups (Table S4). There was no evidence for overconnectivity in
patients with severe AN.
With weight normalization, follow-up analysis of the subnetwork

identified at TP1 revealed an increase of mean connectivity within
the subnetwork in the patient group between TP1 and TP2 (mean
difference= 0.05 ± 0.11, t(26)= 2.647, p= 0.014, g= 0.62), indicating
that the weakened network slightly recovered with weight normal-
ization. Between TP2 and TP3, mean connectivity of the subnetwork
remained largely unchanged (mean difference=−0.02 ± 0.10,
t(26) = −0.863, p= 0.396, g=−0.20). Whole-brain analyses within
the AN group, between TP1 and TP2, and between TP2 and TP3,
yielded no evidence of additional subnetworks over the course of

Fig. 2 Connectivity strength in patients with severe AN compared to HC. A, B Functional connectivity between 94 regions of interest,
difference between groups (AN minus HC) at TP1 A and TP3 B show global underconnectivity at both time points. C= central region,
F= frontal lobe, I= insula, L= limbic lobe, O= occipital lobe, P= parietal lobe, S= subcortical nuclei, T= temporal lobe. C Boxplots of global
strength per group and time point. Patients with AN (red) show persistent underconnectivity compared to healthy controls (blue). The cross
signifies the mean, the horizontal mark signifies the median, edges of the box represent 25th and 75th percentiles, and the whiskers extend to
1.5 interquartile ranges. *p < 0.05.
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weight normalization. Similarly, comparison of both groups in a
whole-brain ANOVA (group × time) yielded no evidence of network
changes over the course of treatment. A whole-brain comparison of
the groups at TP3 revealed a subnetwork of persistent under-
connectivity (p < 0.004, FWE-corrected). This subnetwork was less
extensive compared with TP1, comprising 33 nodes and 48
connections (Fig. 3B, Table S3). There was no evidence for
associations between subnetwork connectivity and eating disorder
parameters (clinical and psychometric) within the patient group (see
Supplemental Results).

Global network topology
In the phase of severe underweight (TP1), patients with AN showed
greater characteristic path length and modularity, and lower
clustering coefficient compared with HC, indicating weaker net-
work integration and segregation (Fig. 4A–C). Over time, there was
no evidence of changes in characteristic path length, clustering
coefficient, or modularity within either of the two groups (Fig. 4D
+E). At the end of treatment (TP3), greater characteristic path

length (AN: mean = 3.35 ± 0.48, HC: mean = 3.06 ± 0.57) and
modularity (AN: mean= 0.39 ± 0.05, HC: mean = 0.37 ± 0.05) and
lower clustering coefficient (AN: mean = 0.38 ± 0.06, HC: mean =
0.43 ± 0.09) persisted in patients with AN compared with HC
(Fig. S1). Between TP2 and TP3, greater normalization of modularity
correlated with earlier illness onset (r= 0.53, p= 0.0049, Holm-
corrected p= 0.029). There was no evidence for associations of
network topology with other clinical parameters or psychometric
scores (see Supplemental Results).

DISCUSSION
We examined intrinsic network connectivity in women with severe
AN over the course of weight-restoration treatment, compared
with closely matched HC. Severely underweight patients with AN
showed globally weaker and topologically altered intrinsic
connectivity compared with HC, and network analysis revealed a
widespread subnetwork of underconnectivity. Over the course of
weight normalization, patients’ intrinsic connectivity within the

Fig. 3 Subnetworks of underconnectivity in patients with severe AN compared to HC. Network nodes were defined using an adapted
version of the automated anatomical labelling atlas with 94 regions [44]. A At TP1, patients with AN showed decreased functional connectivity
in a large subnetwork, encompassing subcortical, limbic, insular, frontal, central, occipital, and temporal regions (pFWE < 0.004, nodes 61,
connections 125). B At TP3, a subnetwork of persistent underconnectivity in patients with AN emerged (pFWE= 0.0308; nodes 33,
connections 48).
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subnetwork recovered only slightly, and network analysis at the
end of treatment revealed a subnetwork of persistent under-
connectivity in patients with AN. Consistent with these findings,
significant differences in global strength and global network
topology persisted after weight normalization at the end of
treatment. Importantly, our results suggest that in adults with
severe AN, short-term weight normalization may not be sufficient
to fully restore intrinsic connectivity.

Severe underweight
Results revealed globally weaker connectivity strength in women
with severe AN, most strongly in a sizeable subnetwork of
underconnectivity spanning large parts of the brain. Consistent
with previous data-driven approaches [8, 10, 11, 20, 23, 24, 53, 54],
we did not find evidence for overconnectivity in patients with
severe AN. Results from graph metric analyses further clarified the
network findings by showing that the global network topology of
patients with severe AN is characterized by decreased network
segregation (i.e., lower global clustering) and decreased network
integration (i.e., greater characteristic path length and modularity).
These findings substantiate previous reports of lower global
clustering in adult patients [33] and greater characteristic path
length in a younger sample of patients [9]. In line with previous
reports [8, 11], there was no evidence that these differences were
driven by alterations of regional homogeneity [55].

Weight-dependent changes
This is the first longitudinal study to analyze intrinsic connectivity
in severe AN with three measurement time points over the course

of inpatient treatment. A major finding of the current study is that
contrary to our hypothesis, there was no evidence for improve-
ment of global connectivity strength and patients with AN
continued to show a profile of underconnectivity despite weight
normalization. Intrinsic connectivity within the weakened subnet-
work of AN patients improved slightly during the first half of
treatment (1–10 weeks after TP1), but weight normalization during
the second half of treatment (11–20 weeks after TP1) did not
further strengthen connectivity of the identified subnetwork.
Additionally, there was no evidence for improvement of global
network topology during weight normalization. Group compar-
isons at the end of treatment revealed strong differences
compared with matched HC, indicating persistent underconnec-
tivity and global topological alterations in patients with severe AN,
independent of BMI.
Our results are consistent with reports of weaker inter‐network

connectivity following weight normalization in adolescents and
young adults [21] and support previous reports of persisting
underconnectivity in long-term weight recovered patients with AN
[22, 23, 56]. Divergent findings of rapid recovery of intrinsic
connectivity after weight normalization [17, 20] could be due to
differences in sample characteristics, namely a milder severity of
illness at baseline [17] and a younger sample of patients with AN
[20]. Another important factor could be differences in methodo-
logical approaches, with selective seed-to voxel approaches [17]
possibly overlooking underconnectivity in other connections. The
persisting topological alterations are in line with a first study
reporting decreased network segregation in recovered patients
[34], and further support the notion of altered intrinsic

Fig. 4 Global network topology compared between patients with AN (red) and healthy controls (blue). Proportional thresholds ranged
from 0.05 to 0.45 at 0.01 intervals. A–C At TP1, cluster-based permutation testing revealed statistically significant group differences (gray-
shaded areas) in characteristic path length (pFWE= 0.0002, k= 23), clustering coefficient (pFWE= 0.0001, k= 37) and modularity (pFWE= 0.0001,
k= 10). D+E Longitudinally, there was no evidence of group changes over time (TP3-TP1) in all three topological measures. k= empirical
cluster size.
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connectivity after weight-restoration. Importantly, these topologi-
cal measures are thought to reflect key organizing principles of
brain networks [57] and have been shown to predict cognitive
performance in healthy individuals [58]. Taken together, our
results provide new information by showing that in patients with
severe AN, short-term weight normalization is not sufficient to
restore the strength and topology of intrinsic connectivity.

Clinical implications
In contrast to structural brain alterations, which have been show
to quickly regenerate upon weight normalization in patients with
AN [36, 59–61], intrinsic connectivity alterations in severe AN
appear to be less influenced by weight normalization and thus do
not solely represent a BMI-dependent state marker of AN. This is in
line with findings from a large meta-analysis, reporting no
correlation between resting-state brain activity and BMI [62].
Previous work has shown that weaker intrinsic connectivity is
associated with more severe eating disorder symptoms, reflecting
the altered cognitive patterns of patients with AN [63]. We
hypothesize that the persisting brain alterations in patients with
severe AN may be linked to the persisting cognitive symptoms of
AN, as measured by the elevated EDE-Q scores at the end of
treatment (TP3). Although no association between brain altera-
tions and eating disorder symptoms was found in the present
study, the patients’ persistent brain alterations and elevated
eating disorder pathology scores after weight normalization
emphasize that treatment success of severe AN should not be
measured by BMI alone. Our findings underline the persistence of
severe AN and point to the importance of continued psychother-
apeutic support after inpatient treatment. Further investigation is
needed to determine whether the persistent brain alterations are
reversible with continued psychotherapeutic treatment and
prolonged weight stabilization.

Methodological considerations
Our findings have to be considered in the context of the following
methodological considerations. First, preprocessing choices, such
as brain parcellation [10, 64] and denoising strategies [65], can
impact functional connectivity measures. Our findings are there-
fore likely contingent on the implemented parcellation scheme,
which was chosen for its widespread usage in the field e.g.,
[60, 63, 64] to facilitate comparisons with other studies. To ensure
the robustness of our findings with regard to motion correction,
we repeated the preprocessing with a component based
denoising method [66, 67]. The results indicated that the graph
metrics of patients with AN were consistent with our initial
findings (Supplemental Results), supporting their robustness.
Second, the question of how to handle negative connections

(i.e., anticorrelations) is highly controversial and their meaning
remains unclear, with some interpreting them as noise [68], while
others see them as potentially meaningful connections [69]. For
the present work, negative connections have been excluded since
they have been shown to impair network reliability [70] and do
not pertain to small-world properties [69]. Consequently, no
conclusions regarding negative connections can be drawn from
the present findings.
Third, while proportional thresholding is widely used and

considered more reliable than absolute thresholding [71],
differences in global strength may influence differences in graph
metrics [72], since low-weight, possibly random, connections may
be selected to meet the proportional density threshold [72, 73]. In
weighted graphs, low-weight connections are presumed have a
smaller effect on network topology [72], however, it should be
noted that the investigated measures of global network topology
inherently depend on connection strength and should be seen as
complementing rather than independent findings.
Finally, although our sample size is well comparable to other brain

imaging studies on AN it is nonetheless relatively moderate [74].

Evidently, larger cohorts are more sensitive to smaller effects and
allow for a more precise estimation of larger effects. However,
smaller studies can identify large clinically meaningful effects and,
given the current lack of longitudinal resting-state data in AN, our
study provides important insight to inform the hypotheses of future
consortia studies. A strength of our study is the use of a reliable data-
driven analysis method [47] that examines the whole brain without a
priori restrictions to specific brain regions, while controlling the
family-wise error rate. Furthermore, we accounted for the known
sensitivity of intrinsic connectivity to natural fluctuations of anxiety
during MRI scans [75] by collecting measurements of the HC group
at two time points. Given the known substantial decrease of anxiety
after first-time scans [76], this allowed for a more robust assessment
of intrinsic connectivity in both groups.

CONCLUSION
In conclusion, we have identified weakened intrinsic connectivity and
disrupted network topology in patients with severe AN that were not
improved by weight normalization over the course of specialized
inpatient treatment. The persistent disruption of brain networks
suggests sustained alterations of information processing in severe AN
and underscores that body weight is only one part of the recovery.
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